Autonomous landing of a fixed-wing unmanned aerial vehicle onto a moving platform

Date
2016-12
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: This thesis presents the analysis, design, simulation, implementation and partial practical flight testing of a flight control system to achieve accurate autonomous landing of a fixed-wing unmanned aerial vehicle onto a moving platform. A landing strategy is proposed that is based on real aircraft scenarios and scaled down to be representative of a remotely controlled off-the-shelf model vehicle, outfitted with a custom computer controlling unit. To create a more representative environmental simulation, the existing wind model was expanded to conform to military standards. The Total Energy Control System (TECS) was studied and used as the main longitudinal controller. The inner loop of the traditional TECS architecture was replaced with a normal specific acceleration controller. The specific energy and energy distribution controllers were developed based on this modified architecture using a simplified design loop. The outer altitude and airspeed loops were designed using a heuristic method. Conventional classical control designs were used for the lateral controllers. A Dutch roll damper was used to reduce yaw rate oscillations and improve lateral stability. A roll angle controller was used to regulate the bank angle and allow steering of the aircraft. An aggressive cross-track controller was developed to improve steady state tracking performance. Due to inherent problems in this design, an additional heading and guidance control system was designed and included. A switching scheme was proposed and implemented to provide a safe transition from one controller to the other. The integrated system was verified in hardware-in-the-loop simulations using a Monte-Carlo style approach for both stationary landing point and moving platform landings. It was able to achieve good accuracy in the longitudinal axis and exceptional accuracy in the lateral axis under various environmental disturbances. Overall, the system was able to hit the moving target with an 86% success rate. Limited flight testing showed that the energy-based longitudinal controllers performed more poorly in practice than in simulation, likely due to insufficient structural vibration damping and subsequent poor acceleration measurements. This is problematic because the energy controllers are very reliant on good acceleration control. The lateral controllers that were tested performed as designed and were therefore practically verified. It is concluded that this project can be used as a foundation for an energy-based landing system. Improvements are proposed that can aid future projects to enhance the system performance.
AFRIKAANSE OPSOMMING: Hierdie tesis handel oor die analise, ontwerp, simulasie, implementasie en gedeeltelike praktiese vlugtoetsing van ’n vlugbeheerstelsel vir die akkurate landing van ’n vastevlerk onbemande vliegtuig op ’n bewegende platform. ’n Landingstrategie wat gebaseer is op werklike vliegtuig scenarios en afgeskaleer is om verteenwoordigend te wees van ’n afstandbeheerde, “van die rak af” voertuig, uitgerus met ’n doelgemaakte aanboordrekenaar, is voorgestel. Om ’n meer verteenwoordigende omgewingsimulasie op te stel, is die bestaande windmodel uitgebrei om te voldoen aan militêre standaarde. Die Totale Energie Beheerstelsel is bestudeer en gebruik as die hoof longitudinale beheerder. Die binnelus van die tradisionele argitektuur is vervang met ’n normale spesifieke versnellingsbeheerder. Die spesifieke energie- en energieverspreidingbeheerder is ontwikkel gebaseer op hierdie aangepaste argitektuur deur gebruik te maak van ’n vereenvoudigde ontwerpslus. Die buitelus hoogte- en lugspoedbeheerder is ontwerp deur gebruik te maak van ’n heuristiese metode. Konvensionele klassieke beheerontwerpe is gebruik vir die laterale beheerders. ’n “Dutch roll” demper is gebruik om ossillasies in die rigtingkoerstempo te verminder en laterale stabiliteit te verbeter. ’n Rolhoekbeheerder is gebruik om die rolhoek te reguleer en die vliegtuig mee te stuur. ’n Aggressiewe kruisbaanbeheerder is ontwikkel om die bestendige toestand volgfout te verbeter. As gevolg van die inherente probleme in die ontwerp is ’n addisionele rigting- en leidingsbeheerstelsel ontwerp en bygevoeg. ’n Skakelskema is voorgestel en geïmplementeer om veilige skakeling van een beheerder na die ander te verseker. Die geïntegreede stelsel is geverifieer in hardeware-in-die-lus simulasies vir beide ’n stasionêre landingsteiken en bewegende platform landings deur van ’n Monte-Carlo benadering gebruik te maak. Goeie akkuraatheid is bereik in die longitudinale as en uitsonderlike akkuraatheid in die laterale as onder ’n verskeidenheid van omgewingstoestande. In die geheel was die stelsel in staat om ’n bewegende platform te tref met 86% sukses. Beperkte vlugtoetsing het gewys dat die energie-gebaseerde longitudinale beheerders heelwat swakker in praktyk as in simulasie vertoon het, waarskynlik as gevolg van onvoldoende demping van strukturele vibrasies wat gelei het tot swak versnellingsmetings. Dit is problematies aangesien die energiebeheerders baie afhanklik van goeie versnellingsbeheer is. Die laterale beheerders wat getoets is, het presteer soos ontwerp en was dus prakties geverifieer. Daar is tot die slotsom gekom dat hierdie projek as ’n fondasie vir ’n energie-gebaseerde landingsisteem gebruik kan word. Voorstelle is gemaak wat toekomstige projekte kan help om die stelsel se prestasie te verbeter.
Description
Thesis (MEng)--Stellenbosch University, 2016.
Keywords
Control systems (Flight), UCTD, Airplanes -- Landing, Airplanes -- Electric equipment
Citation