Aromatic hydroxylation during the myeloperoxidase-oxidase oxidation of hydrazines

Van Der Walt B.J. ; Van Zyl J.M. ; Kriegler A. (1994)

Article

Benzoic acid was found to be hydroxylated by a mixture of myeloperoxidase (MPO) and the mycobactericidal drug, isoniazid. Aromatic hydroxylation and formation of compound III (oxyperoxidase) were coincident during the MPO-oxidase oxidation of isoniazid which proceeded without augmentation from the reagent hydrogen peroxide. An intermediate of isoniazid reduced ferric MPO to ferrous MPO which associated with dioxygen to form compound III. Aromatic hydroxylation also occurred in a mixture of isoniazid (or phenylhydrazine) and a ferric salt. Hydroxylations in both the enzymatic and nonenzymatic reaction systems were inhibited by the iron chelator, desferal, as well as by the specific hydroxyl radical scavenger, mannitol. To distinguish between the hydroxylating intermediates in the different reaction systems, the unique properties of the natural antioxidant, phytic acid, were exploited. Phytic acid inhibited aromatic hydroxylation in the Fe3+-INH system, which is in accordance with its known properties as a powerful inhibitor of iron-driven reactions (·OH formation). By contrast, phytic acid stimulated hydroxylation in the enzymatic system which was accompanied by a concomitant stimulation in the rate of compound III formation. These events were, however, not directly related to each other. Phytic acid had a direct effect on the redox transformation of isoniazid by stimulating superoxide generation during auto-oxidation of the drug. In addition, phytic acid also facilitated compound III decay in the absence of isoniazid, suggesting that it may also regulate the oxygen affinity of MPO, similar to its effect on the oxygenation of haemoglobin. The data on aromatic hydroxylation in the MPO-isoniazid system do not support a role for ·OH in the reaction and may fit the model for the P450 mixed oxidase system.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/11904
This item appears in the following collections: