SUNScholar will be unavailable on 25 April 2018 from 08:00 to 10:00 South African Time for routine maintenance. Please contact for queries.

The effect of ischaemia and reperfusion on sarcolemmal inositol phospholipid and cytosolic inositol phosphate metabolism in the isolated perfused rat heart

Mouton R. ; Huisamen B. ; Lochner A. (1991)


In this study the mass of polyphosphoinositides as well as the turnover of [3H]inositol phospholipids and [3H]inositol phosphates during ischaemia and short periods of reperfusion were studied in the isolated perfused rat heart. Since the phosphoinositides located within the sarcolemma are precursors for release of inositoltrisphosphate (InsP3) and diacylglycerol, sarcolemmal membranes (rather than whole tissue) isolated at the end of the experimental procedure, were used. Hearts were prelabelled with [3H]inositol and subsequently perfused with 10 mM LiCl to block the phosphatidylinositol (PI) pathway. The results showed that 20 min of global ischaemia depressed the amount of [3H]inositol present in both sarcolemmal phosphatidylinositol-4-phosphate (PI-4-P) and phosphatidylinositol-4,5-bisphosphate (PI-4,5-P2), as well as in the cytosolic [3H]inositol phosphates, [3H]InsP2 and [3Hz]InsP3. The mass of the sarcolemmal inositol phospholipids remained unchanged during ischaemia. Reperfusion caused an immediate (within 30 sec) increase in the amount of [3H]inositol in sarcolemmal PI, PI-4-P and PI-4,5-P2. PI-4-P levels showed a transient increase after 30 seconds postischaemic reperfusion, while the mass of the other sarcolemmal inositol phospholipids, PI and PI-4,5-P2, remained unchanged. [3H]InsP, [3H]InsP2 and [3H]InsP3 also increased significantly in comparison to ischaemic hearts after only 30 sec postischaemic reperfusion. In summary, the results obtained indicate inhibition of the PI pathway during ischaemia with an immediate significant stimulation upon reperfusion. In view of the capacity of InsP3 to mobilize Ca2+, the possibility exists that stimulation of this pathway during reperfusion may play a role in the intracellular Ca2+ overload, characteristic of postischaemic reperfusion.

Please refer to this item in SUNScholar by using the following persistent URL:
This item appears in the following collections: