Promotor engineering in Saccharomyces cerevisiae for transcriptional control under different physiological conditions

Conradie, E. C. (Elizabeth Cornelia) (2011-10)

Dissertation (PhD)--University of Stellenbosch, 2005.

Thesis

ENGLISH ABSTRACT: To manipulate recombinant microorganisms for industrial processes, controllable genetic systems are needed that can coordinate expression of recombinant metabolic pathways. All components are sensitive to change and thus putative targets for modification and genetic elements and regulatory systems need to be understood and determined. Central in gene regulation is the transcription activators that mediate gene transcription mechanisms by binding to promoters in response to environmental signals. Promoter engineering entails the modification of transcription factors and their target promoters. In this study, a metabolic control system in Saccharomyces cerevisiae was constructed that would allow induction in response to physiological environment, specifically hypoxia and low temperature conditions. Two approaches were undertaken to find such a system. Firstly, a bi-directional reporter gene cloning vector was designed to search for novel hypoxiainducible promoters. Secondly, a transcription regulatory circuit was built, consisting of an inducible transcription regulator and promoter with a reporter gene through which it mediates transcription. Advantage was taken of the modular nature of proteins and functional domains originating from different transcriptional proteins were combined. A search for promoter elements sensitive to hypoxia from a S. cerevisiae genomic DNA (gDNA) library, using a bi-directional cloning vector, did not yield highly inducible promoters. It was concluded that a multitude of signals overlap, rendering genetic induction difficult to control. A synthetic regulatory system would minimize the impact of these multiple interactions. Such a genetic circuit was constructed, consisting of a chimeric transcription activator and a target fusion promoter. The chimeric transcription activator consisted of the GAL4 DNA binding domain, ADR1 TADIII transactivation domain and three domains of the MGA2 regulatory protein. The functional domains of Mga2p responsible for unregulated expression (at high basal levels) under both aerobic and hypoxia conditions were located, as well as a further upregulation under low temperature, and were mapped to the Nterminal and mid-Mga2p regions. A target fusion promoter consisting of a partial GAL10/1 promoter sequence and a Trichoderma reesei core xyn2 promoter were constructed as target for this chimeric transactivator. This synthetic promoter was fused to the T. reesei xyn2 open reading frame encoding for a readily assayable β-xylanase activity. Both the chimeric transactivator and fusion promoter-reporter gene cassettes were expressed from the same episomal plasmid, named pAR. Transformed into S. cerevisiae Y294, this regulatory system induced transcription under aerobic and hypoxia conditions. Furthermore, the reporter gene expression was upregulated by the chimeric transactivator at low temperatures. The chimeric transactivator mediated a seven-fold induction of the reporter gene under aerobic conditions in S. cerevisiae Y294 when transformed with plasmid AR. A two- to three-fold induction at 23ºC was reported under anaerobic conditions, relative to a reference strain expressing a transcription activator without the Mga2p domains. At 30ºC, a two- to three-fold induction under aerobic conditions and similar induction under oxygen-limited conditions were observed. Replacing the reporter gene with your favorite gene (for example a recombinant enzyme) and incorporating such a pAR system into a recombinant yeast should induce expression of the chosen gene under low temperatures, both aerobic and anaerobically (thus creating a controllable system). The system also has wider application in identifying other transcription factors’ signal-sensitive domains. The design of this system provides the ability to add a linker to a transactivator and to either create specific signal sensitivity or relieve the regulator of its signal dependence. It creates an easy system for assessing other transactivators and their domains with unknown functions and thus provides a ”workhorse and prospector in one”.

