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Abstract

On the computation of freely generated modular
lattices

J.Y. Semegni

Department of Mathematical Sciences
Unaversity of Stellenbosch
Private Bag X1, 7602 Matieland, South Africa

Dissertation: PhD (Mathematics)
December 2008

Consider subspaces A, B, C of a vector space V. How many subspaces can
arise by taking arbitrary “combinations” of A, B, C' (such as (A+B)NC) ?
The answer is 28. If there are order relations among A, B, C' (e.g. A C C),
the corresponding number is smaller than 28. This leads to the concept of
a modular lattice F'M (P) freely generated by a poset (P, <). We compute
the cardinality of F'M(P) for all P’s with at most six elements. For 88 of
these P’ s the lattice F'M(P) is infinite.
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Uittreksel

On the computation of freely generated modular
lattices

J.Y. Semegni

Departement Wiskunde
Universiteit van Stellenbosch
Privaatsak X1, 7602 Matieland, Swid Afrika

Proefskrif: PhD (Wiskunde)
Desember 2008

Gestel drie deelruimtes A, B, C' van 'n vektor ruimte V ’s gegee. Wat is
die maksimum aantal ruimtes wat kan ontstaan deur alle moontlike “kom-
binasies” van A, B, C te skep (soos bv. (A + B) N C)? Die antwoord
is 28. As daar orde-relasies tussen A, B en C' is (bv. A C (), dan is
die ooreenkomstige getal kleiner as 28. Dit lei tot die konsep van 'n mod-
ulére tralie F'M(P) wat deur 'n parsieelgeordende versameling (P, <) vry
voortgebring is. Ons bereken die kardinaliteit van F M (P) vir alle P’s van
grootte hoogstens 6. Vir 88 van hulle die tralie is oneindig.
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Chapter 1

Introduction

Lattice Theory offers an important tool for understanding mathematical
structures as was stated by G. Birkhoff in the preface of the 1967 edition
of his book Lattice theory when he wrote : “Lattices and groups provide
the most basic tools of universal algebra, and in particular the structure of
algebraic systems is usually most clearly revealed through the analysis of
appropriate lattices.” Birkhoff’s book opened the door to intensive research
on lattice theory. One problem encountered in studying free lattices is to
find an algorithm which decides whether two arbitrary lattice expressions
are identical in all lattices. This problem, known as the word problem,
has attracted the interest of many researchers. In general the effective
computation of free lattices is a difficult problem. G. Birkhoff [1] observed
in 1940 that the free lattice on four generators is infinite, and he raised
the question of the word problem for free lattices on n generators, which
was solved in 1942 by Whitman in a series of two papers |2; 3]. In 1958,
Howard L. Rolf [4] gave a description of the free lattices generated by a set
of chains and R. Wille [5] in 1977 stated a necessary and sufficient condition
under which a lattice freely generated by a poset is finite. Interesting is the
word problem for free modular lattices. The free modular lattice on three
generators, which is finite and contains 28 elements, was first described by
R. Dedekind [6] in 1900. Interest in the word problem for free modular
lattices (on n generators) increased after P. Whitman’s solution |2; 3| of
the word problem for free lattices appeared in the 1940’s (see also [7; &]).
In 1973, R. Wille |9] gave a characterization of those posets P such that
the modular lattice freely generated by P is finite. The word problem for
free modular lattices on n > 5 generators was shown to be unsolvable by R.
Freese [10] in 1982. Based on this result of Freese, C. Herrmann [11] was
able to show in 1983 that the word problem for the modular lattice with
four generators is unsolvable as well.



2 Chapter 1. Introduction

In 1994 G. Bartenschldger in his Ph.D. thesis [12] gave a complete list
of free distributive lattices for posets up to cardinality five. He used the
notion of concept lattices and skeletons to analyse the structure of a free
bounded distributive lattice. In my thesis, I will extend his result to posets
of cardinality six. More importantly I will generalize the computation to
free modular lattices generated by posets of cardinality up to six and for
some “good” posets on seven points. Our method to compute the free dis-
tributive lattice F'D(P) generated by a poset P is based on the Birkhoff’s
representation theorem for finite distributive lattices. The computation of
the free modular lattices M (P) will be based, besides the theory of Wille,
on a result by C. Herrmann and M. Wild [13] on the representation of mod-
ular lattices by certain closure systems. Another issue is the representation
of FD(P) and FM(P) in a compact way. Since both FD(P) and FM(P)
can be represented by closure systems (set of order ideals, and A-closed
order ideals of some poset respectively), this leads us to find an algorithm
that generates all the order ideals and all the A-closed order ideals of a
given poset.

I will organize the thesis as follows.

Chapter one is the introduction and a brief historical background of the
subject.

In chapter two, we will recall some basic notions on posets and lattices.

Chapter three is about closure systems and particularly about the con-
gruence lattice of a lattice. The first and second isomorphism theorems will
be discussed and some standard results on transposition and projectivity
will be highlighted. We will end this chapter with the proof of the subdirect
product decomposition theorem and related results and a construction of
subdirect products of lattices via join-homomorphisms.

In chapter four we will first discuss the Birkhoff’s representation the-
orem for distributive lattices, then we will study in more depth the free
distributive lattices and discuss two equivalent methods to compute them.
An algorithm based on the method of P-labellings will be developed and
illustrated by means of examples.

Chapter five will cover modular lattices. We will start this chapter by
recalling some preliminary results on modular lattices, namely the Dedekind
transposition principle and Dilworth’s theorem on the congruence lattice of
a lattice. We will outline some results on finite projective geometries and
these results will be used to discuss a theory of representing modular lattices
which was initiated by C. Herrmann and M. Wild [13].

In chapter six, we will formally introduce the concept of free lattices
generated by posets and study in detail the free modular lattice FM(P)
generated by a finite poset P. We will next present an algorithm to illus-



trate the computational aspect of free modular lattices. A detailed proof of
Wille’s theorem |9] about the finiteness of FM(P) will be given at the end
of this chapter.

Having represented FD(P) and FM(P) as the ideal lattice, respec-
tively A-closed ideal lattice of some posets, in chapter seven we will discuss
an algorithm called (a, B)-Algorithm, initially developed by M. Wild, to
generate all the ideals of a finite poset, and we will apply this algorithm to
effectively determine the elements of F'D(P) and FM(P) and draw their
Hasse diagrams.

Some numerical results will be recorded in chapter eight. In section 8.1
we will list for any poset P on up to six points the cardinality of FD(P),
the cardinality of FM(P), and the number of factors (2 or Ms) in their
subdirect product decompositions respectively. In section 8.2, we are con-
cerned with the good posets ! on seven points. Thanks to . Brinkmann
and B. D. Mckay [14] who sent me a C** code of their program to generate
all posets on up to sixteen points. From this code I extracted all the 2045
posets on seven points, then I wrote a program to select all the 1101 good
posets on seven points. The (a, B)-Algorithm was again used to compute
|FM(P)| together with its parameters, for all the good posets on seven
points.

The thesis ends with an appendix containing the Hasse diagrams of
FD(P) and FM(P) for some finite posets of interest. The thesis is self-
contained and we have tried as far as possible to illustrate many concepts
either by simple examples or by means of pictures.

LGood posets are those for which FM(P) is finite.



