Design of rubble-mound structure as scour protection for vertical seawalls: layer thickness, median rock mass and energy through the layers

Date
2021-03
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: This study contributesto the optimal design of a rubble-mound structure used as toe protection for a vertical seawall. A concrete seawall is placed on top of a screed layer. In front of the seawall, therubble-mound berm consisting of a core, filter layer and armour layer functions as a protection for the seawall andits foundation. Scouring of the screed layer is amongthe leading causes of seawall failure. To determine design guidelines to minimise the scouring of the screed layer, forty-two physical model testswere conducted at Stellenbosch University HydraulicsLaboratory.The (horizontal) erosion of the screed layer and scoured screedarea for each experiment was observed, measured and analysed. The scoured area was computed using a new method developed by the author using the Image Processing Toolboxin MATLAB. Wavecelerity increases as the wave period increases, leading to a rise in the rate of wave energy transmission through the structure. Subsequently, more scour of the screed develops as more wave energy reaches the screed layer.The scour areas for peakwave periods ranging between 6s and 12s were narrowly grouped, whereas the scoured areas for the 16s and 18s wave periods were significantly scattered and higher. In one of the most extreme cases tested, an 18s wave period caused 83% of the screed layer to be washed out.The rubble-mound structures with the highest crest provided the best protection. At an 18s peak wave period, the largest structure experienced a 20% scoured area, whereas the lowest structure experienced 80% scour of the screed layer. Increasingthe filter layer (underlayer) beneaththe armour layer proved to be effective and economical. Byadding two layers of rock to the filter layer (underlayer), a 19% increase in the total crest height led to a 50% decrease in the scoured screed area. A thicker layer generates an irregular surface resulting in better interlocking and increased porosity which improves wave energy dissipation and armour layer stability. Additionally, alarger median rock mass in the underlayers enhancedthe energy dissipation and structural stability. The filter criterion stating that the underlayer’s rock massshould be a tenth of the upper layer proved to be the most effective in themajority of experiments. As a first approximation, to determine the energy distribution, the dynamic pressure head was measured at different elevationsin the rubble-moundand converted into velocity. Even though the small-scale model produced high variability in the measurements,the general trendindicated that the outer layers contain the highest energy region, with limited energy penetrating the core (34% on average). The armour layer had the highest measured energy when the median rock mass of the filter layer was small since the flow was concentrated in the armour layer. When the median rock mass of the filter layer was larger, thewater was dissipated into the filter layer and became less violent in the armour layer, resulting in the highest energyregion being in the filter layer. Equations were developedusing dimensional analysis to predict the energy in the rubble-moundstructure layers based on identified factors affecting the flow through porous media.The results indicate that a well-designedrubble-mound berm can effectively dissipate the approaching wave energy and accordingly limit the energy penetrating the coreand so reduce scouring of the screed layer below the seawall.
AFRIKAANSE OPSOMMING: Die studie dra by tot die optimale ontwerp van ‘n ruklipstruktuur wat gebruik word as toonbeskerming vir‘n vertikaleseemuur.Die betonseemuur word geplaas bo-op ‘n vlaklaag. Seewaarts van die muur bestaan die ruklipstruktuur uit ‘n kern, filterlaag en bolaag. Uitskuring van die vlaklaag is een van die hoofoorsake van seemuurswigting. Twee-en-veertig fisiese model toetseis gedoen in Stellenbosch Universiteit se HidroulikaLaboratorium om te bepaal hoe om die uitskuring te verminder van die vlaklaag. Die horisontale uitskuring van die vlaklaag en die uitskuringsoppervlak vir die eksperimente is waargeneem, gemeet en geanaliseer. Die uitskuring oppervlak is bereken deur ‘n nuwe metode wat deur die skrywer ontwikkel is. Die metode maak gebruik van MATLAB se Image Processing Toolbox.Die golfsnelheid neem toe soos die golfperiode toeneem, dit lei tot ‘n toename in die oordragstempo van die golfenergie. Gevolglik ontwikkel ‘n groter uitskuringsoppervlak want meer energie bereik die vlaklaag. Die uitskuringsoppervlakte van die piekgolfperiodes tussen 6s en 12s is baie naby aan mekaar gegroepeer, maar die uitskuring van die 16s en 18s is aansienlik hoër. In een van die uiterste gevalle het ‘n 18s-golfperiode veroorsaak dat 83% van die vlaklaag uitgeskuur het. Die hoogste ruklipstrukture het die beste beskerming vir die vlaklaag gebied. By ‘n 18s piekgolfperiode het die grootste struktuur 20% uitskuring van die vlaklaag ervaar, waar die kleinste struktuur 80% uitskuring gehad het. Dit is bevind dat deur die filterlaag dikker te maak, in plaas van die bolaag, meer effektief en ekonomies is. Deur twee lae klip by die filterlaag te sit (19% toename in die totale hoogte), lei tot ‘n 50% afname in die uitskuringsoppervlak van die vlaklaag. ‘n Dikker laag genereer ‘n onreëlmatige oppervlak wat lei tot beter ineensluiting en ‘n toename in porositeit wat die golfenergieverspillingen strukturele stabiliteit verbeter. Addisioneel, dra ‘n groter gemiddelde klipmassa in die onderlae ook by tot golfenergieverspillingen bolaagstabiliteit. Die filterkriteria wat bepaal dat die onderlae ‘n tiende van die massa moet wees van die bolaag was die effektiefste in die meerderheid van eksperimente. As ‘n eerste benadering is die dinamiese druk op verskillende hoogtesin die ruklipstruktuur gemeet en omgeskakel na snelheid om die energieverspreiding te bereken. Al het die klein-skaalmodel hoë wisselingin die druklesings veroorsaak, het die algemene tendens nogtans getoon dat die bolae die hoogste energie bevat, en beperkte energie die kern bereik (gemiddeld 34%). Die bolaag het die hoogste energie wanneer die filterlaag se gemiddelde klip massa kleiner is want die vloei word dan gekonsentreer in die bolaag. Wanneer die gemiddelde klipmassa van die filterlaag groter is, kan die water na die filterlaag beweeg en word minder aktief in die bolaag. Dit veroorsaak dat die hoogste energie in die filterlaag is. Vergelykings is geskep deur die proses van dimensionele analise om die energie in die ruklipstruktuur lae te bereken gebaseer op geïdentifiseerde faktore wat die vloei deur poreuse media beïnvloed. Die resultate toon dat ‘n goeie ontwerpte ruklipstruktuur die energie wat die kern bereik beperk, en so ook die uitskuring van die vlaklaag onder die seemuur verminder.
Description
Thesis (MEng)--Stellenbosch University, 2021.
Keywords
UCTD, Rubble mound breakwaters, Sea-walls, Scouring
Citation