Simulation and control implications of a high-temperature modular reactor (HTMR) cogeneration plant

Date
2014-04
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: Traditionally nuclear reactor power plants have been optimised for electrical power generation only. In the light of the ever-rising cost of dwindling fossil fuel resources as well the global polluting effects and consequences of their usage, the use of nuclear energy for process heating is becoming increasingly attractive. In this study the use of a so-called cogeneration plant in which a nuclear reactor energy source is optimised for the simultaneous production of superheated steam for electrical power generation and process heat is considered and analysed. The process heat superheated steam is generated in a once-through steam generator of heat pipe heat exchanger with intermediate fluid while steam for power generation is generated separately in a once-through helical coil steam generator. A 750 °C, 7 MPa helium cooled HTMR has been conceptually designed to simultaneously provide steam at 540 °C, 13.5 MPa for the power unit and steam at 430 °C, 4 MPa for a coal-to-liquid fuel process. The simulation and dynamic control of such a typical cogeneration plant is considered. In particular, a theoretical model of a typical plant will be simulated with the aim of predicting the transient and dynamic behaviour of the HTMR in order to provide guideline for the control of the plant under various operating conditions. It was found that the simulation model captured the behaviour of the plant reasonably well and it is recommended that it could be used in the detailed design of plant control strategies. It was also found that using a 1500 MW-thermal HTMR the South African contribution to global pollution can be reduced by 1.58%.
AFRIKAANSE OPSOMMING: Tradisioneel is kernkragaanlegte vir slegs elektriese kragopwekking geoptimeer. In die lig van die immer stygende koste van uitputbare fossielbrandstohulpbronne asook die besoedelingsimpak daarvan wêreldwyd, word die gebruik van kernkrag vir prosesverhitting al hoe meer aanlokliker. In hierdie studie word die gebruik van ‘n sogenaamde mede-opwekkingsaanleg waarin ‘n kernkragreaktor-energiebron vir die gelyktydige produksie van oorverhitte stoom vir elektriese kragopwekking en proseshitte oorweeg ontleed word. Die oorvehitte stoom word in ‘n enkeldeurvloei-stoomopwekking van die hittepyp-hitteruiler met tussenvloeistof opgewek en stoom vir kragopwekking word apart in ‘n enkeldeurvloei-spiraalspoel-stoomopwekker opgewek. ‘n 750 °C, 7 MPa heliumverkoelde HTMR is konseptueel ontwerp vir die gelytydige veskaffing van stoom by 540 °C, 13.5 MPa, vir die kragopwekkings eenheid, en stoom by 430 °C, 4 MPa, vir ‘n steenkool-tot-vloeibare (CTL) brandstoff proses. Die simulasie en dinamiese beheer van ‘n tipiese HTMR mede-opwekkingsaanleg word beskou. ‘n die besonder word ‘n teoretiese model van die transiënte en dinamiese gedrag van die aanleg gesimuleer om sodoene riglyne te identifiseer vir die ontwikkeling van dinamiese beheer strategië vir verskillende werkstoestande van die aanleg. Daar was ook gevind dat die simulasie model van die aanleg se gedrag goed nageboots word en dat dit dus gebruik kan word vir beheer strategie doeleindes. Indien so ‘n 1500 MW-termies HTMR gebruik word sal dit die Suid Afrikaanse besoedling met 1.58% sal kan verminder.
Description
Thesis (MScEng)--Stellenbosch University, 2014.
Keywords
Nuclear energy, Power-plants -- Computer simulation, Coal-to-liquid-fuel, High-temperature modular reactor, Dissertations -- Mechanical and mechatronic engineering, UCTD
Citation