Chapter 2

Basic concepts

2.1 Preliminaries on partially ordered sets

2.1.1 Ordered sets

Definition 2.1 Let P be a non-empty set. A binary relation < is said to
be an order (or a partial order) on P if the following properties hold
forall x,y,z € P.

i) Reflexivity: 1z <.
ii) Antisymmetry: <y and y <z imply x=y.
iii) Transitivity: =<y and y<z imply x <z

Definition 2.2 A partially ordered set (or poset), denoted (P, <), is a
non-empty set together with an order relation. Two elements x and y of a
poset are said to be comparable if v < y or y < x. Otherwise, they are
said to be tncomparable. A chain of a poset (P, <) is a set of pairwise
comparable elements of P. A chain of n elements will be denoted by n. A
set of pairwise incomparable elements of P is called an antichain. If P is
a poset consisting of two posets P; and Py such that P = Py U Py and for all
a € Py and b € Py, a and b are incomparable, then we write P = P, + Ps.
In particular an antichain of n elements is denoted 141+ --- + 1 where
there are n terms in the sum.

Example 2.1 1. The power set P(X) of a set X, together with the set
inclusion C, 1s a poset.

2. The real line R, the set of integers 7 and the set of nonnegative inte-
gers Ny, with their natural order <, are chains.

4
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3. The set of positive integers (N,|) together with the relation of divisi-
bility defined by alb if b = na for some n € N (so 3|6 but 416), is a
poset.

4. The vector space C([0,1],R) of continuous functions from [0,1] to R
ordered by f < g if and only if f(x) < g(x) for all x € [0,1], is a
poset.

5. Let (P, <) be a poset. The relation > := {(a,b) € P x P: b <a} is
an order on P and (P, >) is called the dual of (P, <).

Definition 2.3 Let (P, <) be a poset and let X be a subset of P.

1. An element a € P is called lower bound of X ifa < x forall x € X,
and it is called upper bound of X if x < a for all z € X. We say
that X is bounded if it has a lower bound and an upper bound.

2. The greatest lower bound (or infimum) of X, denoted )\ X when
it exists, is a lower bound | of X such that for any other lower bound
m of X, m < 1. The least upper bound (or supremum) of X,
denoted \| X when it exists, is an upper bound u of X such that for
any other upper bound v of X, u < v.

3. The minimum element of X, when it exists, is an element m € X
such that m < x for all x € X. The mazrimum element of X,
when it exists, is an element g € X such that x < g for all x € X.

4. An element a € X is said to be maxzimal in X if for any x € X,
a <x = a=x. Dually an element b € X 1is said to be manimal in
X ifforanyr e X, b>x=b=ux.

Remark: Generally A X,\/ X ¢ X. But if [ is the minimum element
of X, then AX =1 € X and if g is the maximum element of X, then
VX =g € X. If ®is a statement about a poset (P, <), then the statement
®* obtained by replacing any occurrence of < by > and by switching the
infimum and the supremum is called the dual statement of ®. If ® is
true for all posets, then ®* is also true for all posets. This fact is known as
the duality principle and it is very useful in proofs.

Definition 2.4 Let (P, <) and (Q,<) be two posets. An order mor-
phism from P to Q) is a map p: P — (@) that preserves the order. That
is, for all x,y € P :
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An order morphism is sometimes called monotone map. An order mor-
phism is said to be an order tsomorphism if it is a bijection and its
inverse is an order morphism.

2.1.2 Graphical representation of posets - Hasse
diagram

Let (P, <) be a poset and let z,y € P. We write x < y when z < y and
x # y. We say that y covers x (or y is an upper cover of z or x
is a lower cover of y), and we write z < y, if z < y and no a € P
satisfies © < a < y . Using the covering relation, one can obtain a graphical
representation of any finite poset P as follows. Represent each element of P
by a dot in such a way that whenever x < y then y (i.e. the corresponding
dot) is higher than = and the two are connected by a line segment. It
is easily seen that for all z,y7 € P one has x < y if and only if there is
an “increasing path” from z to y. The resulting figure is called a Hasse
diagram of P. Note that different Hasse diagrams may represent the same
poset.

O]

1+141 | 1+2+3 M N; 2+ Ms

d e f d/ f/ 6/

Figure 2.1: (1) The Hasse diagrams of some posets. Mjs is called Diamond
and N5 Pentagon. (2) Two Hasse diagrams representing isomorphic posets, the
isomorphism sends each z to x’.

Definition 2.5 Fach subset X of (P,<) yields a subposet of P if X
endowed with the induced order is a poset. That is, for all x,y € X, x <y
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i X if and only if x < y in P. For instance X = s a

subposet of P =:

2.2 Basic lattice theoretic concepts

Definition 2.6 A poset (L, <) is said to be a lattice if any pair of elements
a,b € L has a least upper bound aV'b (join of a and b), and a greatest lower
bound a Nb (meet of a and b).

Note that is not a lattice since the least upper bound of
a b

a and b does not exist.

Proposition 2.1 If (L <) is a lattice, then the binary operations \V and N\
satisfy the following properties for all a,b,c € L:

i) Idempotency: aNa=a and aVa=a

ii) Commutativity: aNb=bAa andaVb=0>bVa
iii) Associativity: (aANb)ANc=aA(bAc) and (aVb)Ve=aV (bVc)
iv) Absorption: aA(aVb)=aandaV (aNb)=a

Example 2.2 1. Any chain is a lattice in which x Ny is simply the
minimum and x V y s the mazimum of x and y.

2. The poset (P(X), C) is a lattice in which ANB = ANB and AV B =
AU B.

3. Let M be a module over a ring and let Sub(M) denote the set of all
submodules of M. Then (Sub(M), C), is a lattice where SAT = SNT
and SVT =S+T={s+teM: seSand teT}.

4. (NJ|) ordered by divisibility is a lattice in which a N b = gcd(a,b), the
greatest common divisor of a and b, and a V b = lem(a,b), the least
common multiple of a and b.
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5. The Pentagon N5 and the Diamond Mjs are lattices.

6. If (L1, <) and (Lo, <o) are lattices, then the Cartesian product Ly X Loy
together with the order < defined componentwise is a lattice where the
meet and the join are also defined componentwise.

By associativity, in any lattice L the supremum \/ H (respectively infi-
mum A H) is well defined for every finite subset H C L.

Definition 2.7 A lattice (L, <) is said to be complete if both \ X and
\/ X ezist for any (not necessarily finite) subset X C L.

A subposet S of a lattice L may or may not be a lattice:

X\ XVgy
L — — = S =
X y X y

is a lattice, but

lattice.

Definition 2.8 A non-empty subset S of a lattice (L, <) is called sublat-
tice of Lifanbe S andaVbeS forallabeS.

In this case the subposet (S, <) not only is a lattice (S, Ag, Vg) in its own
right; moreover one has a Asb=a Aband aVgb=aVbforall a,beS.

Remark: A complete lattice is always bounded and any finite lattice
is complete. Note that the intersection of any family of sublattices of L is
again a sublattice. In particular, if X is a subset of L, then the intersection
of all the sublattices containing X is obviously the smallest sublattice that
contains X. It is called the sublattice generated by X and denoted by
(X).

Example 2.3 1. The set D(n) of divisors of an integer n € N is a
sublattice of the lattice (N, |).

2. If (L, <) is a lattice and a,b € L, then the set {x € L : a < x < b} is
a sublattice of L called interval and denoted by [a,b]. If b covers a,
then the interval [a,b] = {a, b} is called prime quotient.
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Definition 2.9 Let (L, <) and (M, <) be lattices. A map o : L — M s
a lattice morphism if it preserves the meet and the join. That is, for all
a,be L

alaNb) =ala) Na(b) and a(aVb) =ala)V alb).
A lattice morphism is an tsomorphism if it is a bijection.

Observe that any lattice morphism is order preserving but that the converse
is not always true. If a: L — M is a surjective morphism, then M is said
to be an epimorphic image of L.

Proposition 2.2 Let L be a lattice, P a poset and p : L — P a surjective
map such that x < y <= p(z) < p(y) for all x,y € L. Then P is a lattice
and p 1s an isomorphism.

Proof: The reader is e.g. referred to |15] for the proof of this result. W

Definition 2.10 (i) Let (L, <) be a bounded lattice. An element a € L
15 said to be complemented if there exists an element b € L, called
complement of a such that a Nb = 0 and aVb =1. A com-
plemented lattice is a lattice in which every element has a comple-
ment. L is said to be relatively complemented if every interval of
L (viewed as a lattice on its own) is complemented.

(ii) A lattice (L,<) is said to be of finite height if there is a finite
upper bound to the length of chains in L. The least such upper bound
is called hetght of L and denoted by h(L). The height of the interval
0,a] (viewed as a sublattice of L) is simply denoted by h(a) and called
height of a.

(11i) A bounded lattice is called graded lattice if all chains from 0 to 1
have the same length.

Note that relatively complemented lattices are complemented but the con-
verse is not true, e.g. N5 is complemented but not relatively complemented.

Definition 2.11 An element a of a lattice L is called join-irreducible
(or V-trreducible) if for all b,c € L, a = bV ¢ implies a = b or a = ¢
(otherwise a is called join-reducible). The set of nonzero join-irreducible
elements of L is denoted by J(L). An element a of L is called meet-
trreducible (or A-irreducible) if for all b,c € L, a = b A c implies a = b
or a = c. Finally, if L is bounded, a € L is called atom if for all x € L,
r<a=x=aorx=0. Dually a is called co-atom if for all x € L,
r>a=>x=aorx=1.
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One easily shows:

Proposition 2.3 j1¢] If L is a lattice of finite height, then every element
of L is a join of join-irreducible elements of L.

The decomposition of an element as a join of join-irreducible elements
is not necessarily unique as seen below.

1

Figure 2.2: avVd=1=bVe.



Chapter 3

Congruence relations

3.1 Closure systems

Definition 3.1 Let A be a set. A map ¢ : P(A) — P(A) is a closure
operator on A if ¢ is:

i) extensive: X C ¢(X) for all X € P(A)
ii) monotone: X CY = ¢(X) Cc(Y) for all X, Y € P(A)
iii) idempotent: c(c(X)) = c¢(X) for all X, Y € P(A)
An element X € P(A) is said to be closed with respect to ¢ if X = ¢(X).

Definition 3.2 Let A be a set and F C P(A). Then F is said to be a
closure system on A if A€ F and (G € F for all non-empty subsets G
of F.

The following results are well known and have easy proofs.

Proposition 3.1 Let F be a closure system on a set A. Then the map

cr: P(A) — P(A)
X +— MKerF:XCK}

s a closure operator on A. Conversely, let A be a set and ¢ a closure
operator on A. Then the set F. = {c¢(X) : X C A} of closed elements is
a closure system on A. Moreover if F is a closure system, then F=F,,.
This means that any closure system is a complete lattice with the operations
given by

XAY =XNY and X VY =cz(XUY).

11
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Let P be a poset. A subset I C P is called (order) ideal if for all

z,y € P,z €l and y < x imply y € I. The intersection (and trivially the
union) of any family of ideals of P is again an ideal of P. Hence the set of
ideals of P, denoted Id(P), ordered by the inclusion is a closure system on
P, whence a complete lattice in which the meet is the intersection and the
join is the union. If S is a subset of P, the ideal generated by S, denoted
by |S, is the smallest ideal containing S. In particular [{a} is denoted |a
and is called principal ideal generated by a. It is straightforward to show
that |[S={zr e P: 3s€ S, x < s}.
A subset F' of a poset P is called (order) filter if for all x,y € P, z € F
and z < y imply y € F. The intersection of any family of filters of P is
again a filter of P, hence the set of filters of P, denoted by Fil(P), is a
closure system on P. If S is a subset of P, the filter generated by S,
denoted 1S5, is the smallest filter of P containing S. If f € P then T{f} is
simply denoted by Tf. Note that 1S ={x € P: 3s € S, x > s}. Observe
also that () and P are filters. A filter F' of P is called proper filter if
) # F # P. We denote by Fil*(P) the set of proper filters of P. A proper
ideal is defined dually.

3.2 Equivalence relations

Let A be a set and R C A x A a binary relation on A. Then R is an
equivalence relation on A if R is reflexive, symmetric and transitive
where the symmetry means that xRy <= yRxz for all x,y € A. The
equivalence class of an element a € A, denoted ag or a/R, is the set
of elements b € A such that aRb. The set of all the equivalence classes of
A is denoted by A/R, and the set of all the equivalence relations on A is
denoted Equ(A).

The diagonal of A, written AA = {(a,a) : a € A}, and the Cartesian
product, VA = A x A, are equivalence relations on A. If A and B are
two sets and f : A — B is a map, then the relation R defined on A by
xRy if and only if f(z) = f(y) is an equivalence relation called kernel of
f and denoted ker(f). If R and S are equivalence relations on A, then the
composition of R and S, denoted R oS, is the binary relation defined on
A by

z(RoS)y <= dz€A: 2Rz and z2S8y.

Proposition 3.2 Let A be a set. Then Equ(A) is a closure system on
A x A. Hence Equ(A) is a complete lattice. Further, if R,S € Equ(A),
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then RAS = RNS and RVS = RU(RoS)U(RoSoR)U(RoSoRoS) -+,

that is, a(R o 8)b if and only if there is a sequence xg,x1,- - , 2, such that
a=x9,b=x, and v;Rx;11 or v;8x;y1 for alli € {0,1,--+ n—1}.
Proof: This is a standard result, see e.g. [17] for a proof. |

3.3 Congruences on lattices

Definition 3.3 Let L be a lattice. A binary relation 6 C L x L is a con-
gruence on L if:

(i) 0 is an equivalence relation on L and,

(ii) for all a,b,c,d € L, abb and cfd <= (aAc)d(bAd) and
(aVe)d(bVd).

The second property is sometimes called substitution property. The set
of all congruences on L will be denoted by Coon(L). The intersection of any
family of congruences is again a congruence on L. This implies (Prop.3.1)
that Con(L) is a closure system on L X L, and as such, is a complete
lattice. Ome can show that Con(L) is in fact a sublattice of Equ(L). In
other words the join of congruences 6 and 7 is computed as in Prop.3.2. The
smallest congruence containing a subset X of L? is called the congruence
generated by X and it is denoted by Cg(X) or (X). The congruence
Cg({(a,b)}) will be simply denoted by Cg(a,b) or ((a,b)), the principal
congruence collapsing a and b.

