Review of direct-drive radial flux wind turbine generator mechanical design

Date
2012
Authors
Stander J.N.
Venter G.
Kamper M.J.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The direct-drive radial flux synchronous generator is considered as the modern wind turbine drive train. Both the electrically (e.g., Enercon) and permanent magnet (PM; e.g., Siemens) excited direct-drive generators are gaining popularity on the market today. Compared with the matured geared counterpart, the electrically excited direct-drive generator is heavier and more expensive but more reliable per unit capacity. The PM-excited generator is expensive, is simpler in electromechanical design, has a high power-to-weight ratio, and yields a higher energy conversion efficiency than its electrically excited equivalent. The PM generator technology has the potential to yield the highest energy-to-cost ratio. However, standardization of this direct-drive generator parts/subassemblies may overcome the existing cost barrier. Most current literature focuses on PM generator wind turbine technology, specifically on generator energy conversion optimization, and the scalability of technologies to capacities in access of 5 MW. Strangely, PM generator's mass and cost reductions through optimized structural design incorporating manufacturing, transportation, and installation constraints are less studied. This paper solely focuses on the mechanical and structural design aspects of large radial flux synchronous PM generators specific to direct-drive wind turbines. Generator topologies such as the common iron-cored and unconventional air-cored generator are discussed. However, design considerations specific to the iron-cored generator topology are studied. The design considerations investigated involve the geometries and the configurations of rotor/stator active and inactive structures, the interfaces, and the conductor/PM mounting methods. Copyright © 2011 John Wiley & Sons, Ltd.
Description
Keywords
Air-cored, Design considerations, Direct drive, Drive train, Electro mechanical design, Enercon, generator, Mechanical design, Mechanical structures, Per unit, PM generator, Power-to-weight ratios, Radial flux, Siemens, Wind turbine technology, Conversion efficiency, Design, Mass transportation, Optimization, Structural design, Synchronous generators, Topology, Wind turbines, cost-benefit analysis, design, efficiency measurement, electric field, equipment component, installation, iron, magnetic field, mechanics, standardization, wind power, wind turbine, yam
Citation
Wind Energy
15
3
459
472