Characterizing variable renewable energy generation uncertainty towards improved forecasting and operational decision making

Date
2022-12
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: As its first novel contribution, this dissertation investigates the broad challenge of understanding the impacts of integrating a high share of variable renewable energy (VRE) generators into power systems. These generators are variable, uncertain, non-synchronous and location constrained, introducing a wide range of impacts that are unique to a specific region and require different input data, models, and simulation tools to study. It is resource intensive to study all these impacts and therefore important to effectively identify and study only those impacts that are most relevant to the region under consideration. In addressing this challenge, this dissertation firstly identifies three main factors that influence the VRE integration impacts in different regions: available resources, penetration level, and grid characteristics. Thereafter, the international experience is used to understand how these three factors contributed to the issues that were experienced in different regions. The outcome of this investigation is a framework for comprehending VRE integration issues based on available renewable resources, penetration level, and grid characteristics of a region under consideration. This framework can be used by network planners, policymakers, and grid operators to prioritize VRE integration issues of concern to their region prior to conducting detailed studies, thereby reducing the resources required. This dissertation identifies wind power forecasting as key in mitigating some of the impacts introduced by high share of VREs. Within the context of wind power forecasting, this dissertation investigates the challenge of aggregating decentralized forecasts. These forecasts are typically optimized for local conditions because the individual wind farms do not have access to power data from other wind farms. Simply adding these decentralized forecasts together at the point where these forecasts are received (typically the system operator) may not capture some of the common spatial and temporal correlations of wind power, thereby lowering the potential accuracy of the aggregated wind power forecast. In response to this challenge, this dissertation proposes explanatory variables that are used to train the machine learning models to derive aggregated point and probabilistic wind power forecasts from decentralized forecasts. The proposed explanatory variables include clusters of point forecasts (to account for spatial correlations between wind farms), hour of day (to account for diurnal cycles), month of year (to account for seasonal cycles) and, atmospheric states (to account for correlations due to large-scale atmospheric circulations). Training machine learning models using these explanatory variables results in a significant improvement in the accuracy of aggregated forecasts, becoming the second novel contribution of this dissertation. This is particularly important in regions where individual wind farms generate their own forecasts. This dissertation also acknowledges the fact that wind power forecasts are not always perfect, giving rise to the need to understand and estimate wind power forecasting uncertainty. One of the challenges concerning the characterization of forecasting uncertainty is that some of the parametric distributions (normal, beta, Weibull, etc.) commonly used for modeling forecast errors may be inappropriate in representing extreme errors. While non-parametric approaches can be accurate, extreme errors often do not occur frequently enough to make accurate non-parametric inferences. There remains a need to find a parametric model that best represents the extreme errors. To address these challenges, this dissertation identifies a suitable parametric distribution for representing extreme errors, investigates some of the factors that may influence extreme errors, and proposes a suitable model for representing spatial correlations of extreme errors between wind farms. Therefore, the third novel contribution of this dissertation is to propose modeling approaches for improving the estimation and understanding of extreme errors. This is an important step toward better allocation of operating reserves to account for forecasting uncertainty. Continuing within the context of forecasting uncertainty, it is known that the conditional forecast error distributions change with the wind power forecast mostly due to the slope of wind to power conversion curves. The variance is often small at low and high power forecasts but large at mid-range power forecasts. The forecast error distribution is skewed right at low power forecasts, symmetric at mid-range power forecasts, and skewed left at high power forecasts. As a result, some of the commonly used distributions for modeling forecast errors may lack the flexibility required to represent conditional forecast error distributions at different wind power forecasts. As a fourth novel contribution, this dissertation proposed and evaluated an approach for deriving the conditional forecast error distribution for a given wind power forecast. These conditional distributions typically contain more probabilistic information (as compared to unconditional distribution), which can be used to improve reserve allocation in grids with high share of wind generators.