Proposition 3.3 [16] Let (L, <) be a lattice. An equivalence relation 6 on
L is a congruence on L if and only if for all (a,b) € 0 and all ¢ € L, one
has

(ane,bNc)€ @ and (aVe,bVe) €.

Example 3.1 1. AL and VL are congruences on the lattice (L, <).

2. If L and M are lattices and h : L — M is a morphism, then the
equivalence relation ker(h) is a congruence on L. One can hence
declare on L/ker(h) two well defined binary operations A\ and \V by

Tler(h) A Yker(h) = (.’L‘ A y)ker(h) and Tker(h) \ Yker(h) = (SL’ V y)ker(h)-

These binary operations can be generalised to any quotient lattice L/0
where 6 is a congruence on L.
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Proposition 3.4 ;17/(First isomorphism theorem) Let L and M be
two lattices and h : L — M a morphism. Then L/ker(h) = Im(h).

The first (and below the second) isomorphism theorem holds more gen-
erally for any algebraic structure. However, the next result is specifically
lattice-theoretic.

Proposition 3.5 j1¢] Let (L, <) be a lattice and 6 a congruence on L.
Then abb if and only if (a A b)0(a V b) for all a,b € L. Moreover, any
congruence class is a convex sublattice of L, i.e. an interval of L whenever
L is finite.

Proof: In fact, afb implies (a AD)O(bAD) = b and a = (aVa)f(aVb). So by
symmetry and transitivity of 6, (a Ab)f(a Vv b). Conversely, if (a Ab)0(a V b)
then,

a(aVb)

aN(aANb) since (aAb)f(aVb)

aANb

aVb

(aVb)Vb

(anb)VDb

= b

a

= >

< |

The transitivity of @ yields afb. Also any congruence class modulo 6 is a
convex sublattice of L. Indeed, z < z <y and zfy imply = = (x A 2)0(y A
z) = z since 6 is a congruence. That is z6z. [

We now introduce a kind of special element, called prime element, that
yields a congruence on L . The concept of prime element is very important
in distributive lattices, in fact we will use this concept to show that any
distributive lattice and its congruence lattice have the same height!. We
will also show that a distributive lattice is completely determined by its
prime elements.

Definition 3.4 Let L be a lattice. An element p of L is said to be join-
prime? if for all a,b € L, p < a Vb implies p < a or p < b.

It is easy to see that any prime element is join-irreducible but not all join-
irreducible elements are necessarily primes as illustrated on the following
picture. Note that p and d are primes, b and ¢ are join-irreducibles but not
primes.

1See definition (2.10)
2 We will just say prime for short.
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0

Figure 3.1: Illustration of primality.

Theorem 3.1 j1(] Let L be a lattice and p € L a prime element. Then the
map p: L — 2 defined by:

ﬂa):{ 1 ifa>p,

0 otherwise

is an epimorphism. Conversely suppose L is finite and g : L — 2 is an
epimorphism. Then p := N{a € L: g(a) =1} is a prime element of L. W

The following example illustrates this theorem:

e

2

Figure 3.2: Illustration of theorem 3.1.

In general, the prime elements in a finite lattice L correspond to the
congruences 0 € Con(L) with exactly two O-classes. The latter 6’s are
co-atoms in C'on(L), but the converse need not be true (e.g. take L = Mj).

Theorem 3.2 |1&/ (Second isomorphism theorem)
Let L be a lattice and fix 0 € Con(L). FEvery ¢ € Con(L) containing 6
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yields a congruence ¢/0 € Con(L/0) defined by
ag(p/0)bg if and only if apb. (3.3.1)

It follows that (L/0)/(¢/0) = L/¢, and that ¢ — ¢ /0 yields a lattice iso-
morphism from the interval [0, V] of Con(L) onto Con(L/0). [ |

3.4 Transposition and projectivity

Definition 3.5 Let (L, <) be a lattice and let a,b,c,d € L such that a < b
and ¢ < d. We say that the interval [a,b] transposes up to the interval
[c,d] denoted by [a,b] / [c,d] if and only if d = bV ¢ and a = b A c. Sim-
ilarly we say that the interval [a,b] transposes down to the interval [c,d]
denoted by [a,b] \, [¢,d] if and only if b = aV d and ¢ = a Nd. We call
[a,b] and [c,d] transposed if either [a,b] / [c,d]| or [a,b] \, [c,d]. Fi-
nally, we say that [a,b] and [c,d] are projective if there is a finite sequence
la,b] = [co,do], [c1,di], -+, [cn,dpn] = [c,d] such that [c;,d;] and [ciyq,diq]
are transposed for all 0 < i < n — 1. For instance in the following figure,
la,d] N\, [0,b] and [0,b] / [e,1], so [a,d] and [c,1] are projective prime
quotients.

0

Figure 3.3: Tllustration of the projectivity relation.

Theorem 3.3 j1f] Let L be a lattice and let [a,b] and [c,d] be projective
intervals of L. Then for all @ € Con(L), afb if and only if cOd.

Proof: Tt essentially suffices to observe that from, say, [a,b] / [c,d] and
abb, follows (a V ¢)f(b V ¢). That is cfd since c=aVcand d=0bV ¢ [
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3.5 Direct and subdirect products

Definition 3.6 Let (L, <) be a lattice. We say that L is directly inde-
composable if |L| > 1 and L = Ly x Ly implies that either |Li| = 1 or
|Lo| = 1. We say that L is simple if Con(L) has only two elements, i.e.
Con(L) = {A,V}.

For L = Ly x Ly one checks that 01,0, € Con(L) if they are defined as
follows:

(5171,56’2)91(1117192) = 1=
($1,$2)92(y1,?/2) = Ta =Y

One has 6; Afy = A (clear) and 6 060y = 6,00, =V = 0, Vb,. For instance
01 0 0y = V since (x1,x9)01(x1,y2)02(y1,y2) for all (xy,22), (y1,y2) € L.
Moreover, if |L1|,|La| > 1, then any 6;,05 ¢ {A,V}. Conversely, any lattice
L and any 01,05 € Con(L)\{A, V} with ; Ay = A and #1005 = 0500, =V
yield a direct decomposition L = Ly x Ly with |L;| > 1.

An easy induction shows that each finite lattice L is isomorphic to Ly X
Lo x - -+ x L, for some directly indecomposable lattices L;. Interestingly the
L;’s are unique up to isomorphism and ordering. Direct products are the
special case S = L; X Lo in the definition below.

Definition 3.7 Let L, and Ly be two lattices. A subset S C Ly X Lo is a
subdirect product of L and Lo if

i) S is a sublattice of Ly X Lo,
i) (Vx € L1)(3y € Ly) (z,y) € S,
iii) (Yy € Lo)(3x € Ly) (z,y) € S.

The lattices L1 and Ly are called factors of the subdirect product S.

Proposition 3.6 Let S C L; x Ly be a subdirect product. Consider the
maps py : S — Ly and py : S — Ly defined by p1(x,y) = x and pz(x,y) = y.
Then py and py are surjective morphisms and ker(py) N ker(ps) = A.

We omit the easy proof and rather illustrate by the following example
where S is the above lattice:
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(Xs,Y,)

Ll L2 Ll X L2

Figure 3.4: S is a subdirect product of factors Ly and L.

Figure 3.5: Classes of ker(p1). Figure 3.6: Classes of ker(p2).

