Measurement and modelling of the vapour-liquid equilibria of binary mixtures of water and alkanols

Date
2017-03
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH SUMMARY: Aqueous mixtures of (C1–C5) alkanols are found in the petrochemical and biofuel industries, amongst others. Molecular interactions, of which hydrogen bonding (association) and polar effects are large contributors, render these mixtures complex and separation becomes a difficult task. For efficient design of separation processes, mixture phase behaviour needs to be under stood, and a suitable equation of state is required to represent this behaviour mathematically. Equations of state with sound theoretical foundations have been developed, amongst others the Statistical Associating Fluid Theory (SAFT). Two SAFT variants were considered in this investigation: simplified Perturbed-Chain SAFT (sPC-SAFT) and SAFT with Variable Range Mie-potential (SAFT-VR Mie). In these models, association schemes are used to describe the amount and type of association sites on a molecule. To explicitly account for polarity, two polar terms, those of Gross and Vrabec (GV), and Jog and Chapman (JC), were considered in this work. While each polar term has a parameter that describes a molecule’s degree of polarity, the polar functional group’s location is not specified. It is therefore questioned whether the SAFT framework has the ability to account for structural isomerism, in lieu of a positional specifier. Structural isomers of linear (C1–C5) alkanols provide a suitable homologous series for investigation, and their aqueous mixtures are of interest to this study. The overarching aim of this project was to evaluate how a shifting hydroxyl group influences water + alkanol phase behaviour, and whether the SAFT models are able to predict this phase behaviour. This aim was met by the following objectives: (1) Generate vapour-liquid equilibrium (VLE) data for binary water + alkanol mixtures and analyse the observed phase behaviour; (2) Generate model parameters and evaluate their performance; (3) Compare the performance of sPC-SAFT to that of SAFT-VR Mie, evaluate whether a polar term is necessary to model water + alkanol mixtures, determine whether a superior association scheme for primary and secondary alkanols exists, and whether the SAFT framework can distinguish between structural isomers of linear alkanols; (4) Lastly, evaluate whether the model parameters are able to predict thermodynamic properties other than VLE. The first objective was met by measuring VLE of four binary aqueous mixtures of 1-butanol, 1-pentanol, 2-pentanol, and 3-pentanol at p 0.1013 MPa. Temperature and pressure were measured within an accuracy of 0.05 K and 2 10 4 MPa, respectively. Together with analytic errors this resulted in compositional measurements accurate within 0.023 mole fraction. Experimental difficulties resulted in scattered data for the water + 2-pentanol and water + 3-pentanol mixtures that were not consolidated, even after repeated measurements. All data were determined to be thermodynamically consistent by the McDermott-Ellis and Wisniak L/W tests. Comparison between mixtures of water + (C2–C5) linear alkanol highlighted how molecular structure influences phase behaviour: Firstly, shifting the polar hydroxyl group away from the terminal methyl group results in higher saturated vapour pressures, and influences the binary phase envelope by reducing the azeotropic temperature and resulting in an azeotropic vapour composition richer in alkanol. Secondly, primary Cx- and secondary C(x+1)-alkanols exhibit similar saturated vapour pressures, and similar phase behaviour in binary mixtures with water. Thermodynamic modelling was conducted in an in-house developed simulation software and model parameters were regressed for water and nine (C1–C5) linear alkanols, using a single regression procedure. No parameters could be determined for SAFT-VR Mie-JC, because the polar parameter was driven to zero during regression, regardless of the initial guess value. Therefore, the performance of this model could not be evaluated. sPC-SAFT, sPC-SAFT-GV, sPC-SAFT-JC, SAFT-VR Mie, and SAFT-VR Mie-GV performed equally well for pure component property predictions, independent of the association scheme. However, compared to the sPC-SAFT models, the SAFT-VR Mie models show superiority for speed of sound predictions. To evaluate the description of mixture properties, alkane + alkanol mixtures were also considered. In these mixtures, all polar and associating behaviour can be isolated to the alkanol alone, since alkanes do not exhibit any functionality over and above dispersion. sPC-SAFT and SAFT-VR Mie gave similar qualitative descriptions of alkane + alkanol VLE. Polar terms improved predictions significantly and excellent descriptions were obtained. This indicated that it is necessary to explicitly account for polarity in alkane + alkanol mixtures. For water + alkanol VLE, sPC-SAFT provided better predictions than SAFT-VR Mie. The polar terms did not provide significant improvement, indicating that, compared to hydrogen bonding, polar forces are negligible in mixtures of associating compounds. The 4C association scheme was used for water in all predictions. The most suitable association scheme for alkanols, however, is system and model dependent. In binary mixtures with alkanes, the 2C association scheme delivered the best description of VLE, using the nonpolar models. However, with the polar models, the three association schemes provide indistinguishable predictions for alkane + alkanol VLE, rendering the choice of association scheme in the polar models arbitrary. In water + alkanol mixtures, primary and secondary alkanols were best described by the 2C and 3B association schemes, respectively. In both mixture types, excess property description is troublesome, indicating that the flaw in thermodynamic description is a result of the SAFT framework as a whole, and not restricted to a single form of the model. This suggests that the SAFT framework as a whole requires further refinement in order to simultaneously predict all thermodynamic properties accurately. Lastly, the description of both primary and secondary alkanols in mixture of alkanes and in mixtures of water are of similar quality, indicating that the SAFT framework is sufficiently flexible to accommodate structural isomers.
AFRIKAANS OPSOMMING: Mengsels van water en (C1–C5)-alkanole word in verskeie industrieë aangetref, onder andere die petrochemiese- en biobrandstof-industrieë. Molekulêre interaksies, waarvan waterstofbindings (assosiasie) en polêre invloede die grootste bydrae maak, veroorsaak dat hierdie mengsels kompleks is en skeidingsprosesse bemoeilik. Vir die effektiewe ontwerp van skeidingsprosesse, word ’n goeie begrip van die mengsel se fasegedrag vereis, terwyl ’n gepaste toestandsvergelyking benodig word om hierdie gedrag wiskundig te verteenwoordig. Toestandsvergelykings met grondige teoretiese beginsels is oor die jare ontwikkel, onder andere die Statistical Associating Fluid Theory (SAFT). Twee SAFT-variante is in hierdie ondersoek gebruik: simplified Perturbed-Chain-SAFT (sPC-SAFT), en SAFT met ’n reëlbare rekwydte Mie-potensiaal (SAFT-VR Mie). In hierdie modelle word assosiasieskemas gebruik om die aantal en tipe assosiasieliggings op ’n molekule te beskryf. Om polariteit eksplisiet in bereking te bring, is twee polêre terme, die van Gross en Vrabec (GV), en Jog en Chapman (JC), in hierdie ondersoek gebruik. Beide hierdie terme neem die grootte van die molekuul se polariteit in ag, maar die ligging van die polêre groep word nie gespesifiseer nie. Dit word dus bevraagteken of die SAFT-raamwerk strukturele isomere van mekaar kan onderskei. Strukturele isomere van lineêre (C1–C5) alkanole dien as die gepaste homoloë reeks om die vraagstuk te ondersoek. Mengsels van hierdie alkanole met water is in hierdie studie van belang. Die oorkoepelende doel van hierdie projek was om die invloed van die hidroksielgroep-posisie op die fasegedrag van water + alkanol mengsels te evalueer, en te bepaal of SAFT-modelle hierdie gedrag kan voorspel. Die volgende doelwitte is derhalwe gestel: (1) Genereer damp-vloeistofewewigsdata (VLE-data) vir binêre water + alkanol mengsels en analiseer die waargenome fasegedrag; (2) Genereer modelparameters en evalueer hul werkverrigting; (3) Vergelyk die werkverrigting van sPC-SAFT met die van SAFT-VR Mie, bepaal of ’n polêre term benodig word om water + alkanol mengsels te modelleer, bepaal of daar ’n meer gepaste assosiasieskema vir primêre en sekondêre alkanole is, en bepaal of die SAFT-raamwerk onderskeid maak tussen strukturele isomere van lineêre alkanole; (4) Laastens, evalueer die modelparameters se geskiktheid vir die voorspelling van termodinamiese eienskappe, bo en behalwe VLE. Die eerste doelwit is behaal deur die VLE van vier binêre mengsels, water + 1-butanol, + 1-pentanol, + 2-pentanol, en + 3-pentanol, by p 0.1013 MPa te meet. Temperatuuren druklesings is binne ’n akkuraatheid van 0.05 K en 2 10 4 MPa onderskeidelik geneem. Tesame met analitiese foute is samestellings binne ’n akkuraatheid van 0.023 molfraksie bepaal. Eksperimentele struikelblokke het daartoe gelei dat die data vir die water + 2-pentanol, en water + 3-pentanol mengsels verspreid was, en selfs na herhaalde metings nie verenig kon word nie. Alle data is as termodinamies konsekwent bepaal deur die McDermott-Elllis en Wisniak L/W toetse. Die effek van molekulêre struktuur is waargeneem deur water + (C2–C5)-alkanol mengsels met mekaar te vergelyk: Ten eerste word ’n hoër dampdruk veroorsaak deur die polêre hidroksielgroep