Solvent extraction and selective separation of base metal ions by means of pyrazole- and imidazole-pyridinyl ligands

Date
2020-12
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University, 2020
Abstract
ENGLISH ABSTRACT: In this dissertation, tridentate aromatic N-donor pyrazole- and imidazole-pyridinyl ligands, in a solvent extraction context, were investigated as potential base metal ion extractants. The syntheses of pyrazolyl ligands 2,6-bis(5-methyl-1H-pyrazol-3-yl)pyridine (1), 2,6-bis(5-ethyl-1H- pyrazol-3-yl)pyridine (2), 2,6-bis(5-propyl-1H-pyrazol-3-yl)pyridine (3), 2,6-bis(5-butyl-1H-pyrazol-3- yl)pyridine (4), 2,6-bis(5-pentyl-1H-pyrazol-3-yl)pyridine (5), 2,6-bis(5-hexyl-1H-pyrazol-3-yl)pyridine (6), 2,6-bis(5-heptyl-1H-pyrazol-3-yl)pyridine (7), 2,6-bis(5-octyl-1H-pyrazol-3-yl)pyridine (8), 2,6-bis(5-(tert- butyl)-1H-pyrazol-3-yl)pyridine (9) and 2,6-bis(5-phenyl-1H-pyrazol-3-yl)pyridine (10) followed the Claisen- Schmidt condensation of diethyl pyridine-2,6-dicarboxylate with the appropriate alkyl ketone, yielding a crude symmetrical bis(1,3-dicarbonyl) intermediary species. This crude product was used without purification in the classic Knorr synthesis for pyrazoles, with hydrazine acting as the heterocyclic initiator. The imidazole- pyridinyl ligands 2,6-bis(1-butylimidazol-2-yl)pyridine (11) and 2,6-bis(1-octylimidazol-2-yl)pyridine (12) were synthesised via the nucleophilic substitution of an appropriate imidate with diethylacetal-protected aminoacetaldehyde, followed by the deprotection-cyclisation step under acidic conditions. Pyrazolyl ligands 1–10 were obtained in yields of 33–80%, generally increasing as the number of C-atoms of the alkyl-tethered arms increased, while imidazolyl ligands 11 and 12 were obtained in moderate yields of 60–65%. All ligands were characterised via ¹H and ¹³C NMR, IR, MS and EA. Competitive extraction studies were performed with ligands 1–12 and these showed copper(II) to be effectively separated (%E > 90%) from a cobalt(II), nickel(II), zinc(II), cadmium(II) and lead(II) mixture. Subsequent experiments revealed nickel(II) to be the predominant second-most extractable species in solution 2+ (60% < %E < 70%). Selectivity experiments, where [Cu²⁺] = [M ], showed that copper(II) was extracted at 60 ~85% whilst competing with other base metal ions present at much higher concentrations. In the presence of 1 M HNO3 pyrazolyl ligands 6–8 remarkably released ~90% of their extracted nickel(II) ions, while merely releasing 29 (± 0.2), 19 (± 1.8) and 9.1 (± 0.7)% of their extracted copper(II) in the presence of 10 M HNO3, respectively. Ligand-to-metal stoichiometric ratios were determined by implementing the method of continuous variance (Job plots) via UV/Vis experiments. L:Cu²⁺ stoichiometric ratios for ligands 2–12 were 1:1, while ligand 1 surprisingly exhibited a 2:1 ratio. Both pyrazolyl ligand 2 and imidazolyl ligand 12 displayed 2:1 L:M²⁺ (M = Co, Ni, Zn and Cd) ratios. Slope analyses of log D vs log [ligand] plots corroborated these results once investigated via ICP-OES. Evaluation of various synergists revealed the optimum