AFRIKAANS OPSOMMING: Die eerste oorspronklike bydrae vervat in hierdie proefskrif, is die resultaat van ‘n breë ondersoek na die impak van integrasie van 'n hoë aandeel wisselvallige hernubare energie (VRE) kragopwekkers in die kragstelsel. Hierdie kragopwekkers is nie-sinchronies, en die krag wat opegewek word is wisselend, kom met lae vlakke van sekerheid en is uniek aan ‘n spesifieke streek. Dit bring ‘n wye reeks impakte ter tafel wat eie is aan die ter saaklike geografiese area en vereis verskillende data stelle, modelle en simulasie-instrumente om te bestudeer. Die bestudering van al hierdie verskillende moontlike impakte vereis intensiewe hulpbron verbruik en dit is daarom belangrik om effektiewelik net die mees relevant impakte per streek te identifiseer en te bestudeer. Om hierdie uitdaging aan te spreek, word daar in hierdie proefskrif eerstens drie hooffaktore geïdentifiseer wat die VRE-integrasie-impakte in verskillende streke beïnvloed: beskikbare energiebronne, vlak van penetrasie en die kenmerke van die kragnetwerk. Hierna word internasionale voorbeelde gebruik om te verstaan hoe hierdie drie faktore bygedra het tot die uitdagings wat in die verskillende wêrelddele ondervind is. Die uitset van hierdie studie is 'n raamwerk wat sin gee aan die VRE-integrasie-impakte gebaseer op beskikbare hernubare energiebronne, penetrasievlakke en kenmerke van die kragnetwerk in die geografiese area wat ondersoek word. Hierdie raamwerk kan deur netwerkbeplanners, beleidmakers en netwerkoperateurs gebruik word om tyd en moeite te spaar deur eers die VRE-integrasie-uitdagings wat vir hulle streek van belang is te prioritiseer voordat gedetailleerde studies gedoen word. Hierdie proefskrif identifiseer verder die vooruitskatting van windkrag opwekking as die sleutel om sommige van die impakte wat deur 'n groot aandeel VRE's veroorsaak word teen te werk. Binne die konteks van die vooruitskatting van windkrag opwekking ondersoek hierdie proefskrif die uitdagings van die samevoeging van gedesentraliseerde voorspellings. Hierdie voorspellings is tipies geoptimaliseer vir plaaslike toestande omdat individuele windplase nie toegang tot kragdata van ander windplase het nie. Deur die gedesentraliseerde voorspellings eenvoudig bymekaar te tel by die punt waar die voorspellings ontvang word (tipies by die stelseloperateur) veroorsaak dat die potensiële akkuraatheid van die saamgevoegde vooruitskatting verlaag word omdat die gedetaileerde ruimtelike-temporale korrelasies nie in ag geneem word nie. In antwoord op hierdie uitdaging, stel hierdie proefskrif verklarende veranderlikes voor wat gebruik word om die masjienleermodelle op te lei om groepe punt- en waarskynlikheids windkragvoorspellings van gedesentraliseerde voorspellings af te lei. Die voorgestelde verduidelikende veranderlikes sluit groepe van puntvoorspellings in (om rekening hou met ruimtelike korrelasies tussen windplase), uur van die dag (om rekening te hou met daaglikse siklusse), maand van die jaar (om rekening te hou met seisoenale siklusse) en atmosferiese toestande (om korrelasies as gevolg van grootskaalse atmosferiese sirkulasies in ag te neem). Die opleiding van masjienleermodelle wat hierdie verduidelikende veranderlikes gebruik, lei tot 'n beduidende verbetering in die akkuraatheid van saamgestelde voorspellings, die tweede oorspronklike bydrae van hierdie proefskrif. Dit is veral belangrik in streke waar individuele windplase hul eie voorspellings maak. Hierdie proefskrif erken ook die feit dat die vooruitskatting van windkrag opwekking nie altyd perfek is nie, wat aanleiding gee tot die behoefte om hierdie onsekerheid te verstaan en te kan skat. Een van die uitdagings rakende die karakterisering van voorspellingsonsekerheid is dat sommige van die parametriese verdelings (normaal, beta, Weibull, ens.) wat algemeen gebruik word vir die modellering van voorspellingsfoute, onvanpas kan wees vir die voorstelling van uiterste foute. Terwyl nie-parametriese benaderings akkuraat kan wees, kom uiterste foute dikwels nie gereeld genoeg voor om akkurate nie-parametriese afleidings te maak nie. Daar is steeds 'n behoefte om 'n parametriese model te vind wat die uiterste foute die beste verteenwoordig. Hierdie uitdagings word aangespreek, in die navorsing vervat in hierdie proefskrif deurdat, 'n geskikte parametriese verspreiding geïdentifiseer is om uiterste foute voor te stel, sommige van die faktore wat uiterste foute kan beïnvloed is ondersoek, en ‘n geskikte model word voorgestel om ruimtelike korrelasies van uiterste foute tussen windplase te verteenwoordig. Daarom is die derde oorspronklike bydrae vervat in hierdie proefskrif die voorstel van verbeterde modelleringsbenaderings wat lei tot verbetering van die skatting en begrip van uiterste foute. Die grootste bydrae wat hier gemaak word, is om die skatting en begrip van uiterste foute te verbeter. Dit is 'n belangrike stap in die rigting van 'n beter toewysing van bedryfsreserwes om rekening te hou met voorspellingsonsekerheid. Om voort te gaan binne die konteks van voorspellingsonsekerheid, is dit bekend dat die voorwaardelike voorspellingsfoutverspreidings met die windkragvoorspelling verander, hoofsaaklik as gevolg van die helling van wind-na-krag-omskakelingskrommes. Die afwyking is dikwels klein by lae- en hoëkragvoorspellings, maar groot by middelslagkragvoorspellings. Die voorspellingsfoutverspreiding is skeef regs by laekragvoorspellings, simmetries by middelafstandkragvoorspellings, en skeef links by hoëkragvoorspellings. As gevolg hiervan, kan sommige van die algemeen gebruikte verspreidings vir die modellering van voorspellingsfoute nie die buigsaamheid hê wat nodig is om voorwaardelike voorspellingsfoutverspreidings by verskillende windkragvoorspellings voor te stel nie. As 'n vierde nuwe bydrae stel hierdie proefskrif 'n benadering voor vir die afleiding van die voorwaardelike voorspellingsfoutverspreiding vir 'n gegewe windkragvoorspelling en evalueer die resultate. Hierdie voorwaardelike verspreidings bevat tipies meer waarskynlike inligting (in vergelyking met onvoorwaardelike verspreiding), wat ook gebruik kan word om reserwetoewysing in kragnetwerke met 'n groot aandeel windopwekkers te verbeter.
Description
Thesis (PhD) -- Stellenbosch University, 2022.
Keywords
Wind power -- Forecasting, Energy harvesting, Variable renewable energy, Renewable energy sources, UCTD
Citation