Fractionation of agro-waste to producebiopolymers and bioactive compounds for active food packaging

Date
2020-12
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: The food packaging industry is faced with a need to find alternative raw materials to replace the non-renewable petroleum-based polymers and active compounds used in developing active food packaging material (packaging film capable of maintaining food quality by releasing antioxidants into food in response to temperature and time) and temperature-time indicators. Agricultural residues are a promising one-stop feedstock for biopolymers (hemicellulose, nanocellulose, pectin) and active compounds (polyphenols, anthocyanins) that can be used to develop renewable, biodegradable and non-toxic active food packaging and temperature-time indicators. However, the sequential or co-extraction of these raw materials from agricultural residues is hindered by the differences in the optimal extraction conditions of the products. Furthermore, the coexistence of these products with other plant material in biomass affects their effective recovery, downstream processing and end-application. On the application side, biocomposite films such as hemicellulose-based films made from agro-derivatives, completely disintegrate when in contact with aqueous solutions, hence, they cannot be used for packaging wet food, limiting their application only to dry foods packaging. In addition, the poor mechanical properties (tensile strength and Young‘s modulus) of these films hinder their application as alternative packaging to petroleum-based films such as low density polyethylene (LDPE). Manipulating and optimising the biopolymers and antioxidants extraction processes taking into consideration downstream modification processes and end-application, can be a strategy in tailor-making the properties of the agro-derivatives with the aim of developing active food packaging films with properties similar or better than LDPE-based active packaging. Furthermore, modifying and blending the biopolymers to form films and applying hydrophobic coatings to the films can further enhance film properties. Therefore, the aim of the study was to develop processes for fractionating wheat straw and mango peels to recover biopolymers and bioactive compounds and then integrate the products into bio-composite films for active food packaging applications, using LDPE films as benchmark. In addition, the application of bioactive compounds from agro-residues as temperature-time indicators was evaluated. To fulfill the aim, the first part of the project focused on optimising organosolv pre-treatment of wheat straw [ethanol (50–80 %)/sodium hydroxide (NaOH) (1–13%)/2–6 h] prior to hemicellulose extraction (10% NaOH/25 °C/24 h) so as to enhance hemicellulose acetylation, hydrophobicity, and the mechanical properties of hemicellulose-based films. A three-stage sequential extraction process was developed and optimised to recover anthocyanins (50–80% ethanol/0.1–2% acetic acid/25 °C/60–150 min), polyphenols (65–85% ethanol/75 °C/20–60 min) and pectin (0.25% ammonium oxalate-oxalic acid/85 °C/60 min) from mango peels. The second part involved the development and evaluation of hemicellulose-based films as active packaging material. The utilisation of a combination of nanocellulose (25% w/w) and pectin (hemicellulose/pectin ratio from 0% to 100%) as reinforcement and filler in hemicellulose-based films was investigated. Furthermore, the effects of modifying hemicellulose by acetylation, reinforcing the acetylated hemicellulose (AH) with acetylated nanocellulose (ACNC) of varying degrees of acetylation (DS 0–2.34) and loading (10–50%) and coating the AH/ACNC films with polycaprolactone (PCL) (0.3 g/L) on the films‘ mechanical properties, hydrophobicity and solubility in wet food simulants were assessed. Hemicellulose-based active packaging material was then formulated by doping the films with mango peel polyphenols. Antioxidant release by the hemicellulose-based active packaging material to different food simulants, was evaluated both experimentally (temperature range 5–40 °C for two days) and by using Migratest Exp. LDPE films doped with polyphenols were used as a benchmark. Lastly, the utilisation of anthocyanins as a time-temperature indicator was investigated by evaluating colour change of the anthocyanin/hydrogen phosphate buffer solution incubated at temperatures ranging from 5 °Cto 40 °C for three days. Organosolv pre-treatment optimal conditions [(1% NaOH/50% ethanol/6 h/75 °C)] of wheat straw enhanced the acetylation of the recovered hemicellulose (DS increased from 1.2 to 1.7) and in turn improved water resistivity (water contact angle (WCA) increased from 34.21° to 39.90°) of hemicellulose-based films. Increasing the reinforcing nanocellulose DS to 2.34, loading to 50% and coating the AH/ACNC films with PCL increased the films‘ Young‘s modulus from 55.23 to 335.33 MPa, tensile strength from 1.79 to 6.72 MPa, and WCA from 39.90° to 82.40°. There was no significant difference (p > 0.05) between the aforementioned results and the LDPE properties (Young‘s modulus 244.46 MPa, tensile strength 11.07 MPa and WCA 84.91°). The solubility of the hemicellulose-based films in the food simulants was reduced from 100% to 3.25% by the aforementioned modifications. Blending hemicellulose with pectin and nanocellulose improved the mechanical properties and reduced the solubility of the films in the fatty food simulant by up to 84%. Hemicellulose-based films released up to 98.54% whereas LDPE released 6.89% of the encapsulated polyphenols into food simulants, thereby increasing the antioxidant activity of the food simulant by up to 60% and 8.97% respectively. AH-based films were least soluble and had the highest antioxidant release in the fatty simulant when compared to the other simulants. Therefore, hemicellulose-based films can be utilised as alternative active packaging for short term storage (0–2 days) of fatty foods. Mango anthocyanins changed colour from orange to dark green with an increase in temperature from 0 °C to 40 °C and time 0 to 2 days, hence exhibiting temperature-time indicator properties. Overall, the study generated novel methods for manipulation of hemicellulose to increase its applications as a functional food packaging material. New information was generated when hemicellulose films were tested as active packaging in a food environment. This work also contributed to the development of agro-residue biorefineries for multiple product production and their utilisation for sustainable food packaging material development.
AFRIKAANSE OPSOMMING: Die voedselverpakkingsindustrie staar ‘n noodsaaklikheid in die gesig om alternatiewe roumateriale te vind om nie-hernubare petroleum-gebaseerde polimere en aktiewe samestellings wat in die ontwikkeling van aktiewe voedselverpakkingsmateriaal (verpakkingsfilm in staat om voedselkwaliteit te handhaaf deur anti-oksidante binne-in voedsel vry te laat in respons tot temperatuur en tyd) en temperatuur-tyd indikators gebruik word, te vervang. Landbou-residu‘s is ‘n belowende een-stop voermateriaal vir biopolimere (hemisellulose, nanosellulose, pektien) en aktiewe samestellings (polifenole, antosianien) wat gebruik kan word om hernubare, bioafbreekbare en nie-toksiese aktiewe voedselverpakking en temperatuur-tyd indikators te onwikkel. Die sekwensiële of koëkstrahering van hierdie rou materiale vanuit landbou-residu‘s word egter verhinder deur die verskille in die optimale ekstraheringskondisies van die produkte. Verder, die kobestaan van hierdie produkte met ander plantmateriaal in biomassa affekteer hul doeltreffende ontginning, stroomaf prosessering en eindelike toepassing. Aan die toepassing se kant disintegreer biosaamgestelde films heeltemal, soos hemisellulose-gebaseerde films gemaak uit landbou derivate, wanneer dit in kontak kom met waterige oplossings, en dus kan dit nie vir verpakking van nat voedsel gebruik word nie, wat die toepassing daarvan slegs tot droë voedsel beperk. Boonop verhinder die swak meganiese eienskappe (treksterkte en Young se modulus) van hierdie films hul toepassing as alternatiewe verpakking teenoor petroleum-gebaseerde films soos ‘n lae digtheid poliëtileen (LDPE). Deur die biopolimere en anti-oksidante se ekstraksieproses te manipuleer en optimeer, met die inagneming van stroomaf modifikasieprosesse en eindelike toepassing, kan ‘n strategie wees om die eienskappe van die landbou derivate spesifiek te maak met die doel om aktiewe voedselverpakkingsfilms met eienskappe soortgelyk of beter as LDPE-gebaseerde aktiewe verpakking te ontwikkel. Verder, deur die biopolimere te wysig en te meng om films te vorm en hidrofobiese bedekking op die films toe te pas, kan die eienskappe van die films verder verbeter. Daarom was die doel van hierdie studie om prosesse te ontwikkel vir fraksionering van koringstrooi en mangoskille om biopolimere en bioaktiewe samestellings te herwin en dan die produkte by die biosaamgestelde films te integreer vir aktiewe voedselverpakkingtoepassings, deur LDPE-films as maatstaf te gebruik. Boonop is die toepassing van bioaktiewe samestellings van landbou-residu‘s as temperatuur-tyd indikators geëvalueer. Om die doel te bereik het die eerste deel van die projek op die optimering van organsolv voor-behandeling van koringstrooi (etanol (50–80%)/seepsoda (NaOH) (1–13%)/2–6 h) voor hemisellulose-ekstrahering (10% NaOH/25 °C/ 24 h) om die hemisellulose se asetilasie, hidrofobisiteit en die meganiese eienskappe van hemisellulose-gebaseerde films te verbeter. ‘n Drie-fase sekwensiële ekstraksieproses is ontwikkel en geoptimeer om antosianiene (50–80% etanol/0.1–2% asynsuur/25 °C/60–150 min), polifenole (65–85% etanol/75 °C/20–60 min) en pektien (0.25% ammonium oksalaat-oksaalsuur/85 °C/60 min) van mangoskille te herwin. Die tweede deel het die ontwikkeling en evaluasie van hemisellulose-gebaseerde ingesluit films as aktiewe verpakkingsmateriaal. Die gebruik van ‘n kombinasie van nanosellulose (25% w/w) en pektien (hemisellulose/pektien ratio van 0% tot 100%) as versterking en vuller in