The development of a membrane reactor for the dehydrogenation of isopropanol

Mouton, Duane Wilmot (Stellenbosch : University of Stellenbosch, 2003-04)


ENGLISH ABSTRACT: Both porous and dense hydrogen selective membranes have recently been an active area of research. The combination of a reactor and a separator in the form of a membrane reactor is seen as a feasible application in which to perform dehydrogenation reactions. These reactions are equilibrium limited so that the removal of the product H2 by a selective membrane can improve the process effectiveness. Early Pd-based membranes were made of thin-walled tubes. In an attempt to increase permeation rates, thin supported Pd membranes have been developed. This study investigated the development and performance of a catalytic membrane reactor. The membrane reactor consists of a tubular alumina membrane support coated on the inside with a film of palladium or a palladium-copper alloy. This reactor was used for the dehydrogenation of isopropanol. The thin film was coated on the alumina support using an electroless plating process. This process occurs in a liquid medium where palladium and copper are deposited by electrolysis or electroless means. With these methods alloys can also be deposited on the support. By plating a thin film of palladium on the alumina membranes, will attract hydrogen molecules from the reaction product, which will increase the reaction rate. The electroless plating process consists of four major components: (i) (ii) (iii) (iv) reducing agent ( 0.04 M hydrazine), temperature bath, stabilised source of metal ions, and support membrane (α-alumina). Heat treatment was carried out on the coated membranes for 5 hours in a hydrogen atmosphere at 450°C. The plated membranes supplied by Atech were characterised using X-ray diffraction (XRD), scanning electron microscopy (SEM) and particle induced Xray emission (PIXE) before and after heat treatment. SEM photographs showed that the pore size of the membranes was doubtful and due to that the films were not of a dense nature. XRD results revealed that heat treatment led to the formation of smaller Pd and Cu crystallites. The concentration profiles constructed from the PIXE results indicated that Cu and Pd penetrated deep into the pores of the membrane during film preparation. Different catalysts (Al2O3, MgO and SiO2) were tested and the best one was chosen as catalyst in the membrane reactor. These catalytic runs were done in a plug flow (fixedbed) reactor. Different particle sizes of catalysts were also tested. A 9.2 Cu wt % on silica achieved the highest acetone yields for the temperatures tested. Two different types of alumina membrane reactors were used. These were supplied from SCT. One membrane only coated with palladium and the other coated with palladium and copper. Selectivity and permeability tests were also carried out on these membranes. Selectivities of up to 90.6 could be reached with the palladium coated membrane. The palladium-copper plated membrane only achieved selectivities of up to 13. With heat treatment this value decreased even more. The palladium coated membrane also achieved much better conversion to acetone in the dehydrogenation of 2-propanol. The reason for that is its better selectivity. The palladium-copper membrane reactor did not show much better results than the fixed-bed reactor.

AFRIKAANSE OPSOMMING: Hierdie studie ondersoek die ontwikkeling en werk verrigting van ‘n katalitiese membraan reaktor. Die membraan reaktor bestaan uit ‘n dun film palladium of palladium-koper allooi wat aan die binnekant van ‘n silindriese alumina membraan geplateer word. Die alumina dien as membraanbasis. Hierdie reaktor sal gebruik word vir die dehidrogenering van isopropanol. Die dun films van metaal word neergeslaan op die alumina basis deur ‘n elektrodelose platerings proses. Hierdie proses vind plaas in ‘n vloeistof medium waar palladium en koper neerslag plaasvind op ‘n elektrodelose wyse. Met hierdie metode kan metaal allooie geplateer word op basis membrane. Deur ‘n dun palladium lagie aan die binnekant van die alumina membrane te plateer sal veroorsaak dat waterstof molekules uit die reaksie volume sal weg beweeg. Dit sal ‘n verhoging in reaksie tempo meebring. Die platerings proses bestaan uit vier komponente: (i) reduseermiddel (0.04M Hidrasien), (ii) temperatuur water bad, (iii) stabiliseerde bron van metaal ione (Pd/Cu kompleks oplossing), en (iv) basis membraan (α-alumina). Hittebehandeling vir 5 uur is uitgevoer op hierdie geplateerde membrane by 450°C in ‘n waterstofatmosfeer. Die geplateerde membrane is daarna gekarakteriseer- voor en na hittebehandeling. Dit is gekarakteriseer deur X-straal diffraksie (XRD), skanderings elektron mikroskopie (SEM) en partikel geïnduseerde X-straal emissie (PIXE). XRD eksperimente het gewys dat die koper en die palladium ‘n allooi gevorm het. Veranderinge in kristaltekstuur het voorgekom na hittebehandeling. Tydens hittebehandeling was kleiner palladium en koper kristalle gevorm. SEM resultate het getoon dat die film nie baie dig was nie en die porie grootte van die membrane was ook nie korrek nie. PIXE resultate het die konsentrasieprofiele van beide koper en palladium oor die dikte van die membraan bepaal. Dit het gewys dat die Cu en Pd diep binne die membraan penetreer het tydens voorbereiding van die membraan. Verskillende soorte kataliste (Al2O3, MgO and SiO2) is ondersoek vir die dehidrogenering van isopropanol. Hierdie katalitiese ondersoek is gedoen in ‘n propvloei reaktor. Die beste katalis is gekies om in die membraan reaktor te gebruik. Verskillende partikel groottes is ook ondersoek. ‘n 9.2 Cu massa % koper op silika katalis het die beste omsetting na asetoon verkry vir die temperature waarvoor toetse gedoen is. Twee tipes membraan reaktors is gebruik. Een met net ‘n palladium film, terwyl ‘n palladium-koper allooi op die ander membraan reaktor gedeponeer was. Selektiwiteits- en deurlaatbaarheids toetse is op altwee membrane gedoen. Selektiwiteite van 90.6% kon verkry word met die palladium membraan. Die palladium-koper membraan kon slegs ‘n selektiwiteit van 13% bereik. Met hittebehandeling daarvan het die selektiwiteit selfs meer afgeneem. Die palladium membraan het ook hoër omsettings na asetoon getoon. Die rede hiervoor is die membraan se hoë selektiwiteit. Die palladium-koper membraan het nie veel beter resultate as die propvloei reaktor gelewer nie.

Please refer to this item in SUNScholar by using the following persistent URL:
This item appears in the following collections: