Spanning forests, electrical networks, and a determinant identity

Teufl E. ; Wagner S. (2009)

Conference Paper

We aim to generalize a theorem on the number of rooted spanning forests of a highly symmetric graph to the case of asymmetric graphs. We show that this can be achieved by means of an identity between the minor determinants of a Laplace matrix, for which we provide two different (combinatorial as well as algebraic) proofs in the simplest case. Furthermore, we discuss the connections to electrical networks and the enumeration of spanning trees in sequences of self-similar graphs. © 2009 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France.

Please refer to this item in SUNScholar by using the following persistent URL:
This item appears in the following collections: