Model for predicting creep of cracked steel fibre reinforced concrete

Date
2018-03
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
ENGLISH ABSTRACT: The investigation of the creep of cracked fibre reinforced concrete has gained momentum over the past few years. However, there is still no proposed model of how to include the additional creep caused by the pull-out behaviour of fibres in the structural design of Steel Fibre Reinforced Concrete (SFRC) structures. The purpose of this study was to create a preliminary design model that included this additional fibre pull-out behaviour. The Age Adjusted Effective Modulus (AAEM) method, used in the Fédération Internationale du Béton (fib) Model Code (2010), was used as a base model for predicting long-term deflections. To reach this goal, time-dependent experimental investigations were performed at two levels, namely the macroscopic level and structural level. At the macroscopic level, uniaxial tensile creep tests were performed on cracked fibre reinforced specimens. At the structural level, flexural creep tests were performed on cracked reinforced concrete and SFRC beams, as well as cracked reinforced beams with a combination of fibres and steel bar reinforcing. This was performed to determine the experimental long-term deflections of each type of beam. A sustained stress level of 40% of the cracking tensile and flexural strengths was used. The results of the uniaxial tensile creep tests were used to calculate the rate of fibre pull-out for the fibre reinforced specimens. These rates were used to calibrate an additional fibre pull-out factor that could be included in the AAEM method. A damage model for each beam type was developed to include the effect of pre-cracking. The long-term deflection results of the conventionally reinforced beams were used to verify the current fib Model Code’s AAEM method. It was found that the adapted AAEM method could accurately predicted the long-term deflections of both cracked SFRC and combined reinforced beams.
AFRIKAANSE OPSOMMING: Die ondersoek van die kruip van gekraakte veselversterkte beton het die afgelope paar jaar momentum gekry. Daar is egter steeds geen voorgestelde model oor hoe die addisionele kruip wat deur die vesels veroorsaak word, in die strukturele ontwerp van Staalvesel Versterkte Beton (SVVB) strukture ingesluit moet word nie. Die doel van hierdie studie is om 'n voorlopige ontwerpmodel te skep wat hierdie addisionele veselkruip insluit. Die AAEM-metode (Age Adjusted Effective Modulus), wat in die fib Model Code 2010 gebruik word, is gebruik as basismodel vir die voorspelling van langtermyn-defleksie. Om hierdie doel te bereik, is tydsafhanklike eksperimentele ondersoeke op twee vlakke uitgevoer, naamlik die makroskopiese vlak en strukturele vlak. Op makroskopiese vlak is eenassige trekkruip toetse op gekraakte veselversterkte proefstukke uitgevoer. Op strukturele vlak is buigtoetse op gekraakte gewapende beton- en SVVB-balke, sowel as gekraakte versterkte balke met 'n kombinasie van vesel- en staalstaafversterking, uitgevoer. Dit is uitgevoer om die eksperimentele langtermyn-defleksie van elke tipe balk te bepaal. ‘n Volgehoue belasting van 40% van die buigkraaksterkte is gebruik. Die resultate van die eenassige trekkruip toetse is gebruik om die tempo van veseluittrekking vir die veselversterkte proefstukke te bereken. Hierdie is gebruik om 'n addisionele veseluittrekkingsfaktor te kalibreer wat by die AAEM-metode ingesluit kan word. ʼn Skade-model is vir elke balk tipe ontwikkel om die effek van voorafkraking in te sluit. Die langtermyn-buigresultate van die konvensionele versterkte balke is gebruik om die huidige fib Model Code 2010 se AAEM-metode te verifieer. Daar is bevind dat die aangepaste AAEM-metode die langtermyn-defleksie van beide gekraakte SVVB en gekombineerde versterkte balke, akkuraat kon voorspel.
Description
Thesis (MEng)--Stellenbosch University, 2018.
Keywords
Concrete -- Creep, UCTD, Reinforced concrete -- Cracking, Fiber-reinforced concrete -- Cracking, Modelling
Citation