synergist-to-nickel(II) ratio to be 1:1 due to emulsions forming at >1×10−² M. Pyrazolyl ligands 6–8, in conjunction with dodecylbenzenesulfonic acid (DBSA), exhibited synergistic gains of >10%, while p-toluenesulfonic acid (pTSA), in conjunction with pyrazolyl ligand 7, exhibited remarkable synergistic gains of ~17% (4:1 pTSA:Ni²⁺ ratio). No real synergistic gains were observed for imidazolyl ligand 12 in the presence of pTSA. Nickel(II) was also extracted by means of aromatic oxime ligands (13 and 14) and bidentate pyrazolyl ligands (15 and 16) in the presence of sulfonic-, carboxylic- and phosphinic acid synergists. Only the sulfonic acid synergist, dinonylnaphthalenesulfonic acid (DNNSA), appeared to combine well in solution with ligands 13–16, resulting in nickel(II) extractions of ~83, ~44, ~92 and ~80%, respectively. Finally, single crystals of [Cu(L2)2](NO3)2, [Cu(H2O)2(L2)]SO4 and [Ni2(H2O)2(L15)4(SO4)∙(naphth-SO3)2] were grown and analysed via X-ray diffraction analyses. Coordination around the copper(II) centres was octahedral (L:Cu²⁺ = 2:1) and square pyramidal (L:Cu²⁺ = 1:1), respectively, while the interesting sulfate- bridged complex contained two nickel(II) “subcomplexes”. Each nickel(II) “subcomplex” consisted of two ligand 15 molecules, a water molecule, a centralised sulfate anion and a peripheral naphtha-SO3 molecule stabilising the assembly via H-bonds.
AFRIKAANS OPSOMMMING:In hierdie proefskrif word drieledige aromatiese N-skenker pirasool- en imidasoolpiridienligande ondersoek aangaande die selektiewe ekstraksie van basismetaalione binne die konteks van vloeistofekstrakies. Die sintese van pirasoolligande 2,6-bis(5-metiel-1H-pirasol-3-iel)piridien (1), 2,6-bis(5-etiel-1H-pirasol-3-iel)piridien (2), 2,6-bis(5-propiel-1H-pirasol-3-iel)piridien (3), 2,6-bis(5-butiel-1H-pirasol-3-iel)piridien (4), 2,6-bis(5-pentiel-1H-pirasol-3-iel)piridien (5), 2,6-bis(5-heksiel-1H-pirasol-3-iel)piridien (6), 2,6-bis(5-heptiel-1H-pirasol-3-iel)piridien (7), 2,6-bis(5-oktiel-1H-pirasol-3-iel)piridien (8), 2,6-bis(5-(ters-butiel)-1H-pirasol-3-iel)piridien (9) en 2,6-bis(5-feniel-1H-pirasol-3-iel)piridien (10) het die Claisen-Schmidt kondensasiemetode gevolg waar diëtielpiridien-2,6-dikarboksilaat met ‘n gepaste alkielketoon gereageer is om ‘n simmetriese bis(1,3-dikarboniel) intermediêre ru-produk te lewer. Hierdie ru-produk is sonder addisionele suiweringsmetodes in die klassieke Knorr-pirasoolsintese gebruik, met hidrasien wat as heterosikliese inisieerder intree. Die imidasoolpiridienligande, 2,6-bis(1-butielimidasol-2-iel)piridien (11) en 2,6-bis(1-oktielimidasol-2-iel)piridien (12), is gesintetiseer deur die nukleofiliese substitusie van ‘n toepaslike imidaat met diëtielasetaal-beskermde aminoasetaldehied, gevolg deur die sikliseringsstap wat onder lae pH-toestande plaasvind. Pirasolielligande 1–10 het opbrengste van 33–80% opgelewer. Dit kan hoofsaaklik toegeskryf word aan die toename in C-atome van die alkielarms, terwyl imidasolielligande 11 and 12 in hul beurt weer gematigde opbrengste van 60–65% opgelewer het. Alle ligande is deur middel van 1H en 13C KMR, IR, MS and EA ontleed. Mededingingsekstraksies