Interactions between gut microbiota and the central nervous system, with emphasis on quorum sensing between commensal lactic acid bacteria and human cells

Date
2023-03
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: The human gut hosts close to 4 trillion microorganisms, which is nearly equivalent to the estimated 3.0×1013 human cells in a 70 kg body. Although the composition of gut microbiota changes with age, variation in diet, medication, hormone levels, stress and other environmental factors, a core group of autochthonous bacteria, between 400 and 500 species, are always present. More than 90% of the gut microbiome is represented by Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes, with the latter in the majority. Fusobacteria and Verrucomicrobia make up the remaining 10% of the gut microbiome. The human gut microbiome supersedes the number of cells in our bodies ten-fold. Since lactic acid bacteria (LAB) are the predominant gut microbiota, it is safe to conclude that changes in this group will affect the entire microbiome, ultimately leading to adjustments in the behaviour of intestinal epithelial cells (IECs). Changes in the immune system and quorum sensing (QS) signals instigated by an altering gut environment trigger a cascade of hormonal and neurological reactions. Activation of Toll-like receptors, for instance, induce strong immune and inflammatory reactions, but at the same time stimulate the secretion of hormones such as 5-hydroxytryptamine (5-HT, or serotonin), glucagon-like peptide-1 (GLP-1), peptide tyrosine tyrosine (PYY), glucose-dependent insulinotropic peptide (GIP), cholecystokinin (CCK), ghrelin, leptin, pancreatic polypeptide (PP), oxyntomodulin and neurotensin. Serotonin act as neurotransmitter but also regulates diverse functions such as platelet aggregation, bone development, immune response, cardiac function and gut homeostasis, and control enteric motor and secretory reflex. Gut bacteria also synthesize, or regulate, the production of serotonin and other neurotransmitters such as glutamine (Glu), gamma-amino butyric acid (GABA), dopamine (DA), norepinephrine and histamine. These molecules communicate with the central nervous system (CNS) via afferent fibers in the Vagus nerve (VN), autonomic sympathetic and parasympathetic nervous systems, but also the hypothalamic-pituitary-adrenal axis (HPA). Intermediate compounds such as short-chain fatty acids (SCFAs), tryptophan and secondary bile acids produced by gut bacteria also communicate with the CNS. Signals received from the brain are sent back to entero-epithelial cells (EECs) via the HPA and efferent VN fibers to complete the circle of communication referred to as the gut-brain axis (GBA). The modulation, development, and renewal of neurons in the enteric nervous system (ENS) are controlled by gut microbiota, especially those with the ability to produce and metabolize hormones. Minor activation of the ENS and VN results in drastic changes in the production of neurotransmitters, which also affects digestion, intestinal permeability, gastric motility, and immune regulation. GABA, in addition to other metabolites, play an important role in anti-inflammatory responses and help alleviate psychiatric symptoms stemming from inflammation. Treatment of schizophrenic and bipolar patients with probiotics alleviated symptoms associated with irritable bowel disease (IBD), and autistic children benefitted from probiotic treatment. Obsessive compulsive disorder (OCD)-like behavior could also be controlled by treatment with LAB. Inter- and intra-species signalling systems have been well studied, but far less is known about interkingdom quorum sensing (QS), especially between gut bacteria and intestinal epithelial cells (IECs). Although the auto-inducer 3 (AI-3)/epinephrine (Epi)/norepinephrine (NE) QS signalling system described for pathogenic Escherichia coli, Salmonella typhimurium and Ctirobacter rodentium are widely used by Gram-negative pathogenic bacteria, not all species have receptors that recognize these signals. Instead, they have developed “broad-range” “solo” LuxR-type receptors such as SdiA (a LuxR homolog) and QscR to improve their communication abilities. Despite our knowledge on QS, the effect of these signalling molecules on the CNS is ill-researched. Several QS peptides (QSPs) have the ability to diffuse through the intestinal mucosa and enter the circulatory system, from where they may penetrate the blood-brain barrier (BBB). It may be that LAB communicate with the CNS using small linear or cyclized oligopeptides (QS peptides, QSPs) of 5 to 17 amino acids long, as reported for other Gram-positive bacteria. In our own research we have shown that bacteriocins can indeed transverse epithelial (Caco-2) and endothelial (HUVECs) monolayers without changing the integrity of the membranes and with no toxic effect. Once in the blood stream, bacteriocins may cross the BBB, similar to that reported for the heptapeptide PapRIV produced by Bacillus. Our understanding of exactly how gut microorganisms control cognitive behavior, mood, and neuropsychiatric disorders remains limited. However, the more we discover about the gut microbiome, QS, neurotransmitters and the GBA, the greater the chance of developing novel therapeutics, probiotics and psychobiotics to treat gastro-intestinal disorders such as inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS), but also improve cognitive functions and prevent or treat mental disorders. This calls for in-depth deciphering of the complex, everchanging network between cells and neurons. Research on the quenching of QS signals need to be prioritised. We need to understand how quorum quenching (QQ) therapy will affect beneficial gut microbiota. Biomarkers need to be developed to identify differences in the gut microbiome of individuals suffering from psychological disorders. Interactions between drugs used in treatment and gut microbiota need to be studied in greater depth. We need to understand the effect psychiatric medication may have on the composition of the gut microbiome. Are intestinal microbiota able to metabolise these drugs? Studies should include multi-omics of gut and oral microbiota to have a better understanding of the mutual interplay between phyla. Will it be possible to develop probiotics to treat dysbiosis and neuropsychiatric abnormalities?
