The electric quadrupole contribution to the circular birefringence of nonmagnetic anisotropie chiral media: A circular waveguide experiment

Date
1996
Authors
Theron I.P.
Cloete J.H.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Constitutive relations which include electric quadrupole terms, in addition to electric and magnetic dipole terms, are used to describe the "optical activity," in particular the circular birefringence, of an an Isotropie chiral medium which is nonmagnetic. The resulting permittivity and chirality tensors are then used to predict the rotation of the polarization plane of a linearly polarized wave propagating in a circular waveguide filled with the medium. The numerical predictions were tested by measurements between 2.4 and 4 GHz on a 2 m long artificial crystal in a circular waveguide and it was found that the rotation of the polarization was within 13% of the predicted value - good agreement after considering the possible sources of error. It is thus established that the effect of electric quadrupoles must be included when modeling the optical activity of anisotropic chiral media in the long wavelength regime. The anisotropic chiral media which are dealt with here can be classified according to the crystallographic point groups to which they belong, and they may therefore also be considered to be artificial crystals. © 1996 IEEE.
Description
Keywords
Anisotropy, Birefringence, Computer simulation, Crystals, Electromagnetic wave polarization, Electromagnetic wave transmission, Permittivity, Tensors, Circular birefringence, Electric quadrupole contribution, Nonmagnetic anisotropic chiral media, Optical activity, Circular waveguides
Citation
IEEE Transactions on Microwave Theory and Techniques
44
8