Fault tolerant adaptive control of an unmanned aerial vehicle

Basson, Willem Albertus (2011-12)

Thesis (MScEng)--Stellenbosch University, 2011.

Thesis

ENGLISH ABSTRACT: This thesis presents the development of an adaptive longitudinal control system for an unmanned aerial vehicle (UAV). The project forms part of a research effort at Stellenbosch University into different fault-tolerant control techniques for UAVs. In order to demonstrate the usefulness of fault-tolerant adaptive control, the control system was designed to handle damage-induced longitudinal shifts in the centre of gravity (CG) of the aircraft, which are known to have a dramatic effect on the stability of a fixed-wing aircraft. Using a simplified force and moment model, equations were derived which model the effect of longitudinal CG shifts on the behaviour of the aircraft. A linear analysis of the longitudinal dynamics using these equations showed that the short period mode can become unstable for backward CG shifts. An adaptive pitch rate controller with the model reference adaptive control structure was designed to re-stabilise the short period mode when the CG shifts backwards. The adaptive law was designed using Lyapunov stability theory. Airspeed, climb rate and altitude controllers were designed around the pitch rate controller to allow full autonomous control of the longitudinal dynamics of the UAV. These outer loops were designed with constant parameters, since they would be unaffected by CG shifts if the adaptive pitch rate controller performed as desired. Pure software simulations as well as hardware-in-the-loop simulations showed that the adaptive control system is able to handle instantaneous shifts in the centre of gravity which would destabilise a fixed-gain control system. These simulation results were validated in flight tests, where the aircraft was destabilised using positive feedback and re-stabilised by the adaptive control system. Thus the simulation and flight test results showed that an adaptive control can re-stabilise an unstable aircraft without explicit knowledge of the change in the aircraft dynamics, and therefore could be effective as part of an integrated fault-tolerant control system.

AFRIKAANSE OPSOMMING: Hierdie tesis bied die ontwikkeling aan van ’n aanpassende longitudinale beheerstelsel vir ’n onbemande vliegtuig. Die projek is deel van navorsing by die Universiteit van Stellenbosch oor verskillende fout-tolerante beheertegnieke vir onbemande vliegtuie. Om die doeltreffendheid van aanpassende beheer te demonstreer, is die beheerstelsel ontwerp om situasies te kan hanteer waar die vliegtuig só beskadig word dat sy massamiddelpunt agtertoe skuif, wat ’n groot invloed op die stabiliteit van ’n vastevlerk-vliegtuig kan hê. ’n Vereenvoudigde model van die kragte en momente wat op die vliegtuig inwerk is gebruik om vergelykings af te lei wat beskryf hoe die gedrag van die vliegtuig verander as die massamiddelpunt agtertoe verskuif. Hierdie vergelykings is gebruik in ’n lineêre analise van die longitudinale dinamika van die vliegtuig, wat getoon het dat die kortperiode-modus onstabiel kan raak as die massamiddelpunt agtertoe verskuif. ’n Aanpassende heitempobeheerder met die modelverwysings-aanpassende beheerstruktuur is ontwerp om die kortperiode-modus weer te stabiliseer wanneer die massamiddelpunt agtertoe verskuif. Die aanpassingswet is ontwerp deur die gebruik van Lyapunov se stabiliteitsteorie. Lugspoed-, klimtempo- en hoogtebeheerders is rondom die aanpassende heitempobeheerder ontwerp sodat die longitudinale dinamika van die vliegtuig heeltemal outonoom beheer kan word. Hierdie buitelusse is ontwerp met vaste parameters, aangesien hulle nie geraak sal word deur verskuiwings in die massamiddelpunt as die aanpassende heitempobeheerder na wense werk nie. Suiwer sagteware-simulasies, sowel as hardeware-in-die-lus-simulasies, het getoon dat die aanpassende beheerstelsel oombliklike verskuiwings in die massamiddelpunt goed kan hanteer, waar sulke verskuiwings ’n beheerstelsel met vaste parameters onstabiel sou maak. Hierdie simulasie-resultate is bevestig deur vlugtoetse te doen, waar die vliegtuig onstabiel gemaak is deur positiewe terugvoer, en weer deur die aanpassende beheerstelsel stabiel gemaak is. Die simulasie- en vlugtoetsresultate wys dus dat aanpassende beheer ’n onstabiele vliegtuig weer kan stabiliseer sonder eksplisiete kennis van die veranderinge in die dinamika van die vliegtuig. Aanpassende beheer kan dus doeltreffend wees as deel van ’n geïntegreerde fout-tolerante beheerstelsel.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/17898
This item appears in the following collections: