ITEM VIEW

A Cayley-Hamilton trace identity for 2 × 2 matrices over Lie-solvable rings

dc.contributor.authorMeyer J.
dc.contributor.authorSzigeti J.
dc.contributor.authorvan Wyk L.
dc.date.accessioned2012-01-18T08:06:14Z
dc.date.available2012-01-18T08:06:14Z
dc.date.issued2012-01-18
dc.identifier.citationLinear Algebra and Its Applications
dc.identifier.citationhttp://www.scopus.com/inward/record.url?eid=2-s2.0-82455185052&partnerID=40&md5=0e279763f14e8899c610e1785d297993
dc.identifier.issn243795
dc.identifier.other10.1016/j.laa.2011.11.011
dc.identifier.urihttp://hdl.handle.net/10019.1/18719
dc.descriptionPlease help us populate SUNScholar with the post print version of this article. It can be e-mailed to: scholar@sun.ac.za
dc.description.abstractFirst we construct an algebra satisfying the polynomial identity [[x,y],[u,v]]=0, but none of the stronger identities [x,y][u,v]=0 and [[x,y],z]=0. Then we exhibit a Cayley-Hamilton trace identity for 2×2 matrices with entries in a ring R satisfying [[x,y],[x,z]]=0 and 12∈R. © 2011 Elsevier Inc. All rights reserved.
dc.titleA Cayley-Hamilton trace identity for 2 × 2 matrices over Lie-solvable rings
dc.typeArticle in Press


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

ITEM VIEW