Consider now this subdirect product 7" C L X Ly X Ly where L; and
Lo are as in figure 3.4:

(%5 %5 %)

(X5, %5, ¥p)

(X%, Yy)

Let p1, p2, p3 be the restrictions of the projections of Ly x Ly X Ly onto T'.
Although pq, py are distinct maps T — Ly, observe that ker(p;) = ker(pz).
That means either of the first two subdirect factors is redundant; it could be
dropped without changing the isomorphism type of the remaining subdirect
product.

Here is a converse of proposition 3.6
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Theorem 3.4 |17/(Subdirect product decomposition theorem)

Let T be a lattice and let 601, 05 be two congruences onT' such that 61Ny = A.
Put T" = {(ag,,ap,) : a € T}. Then T' =T and T" is a subdirect product
of T/0, and T /0.

Proof: Define ¢ : 7' — T” by letting £(a) = (ag,, ag,) for all a € T'. Then
5(a/\b) = ((a/\b)917 (a/\b)92) = (a91 Ab917a92 /\b92) = (a917 a92) A <b917 b92) =
e(a) A e(b). Similarly, one can show that e(a V b) = e(a) V £(b), so € is a
morphism. For the injection, suppose that e(a) = ¢(b), then (ag,,ap,) =
(bg,,bs,), i.e. ag, = by, and ap, = by,. So (a,b) € 6, N Oy = A, therefore
a = b. Let us now prove that 7" is a subdirect product of 7'/6; and T'/6,.
Obviously, 7" is a sublattice of T'/0; x T'/6;. Further if ay, € T/0;, then
ag, € T/0y and (ag,,aq,) € T'. Ditto the other way around. Therefore
T" CT/0, x T/ is a subdirect product. [ |

Definition 3.8 A lattice L is said to be subdirectly reducible if there
ezists a pair of congruences 01,05 € Con(L)\ {A} such that ;N6 = A. L
15 said to be subdirectly irreducible if it is not subdirectly reducible, that

is for all pairs of congruences 01,60, € Con(L) \ {A}, 6, N Oy # A.

Remark 3.1 Note that if L is subdirectly irreducible, then L 1is directly
irreducible. We note also that a finite lattice is subdirectly irreducible if and
only if Con(L) has only one atom. Moreover any simple lattice is subdirectly
irreducible but the converse does not hold. It is well known (Birkhoff [17])
that every lattice is a subdirect product of subdirectly irreducible lattices.

3.6 Construction of subdirect products via
join-morphisms

For a subdirect product S C Ly x --- x L, where the L;’s are finite lattices,
consider for all 1 < i < s, the projections p; : S — L;, and the "smallest
pre-image" map

o;: Ly — S
z — NzeS:ip(z) =1}
One checks that o; is V-preserving, and thus all maps p;; := pjo0; : L; — L;

are V-homomorphisms as well. Moreover p;; o p;; < pi; as is easily seen.
This construction can be reversed. More precisely, the following holds.

Theorem 3.5 |19/ Suppose that Ly,--- , L are lattices and that ((i,7) :
L; — L; are V-preserving morphisms such that for all i, j, k € {1,--- s},
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(a) B(i,1) = idy, and
(b) B(i, k) = B(j, k) o B3, J)-
Then there is a subdirect product L C Ly X --- X Ly such that
B(i,j) =pjoo;: Li 25 L L5 L.
Moreover, L is \/-generated by all the
o:(a) = (B(i, 1)(a), B(1.2)(a).-- - . B3, 5)(@)).

where a € J(L;) and 1 <1i < s. [ |

Example 3.2 Let Ly, Lo, Ly and [(i,7) (1 < 4,5 < 3) be as in figure
3.7. We want to compute the subdirect product L C Ly X Ly X L3 such that
ﬁ(,luj) = p] 0 0;.

Lo Ls

Figure 3.7: For a fixed (i,j), 3(i,7) is defined with solid lines nd (3(j,1) is
defined with dashed lines.

One can easily check by inspection that the (3(i, j)’s satisfy (a) and (b) of
theorem 3.5. We now determine the o;(a)’s:

0'1((1) = (5(17 1)(&),5(1,2)(&),5(1,3)(&)) = (Oz,(l,O) =: aal
o1(8) = (B(1,1)(8), B(1,2)(B), 6(1,3)(8)) = (8,b,0) =: b0

In the same manner, one can show that:

o1(y) = b0, 01(0) = a0, o1(e) =€b0, o03(a) = aal, o9(b) = ab0,
oo(c) = dcl, o3(d) = ddl, oy(e) =del, 03(0) = aal, o3(1) = dal.

By theorem 3.5, L is V-generated by S = {o1(8),01(7),01(6), 02(b),
oy(c), o9(d), o3(1)}. Thus S necessarily contains J(L) (plus possibly some
more elements) and L is obtained by taking all suprema of elements of S.
The Hasse diagram of L (with the elements of S circled) is given in figure
3.5. One checks that B(i,j) = pjoo; for all 1 <i,j < 3.
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Figure 3.8: Construction of a subdirect product.

Figure 3.9: L/ker(p1) = L. Figure 3.10: L/ker(p2) = Lo.

Figure 3.11: L/ker(ps) = Ls.
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Distributive lattices

4.1 Representation of finite distributive
lattices

In the lattice (P(X), C) the equality AU(BNC) = (AUB)N(AUC) holds
for all subsets A, B, C of X. However this equality is not true in all lattices
as one can easily check with the Diamond or the Pentagon (see figure 4.1)).

Proposition 4.1 Let (L, <) be a lattice. Then the following assertions are
equivalent.

(i) N (yVz)=(xAy)V(xAz) foralz,y z € L.
(i) zV (yANz)=(xVy)A(xVz2) for all z,y,z € L.
(ii)) (xVy)ANz<zV(yAz) foralxy,ze L.
Proof: For the proof of this theorem, see [15] or [1&]. [ |

Definition 4.1 A lattice is distributive if it satisfies one of the equivalent
statements of the above proposition.

Example 4.1 1. Every chain s a distributive lattice.

2. (P(X), Q) is distributive for any set X. Hence the ideal lattice (Id(P), C
) of any poset P is distributive as a sublattice of the distributive lattice

(P(P),<).
3. (N,]) is a distributive lattice.

4. The lattices M3 and N5 are not distributive. In fact, for M3, pV (g A
ry=p#t= (Ve A((pVr), and for N5, bV (a N¢c) =b # a =
(bVa)A(bVec).

22
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4 e
a
p r ¢
b
S
M3 N5

Figure 4.1: The lattices M3 and Nj.

Since distributivity is inherited by sublattices, M3 and N5 cannot appear
as sublattices in any distributive lattice. Interestingly, the converse holds
as well.

Theorem 4.1 [16] A lattice is distributive if and only if it contains no
sublattice isomorphic either to the Pentagon or the Diamond.

Theorem 4.2 |1/(Birkhoff representation theorem for finite dis-
tributive lattices) A finite lattice is distributive if and only if it is iso-
morphic to the ideal lattice of some poset.

Proof: Given any finite lattice L, one verifies that

J: L — (Id(J(L)),g)
a — J(a) ={xeJ(L): x<a} = lanJ(L)

is a A-morphism from L into the ideal lattice of its join-irreducible elements.
Exactly if L is distributive, J is moreover onto and V-preserving. In this
case the embedding is cover preserving. [ |

Example 4.2 As an example, take the non-distributive lattice L = Nj
above with J(N5) = {a,b,c}. Then J : N5 — Id(J(Ns),C) is neither
V-preserving nor surjective: J(bV ¢) = {a,b,c} # {b} U{c}=J(b) U J(c)
and one checks that {b, c} is not in the range of J.