weg van die terminale metielgroep te skuif. Hierdie skuif het ook ’n direkte effek op die binêre fasegedrag, waar die aseotrooptemperatuur verlaag word, en die samestelling van die aseotroop-dampfase ryker in alkanol word. Ten tweede vertoon primêre Cx- en sekondêre C(x+1)-alkanole soortgelyke dampdrukke, en soortgelyke fasegedrag in binêre watermengsels. Termodinamiese modellering is uitgevoer in ’n in-huis ontwikkelde simulasie sagteware. Modelparameters is vir water en nege (C1–C5) linêre alkanole deur regressie bepaal, deur ’n enkele regressieprosedure te gebruik. Geen parameters is vir SAFT-VR Mie-JC bepaal nie, en die model kon dus nie evalueer word nie. Die polêre parameter het tydens regressie onafhanklik van die begin soekwaarde na nul gestreef het. sPC-SAFT, sPC-SAFT-GV, sPC-SAFT-JC, SAFT-VR Mie, en SAFT-VR Mie-GV lewer soortgelyke resultate wanneer suiwer komponentdata voorspel word, onafhanklik van die assosiasieskema-keuse. Die SAFT-VR Mie-modelle se spoed-van-klank voorspellings is superieur in vergelyking met die van die sPC-SAFT-modelle. Om die beskrywing van mengseleienskappe te evalueer, is alkaan + alkanol mengsels ook ondersoek. Omdat alkane geen ander energiebydrae, bo en behalwe die dispersie-energie, toon nie, kan alle assosiasie- en polêre gedrag aan die alkanol toegeëien word. sPC-SAFT en SAFTVR Mie voorspellings van alkaan + alkanol VLE is kwalitatief in ooreenstemming. Die polêre terme verbeter voorspellings noemenswaardig en lewer uitstekende resultate. Polariteit moet dus eksplisiet in berekening gebring word vir alkaan + alkanol mengsels. sPC-SAFT lewer beter voorspellings van water + alkanol VLE as SAFT-VR Mie. Vir hierdie mengsels is die verbetering wat die polêre modelle bied nie noemenswaardig nie, wat daarop dui dat polêre interaksies, in vergelyking met sterk assosiasie, weglaatbaar is in mengsels van assosiërende komponente. Die 4C-assosiasieskema is deurgaans vir water gebruik. Die meer gepaste assosiasieskema vir alkanole is egter afhanklik van beide die sisteem en die model. In binêre mengsels met alkane, bied die 2C-assosiasieskema die beste beskrywing van VLE wanneer die nie-polêre modelle gebruik word. Die keuse van assosiasieskema raak irrelevant binne die polêre modelle, aangesien die verskillende skemas ononderskeidbare voorspellings lewer. In watermengsels lewer die 2Cskema en die 3B-skema die beste beskrywings vir primêre en sekondêre alkanole, onderskeidelik. Die beskrywing van oormaateienskappe is in beide mengseltipes moeilik. Dit dui daarop dat die fout in termodinamiese beskrywing nie binne die omskrywing van ’n enkele model lê nie, maar eerder ’n fout in die SAFT-raamwerk in die geheel is. Die SAFT-raamwerk benodig dus verfyning sodat alle termodinamiese eienskappe gelyktydig, en met dieselfde akkuraatheid, beskryf kan word. Laastens is die kwaliteit van die beskrywing van primêre en sekondêre alkanole in beide alkaan- en watermengsels soortgelyk, wat daarop dui dat die SAFT-raamwerk buigsaam genoeg is om strukturele isomere te akkomodeer.
Description
Thesis (MEng)--Stellenbosch University, 2017.
Keywords
Vapour-liquid equilibrium, Aqueous mixtures, Fluids, Statistical associating fluid theory (SAFT), Thermodynamic modelling, UCTD, Alkonols, Phase behavior
Citation