ITEM VIEW

Altered mitochondrial respiration and other features of mitochondrial function in parkin-mutant fibroblasts from parkinson’s disease patients

dc.contributor.authorHaylett, Williamen_ZA
dc.contributor.authorSwart, Chrisnaen_ZA
dc.contributor.authorVan Der Westhuizen, Francoisen_ZA
dc.contributor.authorVan Dyk, Hayleyen_ZA
dc.contributor.authorVan Der Merwe, Lizeen_ZA
dc.contributor.authorVan Der Merwe, Celiaen_ZA
dc.contributor.authorLoos, Benen_ZA
dc.contributor.authorCarr, Jonathanen_ZA
dc.contributor.authorKinnear, Craigen_ZA
dc.contributor.authorBardien, Sorayaen_ZA
dc.date.accessioned2017-09-12T12:46:32Z
dc.date.available2017-09-12T12:46:32Z
dc.date.issued2016
dc.identifier.citationHaylett, W., et al. 2016. Altered mitochondrial respiration and other features of mitochondrial function in parkin-mutant fibroblasts from parkinson’s disease patients. Parkinson’s Disease, 2016 (Article ID 1819209), doi:10.1155/2016/1819209
dc.identifier.issn2042-0080 (online)
dc.identifier.issn2090-8083 (print)
dc.identifier.otherdoi:10.1155/2016/1819209
dc.identifier.urihttp://hdl.handle.net/10019.1/102217
dc.descriptionCITATION: Haylett, W., et al. 2016. Altered mitochondrial respiration and other features of mitochondrial function in parkin-mutant fibroblasts from parkinson’s disease patients. Parkinson’s Disease, 2016 (Article ID 1819209), doi:10.1155/2016/1819209.
dc.descriptionThe original publication is available at https://www.hindawi.com
dc.description.abstractMutations in the parkin gene are the most common cause of early-onset Parkinson’s disease (PD). Parkin, an E3 ubiquitin ligase, is involved in respiratory chain function, mitophagy, and mitochondrial dynamics. Human cellular models with parkin null mutations are particularly valuable for investigating the mitochondrial functions of parkin. However, published results reporting on patient-derived parkin-mutant fibroblasts have been inconsistent. This study aimed to functionally compare parkin-mutant fibroblasts from PD patients with wild-type control fibroblasts using a variety of assays to gain a better understanding of the role of mitochondrial dysfunction in PD. To this end, dermal fibroblasts were obtained from three PD patients with homozygous whole exon deletions in parkin and three unaffected controls. Assays of mitochondrial respiration, mitochondrial network integrity, mitochondrial membrane potential, and cell growth were performed as informative markers of mitochondrial function. Surprisingly, it was found that mitochondrial respiratory rates were markedly higher in the parkin-mutant fibroblasts compared to control fibroblasts (p = 0.0093), while exhibiting more fragmented mitochondrial networks (). Moreover, cell growth of the parkin-mutant fibroblasts was significantly higher than that of controls (). These unanticipated findings are suggestive of a compensatory mechanism to preserve mitochondrial function and quality control in the absence of parkin in fibroblasts, which warrants further investigation.en_ZA
dc.description.urihttps://www.hindawi.com/journals/pd/2016/1819209/
dc.format.extent12 pages
dc.language.isoen_ZAen_ZA
dc.publisherHindawi Publishing Corporation
dc.subjectParkinson’s diseaseen_ZA
dc.subjectMitochondrial pathologyen_ZA
dc.subjectMitophageen_ZA
dc.subjectParkin (ligase)en_ZA
dc.subjectFibroblastsen_ZA
dc.titleAltered mitochondrial respiration and other features of mitochondrial function in parkin-mutant fibroblasts from parkinson’s disease patientsen_ZA
dc.typeArticleen_ZA
dc.description.versionPublisher's version
dc.rights.holderAuthors retain copyright


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

ITEM VIEW