Proposition 4.2 [16] Let L be a bounded distributive lattice, then the com-
plement of any element, when it exists, is unique and will be denoted by a'.
Further if a,b are complemented, then so are a A'b and a vV b and we have
(aND) =da Vb and (aVb) =a ANV. The two last equalities are known as
the De Morgan’s identities.
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Proof: Let b, ¢ be two complements of a. Then b = bA(aVc) since aVe = 1.
So b= (bAa)V (bAc) since L is distributive. But bAa = 0. Hence b =bAc
and then b < ¢. Similarly ¢ < b. Therefore b = ¢. Using the distributivity,
one shows that (¢’ VV') A (aAb) =0 and (¢’ V)V (a Ab) = 1. That is
a’ VI is the complement of a A b. [ |

Definition 4.2 A complemented bounded distributive lattice is called Boolean
lattice.

Note that (P(X), C) is a Boolean lattice for any set X. Conversely, if L is
a finite Boolean lattice, then L = (P(X), C) where X is the set of atoms
of L.

4.2 Congruences and distributivity

Theorem 4.3 |18/ (Funayama and Nakayama[1940])
The congruence lattice of any lattice is distributive.

Proof: Let L be a lattice. For x,y, 2 € L, we set
M(z,y,z) =(x Ay)V (yANz)V(zAx).
Let 6, p and 7 be three congruence relations on L. Then we know that
ONAp)VONT)<OA(pVT).

Let us prove the converse inequality. Suppose that a[d A (p V 7)]b. Then
afb and a(p V 7)b. Hence there exists a sequence xg,zy,- - , 2, such that
x9 = a, x, = b and x;pr;\q or x;7x;11 for i < n. By the transitivity of p
and 7, we can choose this sequence such that

ripriyy for all eveni<n
x;7r;p for all  odd i < n.

On the other hand afb implies (a A a)f(a A b) and (a A z;)0(b A x;) for
all 7+ < n since 0 is a congruence. Hence for all i < n

[(anb)V (bAx;)V(xz;Aa)]0](ana)V (anz;)V(zAa)], d.e. M(a,b,z;)0M(a,a,z;).

But M(a,b,z;)0M(a,a,z;) = a = M(a,a,z;1)0M(a,b,z;y1) implies by
transitivity that M(a, b, z;)0M (a,b, ;). Further for all even i < n,
x;px;y1 implies that M(a, b, z;)pM (a, b, x;11). Therefore
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M (a,b,x;)(0 N p)M(a,b, ;1) for all even i < n. Similarly for all
odd ¢ < n, one proves that M(a,b,x;)(0 AN T)M(a,b,x;11). Since a =
M(a,b,a) = M(a,b,xy) and b = M(a,b,b) = M(a,b,z,), we can conclude
that the sequence a = M(a,b, o), M(a,b, x1), -, M(a,b,z,) = b satisfies
M (a,b,x;)(0N\p)M(a,b, ;1) or M(a,b,x;)(OAT)M(a,b,z;41) for all i < n.
Hence a[(6 A p) V (0 A T)]b, which implies that O A (pV 1) < (B Ap)V(OAT).
]

Example 4.3 For instance Con(N;) =

18 distributive, where

N5/01 = 5 N5/02 = and

Ns/b3 =

Theorem 4.4 Let L be a finite distributive lattice. Then p € L is prime if
and only if p € J(L). Further |J(L)| = h(L).

Proof: We have already shown (see theorem 3.1) that if p is prime
then p € J(L). Conversely, suppose that p € J(L), if p < a V b, then
p=pA(aVb) = (pAa)V (pAb) by distributivity. Hence p = p A a or
p=pAb,ie. p<aorp<b Sopisprime. Now let p1,ps,---,p, be the
join-irreducibles of L, then trivially! p; Vp,V---Vp, = 1. Renumber the p;’s
so that p; < p; impliesi < 7. If p;VpaV---Vp; = p1VpaV---Vp;Vpjy for
some j € {1,2,--- ,n—1}, then p;11 < p1VpaV---Vp,;. Therefore p;11 < p;

!Since any element of a finite lattice is a join of join-irreducibles by proposition 2.3
on page 10.
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for some i € {1,2,---,j} since p;41 is prime, which is a contradiction. So
the chain 0 <p; <pyVpa <---<p1VpaV---Vp, =11is amaximal chain
of length n. [ |

Theorem 4.5 Let L be a finite distributive lattice. Then Con(L) is a
Boolean lattice with h(Con(L)) = h(L).

Proof: For each p € J(L), set 6, = ker(p). Then

a( A ep)b

peJ(L)

(Vp € J(L)) af,b

<
— (WelJ(l))lazp < b=p)
<~ J(a)=J(b)

<~ a=0b.

So /\ 0, = Ais the zero element in Con(L). But Con(L) is distributive
peJ(L)
by theorem 4.3, so there is a set X with [X| = d(Con(L)) such that L
is cover preserving embedding into P(X) (theorem 4.2). Therefore each
co-atom 6, € Con(L) corresponds to some X \ {z,} € P(X). From
/\ 6, = A follows that ﬂ (X \ {zp}) = @, ie. X ={xpe J(L)},
peJ(L) peJ(L)

i.e. Con(L) = P(X), ie. h(Con(L)) = h(P(X)) = [J(L)]. N

4.3 Distributive lattices as subdirect
products

Theorem 4.6 j1/(Fundamental theorem of Birkhoff) A distributive
lattice is subdirectly irreducible if and only if it is isomorphic to the two-
element distributive lattice 2. Hence each distributive lattice is a subdirect
product of two-element lattices.

Proof: Suppose that D is a distributive lattice and that D contains an
element @ different from 0 and 1 (i.e. D 2 2). Define two functions w :
D — Dand o : D — Dby wx) =xAaand o(x) = xVa Then
obviously w and ¢ are morphisms since D is distributive. Set #; = ker(w)
and 0y = ker(c), then 01,0, € Con(L). Further if (x,y) € 6, N s, then
xANa=yAaand xVa=yVa. Hence

r = xA(@Va)=xAyVa)=(@Ay)V(rAa)
= (@AY Vyra) =yA(zVa)=yA(yVa)
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Therefore ; N0y = A. But (1,a) € 6, and (0,a) € 6, imply that 6,0, €
Con(L)\ A. So D is subdirectly reducible. |

Example 4.4 Consider the distributive lattice D :=

where
J(D)={a, b, d, e}. Recall from theorem 4.4 that the co-atoms of Con(D)

correspond bijectively to J(D). Namely for p € J(D), the two congruence
p p

classes are Tp and D\1p. A shorthand notation is . These

(p € J(D)) “are” the subdirectly irreducible factors of D. In our case, we
have:

a b d e
D — X X X
c (1 , , , 0) =
h +— (0 , , 1 , 1) — B

. - .
Notice that J := {a,b,

—
phic copy D C 2%, so e.g.

4.4 Free distributive lattices via filters

Definition 4.3 Let (P, <) be a poset. The free distributive lattice gen-
erated by P is the unique (up to isomorphism) distributive lattice denoted
by F'D(P) with the following properties.

