Finite element analysis of a corrugated board panel

Date
2022-11
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: Corrugated paperboard packaging plays an integral part in the horticultural industry to protect fresh produce during transportation and distribution. A good package (box) design can mitigate mechanical damage, such as bruising, which leads to food waste and financial loss. Numerical tools, such as finite element analysis (FEA), can help in the design of packaging, but this is made difficult due to the complex behaviour of paperboard. Previously, a model was developed by first testing the constituent paper sheets and applying a homogenisation process (reducing the corrugated geometry to a single layer) to obtain a simplified material model (Starke, 2020). The material model was then used to perform an FEA of an MK-4 box, and could accurately predict the failure load (error 3%), but the in-plane and out-of-plane load-displacement responses were less accurate. This study took a step back and modelled the in-plane compression of a single panel, instead of the complete box, to identify where inaccuracies in the modelled load-displacement response may occur. Since panel compression is not a standardised test, a test jig that enforces simply supported boundary conditions was designed. Material testing was performed on the combined board, including three- and four-point bending, edge crush, flat crush and tensile testing. Panel compression was performed on 200 mm, 300 mm and 400 mm square samples in the cross-direction and machine-direction. Digital image correlation (DIC) was used to measure the out-of-plane deformation. The failure load was found to increase with panel size, but the normalised (based on the sample size) failure load decreased. Detailed and homogenised non-linear finite element models were developed for the bending and tensile tests. The results from these models were compared to measurements and used to calibrate the material properties. The material properties from the four-point bending models were deemed more accurate and were used to create a detailed and homogenised panel compression model. The homogenised model required an initial imperfection (perturbation) for buckling to occur. Both models accurately predicted the failure load and the out-of-plane deformation (errors of < 7% and 18% respectively). However, the in-plane deformation at the point of failure was underpredicted by 64% when compared to the measured crosshead displacement. However, when considering DIC (rather than crosshead) in-plane displacement, the underprediction was only 20%. A box compression test (BCT) with the use of DIC was performed on a 400 mm  400 mm  400 mm regular slotted container. The results of the BCT were compared to the panel compression test. The BCT strength was 36% less than the combined strength of four panels and the out-of-plane displacement for a box was 18% less than for a single panel. The in-plane displacement had the largest difference, 13.1 mm for a box and 3.5 mm for a panel. The larger box displacement could be attributed to the flaps and creases in the box. The results show that the effects of flaps and creases must be included in a finite element model if the box’s load-displacement response is to be accurately modelled.
AFRIKAANS OPSOMMING: Kartelkarton verpakkingsmateriaal speel ‘n integrale rol in die hortologie bedryf om vars produkte te beskerm tydens vervoer en distribusie. Meganiese skade, soos kneusing, kan lei tot voedselvermorsing en finansiële verlies, maar goeie ontwerp kan hierdie verliese verminder. Numeriese tegnieke, soos eindige element analise (EEA), kan die ontwerp van dose aanhelp, maar die komplekse gedrag van papier maak dit moeilik. ‘n Model was voorheen ontwikkel deur individuele papier velle te toets en ‘n homogeneringsproses (vereenvoudiging van ‘n geriffelde- na ‘n plat kern) was toegepas om vereenvoudigde materiaal eienskappe te verkry (Starke, 2020). Die vereenvoudigde materiaal eienskappe was gebruik om ‘n EEA van ‘n MK-4 doos uit te voer en die falingslas was akkuraat voorspel (3% fout), maar die in-vlak en uit-vlak verplasings was minder akkuraat. Hierdie studie kyk slegs na ‘n enkele paneel wat in-vlak saamgedruk word, in plaas van ‘n volledige doos, om te bepaal waar onakkuraathede in die vorige model kon ontstaan. In-vlak samedrukking van ‘n paneel is nie ‘n standaard toets nie en dus moes ‘n apparaat, wat eenvoudig ondersteunde grenswaardes toepas, ontwerp word. Die volgende toetse was uitgevoer op die saamgestelde bord: drie- en vier-punt buig-, randdruk- (“edge crush”), plat druk- (“flat crush”) en trektoetse. Die paneel druktoets was uitgevoer op vierkantige monsters met mates van 200 mm, 300 mm en 400 mm in die kruis-rigting en die masjien-rigting. Digitale beeld-korrelasie was gebruik om die uit-vlak verplasing te meet. ‘n Groter paneel het gelei na ‘n verhoogde falingslas, maar ‘n verlaagde genormaliseerde (gebaseer op paneel grootte) falingslas. ‘n Gedetailleerde en homogene nie-lineêre eindige element model was ontwikkel vir die buig- en trektoetse. Die resultate van hierdie modelle was vergelyk met eksperimentele metings en is gebruik om die materiaal eienskappe te kalibreer. Materiaal eienskappe verkry van die vierpunt buigtoets modelle was geag as die mees akkuraatste en gevolglik gebruik om ‘n gedetailleerde en homogene paneel druktoets model te skep. Vir die paneel om te knik, het die homogene model egter ‘n aanvanklike perturbasie vereis. Beide modelle het die falingslas en die uit-vlak verplasing akkuraat voorspel (fout van < 7% en 18% onderskeidelik). By die punt van faling, was die in-vlak verplasing onder-voorspel met 64% wanneer dit met die verplasing van die verstelbare kop vergelyk is. Wanneer die in-vlak verplasing, soos gemeet deur digitale beeld-korrelasie egter gebruik is, was die onder-voorspelling net 20%. ‘n Doos druktoets, met die gebruik van digitale beeld-korrelasie, was uitgevoer op ‘n 400 mm  400 mm  400 mm “regular slotted” doos. Die doos het 36% minder las gedra as die gekombineerde lasdravermoë van vier enkel panele en het 18% minder uit-vlak verplasing ondergaan as ‘n paneel. Die in-vlak verplasing van die doos was 13.1 mm teenoor 3.5 mm vir ‘n paneel. Die groter verplasing kan toegeskryf word aan die teenwoordigheid van flappe en voue in die doos. Die resultate toon dat flappe en voue moet in ‘n eindige element model vervat word as die las-verplasing kurwe van ‘n doos akkuraat gemodelleer moet word.
Description
Thesis (MEng) -- Stellenbosch University, 2022.
Keywords
Finite element method, Corrugated paperboard, Panel compression, Plates (Engineering), Homogenization (Differential equations), UCTD
Citation