is uitgevoer met ligande 1–12 en toon dat koper(II) effektief vanuit ‘n kobalt(II)-, nikkel(II)-, sink(II)-, kadmium(II)- en lood(II)-mengsel geskei kan word (%E > 90%). Daaropvolgende eksperimente het getoon dat nikkel(II) die tweede effektiefste geëkstraëer word (60% < %E < 70%). Selektiwiteitseksperimente, waar [Cu2+] = [M2+]60, het merkwaardig getoon dat koper(II) teen ~85% geëkstraëer word, te midde van ander basismetaalione wat teen veel hoër konsentrasies teenwoordig was. Vêrder het nikkel(II)-herwinningsstudies bewys dat pirasolielligande 6–8 ongeveer 90% van die geëkstraëerde nikkel(II)-ione vrygelaat het in die teenwoordigheid van 1 M HNO3. Terseldertyd, het hierdie ligande onderskeidelik slegs 29 (± 0.2), 19 (± 1.8) en 9.1 (± 0.7)% van die geëkstraëerde koper(II)-ione in die teenwoordigheid van 10 M HNO3 vrygelaat. Vêrder is nikkel(II) ook geëkstraëer deur middel van aromatiese oksiemligande (13 en 14) en tweeledige pirasolielligande (15 en 16) in die teenwoordigheid van sulfoniese-, karboksiel- en fosfoniese suursinergiste. Slegs die sulfoniese suursinergis, dinonielnaftaleensulfoniese suur (DNNSS), het oënskynlik effektief met ligande 13–16 in tolueen gemeng. Gevolglik is nikkel(II)-ekstraksies van ~83, ~44, ~92 en ~80% onderskeidelik verkry. Ten einde was hoë-gehalte enkelkristalle van die [Cu(L2)2](NO3)2, [Cu(H2O)2(L2)]SO4 en [Ni2(H2O)2(L15)4(SO4)∙(naphth-SO3)2] komplekse gekweek en deur middel van X-straaldiffraksieanalises ontleed. Koördinering rondom die koper(II)-sentrums was onderskeidelik oktahedraal (L:Cu2+ = 2:1) en vierkantig piramidaal (L:Cu2+ = 1:1), terwyl die interessante sulfaat-gekoppelde kompleks twee nikkel(II) “subkomplekse” bevat. Elke nikkel(II)-subkompleks bestaan uit twee ligand 15 molekules, ‘n water molekuul, ‘n sentrale sulfaatanioon en ‘n eksterne nafta-SO3 molekuul wat die algehele samestelling via H-bindings stabiliseer. Ligand-tot-metaal stoichiometriese verhoudings is vasgestel deur middel van die deurlopende afwykingsmetode (Job-plotte), wat op sigself van UV/Vis eksperimente afhanklik is. Die L:Cu2+ stoichiometriese verhoudings vir ligande 2–12 was hoofsaaklik 1:1, terwyl ligand 1 ‘n verhouding van 2:1 getoon het. Beide die pirasolielligand 2 en imidasolielligand 12 het L:M2+ (M = Co, Ni, Zn and Cd) verhoudings van 2:1 getoon. Gradiëntanalises van log D vs. log [ligand] plotte wat deur middel van IGP-OES bepaal is het dergelik ook die bevindinge van die Job-plotte onderskraag. Evaluering van verskeie sinergiste het bewys dat the optimale sinergis-tot-nikkel(II) verhouding 1:1 is as gevolg van emulsies wat vorm teen >1×10−2 M. Pirasolielligande 6–8, in samewerking met dodesielbenseensulfoniese suur (DBSS), het sinergistiese winste van >10% getoon, terwyl p-tolueensulfoniese suur (pTSS) in samerwerking met ligand 7 uitsonderlike sinergistiese winste van ~17% (4:1 pTSS:Ni2+ verhouding) getoon het. Geen winste is opgelet vir ligand 12 met pTSS nie.
Description
Thesis (PhD)--Stellenbosch University, 2020
Keywords
Solvent extraction, Pyrazoles, Imidazoles, Hydrometallurgy, Synergistic extraction, Extractive metallurgy, UCTD
Citation