Pharmaceutical polymorphs quantified with transmission Raman spectroscopy

Date
2011-10-13
Authors
Mcgoverin C.M.
Hargreaves M.D.
Matousek P.
Gordon K.C.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The quantification of polymorphs in dosage forms is important in the pharmaceutical industry. Conventional Raman spectroscopy of solid-state pharmaceuticals may be used for this, but it has some limitations such as sub-sampling and fluorescence. These problems can be mitigated through the use of transmission Raman spectroscopy (TRS). The efficacy of TRS measurements for the prediction of polymorph content was evaluated using a ranitidine hydrochloride test system. Four groups of ranitidine hydrochloride-based samples were prepared: three containing form I and II ranitidine hydrochloride and microcrystalline cellulose (spanning the ranges 0-10%, 90-100% and 0-100% form I fraction of total ranitidine hydrochloride), and a fourth group comprising form I ranitidine hydrochloride (0-10%) spiked commercial formulation. Transmission and conventional Raman spectroscopic measurements were recorded from both capsules and tablets of the four sample groups. Prediction models for polymorph and total ranitidine hydrochloride content were more accurate for the tablet than for the capsule systems. TRS was found to be superior to conventional backscattering Raman spectroscopy in the prediction of polymorph and total ranitidine hydrochloride content. The prediction model calculated for form I content across the 0-100% range was appropriate for process control [ratio of prediction to deviation (RPD) equal to 14.62 and 7.42 for tablets and capsules, respectively]. The 10% range calibrations for both form I and total ranitidine hydrochloride content were sufficient for screening (RPDs greater than 2.6). TRS is an effective tool for polymorph process control within the pharmaceutical industry. © 2011 John Wiley & Sons, Ltd.
Description
Keywords
Citation
Journal of Raman Spectroscopy
http://www.scopus.com/inward/record.url?eid=2-s2.0-79960185029&partnerID=40&md5=8fc87ad755e1545c7503026cabb13442