α2-adrenoceptor mediated inhibition of [3H]dopamine release from nucleus accumbens slices and monoamine levels in a rat model for attention- deficit hyperactivity disorder

α2-adrenoceptor mediated inhibition of [3H]dopamine release from nucleus accumbens slices and monoamine levels in a rat model for attention- deficit hyperactivity disorder

De Villiers A.S. ; Russell V.A. ; Sagvolden T. ; Searson A. ; Jaffer A. ; Taljaard J.J.F. ; De Villiers A.S. ; Russell V.A. ; Sagvolden T. ; Searson A. ; Jaffer A. ; Taljaard J.J.F. (1995)

Article

Article

The spontaneously hypertensive rat (SHR) has been proposed as an animal model for attention-deficit hyperactivity disorder (ADHD). The behavioural problems have been suggested to be secondary to altered reinforcement mechanisms in which nucleus accumbens dopaminergic activity plays an important role. Interaction between the noradrenergic and dopaminergic system in the nucleus accumbens has been implicated in the locomotor hyperactivity and impaired discriminative performance of SHR. The present study therefore investigated whether there was any change in the α2-adrenoceptor mediated inhibition of dopamine release from nucleus accumbens slices of SHR in comparison with their normotensive Wistar-Kyoto (WKY) controls. The electrically stimulated release of [3H]dopamine (DA) from nucleus accumbens slices was decreased to a similar extent by UK14,304, an α2-adrenoceptor agonist, in SHR and WKY. Basal norepinephrine (NE) levels were increased in locus coeruleus (LC) and A2 noradrenergic nuclei, but not in the A1 nucleus of SHR, while basal serotonin (5-HT) levels were increased in all these pons- medulla nuclei. These results suggest that a primarily dysfunctional LC and A2 nucleus does not have a secondary effect on dopaminergic transmission in the nucleus accumbens via α2-adrenoceptor mediated inhibition of DA release. Basal monoamine levels in several brain areas of SHR were significantly different from that of WKY. DA, and 5-HT turnover were decreased in SHR versus WKY suggesting hypofunctional dopaminergic and serotonergic systems in some brain areas of SHR.

The spontaneously hypertensive rat (SHR) has been proposed as an animal model for attention-deficit hyperactivity disorder (ADHD). The behavioural problems have been suggested to be secondary to altered reinforcement mechanisms in which nucleus accumbens dopaminergic activity plays an important role. Interaction between the noradrenergic and dopaminergic system in the nucleus accumbens has been implicated in the locomotor hyperactivity and impaired discriminative performance of SHR. The present study therefore investigated whether there was any change in the α2-adrenoceptor mediated inhibition of dopamine release from nucleus accumbens slices of SHR in comparison with their normotensive Wistar-Kyoto (WKY) controls. The electrically stimulated release of [3H]dopamine (DA) from nucleus accumbens slices was decreased to a similar extent by UK14,304, an α2-adrenoceptor agonist, in SHR and WKY. Basal norepinephrine (NE) levels were increased in locus coeruleus (LC) and A2 noradrenergic nuclei, but not in the A1 nucleus of SHR, while basal serotonin (5-HT) levels were increased in all these pons- medulla nuclei. These results suggest that a primarily dysfunctional LC and A2 nucleus does not have a secondary effect on dopaminergic transmission in the nucleus accumbens via α2-adrenoceptor mediated inhibition of DA release. Basal monoamine levels in several brain areas of SHR were significantly different from that of WKY. DA, and 5-HT turnover were decreased in SHR versus WKY suggesting hypofunctional dopaminergic and serotonergic systems in some brain areas of SHR.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/14212
http://hdl.handle.net/10019.1/14212
This item appears in the following collections: