Formation and structural evolution of biphenyl polyamide thin film on hollow fiber membrane during interfacial polymerization

Date
2011
Authors
Liu Y.
He B.
Li J.
Sanderson R.D.
Li L.
Zhang S.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
A novel reverse osmosis hollow fiber membrane was prepared by interfacial polymerization from 3,3',5,5'-biphenyl tetraacyl chloride and m-phenylenediamine on a polysulfone hollow fiber membrane. The structural evolution of biphenyl polyamide thin film during interfacial polymerization was monitored by attenuated total reflectance infrared, X-ray photoelectron spectroscopy and atom force microscopy. The relationship between the structure and separation properties of the membranes was investigated. Results show that the biphenyl polyamide thin film had a three-layer structure: a loose initial layer with a low cross-linked structure, a dense middle layer with a high cross-linked structure and a loose surface layer with a low cross-linked structure. The dense middle layer had an intrinsic cross-linked structure with over 86.0% amide bonds (-CONH-) and below 14.0% carboxylic groups (-COOH), mainly responsible for separation. A growth model of the biphenyl polyamide thin film was proposed to describe the structural evolution process during interfacial polymerization. © 2011 Elsevier B.V.
Description
Keywords
Citation
Journal of Membrane Science
373
02-Jan