hemisellulose-gebaseerde films is ondersoek. Verder, is die effek om hemisellulose by asetilasie te wysig, versterking van geasetileerde hemiselluslose (AH) met geasetileerde nanosellulose (ANCN) van variërende grade van asetilering (DS 0–2.34) en lading (10–50%) en bedekking van die AH/ACNC-films met polikaprolaktoon (PCL (0.3 g/L) op die film se meganiese eienskappe, hidrofobisiteit en oplosbaarheid in nat voedselsimulante geassesseer. Hemisellulose-gebaseerde aktiewe verpakkingsmateriaal is toe geformuleer deur die films met mangoskilpolifenole te dokter. Anti-oksidant vrylating deur die hemisellulose-gebaseerde aktiewe verpakkingsmateriaal na verskillende simulante is geëvalueer, beide eksperimenteel (temperatuurbestek 5–40 °C vir twee dae) en deur Migratest Exp. te gebruik. LDPE-films gedokter met polifenole is gebruik as maatstaf. Laastens is die gebruik van antosianiene as ‘n tyd-temperatuur indikator ondersoek deur kleurverandering van die antosianien/waterstoffosfaat-bufferoplossing geïnkubeer by temperature in die bestek van 5 °C tot 40 °C vir drie dae, te evalueer. Organosolv voor-behandeling (optimale kondisies (1 NaOH/50% etanol/6 h/75 °C)) van koringstrooi het die asetilering van die herwinde hemisellulose verbeter (DS verhoog van 1.2 na 1.7) en op sy beurt waterresistiwiteit (waterkontakhoek (WCA) verhoog van 34.21° na 39.90°) van hemisellulose-gebaseerde films verbeter. Deur die nanosellulose DS na 2.34 te verhoog, te laai na 50% en die AH/ACNC-films met PCL te versterk, het die films se Young se modulus van 55.23 na 335.33 MPa verhoog, treksterkte van 1.79 na 6.72 MPa, en WCA van 39.90° na 82.4°. Daar was geen beduidende verskil (p > 0.05) tussen die voorafgenoemde resultate en die LDPE-eienskappe nie (Young se modulus 244.46 MPa, treksterkte 11.07 MPa en WCA 84.91°). Die oplosbaarheid van die hemisellulose-gebaseerde films in die voedselsimulante is verlaag van 100% na 3.25% deur die voorafgenoemde wysigings. Deur hemisellulose met pektien en nanosellulose te meng, het die meganiese eienskappe verbeter en die oplosbaarheid van die films in die vetterige voedselsimulant tot en met 84% verminder. Hemisellulose-gebaseerde films het tot en met 98.54% vrygelaat waar LDPE 6.89% van die vasgevangde polifenole in die voedselsimulante vrygelaat het, en daardeur die anti-oksidantaktiwiteit van die voedselsimulant tot en met 60% en 8.97%, onderskeidelik, verhoog het. AH-gebaseerde films was die minste oplosbaar en het die hoogste anti-oksidant vrystelling gehad in die vetterige simulante wanneer dit met ander simulante vergelyk geword het. Daarom kan hemisellulose-gebaseerde films gebruik word as alternatief vir korttermynbewaring (0–2 dae) van ix vetterige voedsel. Mango-antosianiene het kleur van oranje na donker groen verander met ‘n verhoging in temperatuur van 0 °C tot 40 °C en tyd 0 tot 2 dae, en daarom temperatuur-tyd indikator eienskappe vertoon. Algeheel het die studie nuwe metodes vir manipulering van hemisellulose gegenereer om sy toepassings as ‘n voedselverpakkingsmateriaal te verhoog. Nuwe informasie is gegenereer toe hemisellulose films getoets is as aktiewe verpakking in voedselomgewings. Hierdie werk het ook tot die ontwikkeling van landbouresidubioraffinaderye vir veelvoudige produk vervaardiging en hul gebruik vir volhoubare voedselverpakkingsmateriaal bygedra.
Description
Thesis (PhD)--Stellenbosch University, 2020.
Keywords
Active food packaging, UCTD, Hemicellulose, Biopolymers, Fractionation -- Agricultural wastes
Citation