(i) There is a generating set P' C FD(P) such that P' endowed with the
induced order from F'D(P) is isomorphic to P.
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(i1) If D is a distributive lattice and ¢ : P’ — D is an order preserving
map, then ¢ extends to a lattice morphism ® : FD(P) — D.

We shall see in section 6.1 that such a lattice F'D(P) and many other
kinds of “free” lattices do in fact exist. The second property (ii) is called
universal mapping property. Observe that since F'D(P) is distributive
and any element x of F'D(P) can be expressed in terms of elements of P,
x can be written as = \/ g, /\ S for some finite set K of finite antichains
of P. Hence the join-irreducibles of F'D(P) must all be of the form A S
where ) # S C P is a finite antichain 2. Conversely (see [2(]) every such
element is join-irreducible. In particular any element of P is join-irreducible
in FD(P). We conclude that

J(FD(P)) ={/\ S : S antichain of P and § # S # P},

is the set of nonzero join-irreducibles of F'D(P). Dually any element of
FD(P) can be expressed as /g, \/ S, where K is a finite set of finite an-
tichains of P. Hence the meet-irreducible elements of F'D(P) are precisely
the elements of the form \/ .S where S is a proper antichain of P. In partic-
ular any element of P is meet-irreducible in F"D(P). Therefore any element
of P is doubly irreducible in FD(P).

Lemma 4.1 Let P be a finite poset. Then the map
A (Fil*(P), > ) . (J(FD(P)), < )
S — NS
1S a poset isomorphism.

Proof:
Only the injectivity of X is nontrivial. So consider R 2 S in the poset

(Fil*(P), 2). Define p: P — 2 by

(a) = 1 ifaeR
PRY=3 0 ifa¢R.
This clearly order preserving surjective map extends to an epimorphism
®: FD(P) — 2 with ®( AR) =1 but ®( AS) =0 (at least one a € S is
not in R). Hence AR £ A S in (J(FD(P)), < ) .

ZNotice that A\ P = 0 is not join-irreducible by definition. If A = 1 is join-
irreducible, then 1 = P where D is the biggest element of (P, <). Therefore 1 = A{p},
i.e. S = () is never necessary.
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Theorem 4.7 Let (P, <) be a finite poset. Then the free distributive lattice
FD(P) is isomorphic to Id(Fil*(P), D).

Proof: By lemma 4.1, (Fz’l*(P),Q ) ~ (J,<) where J = J(FD(P)).
Hence, using Birkhoff’s theorem 4.2, FD(P) = Id(J, <) = Id(Fil*(P)), 2).
|

Corollary 4.1 The free distributive lattice F'D(P) is finite if and only if
P is finite. In this case |FD(P)| < 22"

Proof: This is clear by the previous theorem 4.7. [ ]

4.5 Alternative method for computing FD(P)

In this section, we describe another method to compute F'D(P). As opposed
to the method via the proper filters of P studied in the previous section 4.4,
it can be generalized (see chapter 6) to the computation of free modular
lattices.

Definition 4.4 Let (P, <) be a finite poset and let L be a lattice. A P-
labelling of L is a couple (A, L)) where Ly = L and X\ : P — Ly is an
order preserving map with the property that A(P) generates Ly. Two P-
labellings (A1, L1) and (Ao, Lo) are said to be equivalent if there exists an
1somorphism « : Ly — Lo such that Ay = avo Ay.

A
P 2 Lo

Figure 4.2: Commutative diagram showing two equivalent P-labellings of L.

Definition 4.5 Let (L1, \1) and (Ls, \y) be two P-labellings of a lattice L.
A map B : L1 — Ly is called a morphism if

(1) [ is V-preserving (in particular order preserving) and,

(i1) B(M(a)) < As(a) for alla € P, i.e. B sends labels below labels.
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The set of morphisms between two P-labellings (\;, L;) and ();, L;) of a
lattice L, ordered by a < < «a(z) < ((z) for all z € L;, clearly contains
a greatest element, denoted (3;; : L; — Lj;.

Lemma 4.2 Let \; : P — L; (1 < i < s) be a collection of P-labellings.
Then

(a) By =idy, for alli e {1,2,--- s} and,

(b) Bir > Bjr o Bij for alli,5,k € {1,2,---,s}.

Proof: The proof of (a) is obvious. To prove (b), observe that (3;; o 3;; is
a morphism from L; to L, and (;; is the biggest morphism from L; to Ly,

hence ﬁzk Z ﬁ]k e} ﬁl] [ |
We now focus on distributive lattices. Let P be a finite poset and
let Dy, Dy, ---, Dy be a maximal collection of pairwise non-equivalent P-

labellings of 2. By theorem 3.5 and lemma 4.2, the morphisms 3;; (1 <
i,j < s) yield a certain subdirect product L C D; x --- x D,. We are
going to show that L = FD(P). More specifically, denote by 1 the maxi-
mum element of D; and define ¢; : D; — Dy X Dy X -+ X Dy by t;(z) =
(Bir(2), Bia(x), -+, Bis(x)). Then the set K = {¢(1),¢a(1), - ,¥5(1)} is
a poset where the order is defined componentwise. We will show in theorem
4.8 that FD(P) = Id(K, <).

Lemma 4.3 Let (P, <) be a finite poset. Then there is a bijection between
the proper filters of P and the P-labellings of the two-element lattice 2.

Proof: If A\ : P — D is any P-labelling of 2, then A(P) C D generates 2
by definition. So A7'(1) # @ and A~!(1) # P. Moreover if a € A7'(1) and
a < b, then since A is order preserving, 1 = A(a) < A(b). It follows that
A(b) =1, ie. b€ A71(1). So A7I(1) is a proper filter of P. Conversely,
every proper filter of P clearly arises that way. [ |

Let Fil*(P) = {f1, fa, -, fs} be the set of proper order filters of P and
let \; : P — D; (1 <i < s) be the P-labellings of 2 such that f; = A\ (1),
i.e. the labels of the top elements of D; are precisely the elements of f;.
Then F'il*(P) with the reverse inclusion is a poset. For 1 < i ,j < s, we
recall that 3;; : D; — D; is the biggest V-preserving map such that

Bij ()\Z-(a)) < \j(a) foralla e P. (4.5.1)

Lemma 4.4 Foralll <i,j <s,

Bij(1) =1 if and only if f; C f;.
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Proof: Suppose that 3;;(1) = 1 and let a € f; = \; '(1). Then X\;(a) = 1.
But A;(a) > Bi(\i(a)) = B;;(1) = 1 implies that \;j(a) = 1. Hence a €
)\;1(1) = fj. Conversely, suppose that f; C f;. Then 3 : D, — D;, where
£(0) := 0 and §(1) := 1 trivially maps labels below corresponding labels,
and so ﬁij > ﬁ, ie. ﬁij = ﬁ |

Theorem 4.8 The free distributive lattice F'D(P) is isomorphic to Id(K, <

).

Proof: Recall that IC = {11(1),12(1), -+ ,1s(1)} where s is the number
of pairwise non-equivalent P-labellings of 2 and ;(1) = (ﬁﬁ(l), Bia(1),- -+,
Bis(1)). Consider the map o : (K, <) — (Fil*(P), D) defined by o (¢;(1)) =
fi- 1t is clear that o is surjective by construction. We will prove that o is
an order isomorphism.