AFRIKAANSE OPSOMMING: Vir die manipulering van rekombinante mikroörganismes vir industriële prosesse word beheerbare genetiese stelsels benodig om gekoördineerde uitdrukking van rekombinante metaboliese weë teweeg te bring. Alle komponente van sulke stelsels is sensitief vir verandering en genetiese elemente en reguleerbare sisteme moet dus deeglik verstaan of bepaal word. Sentraal tot geenregulering is die transkripsie-aktiveerders wat geentranskripsie beheer deur aan promoters te bind in reaksie op eksterne omgewingsfaktore. Promotoringenieurswese behels wysigings van transkripsiefaktore en hul teikenpromotors. In hierdie studie is 'n genetiese beheerstelsel vir Saccaromyces cerevisiae ontwikkel wat induksie in reaksie tot spesifieke fisiologiese omgewingreaksies, naamlik hipoksie- en lae temperatuur, toelaat. Twee benaderings is gevolg: eerstens is ‘n tweerigting verklikker-geen vektor ontwikkel en gebruik om vir unieke induseerbare hipoksie-promoters te soek. Tweedens is ‘n transkripsie reguleringstelsel gebou wat uit ‘n induseerbare transkripsiereguleerder and promotor met ‘n verklikkergeen bestaan, waardeur transkripsie bemiddel kan word. Hierdie benadering benut die modulêre onderbou van proteïene en funksionele domeine afkomstig vanaf verskillende transkripsiefaktore is gekombineer. 'n Soektog na hipoksie-sensitiewe promotors vanuit 'n Saccharomyces cerevisiae-genoom- DNA (gDNA), deur van ‘n tweerigting verklikker-vektor gebruik te maak, het ongelukkig nie hoogs-induseerbare promotors opgelewer nie. Die gevolgtrekking was dat ‘n veelvoud van seine met mekaar oorvleuel en die beheer van genetiese induksie dus bemoeilik. Die ontwikkeling van ‘n sintetiese regulering-sisteem kan die impak van die veelvuldige interaksies verminder. Vir dié doel is ‘n sintetiese reguleringstelsel ontwerp, bestaande uit ‘n chimeriese transkripsie-aktiveerder met ‘n teiken fusie-promotor. Die chimeriese transaktiveerder bestaan uit die GAL4 DNA bindingsdomein, die ADR1 TAD III transaktiveringsdomein en drie domeine van die Mga2 reguleringsproteïen. In die studie is die funksionele domeins van Mga2p betrokke by lae temperatuur-respons en ongereguleerde uitdrukking (teen hoë basale vlakke) onder beide aërobiese en anaërobiese toestande aangedui en is tot die N-terminaal en middel-Mga2p areas gekarteer. ‘n Teiken-fusie-promoter, bestaande uit 'n gedeeltelike GAL1/10 DNA promotoropeenvolging en ‘n Trichoderma reesei kern xyn2-promoter, is as teiken vir hierdie chimeriese transaktiveerder saamgestel. Hierdie sintetiese promotor is aan die T. reesei xyn2 oopleesraam, wat vir ‘n maklik meetbare β-xylanase aktiwiteit kodeer, gekoppel. Beide die chimeriese transaktiveerder and fusie-promoter-verklikker-geenkaset word vanaf dieselfde episomale plasmied, bekend as pAR, uitgedruk. Hierdie reguleringsisteem induseer transkripsie onder aërobiese en hipoksie toestande in S. cerevisiae Y294. Verder word die verklikkergeen se uitdrukking deur die chimeriese transaktiveerder by lae temperature verhoog. Die chimeriese transaktiveerder induseer ‘n sewe-voudige induksie van die verklikkergeen onder aërobiese toestande by 23ºC vanaf die pAR-stelsel in S. cerevisiae Y294. ‘n Twee- tot drie-voudige induksie teen 23ºC is onder hipoksie toestande gevind, relatief tot induksievlakke van ‘n verwysingstam met ‘n transaktiveerder sonder die Mga2 domeine. By 30ºC is ‘n twee- tot drie-voudige induksie onder aërobiese en lae suurstofvlakke waargeneem. Deur die verklikker geen met ‘n jou-gunsteling-geen te vervang (bv. ‘n rekombinante ensiem) en so 'n pAR-sisteem in ‘n rekombinante gis te inkorporeer, word uitdrukking onder lae temperature onder beide aërobiese- en anaërobiese toestande geïnduseer (en sodoende word ‘n reguleerbare sisteem geskep). Die sisteem het wyer toepassing om sein-sensitiewe domeine van ander transkripsiefaktore te identifiseer. Die ontwerp van die stelsel maak dit moontlik om 'n skakel tot die transaktiveerder by te voeg wat óf sensitiwiteit tot 'n spesifieke sein skep, óf die reguleerder vanaf seinafhanklikheid verlos. So word ‘n bruikbare stelsel vir die bestudering van ander transaktivators en hul domeine met onbekende funksie geskep – ‘n “werksesel en prospekteerder in een”.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/16512
This item appears in the following collections: