The prediction of the emission spectra of flares and solid propellant rockets

Barnard, Paul Werner (2003-04)

Thesis (MScIng)--University of Stellenbosch, 2003.


ENGLISH ABSTRACT: It was shown in an earlier study that it is possible to predict the spectral radiance of rocket combustion plumes directly from the propellant composition and motor parameters. Little is published in the open literature on this subject, but the current trend is to use determinative methods like computational fluid dynamics and statistical techniques to simulate wide band radiance based on blackbody temperature assumptions. A limitation of these methods is the fact that they are computationally expensive and rather complex to implement. An alternative modeling approach was used which did not rely on solving all the nonlinearities and complex relationships applicable to a fundamental model. A multilayer perceptron based Neural Network was used to develop a parametric functional mapping between the propellant chemical composition and the motor design and the resulting spectral irradiance measured in a section of the plume. This functional mapping effectively models the relationship between the rocket design and the plume spectral radiance. Two datasets were available for use in this study: Emission spectra from solid propellant rockets and flare emission spectra. In the case of the solid rocket propellants, the input to the network consisted of the chemical composition of the fuels and four motor parameters, with the output of the network consisting of 146 scaled emission spectra points in the waveband from 2-5 microns. The four motor parameters were derived from equations describing the mass flow characteristics of rocket motors. The mass flow through the rocket motor does have an effect on the shape of the plume of combustion gases, which in turn has an effect on the infrared signature of the plume. The characteristics of the mass flow through the nozzle of the rocket motor determine the thermodynamic properties of the combustion process. This then influences the kind of chemical species found in the plume and also at what temperature these species are radiating energy.The resultant function describing the plume signature is: Plume signature f {p T A fuel composition} t , , , , 1 1 = ε It was demonstrated that this approach yielded very useful results. Using only 18 basic variables, the spectra were predicted properly for variations in all these parameters. The model also predicted spectra that agree with the underlying physical situation when changing the composition as a whole. By decreasing the Potassium content for example, the model demonstrated the effect of a flame suppressant on the radiance in this wavelength band by increasing the predicted output. Lowering the temperature, which drives the process of molecular vibration and translation, resulted in the expected lower output across the spectral band. In general, it was shown that only a small section of the large space of 2 propellant classes had to be measured in order to successfully generate a model that could predict emission spectra for other designs in those classes. The same principal was then applied to predicting the infrared spectral emission of a burning flare. The brick type flare considered in this study will ignite and the solid fuel will burn on all surfaces. Since there are no physical parameters influencing the plume as in the case of the rocket nozzles it was required to search for parameters that could influence the flare plume. It was possible to calculate thermodynamic properties for the flare combustion process. These parameters were then reduced to 4 parameters, namely: the oxidant-fuel ratio, equilibrium temperature, the molar mass and the maximum combustion temperature. The input variables for the flares thus consisted of the chemical composition and 4 thermodynamic parameters described above. The network proposed previously was improved and optimised for a minimum number of variables in the system. The optimised network marginally improved on the pevious results (with the same data), but the training time involved was cut substantially. The same approach to the optimization of the network was again followed to determine the optimal network structure for predicting the flare emission spectra. The optimisation involved starting out with the simplest possible network construction and continuouslyincreasing the variables in the system until the solution predicted by the network was satisfactory. Once the structure of the network was determined it was possible to optimise the training algorithms to further improve the solution. In the case of the solid rocket propellant emission data it was felt that it would be important to be able to predict the chemical composition of the fuel and the motor parameters using the infrared emission spectra as input. This was done by simply reversing the optimised network and exchanging the inputs with the outputs. The results obtained from the reversed network accurately predicted the chemical composition and motor parameters on two different test sets. The predicted spectra of some of the solid propellant rocket test sets and flare test sets did not compare well with the expected values. This was due to the fact that these test sets were in a sparsely populated area of the variable space. These outliers are normally removed from training data, but in this case there wasn’t enough data to remove outliers. To obtain an indication of the strength of the correlation between the predicted and measured line spectra two parameters were used to test the correlation between two line spectra. The first parameter is the Pearson product moment of coefficient of correlation and gives an indication of how good the predicted line spectra followed the trend of the measured spectral lines. The second parameter measures the relative distance between a target and predicted spectral point. For both the solid propellants and the flares the correlation values was very close to 1, indicating a very good solution. Values for the two correlation parameters of a test set of the flares were 0.998 and 0.992. In order to verify the model it was necessary to prove that the solution yielded by the model is better than the average of the variable space. Three statistical tests were done consisting of the mean-squared-error test, T-test and Wilcoxon ranksum test. In all three cases the average of the variable space (static model) and the predicted values (Neural Network model) were compared to the measured values. For both the T-test and the Wilcoxon ranksum test the null hypothesis is rejected when t < -tα = 1.645 and then thealternative hypothesis is accepted, which states that the error of the NN model will be smaller than that of the static model. The mean squared error for the static model was 0.102 compared to the 0.0167 of the neural net, for a solid propellant rocket test set. A ttest was done on the same test set, yielding a value of –2.71, which is smaller than – 1.645, indicating that the NN model outperforms the static model. The Z value for this test set is Z = -11.9886, which is a much smaller than –1.645. The results from these statistical tests confirm that neural network is a valid conceptual model and the solutions yielded are unique.

AFRIKAANSE OPSOMMING: In ‘n vroeër studie is bewys hoe dit moontlik is om die spektrale irradiansie van ‘n vuurpyl se verbrandingspluim te voorspel vanaf slegs die dryfmiddelsamestelling en vuurpylmotoreienskappe. In die literatuur is daar min gepubliseer oor hierdie onderwerp. Dit wil voorkom asof meer deterministiese metodes gebruik word om die probleem op te los. Metodes soos CFD simulasies en statistiese analises word tans verkies om wyeband radiansie te voorspel gebaseer op perfekte swart ligaam teorie. ‘n Groot beperking van hierdie metodes is die feit dat die berekeninge kompleks is en baie lank neem om te voltooi. ‘n Alternatiewe benadering is gebruik, wat nie poog om al die nie-liniêre en komplekse verbande uit eerste beginsels op te los nie. ‘n Neurale netwerk is gebruik om ‘n funksionele verband te skep tussen die chemiese samestelling van die dryfmiddel, vuurpylmotor ontwerp en die spektrale irradiansie van die vuurpyl se pluim. Die funksionele verband kan nou effektief die afhanklikheid van die dryfmiddelsamestelling, vuurpylmotor ontwerp en die spektrale uitset modelleer. Twee datastelle was beskikbaar vir analise: Emissie spektra van vaste dryfmiddel vuurpyle en ook van vaste dryfmiddel fakkels. Die invoer tot die neurale netwerk van die vuurpyle het bestaan uit die chemiese samestelling van die dryfmiddel en 4 vuurpylmotor eienskappe. Die uitvoer van die netwerk het weer bestaan uit 146 spektrale irradiansie waardes in die golflengte band van 2-5μm. Die 4 vuurpylmotor eienskappe is afgelei uit massavloei teorie vir vuurpyl motors, aangesien die uitvloei van die produkgasse ‘n invloed op die pluim van die motor sal hê. Die massavloei het weer ‘n effek op die spektrale handtekening van die pluim. Die eienskappe van die massavloei deur die mondstuk van die vuurpylmotor bepaal die termodinamiese eienskappe van die verbrandingsproses. Die invloed op die verbrandingsproses bepaal weer watter tipe produkte gevorm word en by watter temperatuur hulle energie uitstraal. Die gevolg is dat ‘n funksie gedefinieer kan word wat die pluim beskryf.Pluim handtekening = f{, temperatuur, mondstuk keël grootte, vernouings verhouding van mondstuk, dryfmiddelsamestelling} Deur net 18 invoer nodes te gebruik kon die netwerk die irradiansie suksesvol voorspel met ‘n variansie in al die invoer waardes. Deur byvoorbeeld die Kalium inhoud van die dryfmiddel samestelling te verminder het die model die vermindering van ‘n vlam onderdrukker suksesvol nageboots deurdat die irradiansie ‘n hoër uitset gehad het. Die sensitiwiteit van die model is verder getoets deur die temperatuur in die verbrandingskamer te verlaag, met ‘n korrekte laer irradiansie uitset, as gevolg van die feit dat die temperatuur die molekulêre vibrasie en translasie beweging beheer. Dieselfde benadering is gebruik om die model te bou vir die voorspelling van die fakkels se infrarooi irradiansie. Anders as die vuurpylmotors vind die verbranding in die geval van die fakkels in die atmosfeer plaas. Dit was dus ook nodig om na die termodinamiese eienskappe van die fakkel verbranding te kyk. Verskeie parameters is bereken, maar 4 parameters, naamlik die brandstof-suurstof verhouding, temperatuur, molêre massa en die maksimum verbrandingstemperatuur, tesame met die dryfmiddel samestelling kon die irradiansie van die fakkels suskesvol voorspel. Die bestaande netwerk struktuur vir die vuurpylmotors is verbeter en geoptimiseer vir ‘n minimum hoeveelheid veranderlikes in die stelsel. Die geoptimiseerde netwerk het ‘n klein verbetering in die voorspellings getoon, maar die oplei het drasties afgeneem. Dieselfde benadering is gebruik om die optimale netwerk vir die fakkels te bepaal. Optimisering van die netwerk struktuur is bereik deur met die eenvoudigste struktuur te begin en die hoeveelheid veranderlikes te vermeerder totdat ‘n bevredigende oplossing gevind is. Na die struktuur van die netwerk bevestig is, kon die oordragfunksies op die nodes verder geoptimiseer word om die model verder te verbeter. Dit het verder geblyk dat dit moonlik is om die netwerk vir die vuurpylmotors om te draai sodat die irradiansie gebruik word om die dryfmiddel samestelling en motor eienskappe te voorspel. Die netwerk is eenvoudig omgedraai en die insette het die uitsette geword.Die resultate van die omgekeerde netwerk het bevestig dat dit wel moontlik is om die dryfmiddel samestelling en motor eienskappe te voorspel vanaf die irradiansie. Die voorspelde spektra van beide die vuurpylmotors en die fakkels het nie altyd goed gekorreleer met die gemete data nie. Van die spektra kom voor in ‘n lae digtheidsdeel van die veranderlike ruimte. Dit het tot gevolg gehad dat daar nie genoeg data vir opleiding van die netwerk in die omgewing van die toetsdata was nie. Hierdie data is eintlik uitlopers en moet verwyder word van die opleidingsdata, maar daar is alreeds nie genoeg data beskikbaar om die uitlopers te verwyder nie. Dit is nodig om te bepaal hoe goed die voorspelde data vergelyk met die gemete data. Twee parameters is gebruik om te bepaal hoe goed die data korreleer. Die eerste is die “Pearson product moment of coefficient of correlation”, wat ‘n goeie aanduiding gee van hoe goed die voorspelde waardes die gemete waardes se profiel volg. Die tweede parameter meet die relatiewe afstand tussen die teiken en die voorspelde waardes. Vir beide die vuurpylmotors en die fakkels het die toetsstelle ‘n korrelasiewaarde van baie na aan 1 gegee, wat ‘n goeie korrelasie is. Die waardes van die twee parameters vir een van die fakkel toetstelle was onderskeidelik 0.998 en 0.992. Die model is geverifieer deur te bepaal of die model ‘n beter oplossing bied as die gemiddeld van die veranderlike ruimte. Drie statistiese toetse is gedoen: “Mean-squarederror” toets, T-toets en ‘n “Wilcoxon ranksum” toets. In al drie gevalle word die gemiddelde van die veranderlike ruimte (statiese model) en die voorspelde waardes (Neurale netwerk model) teen die gemete waardes getoets. Vir beide die T-toets en die “Wilcoxon ranksum” toets word die nul hipotese verwerp indien t < ta = 1.645 en dan word die alternatiewe hipotese aanvaar, wat bepaal dat die fout van die neurale netwerk model kleiner is as die van die statiese model. Die “mean-squared-error” van die statiese model was 0.102, in vergelyking met 0.0167 van die neurale netwerk model vir ‘n vuurpylmotor toetsstel. ‘n T-toets is gedoen vir dieselfde toetsstel, met ‘n resultaat van-2.71, wat kleiner is as –1.645 en aandui dat die neurale netwerk model weereens beter presteer as die statiese model. Die Z waarde uit die “Wilcoxon ranksum” toets is Z=- 11.9886, wat baie kleiner is as –1.645. Die resultate van die statitiese toetse toon dat die neurale netwerk ‘n geldige model is en die oplossings van die model ook uniek is.

Please refer to this item in SUNScholar by using the following persistent URL:
This item appears in the following collections: