Physcial hydraulic model investigation of critical submergence for raised pump intakes

Kleynhans, S. H. (2012-03)

Thesis (MScEng)--Stellenbosch University, 2012.

Thesis

ENGLISH ABSTRACT: Various design guidelines have been published over the past four decades to calculate the minimum submergence required at pump intakes to prevent vortex formation. These design guidelines also require the suction bell to be located not higher than 0.5 times the suction bell diameter (D) above the floor. Sand trap canals are an integral part of large river abstraction works, with the pump intakes located at the end of the sand trap canals. The canals need to be flushed by opening a gate, typically 1.5 m high, that is located downstream of the pump intake. This requires the suction bell be raised to not interfere with the flushing operation, which leads to the question – what impact does the raising of the suction bell have on the minimum required submergence? A physical hydraulic model constructed at 1:10 scale was used to determine the submergence required to prevent types 2, 5 and 6 vortices for prototype suction bell inlet velocities ranging from 0.9 m/s to 2.4 m/s, and for suction bells located at 0.5D, 1.0D and 1.5D above the floor. The tests were undertaken for four suction bell configurations with a conventional flat bottom suction bell, fitted with a long radius bend, being the preferred suction bell configuration in terms of the lowest required submergence levels. The experimental test results of the preferred suction bell configuration were compared against the published design guidelines to determine which published formula best represents the experimental test results for raised pump intakes. It became evident from the experimental test results that the required submergence increased markedly when the suction bell was raised higher than a certain level above the floor. It was concluded that this “discontinuity” in the required submergence occurred for all the suction bell configuration types when the ratio between the prototype bell inlet velocity and the approach canal velocity was approximately 6.0 or higher. It is recommended that, for pump intakes with a similar geometry to that tested with the physical hydraulic model, critical submergence is calculated using the equation published by Knauss (1987), i.e. S = D(0.5 + 2.0Fr), if the prototype bell inlet velocity/approach canal velocity ratio is less than 6.0, and that the equation published by the Hydraulic Institute (1998), i.e. S = D(1 + 2.3Fr), can be used where the ratio, as determined with Knauss’ (1987) equation, exceeds 6.0. It is also recommended that prototype bell inlet velocities be limited to 1.5 m/s.

AFRIKAANSE OPSOMMING: Oor die afgelope vier dekades is verskeie ontwerpriglyne vir die berekening van minimum watervlakke, om werwelvorming by pompinlate te voorkom, gepubliseer. Hierdie ontwerpriglyne vereis dat die klokmond van die pompinlaat nie hoër as 0.5 keer die deursnee van die klokmond (D) bokant die kanaalvloer geleë moet wees nie. Sandvang kanale vorm ‘n integrale deel van groot riveronttrekkingswerke, met pompinlate wat aan die einde van hierdie kanale geleë is. Die kanale word aan die stroomaf kant van die pompinlaat voorsien met sluise sodat die kanale gespoel kan word. Hierdie sluise is tipies 1.5 m hoog. Dit is derhalwe nodig om die hoogte onder die klokmond dieselfde te maak as die hoogte van die sluis sodat die klokmond die spoelwerking nie beïnvloed nie. Die vraag is egter – wat is die impak op die minimum vereiste watervlakke indien die klokmond op ‘n hoër vlak installeer word? ‘n Fisiese hidrouliese model met ‘n 1:10 skaal is gebruik om die minimum watervlakke te bepaal waar tipes 2, 5 en 6 werwels aangetref word vir prototipe inlaatsnelhede van 0.9 m/s tot 2.4 m/s en klokmond hoogtes van 0.5D, 1.0D en 1.5D bokant die kanaalvloer. Vier klokmond konfigurasies is getoets. Die minimum vereiste watervlakke was die laagste vir die tradisionele plat klokmond met ‘n lang radius buigstuk en was dus die voorkeur klokmond. Die eksperimenttoetsresultate vir die voorkeur klokmond is met die gepubliseerde ontwerpriglyne vergelyk om te bepaal watter van die ontwerpsriglyne van toepassing sal wees vir verhoogde klokmond installasies. Uit die eksperimenttoetsresultate is dit duidelik dat die vereiste watervlakke skielik verhoog sodra die klokmond installasie ‘n seker hoogte bokant die kanaal vloer oorskry. Daar is bevind dat hierdie verskynsel by al vier klokmond konfigurasies voorkom sodra die verhouding tussen die prototipe klokmond inlaatsnelheid teenoor die snelheid in die kanaal hoër as 6.0 is. Daar word aanbeveel dat die minimum vereiste watervlak vir pompinlate met dieselfde geometrie as die fisiese model, met Knauss (1987) se vergelyking bereken word, naamlik S = D(0.5 + 2.0Fr), waar die snelheidsverhouding tussen die klokmond en kanaal 6.0 nie oorskry nie, en dat die vergelyking gepubliseer deur die Hydraulic Institute (1998), S = D(1 + 2.3Fr), gebruik word waar die snelheidsverhouding 6.0, so bereken met Knauss (1987) ser vergelyking, wel oorskry. Die prototipe klokmond inlaatsnelheid moet ook beperk word tot 1.5 m/s.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/20304
This item appears in the following collections: