ITEM VIEW

Nuclear matrix element of neutrinoless double-β decay : relativity and short-range correlations

dc.contributor.authorSong, L. S.en_ZA
dc.contributor.authorYao, J. M.en_ZA
dc.contributor.authorRing, P.en_ZA
dc.contributor.authorMeng, J.en_ZA
dc.date.accessioned2018-11-07T08:03:10Z
dc.date.available2018-11-07T08:03:10Z
dc.date.issued2017
dc.identifier.citationSong, L. S., et al. 2017. Nuclear matrix element of neutrinoless double-β decay : relativity and short-range correlations. Physical Review C, 95(1):1-10, doi:10.1103/PhysRevC.95.024305
dc.identifier.issn2469-9993 (online)
dc.identifier.issn2469-9985 (print)
dc.identifier.otherdoi:10.1103/PhysRevC.95.024305
dc.identifier.urihttp://hdl.handle.net/10019.1/104653
dc.descriptionCITATION: Song, L. S., et al. 2017. Nuclear matrix element of neutrinoless double-β decay : relativity and short-range correlations. Physical Review C, 95(1):1-10, doi:10.1103/PhysRevC.95.024305.
dc.descriptionThe original publication is available at https://journals.aps.org/prc
dc.description.abstractBackground:The discovery of neutrinoless double-β (0νββ) decay would demonstrate the nature of neutrinos, have profound implications for our understanding of matter-antimatter mystery, and solve the mass hierarchy problem of neutrinos. The calculations for the nuclear matrix elements M0ν of 0νββ decay are crucial for the interpretation of this process. Purpose: We study the effects of relativity and nucleon-nucleon short-range correlations on the nuclear matrix elements M0ν by assuming the mechanism of exchanging light or heavy neutrinos for the 0νββ decay. Methods:The nuclear matrix elements M0ν are calculated within the framework of covariant density functional theory, where the beyond-mean-field correlations are included in the nuclear wave functions by configuration mixing of both angular-momentum and particle-number projected quadrupole deformed mean-field states. Results: The nuclear matrix elements M0ν are obtained for ten 0νββ-decay candidate nuclei. The impact of relativity is illustrated by adopting relativistic or nonrelativistic decay operators. The effects of short-range correlations are evaluated. Conclusions: The effects of relativity and short-range correlations play an important role in the mechanism of exchanging heavy neutrinos though the influences are marginal for light neutrinos. Combining the nuclear matrix elements M0ν with the observed lower limits on the 0νββ-decay half-lives, the predicted strongest limits on the effective masses are |⟨mν⟩|<0.06 eV for light neutrinos and ∣⟨mֿ¹νh⟩∣ֿ¹>3.065×10⁸ GeV for heavy neutrinos.en_ZA
dc.description.urihttps://journals.aps.org/prc/abstract/10.1103/PhysRevC.95.024305
dc.format.extent10 pages
dc.language.isoen_ZAen_ZA
dc.publisherAmerican Physical Society
dc.subjectNeutrinosen_ZA
dc.titleNuclear matrix element of neutrinoless double-β decay : relativity and short-range correlationsen_ZA
dc.typeArticleen_ZA
dc.description.versionPublisher's version
dc.rights.holderAmerican Physical Society


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

ITEM VIEW