Micro gas turbine performance evaluation.

Oppong, F. (2016-12)

Thesis (MEng)--Stellenbosch University, 2016.

Thesis

ENGLISH ABSTRACT: The performance of the BMT 120 KS micro gas turbine engine is investigated in this thesis. The study includes component matching of the engine elements using compressor and turbine characteristic maps to analyse the engine’s performance. Analytical and numerical calculations were used to assess the various thermodynamic parameters of the engine and loss of engine power exacerbated by poor performance of the engine components. Engine performance was modelled using commercial simulation software GasTurb and Flownex SE and an in-house one-dimensional code. Using the numerical computations, a component sensitivity and matching analysis was performed for the engine using the various engine components. The theoretical performance of the engine was validated with experimental engine tests. The comparison of engine simulation results and experimental test data showed a consistent trend. A thrust difference of between 0.5% and 6% was achieved between the experimental and simulated results for the baseline engine. The experimental and simulated exhaust gas temperature of the BMT engine showed differences between 1.4% and 6%. Furthermore, a mean-line turbine design analysis was undertaken to study the possibility of improving the performance of the engine’s axial turbine. Simulations that made use of the mean-line turbine predicted a thrust of approximately 190 N and exhaust gas temperature of 993 K at a speed of 120 000 rpm.

AFRIKAANSE OPSOMMING: Die werksverrigting van die BMT 120 KS mikro gasturbine word in hierdie tesis ondersoek. Die studie behels onder andere die gebruik van kompressor-en turbinekaarte om komponentpassing van enjinonderdele te doen ten einde die werksverrigting van die enjin te analiseer. Analitiese en numeriese berekeninge is gebruik om die verskillende termodinamiese parameters van die enjin, asook werkverrigtingverliese as gevolg van die swak lewering van enjinonderdele te ondersoek. Die enjinwerkverrigting is gemodelleer met behulp van GasTurb en Flownex SE sagteware, asook ’n in-huis enn-dimensionele kode. Deur gebruik te maak van die numeriese berekeninge is ’n sensitiwiteitspassing analise ook uitgevoer vir die verskillende enjin komponente. Die teoretiese werksverrigting van die enjin is bevestig met behulp van eksperimentele enjin toetse. Die vergelyking tussen die eksperimentele-and simulasie resultate wys ’n deurlopende neiging. ’n Verskil in stukrag van tussen 0.5% en 6% is behaal tussen die eksperimentele en simulasie resultate. ’n Vergelyking van die eksperimentele en simulasie resultate vir die enjin uitlaatgas temperatuur van die BMT enjin het verskille van tussen 1.4% en 6% getoon. ’n Middellyn analise van die turbine is gedoen om die moontlikhede vir die verbetering van die enjin se aksiaalturbine te ondersoek. ’n Analise wat gebruik maak van die turbine se middellyn resultate dui aan dat ’n stukrag van 190 N en uitlaatgas temperatuur van 993 K by ’n rotasiespoed van 120 000 opm behaal kan word.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/100232
This item appears in the following collections: