Nitrogen management strategies on perennial ryegrass-white clover pastures in the Western Cape Province

Labuschagne, Johan (2005-03)

Thesis (PhD(Agric) (Agronomy))--University of Stellenbosch, 2005.


The response of perennial ryegrass and white clover, grown under controlled conditions, to fertiliser N rates applied under variable soil temperature (6, 12 and 18 °C), soil water potential (-10, -20, -25 and -35 kPa) and seasonal growing (June/July and October/November) conditions as well as field conditions, were evaluated. Primary- (PDM), residual- (RDM) and total dry matter (TDM) production (g pot-1) were recorded over the first- and second regrowth cycles as well as the accumulative DM production over the two regrowth cycles, respectively. Leaf N content (%) was recorded at the end of first and second regrowth cycles. Tiller/stolon numbers and root dry mass (g pot-1) were recorded at the end of the second regrowth cycle. Soil ammonium-N and nitrate-N (mg kg-1) content was monitored after fertiliser N application. Decreasing soil temperatures resulted in decreased TDM production in both crops. Only perennial ryegrass was influenced by fertiliser N rate, with a general increase in dry matter production as fertiliser N rate was increased. Ryegrass TDM production did not differ between the 100 and 150 kg N ha-1 rates but were both higher (P=0.05) if compared to the 0 and 50 kg N ha-1 treatments. Soil nitrate levels 31 days after application of 150 kg N ha–1 were still sufficient to stimulate ryegrass RDM production. The 173.8% increase in ryegrass TDM production measured at 6 °C where 150 kg N ha-1 was applied compared to the 0 kg N ha-1 treatment illustrated the ability of ryegrass to respond to fertiliser N at low soil temperatures. Soil water potential of -20 kPa resulted in higher ryegrass PDM and TDM production compared to the -25 and -35 kPa levels. White clover PDM and TDM production were however not influenced by soil water potential or fertiliser N rate. Ryegrass TDM production increased (P=0.05) as fertiliser N rates were increased. The most favourable soil water level for both ryegrass and clover root development was found to be -35 kPa. Perennial ryegrass and white clover PDM, RDM and TDM production were higher during the October/November season compared to the June/July season. Increased fertiliser N rates resulted in increased (P=0.05) ryegrass PDM and TDM production. White clover dry matter production was not influenced by fertiliser N rates. In the field study the effect of 0, 50, 100 and 150 kg N ha-1 applied as a single application either in autumn, early winter, late winter, early spring or late spring on pasture dry matter production, clover content and selected quality parameters of a perennial ryegrass-white clover pasture were investigated. Soil nitrogen dynamics in the 0-100, 200-300 and 400-500 mm soil layers were studied for 49 days following fertiliser N application. The effect of 50 kg N ha-1 on soil N dynamics was generally the same as found at the 0 kg N ha-1 applications and may therefore be regarded as a low risk treatment. The application of 150 kg N ha-1 especially in autumn and early winter showed a tendency to exceed the absorption capacity of the pasture and thereby expose fertiliser N to possible leaching and contamination of natural resources. Increased fertiliser N rate resulted in a general increase in pasture dry matter production with the highest yields recorded where N was applied in early and late spring and the lowest in early winter. The application of 150 kg N ha-1 in early and late spring resulted in the highest TDM production, however, the 50 kg N ha-1 resulted in a more efficient conversion of N applied to additional DM produced. In contrast to DM production, the clover percentage generally decreased as fertiliser N rate was increased. The effect of season of application was inconsistent. Annual trends show that the clover percentage eventually recovered to the same levels as the 0 kg N ha-1 treatments. Due to the above minimum levels recorded for most mineral and quality parameters tested it is envisaged that treatment combinations as used in this study will not be at any disadvantage to pasture and animal productivity. The study has shown that the use of fertiliser N to boost perennial ryegrass-white clover productivity and thereby minimising the negative effect of the winter gap on fodder flow management during the cool season in the Western Cape Province, may be an important management tool. Except for late spring applications, all seasons of application reduced the negative impact of the winter gap on fodder availability. It is concluded that regression lines as summarised in Tables 7.2 and 8.2 show great potential to be instrumental in developing regression models, accurately predicting the effect of fertiliser N rate on pasture performance. Other factors to be considered includes the productivity of the pasture, initial clover content, expected clover content at the end of the first regrowth cycle after fertiliser N application and the quantity of additional fodder required. Additional requirements will be to maintain and 150 kg N ha-1) in winter, as the N uptake capacity of the pasture could be exceeded and thereby increasing the risk of N leaching, resulting in environmental pollution. The N response efficiency of the pasture is also the lowest at the 150 kg N ha-1 rates, thereby reducing the profitability of these treatments.

Please refer to this item in SUNScholar by using the following persistent URL:
This item appears in the following collections: