Monwabisi: a hydrodynamic study of the hazardous cell circulation and potential related solutions to a safer bathing facility

Date
2016-12
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: The objective of this thesis is to investigate the hazardous hydrodynamic circulation pattern at Monwabisi (False Bay, South Africa) and potential solutions to a safer bathing facility, by means of a complex hydrodynamic numerical model. A hazardous circulation cell exists at Monwabisi which is caused by a spur extending off an adjacent tidal pool. The partial wave‐sheltering of the spur produces a wave setup gradient in the bay which facilitates a strong anti‐clockwise circulation. The wave‐sheltering creates a false perception of safety as the spur forces the current in a strong and concentrated flow in a seaward direction. This strong current, often referred to as a rip current, has been linked to several rescues and drownings. Removal of the structure was not considered an option as it protects the tidal pool against wave overtopping and scouring as well as holds a beach which did not exist pre‐construction. The CSIR (1997) showed by means of a physical model study that the hazardous circulation could be reduced to a great extent by means of structural interventions. However, no structural changes have been implemented since the publication of their report. This study reinvestigates the CSIR’s proposed solutions by means of a 2D Boussinesq type numerical wave model. The numerical model aimed to replicate the CSIR’s physical model setup conditions, to simulate the resultant circulation patterns and current velocities, and comparing the results to the measurements of the CSIR’s physical model. An initial baseline simulation was set‐up to simulate the cell circulation present at Monwabisi. The simulation showed excellent agreement to the prototype conditions in terms of the observed and reported physical processes and the hazardous counter‐clockwise current circulation. The numerical simulation of the CSIR’s proposed solutions followed. An in‐depth analysis of the numerical model’s results demonstrated the effectiveness of groynes in reducing the current velocity of the cell circulation. Various other options were tested, but proved to be less successful. The groynes physically divided the beach, thereby producing a wave‐sheltered bay removed from the feeder currents originating from high wave energy section of the bay. The optimal solution was a T‐shaped groyne structure placed perpendicularly to the incoming waves. The flanges of the T‐groyne reduced the incoming wave energy even further, whilst also separating the newly created sheltered and high wave energy bays, thus reducing circulation intermixing between the two. The T‐groyne reduced the strong velocity along the spur significantly and also resulted in the most quiescent bay of all the tested options. The results of the numerical model were also compared to the CSIR’s physical simulation model results. The majority of the simulations showed good agreement in terms of the measured velocities and the general circulation patterns. Both models indicated that the Tgroyne is the most effective solution, especially in terms of reducing the current along the spur. The Boussinesq Wave model proved to be a reliable and useful tool in simulating the complex hydrodynamic system at Monwabisi and has great potential for similar studies in the future.
AFRIKAANSE OPSOMMING: Die doel van hierdie tesis is om die sirkulasiepatroon by Monwabisi (Valsbaai, Suid‐Afrika) en potensiële oplossings vir ʹn veiliger swemfasiliteit te ondersoek aan die hand van ʹn komplekse hidrodinamiese numeriese model. Die gevaarlike sirkulasie by Monwabisi word veroorsaak deur ʹn golfbreker‐uitsteeksel vanaf ʹn aangrensende getypoel. Die gedeeltelike beskerming teen die inkomende golwe produseer ʹn golf opstuwing gradiënt in die baai wat ʹn sterk anti‐kloksgewyse sirkulasie veroorsaak. Die beskerming teen golwe skep ʹn vals persepsie van veiligheid, aangesien die golfbreker uitsteeksel hier die stroom in ʹn sterk en gekonsentreerde vloei in ʹn seewaartse rigting dwing. Dié stroom word dikwels na verwys as ʼn sleurstroom, en is gekoppel aan verskeie reddingen verdrinkingsgevalle. Die verwydering van die struktuur word nie oorweeg nie, aangesien dit die getypoel teen golfoorstroming asook die strand teen erosie beskerm. Die WNNR (1997) het deur middel van ʹn fisiese modelstudie geïllustreer dat die gevaarlike sirkulasiepatroon tot ʹn groot mate verminder kan word deur strukturele ingryping. Sedert die publikasie van die verslag is egter nog geen fisiese veranderinge aangebring nie. Hierdie studie herevalueer die WNNR se voorgestelde oplossings deur middel van ʹn 2D Boussinesq golf‐tipe numeriese model. Die numeriese model was daarop gemik om die fisiese model opstelling van die WNNR na te boots, die gevolglike sirkulasiepatrone en stroomsnelhede te simuleer, en dié te vergelyk met die praktiese metings van die WNNR. ʹn Aanvanklike basislyn‐simulasie is opgestel om die huidige sirkulasiepatroon by Monwabisi na te boots. Die simulasie het uitstekende ooreenkomste met die prototipe se waargenome en gerapporteerde fisiese prosesse, asook die gevaarlike anti‐kloksgewyse sirkulasie getoon. Daarna het die numeriese simulasie van die WNNR se voorgestelde oplossings gevolg. ʼn Diepgaande ontleding van resultate van die numeriese model het aangetoon dat strandhoofde die sirkulasie se stroomsnelheid effektief verminder. Verkeie ander opsies was ook getoets, maar het minder sukses getoon. Die strandhoofde verdeel die strand fisies, en skep dus ʹn golfbeskutte baai wat ook verwyder is van die sterk strome wat opgewek word deur hoë golfenergie. Die optimale oplossing was ʹn T‐vormige strandhoof struktuur loodreg georiënteer teenoor die inkomende golwe. Die flense van die T‐strandhoof verminder die inkomende golfenergie nog verder, terwyl dit ook die beskutte en hoë‐golfenergie‐baaie verder van mekaar skei en sodoende sirkulasievermenging tussen die twee verminder. Die Tstrandhoof het die sterk snelheid langs die golfbreker‐uitsteeksel aansienlik verminder en het ook die kalmste baai van al die getoetste opsies gelewer. Die resultate van die numeriese model is ook vergelyk met dié van die WNNR se fisiese model. Die simulasies het algeheel ʼn goeie ooreenkoms getoon in terme van die stroomsnelhede en die algemene sirkulasiepatrone. Beide modelle het getoon dat die T‐strandhoof die mees doeltreffende oplossing is, veral om die stroomsnelheid langs die golfbreker‐uitsteeksel te verminder.
Description
Thesis (MEng)--Stellenbosch University, 2016.
Keywords
Hydrodynamics, Boussinesq, Hydrodynamics -- Mathematical models, Ocean circulation, UCTD
Citation