Early cardiovascular changes occurring in diet-induced, obese insulin-resistant rats

Date
2012
Authors
Huisamen B.
Dietrich D.
Bezuidenhout N.
Lopes J.
Flepisi B.
Blackhurst D.
Lochner A.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The metabolic syndrome is recognized as a cluster of disturbances associated with obesity, type 2 diabetes and hypertension. Over the past two decades, the number of people with the metabolic syndrome has increased at an alarming rate. This increase is associated with the global epidemic of both obesity and diabetes. Cardiovascular mortality is increased among diabetics and obesity-related insulin-resistant patients, and obesity is currently recognized as independent risk factor for cardiovascular disease. We aimed to establish the effects of a short period of an altered diet on the heart using a rat model of hyperphagia-induced obesity (diet supplemented with sucrose and condensed milk for 8 weeks = DIO) compared to age-matched controls. Isolated, perfused hearts were subjected to global or regional ischaemia/reperfusion. Function on reperfusion was recorded and infarct size determined. A plasma lipid profile was established via HPLC-based methods and proteins involved in metabolic signalling determined either by western blotting or RTPCR. 8 weeks of diet resulted in whole-body but not myocardial insulin resistance, increased plasma triglyceride and phospholipid levels as well as increased lipid peroxidation. Despite the similar baseline function, hearts from DIO animals showed significantly poorer postischaemic recovery than controls (41.9 % RPP recovery vs 57.9 %, P\0.05, n = 7-11/group) but surprisingly, smaller infarct size (24.95 ± 1.97 vs 47.26 ± 4.05 % of the area at risk, P\0.005, n = 8/group). Basal phosphorylation of PKB/Akt was elevated but IRS-1 and SERCA-2 expression severely downregulated. In conclusion, after only 8 weeks of a slight change in diet, the rat heart shows signs of metabolic remodelling. Some of these changes may be protective but others may be detrimental and eventually lead to maladaptation. © 2012 Springer Science+Business Media, LLC.
Description
Article
Keywords
Heart, Insulin resistance, Insulin signalling, Ischaemia/reperfusion, Obesity
Citation
Molecular and Cellular Biochemistry
368
02-Jan
37
45