Phase behaviour and physical properties (density and viscosity) of supercritical CO2 + (1-octanol and/or n-alkanes)

Date
2023-12
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: The detergent-range alcohols (C8 to C20) obtained downstream in the synthesis gas manufacturing industry often contain substantial amounts of n-alkanes that must be separated. Supercritical fluid technology has proven to be a reliable alternative to traditional separation techniques. Prior research concluded that supercritical CO2 yields better results for separating alkanes from alcohols than traditional, volatile organic solvents. The design of supercritical fractionation columns requires a fundamental understanding of phase equilibria and hydrodynamics. Unlike phase equilibria data – partially available in literature – there is a scarcity of data on the physical properties (density and viscosity) of detergent-range alcohol systems under high-pressure. This study aimed to accurately measure the physical properties (density and viscosity) of binary and ternary mixtures of supercritical CO2 with (1-octanol and/or (n-dodecane or n-tetradecane)) accurately and to obtain a fundamental understanding of the phase behaviour of the relevant mixtures. To that end, improvements were made to an already existing static high-pressure cell equipped with a quartz crystal viscometer and high-pressure bubble- and dew-point data (HPBPDP) were measured visually and nonvisually, as well as density and viscosity data. The systems investigated in this study include binary systems of CO2 with 1-octanol, n-dodecane and n-tetradecane and ternary systems of CO2 + (50 wt.% 1-octanol + 50 wt.% n-dodecane), (50 wt.% 1-octanol + 50 wt.% n-tetradecane) and (50 wt.% n-dodecane + 50 wt.% n-tetradecane). Solute mass fractions and temperatures ranging from 0.015 to 0.65 g/g and 308 to 348 K, respectively, were investigated. The measured HPBPDP and vapour density data were modelled using the RK-ASPEN model, the liquid density data, using the COSTALD model and the viscosity data, using the Chung-Lee-Starling and the TRAPP models; all these models are readily available in Aspen Plus®. The binary HPBPDP data results revealed that the solubility of n-dodecane and n-tetradecane decreases inversely with temperature in conformity to the norm; however, the CO2 + 1-octanol exhibited a temperature inversion at 308.2 K. The increase in carbon-chain length in the n-alkanes decreased its solubility in CO2 ; additional energy (pressure) was required to allow for solvation. Although the carbon chain of 1-octanol is shorter than the relevant n-alkanes, its phase transition pressures are higher due to the tendency of its hydroxyl functional group to form multimer bonds. The ternary systems’ results revealed that introducing n-alkanes to the 1-octanol inhibits the formation of these multimers and, in turn, nulls the effects of temperature inversion. The RK-ASPEN model performed well in predicting the binary and, with the inclusion of the solute-solute binary interaction parameters, the ternary HPBPDP data. In addition, the nonvisual HPBPDP data compared well with the visual measurements, with %𝐴𝐴𝐷𝑃s less than 3 %. Furthermore, this study presented new density and viscosity data for all the relevant systems; however, the chosen models performed poorly in predicting these physical properties. The density and viscosity data for the CO2 + 1-octanol exhibited an inversion, introducing a non-ideal, non-linear relationship between the physical properties and the temperature. The addition of n-alkanes to 1-octanol for the CO2 + 1-octanol + n-alkane systems removed the density and viscosity inversion effects identified in its CO2 + 1-octanol binary subsystem.
AFRIKAANSE OPSOMMING: Die reinigerreeksalkohole (C8 tot C20) wat stroomaf verkry is in die sintetiese gasvervaardigingsindustrie bevat gereeld hoeveelhede n-alkane wat geskei moet word. Superkritiese vloeistoftegnologie is bewys om ’n betroubare alternatief tot tradisionele skeidingstegnieke te wees. Vroeër navorsing het beslis dat superkritiese CO2-opbrengste beter resultate gelewer het vir alkaanskeiding van alkohole as tradisionele, vlugtige organiese oplosmiddels. Die ontwerp van superkritiese fraksioneerkolomme vereis ’n fundamentele verstaan van fase-ekwilibria en hidrodinamika. Anders as fase-ekwilibriadata – gedeeltelik beskikbaar in literatuur – is daar ’n skaarsheid van data van die fisiese eienskappe (digtheid en viskositeit) van reinigerreeksalkoholsisteme onder hoë druk. Hierdie studie het beoog om die fisiese eienskappe (digtheid en viskositeit) van binêre en ternêre mengsels van superkritiese CO2 met (1-oktanol en/of (n-dodekaan of n-tetradekaan)) akkuraat te meet en ’n fundamentele verstaan van die fasegedrag van die relevante mengsels te verkry. Met dié doel is verbeteringe gemaak aan ’n alreeds-bestaande statiese hoë-druksel toegepas met ’n kwartskristalviskometer en hoë-druk borrel-en-dou-puntdata (HPBPDP) is visueel en nie-visueel gemeet, sowel as digtheid en viskositeitsdata. Die sisteme ondersoek in hierdie studie sluit in binêre sisteme van CO2 met 1-oktanol, n-dodekaan en n-tetradekaan en ternêre sisteme van CO2 + (50 gew.% 1-oktanol + 50 gew.% n-dodekaan), (50 gew.% 1-oktanol + 50 gew.% n-tetradekaan) en (50 gew.% n-dodekaan + 50 gew.% n-tetradekaan). Opgeloste stofmassafraksies en temperature in die bestek van 0.015 tot 0.65 g/g en 308 tot 348 K, onderskeidelik, is ondersoek. Die gemete HPBPDP en dampdigtheidsdata is gemodelleer deur die RK-ASPEN-model te gebruik, die vloeistofdigtheiddata deur die COSTALD-model, en die viskositeitsdata deur die Chung-LeeStarling- en die TRAPP-modelle te gebruik; al die modelle is geredelik beskikbaar op Aspen Plus®. Die binêre HPBPDP-dataresultate het getoon dat die oplosbaarheid van n-dodekaan en n-tetradekaan invers afneem met temperatuur in ooreenstemming met die norm; die CO2 + 1-oktanol het egter ’n temperatuurinversie by 308.2 K getoon. Die verhoging in koolstofkettinglengte in die n-alkane het sy oplosbaarheid in CO2 laat afneem; addisionele energie (druk) is vereis om vir solvasie toe te laat. Al is die koolstofketting van die 1-oktaan korter as die relevante n-alkane, is sy fase-oorgangsdruk hoër as gevolg van die tendens van sy hidroksiel-funksionele groep wat mulitmerverbindings vorm. Die ternêre sisteme se resultate het getoon dat bekendstelling van n-alkane tot die 1-oktanol, die formasie van hierdie multimers inhibeer, en om die beurt, die effekte van temperatuurinversie onbenullig maak. Die RKASPEN-model het goed presteer in die voorspelling van die binêre en, met die insluiting van die opgeloste stof-opgeloste stof binêre interaksieparameters, die ternêre HPBPDP-data. Daarby, het die nie-visuele HPBPDP-data goed vergelyk met die visuele mates met %AADPs minder as 3%. Verder, hierdie studie het nuwe digtheids- en viskositeitsdata vir al die relevante sisteme voorgestel; die keuse modelle het egter swak presteer in die voorspelling van hierdie fisiese eienskappe. Die digtheidsen viskositeitsdata vir die CO2 + 1-oktanol het ’n inversie getoon, wat nie-ideale, nie-liniêre verhouding tussen die fisiese eienskappe en die temperatuur bekend gestel het. Die byvoeging van n-alkane tot 1-oktanol vir die CO2 + 1-oktanol + n-alkane sisteem het die digtheids- en viskositeitsinversie-effekte geïdentifiseer in sy CO2 + 1-oktanol binêre subsisteem, verwyder.
Description
Thesis (MEng)--Stellenbosch University, 2023.
Keywords
Citation