Myostatin levels in skeletal muscle of hibernating ground squirrels

Date
2011
Authors
Brooks N.E.
Myburgh K.H.
Storey K.B.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Myostatin, a negative regulator of muscle mass, is elevated during disuse and starvation. Mammalian hibernation presents a unique scenario, where animals are hypocaloric and in torpor, but the extent of muscle protein loss is minimized. We hypothesized that myostatin expression, which is usually increased early in disuse and under hypocaloric conditions, could be suppressed in this unique model. Skeletal muscle was collected from thirteen-lined ground squirrels, Spermophilus tridecemlineatus, at six time points during hibernation: control euthermic (CON); entrance into hibernation (ENT), body temperature (Tb) falling; early hibernation (EHib), stable Tb in torpor for 24h; late hibernation (LHib), stable Tb in torpor for 3days; early arousal (EAr), Tb rising; and arousal (AR), T b restored to 34-37°C for about 18h. There was no significant increase of myostatin during ENT, EHib or LHib. Unexpectedly, there were approximately sixfold increases in myostatin protein levels as squirrels arose from torpor. The elevation during EAr remained high in AR, which represented an interbout time period. Mechanisms that could release the suppression or promote increased levels of myostatin were assessed. SMAD2 and phosphorylated SMAD2 were increased during EHib, but only the phosphorylated SMAD2 during AR mirrored increases in myostatin. Follistatin, a negative regulator of myostatin, did not follow the same time course as myostatin or its signaling pathway, indicating more control of myostatin at the signaling level. However, SMAD7, an inhibitory SMAD, did not appear to play a significant role during deep hibernation. Hibernation is an excellent natural model to study factors involved in the endogenous intracellular mechanisms controlling myostatin. © 2011. Published by The Company of Biologists Ltd.
Description
Keywords
Citation
Journal of Experimental Biology
214
15
http://www.scopus.com/inward/record.url?eid=2-s2.0-79960680388&partnerID=40&md5=34e9c159ecf40d16de739b1c48ba8830