AFRIKAANSE OPSOMMING: Die ingewande van die mens huisves bykans 4 triljoen mikroörganisms, min of meer gelykstaande aan die beraamde 3.0×10¹³ selle teenwoordig in ‘n persoon met ‘n liggaamsmassa van 70 kg. Alhoewel die samestelling van ingewandsmikrobes varieer met ouderdom en verandering van dieët, medikasie, hormoonvlakke, angs en ander omgewingsfaktore, is ‘n kerngroep endemiese bakterieë van 400 tot 500 spesies altyd teenwoordig. Meer as 90% van die ingewandsmikrobioom bestaan uit Proteobacteria, Actinobacteria, Bacteroidetes en Firmicutes, met laasgenoemde in die meerderheid. Die oorblywende 10% ban die ingewandsmikrobioom bestaan uit Fusobacteria en Verrucomicrobia. Die ingewandsmikrobioom van die mens oorskry die aantal selle in ons liggame tienvoudig.. In die lig daarvan dat melksuurbakterieë (MSB) die ingewandsmikrobioom oorheers, kan afgelei word dat verandering in hierdie groep die mikrobioom in geheel sal beïnvloed en uiteindelik die gedrag van intestinale epiteelselle (IESe) sal verander. Verandering van die immuunsisteem en produksie van kworum-aanvoelbare (QS) seine tweeggebring deur ‘n veranderde ingewands-omgewing gee aanleiding tot ‘n opeenvolging van hormoon- en neurologiese reaksies. Aktivering van Toll-tipe reseptore sal byvoorbeeld ‘n sterk immuun- en inflammatoriese reaksie tot gevolg hê, maar terselfteryd ook die uitskeiding van hormone soos 5-hidroksietriptamien (5-HT of serotonien), glukagon-tipe peptied-1 (GLP-1), peptied tirosien- tirosien (PYY), glukose-afhanklike insulienotropiese peptied (GIP), cholesistokinien (CCK), ghrelin (kortisol), leptien, pankreatien polipeptied (PP), oksientomodulien en neurotensien stimuleer. Serotonien tree op as neurongeleier, maar reguleer ook verskeie ander funksies soos die aggregasie van bloedplaatjies, beenontwikkeling, immuunreaksie, hartfunksie, bevordering van ingewandshomeostase, asook die beheer van enteriese beweging en sekretoriese refleksie. Ingewandsbakterieë sintetiseer of reguleer die produksie van serotonien en ander neuro-geleiers soos glutamien (Glu), gamma-amino butiriensuur (GABA), dopamien (DA), norepinefrien en histamien. Hierdie molekules kommunikeer met die sentrale sunuweestelsel (CNS) via opwaarts-gerigte vesels in die Vagus senuwee (VN), outonome simpatiese- en parasimpatiese senuweesisteme, maar ook die hipotalamiese-pituitêre-adrenale as (HPA). Intermediëre verbindings soos kortketting vetsure (SCFAs), triptofaan en sekondêre galsoute geproduseer deur ingewandsbakterieë, kommunikeer ook met die CNS. Seine vanaf die brein word deur middel van die HPA en afwaarts-gerigte vesels in die VN na entero-epiteel selle (EECs) gelei en voltooi sodoende die siklus van kommunikasie, waarna verwys word as die ingewandsbrein as (GBA). Die verandering, ontwikkeling en herstel van die enteriese neuronsisteem (ENS) word deur ingewandsmikrobe beheer, veral dié wat die vermoë het om hormone te produseer en te metaboliseer. Kleinskaalse aktivering van die ENS en VN bring drastiese veranderinge mee in die produksie van neurongeleiers, wat op hul beurt die vertering van voedsel, intestinale deurlaatbaarheid, mobiliteit van die ingewands- en immuunregulering beïnvloed. GABA, asook ander metaboliete, speel ‘n belangrike rol in anti-inflammatoriese reaksies en help met die verligting van psigiatriese simptome wat deur inflammasie veroorsaak word. Behandeling van skisofreniese en bipolêre pasiente met probiotika het simptome geassosieer met prikkelbare dermsindroom (IBS) verlig en outistiese kinders het ook deur die behandeling baat gevind. Obsessiewe kompulsiewe wangedrag (OCD) is ook met behandeling van MSB beheer. Inter- en intra-spesie seinsisteme is reeds goed bestudeer, maar min is bekend oor inter- koninkryk kworum sein (QS) sisteme, veral tussen bakterieë en intestinale epiteelselle (IECs). Alhoewel die outo-induseerder 3 (AI-3)/epinefrien (Epi)/norepinefrien (NE) QS sisteem beskryf vir patogene Escherichia coli, Salmonella typhimurium en Ctirobacter rodentium deur verskeie Gram-negatiewe ingewandsbakterieë gebruik word, het nie al die patogene die reseptore om hierdie seine te herken nie. In die plek daarvan het hulle “breë-spektrum” “solo” LuxR-tipe reseptore soos SdiA (‘n LuxR homoloog) en QscR ontwikkel om hule kommunikasie vaardighede te verbeter. Ten spyte van ons kennis oor QS is die effek van hierdie sein molekules op die CNS nog nie goed bestudeer nie. Verskeie QS peptiede (QSPs) het die vermoë om deur die ingewandsmukosa te diffundeer en die sirkulêre sisteem binne te dring vanwaar die bloed-brein versperring (BBB) gepenetreer word. Dit mag wees dat MSB deur middel van klein liniêre peptiede of sikliese oligopeptiede (QS peptiede, OSP) van 5 tot 17 aminosure lank met die CNS kommunikeer, soos die geval blyk te wees met ander Gram- positiewe bakterieë. Ons eie navorsing het getoon dat bakteriosiene wel deur enkellaag Caco- 2 epiteelselle en HUVEC endoteelselle kan migreer sonder om die intergriteit van die membrane te verander of toksies te wees. Sodra dit in die bloedstroom is, kan bakteriosiene deur die BBB beweeg, soortgelyk aan die heptapeptied PapRIV wat deur Bacillus geproduseer word. Ons verstaan van presies hoe ingewandsmikrobe kognitiewe gedrag, gemoed en neuropsigiatriese wanbalanse beheer, is beperk. Nietemin, hoe meer ontdekkings ons oor die ingewandsmikrobioom, QS, neuro-geleiers en die GBA maak, hoe groter is die kans om nuwe terapeutiese middels, probiotika en psigobiotika te ontwikkel om gastrointestinale wanbalanse soos inflammatoriese dermsiekte (IBD) en IBS te behandel, maar ook kognitiewe funksies te verbeter en geestelike versteurings te voorkom. Dit verg intense ontrafeling van die komplekse, alomveranderde netwerk tussen selle en neurone. Navorsing in onderdrukking van QS seine moet prioriteit geniet. Ons moet verstaan hoe kworum-onderdrukkings (QQ)-terapie voordelige ingewandsmikrobe beïnvloed. Biomerkers moet ontwikkel word om verskille in die ingewandsmikrobioom van individue wat aan psigiatriese wanbalanse lei te identifiseer. Die interaksie tussen medikasie en ingewandsmikrobe moet beter bestudeer word. Ons moet verstaan wat die effek van psigiatriese medikasie is op die samestelling van die ingewandsmikrobioom. Is ingewandsmikrobe daartoe instaat om hierdie middels te mataboliseer? ‘n Multi-omiese benadering behoort gevolg te word ten einde die interaksies tussen orale en ingewandsmikrobe beter te verstaan. Is dit moontlik om probiotika te ontwikkel vir die behandeling van disbiose en neuropsigiatriese abnormaliteite?
Description
Thesis (PhD)--Stellenbosch University, 2023.
Keywords
Citation