Radiation tolerant implementation of a soft-core processor for space applications

Van der Horst, Johannes Gerhardus (2007-03)

Thesis (MScEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2007.


The availability of high density FPGAs has made the use of soft-core processors an attractive proposition for the low volume space market. Soft-core processors combine the power of programmable logic with the ease of use of a conventional processor to provide a highly customisable solution. However, the SRAM FPGAs used as implementation platform are especially susceptable to radiation induced single event upsets, due to the sensitivity of their configuration memory. To safely use these processors in a space environment requires the modification of the processor to safely mitigate these effects. This thesis presents the process followed to develop and test a fault tolerant implementation of an 8-bit PicoBlaze soft-core processor on a Xilinx Spartan-3 SRAM FPGA. A thorough investigation was made into the available methods that can be used to mitigate single event upsets, in order to identify the most suitable ones. Guidelines for the application of SEU mitigation techniques to SRAM FPGAs were proposed. A single event upset simulator was designed and constructed to compare the different techniques. It mimics SEUs by injecting errors into the configuration memory of an FPGA. The results of error injection were used to develop a PicoBlaze implementation with limited overhead, while it still offers a high degree of error mitigation. Three different designs were tested by proton irradiation to verify the protection afforded by the mitigation techniques. It was found that protected designs were more robust. The cross-section of the FPGA was also determined, which can be used with the SEU simulator to predict the dynamic cross-section of designs. The work contained in this thesis demonstrates the use of open-source intellectual property with commercial-off-the-shelf components to develop a robust component for use in the miniature spacecraft market.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/1857
This item appears in the following collections: