The restoration potential of fynbos riparian seed banks following alien clearing

Date
2007-12
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : University of Stellenbosch
Abstract
Riparian areas are highly complex systems with varying levels of disturbance that are highly susceptible to invasion by alien plants. Once invaded, riparian areas play a major role in the dispersal and spread of invasive alien plants (IAPs) through the river system and, in some cases, to neighbouring landscapes. Riparian areas have therefore been prioritized by many alien clearing initiatives in South Africa. Current practice for the restoration of cleared areas is minimal and relies mainly on the un-aided recovery of native species from residual individuals and soil stored seed banks. Little research, however, has been done on the effectiveness of this approach or the extent to which riparian seed banks contribute towards community restoration. This study is part of a national research initiative (Targets for Ecosystem Repair in Riparian Ecosystems in Fynbos, Grassland and Savanna Biomes) funded by Department of Water Affairs and Forestry, in collaboration with Working for Water, The Centre for Invasion Biology and the Universities of Cape Town, Stellenbosch, Rhodes and Witwatersrand. The initiative undertook to investigate different restoration techniques on various invaded sites for their cost-effectiveness, efficiency, practicality and conservation integrity. This study has three aims. The first is to determine the composition of seed banks in un-invaded riparian areas within the fynbos biome to be used as a benchmark for future research, restoration grading and other management requirements. The second aim is to determine the composition of seed banks in heavily invaded riparian areas, and thus to assess the impact of invasion on the integrity of the seed banks. The third aim is to evaluate the restoration potential of riparian seed banks following the clearing of invasive alien plants (IAPs). Study sites were selected within four river systems in the south-western part of the Western Cape Province in South Africa: the Berg, Eerste, Molenaars and Wit Rivers. Plots were selected in both invaded (>75% IAP canopy cover; considered “closed” alien stands) and un-invaded (also termed reference, with <25% IAP canopy cover) sections of the river. Replicate plots were established along varying gradients of elevation (mountain stream and foothill) and moisture regimes (dry, wet and transitional bank zones). Soil samples were collected together with above-ground vegetation surveys and comparisons were made. Results from this study confirm those of previous studies that seed banks offer little reference to current aboveground vegetation, but rather offer insight into past vegetation history as well as future vegetation assemblages. Worldwide, many of the species that characteristically form seed banks are early successional species. A community study was done for the seed bank based on the species that germinated and were identifiable at termination of the project (6 months after initiation). Three clusters of species could be identified. One group comprised 32 generalist species that occurred in both reference and invaded sections of the rivers. A second group comprised 39 species associated with invaded sites, and a third group of 40 species that was associated with reference sites. A few sub-community groups were found within both the “reference” and “invaded” community groups which were assumed to be habitat specific. Most species were “pioneer” or relatively-short lived, early-successional species which play a vital role in the initial post-disturbance vegetation cover, and facilitate establishment of later successional species. Seed banks are notoriously variable over space and time, and floristic representation is often biased as a result of differences among species in seed production, dispersal and longevity in the soil. The general consensus is that seeds have an irregular, clustered spatial distribution that is dictated by both biological and environmental factors. Within river systems, the irregular clustering can be exceptionally skewed with the influence of pockets of high sediment deposition along the bank. Environmental factors that were found to significantly skew germination results were the presence of fire, as well as the extent and intensity of invasion (duration and cover). The high level of diversity and abundance in reference Berg River mountain stream seed banks was perceived to be a direct result of a moderate fire frequency (between 8-15 years) and the relatively natural state of the vegetation (i.e. very little invasion). Also, diversity and richness of indigenous species from the Wit and Molenaars Rivers were substantially higher in the invaded samples than the reference samples, probably because both river systems have a long history of invasion and other anthropogenic disturbances which would have an effect on the samples from “reference” sections (i.e. even a 25% presence of IAPs seems adequate enough to alter the composition of the seed bank). Correspondence analyses showed that species had clear affinities towards different levels of “key” riparian environmental variables (fire, invasion and anthropogenic disturbance). Most species were associated with moderate levels of fire frequency, invasion history, and anthropogenic disturbance. Comparisons of seed bank species assemblages between the lateral and longitudinal variables of the rivers offered insights into the habitat requirements of certain fynbos and riparian species. Most significant were the results from bank zone comparisons which showed distinct species groupings along the different moisture bands. As could be expected, riparian species were best represented within the wet bank zones and fynbos species within the dry bank zone, while species characteristic of both zones occurred in the transitional zone, making this seed bank zone the richest in species. Mountain stream sections were richer and more diverse than foothill sections over both invaded and reference samples. This is hypothesised to be linked to lower levels of anthropogenic disturbance experienced in the mountain stream sections. The impact of invasion on the riparian seed bank was most clearly shown through the correspondence analyses for the 20 most frequently occurring species. The seed bank assembly patterns were clearly defined by the state of the river (reference or invaded). Interestingly, this pattern was evident at all three spatial scales; landscape (rivers), reach (mountain stream and foothill sections) and habitat (dry, wet and transitional zones). The reference seed bank assemblage was more tightly grouped, implying that the species were more closely associated with each other and less variable than those of the invaded seed bank assemblages. The species groupings within the invaded seed banks were influenced by variables such as reach and zone, whereas the reference seed bank assemblages seem relatively unaffected by these variables. This implies that the presence of invasive alien plants creates additional variation within the seed bank which alters the natural groupings. At a broad scale, the invaded seed banks were less species rich. This means that not only will the resulting seedling community be harder to predict, but it will also have fewer species. However although generally lower in species richness, the seed banks from almost all invaded rivers interestingly showed a higher diversity of indigenous species than their reference counterparts. This is very promising in terms of rehabilitation of post-cleared riparian sites, but more information is needed to understand the seed bank composition and determine how sustainable the seed banks are for rehabilitation in the long-term. All invaded sections had fewer herbaceous perennial species but more herbaceous annual species. Graminoids made up 50% or more of the seed bank regardless of state (reference or invaded), while woody species (shrubs/shrublets) were generally more prevalent in the reference samples. These results imply that following the removal of invasive alien plants, the vegetation to regenerate from the seed bank is likely to comprise of short-lived, herbaceous species that are not necessarily an accurate reflection of the indigenous riparian community. It is however important to note that this study investigated only the species that were able to germinate over the study period (6 month germination period). Many riparian species may not have been represented because they are either late germinators or may not be present in the soil seed bank at all. In order to gain a holistic understanding of riparian community recruitment, it is recommended that seed bank studies such as this one be included in a more broad scale, long term investigation which takes into account various reproductive strategies used by riparian species. Research of this nature is in its infancy worldwide and there are many challenges involved in measuring diversity and change in these systems. However, within the scope of this study, I suggest that these results shed light on previously unanswered and important questions regarding the ecology of seed banks in the riparian ecosystems of the Western Cape.
Description
Thesis (MScConsEcol(Conservation Ecology and Entomology)--University of Stellenbosch, 2007.
Keywords
Dissertations -- Conservation ecology and entomology, Theses -- Conservation ecology and entomology, Soil seed banks -- South Africa -- Western Cape, Revegetation -- South Africa -- Western Cape, Fynbos -- Reintroduction -- South Africa -- Western Cape, Riparian areas -- South Africa -- Western Cape
Citation