Suppose first that ¢;(1) < 1,;(1), then G;(1) < Bjx(1) for all 1 < k < s.
So {fx € Fil*(P)|Bix(1) = 1} C {fix € Fil*(P)|B;x(1) = 1}. By lemma 4.4,
{fi € Fil*(P)|f; € fx} € {fs € Fil*(P)|f; € fi}. Therefore f; € {fi €
Fil*(P)|f; € fx}, hence f; O f; and so o is order preserving.

Conversely, suppose that ¢;(1) £ 1;(1). Then S (1) £ B;x(1) for some k,
ie. Bi(l) =1, Br(1) = 0. By lemma 4.4, it follows that f; C f, and
fi € fx. This implies that f; 2 f;. So (K, <) = (Fil*(P),2), and by
theorem 4.7 it follows that Id(K, <) = Id(Fil*(P),2) = FD(P). |

Pe) €
Example 4.5 Consider for instance the poset (P, <) := g .\./[3.

In F'D(P) the join-irreducibles are ~ a A3

ANAJA g B

They correspond to the proper filters in reverse ordering:
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The principal filters corresponding to the elements of P are indicated,
for instance 18 = {3, 9,e} =: Bde. Usually |Fil*(P)| > |P|, i.e. F'D(P) has
usually more join-irreducibles than doubly irreducibles. Similar to general
distributive lattices (section 4.3) let us visualize the subdirect decomposi-
tion

D, D, D; 4 Ds Dg D, Dsg
o 5 € ad ae o¢ ade Bde

Bde aBe aBd Be Bd afp B a

SAe — (0 0 0 0 0 1 1 1)
a  — (1 0 0 1 1 0 1 0)
e — (0 0 1 0 1 1 1 1)

Here, additionally to the join-irreducible A on top (alias A € Fil*(P)),
we write P\ A on the bottom of 2. In this way we obtain the P-labellings
of 2 in the same sense of definition 4.4. Once the 8 octuples corresponding
to the join-irreducibles of F'D(P) are computed, the whole lattice F'D(P)
is determined.

Claim: The octuples can be written using the morphisms 3;; : D; —
D; as follows:

INe +— (Be1(1), DBs2(1), PBes(1), ---, PBes(1))
a  — (Bu(l), Bi(1), Bus(1), ---, Pis(1))
e (Ba(1), Bsa(l), PBss(1), ---, Bss(1))

Proof: Recall, for the general P-labellings L; and L, the morphism
Bi; + Li — Lj is the biggest V-preserving map that sends labels below
corresponding labels. In the case of L, = D; = 2, there are just two types

of ﬁl]

A B
ﬁij : — 1s ﬁz’j =id = ﬁl](l) =1 &
P\A P\B

ACB.

A B

Bij - — I is G =0 & G(1)=0 &
P\A P\B

A¢ B.
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For instance, f(g5(1) = 0 since {d,e} ¢ {a,e}, but Ber(1) = 1 since
{578} g {0475,8}- .

The steps involved in the calculation of F'D(P) via P-labellings can be
summarized as follows:

Step 1: Compute all the non-equivalent P-labellings Dy, Dy, -, Dy
of the two-element lattice 2 (or equivalently, compute all the proper filters
of P).

Step 2: Compute the morphisms 3;; : D; — D; and set K = {¢;(1), (1), - - -

Gy (DT, where ¥(1) = (B1(1), Bia(1), - , Bis(1)). Then Id(K, <) = FD(P)

where the order in K is taken componentwise.

Ji fj Ji fj

B By

- N
A

P\ f; P\ fj P\ fi P\ fj
Figure 4.3: (a) fz - fj: SO ﬂz](l) =1. (b) fz SZ fj: SO ﬁij =0.

BN

We will later explain how to efficiently compute the elements of 1d(/C, <)
via the algorithm we will introduce in chapter 7.

Example 4.6 Determine the free distributive lattice FD(P) and its subdi-
rectly irreducible factors where P is the poset P of figure 4.4(a).
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Step 1: The 13 non-equivalent P-labellings of 2 are drawn in figure
4.4(b).

4 S 6
P =
(a)
1 2 3
3456 13456
4 5 6 45 46 56 456 1456 2456 12456 23456
(b)
12 3 2 1
1235612346 1245 1236 1235 1234 123 23 13

Dl D2 D3 D4 D5 D6 D7 D8 D DlO Dll D12 D13

9

Figure 4.4: (a) The poset P under consideration (b) The 13 P-labellings of 2.

Step 2: By using lemma 4.4, one can easily compute the 3;;’s, for

instance, (12 = P13 = fig = 0 and F11(1) = Bua(1) = Bi5(1) = Bir(1) =
B1i(1) = 1 forall ¢ > 8. On the other hand, we compute the v;(1) as follows.
We list the components of a vector as a string for the sake of simplicity.

QZ)l(]-) = (ﬁli)1<i<13 = (17070717
1

Py(l) = (52@')1g_i§13 = (0,1

In the same manner, we obtain

,0,1,1,1,1,1,1,1) =: 1001101111111
1,1,1,1,1,1,1,1) =: 0101011111111.

=

y(1) = 0010111111111,  ¢5(1) = 0000101111111,
Pe(1) = 0000011111111, (1) = 0000001111111,
Pg(1) = 0000000100111, (1) = 0000000010101,
¥1o(1) = 0000000001011,  ¢41(1) = 0000000000100,
¥12(1) = 0000000000010,  443(1) = 0000000000001

Letting K = {1;(1) }1<i<13, we conclude with theorem 4.8 that FD(P) =
Id(K, <). The Hasse diagram of K is shown in figure 4.5.
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wld) (1) WD)

W,(1) . ‘
WD)

Ug(1) "% W (1)

Wy(1) W) ds(2)

U(1)

Figure 4.5: The poset (K, <)

A computer subroutine called base-of-line.nb of the algorithm described
in steps 1 and 2 has been implemented with the Mathematica package. The
elements of 1d(/C, <) will be explicitly computed and its Hasse diagram will
be drawn in chapter [7. The 13 subdirectly irreducible factors of F'D(P) are
the 13 P-labellings of 2 shown in figure 4.4.
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Modular lattices

5.1 Some preliminary results on modular
lattices

Definition 5.1 A lattice (L, <) is said to be modular if for all a,b,c € L
a<b = aV(bAc)=bA(aVec). (5.1.1)

Note that the inequality a V (bAc) < bA (aVc) is trivial for all @ < b in
any lattice L.

It is not difficult to see that any distributive lattice is modular. It can
be shown that M; is modular but that N; is not. The lattice Sub(M) of the
submodules of a module over a ring is modular. Indeed let Ni, Ny and N3
be submodules of M such that N; C N,. As seen above, it remains to show
that Ny + (No N N3) O Non (Ny + N3). So let © € Ny N (Ny + N3). Then
r € Nyand x = a+ b where a € Ny and b € N3. So a € N, since N; C Ns.
Therefore b = x — a € Ny since N, is a submodule of M. So b € Ny N N;
and r =a+b € Ny + (Na N N3). So (Sub(M),N,+) is a modular lattice.

Proposition 5.1 ] A lattice is modular if and only if it contains no sub-
lattice isomorphic to Ns.

In chapter 2, we observed that not every complemented lattice is rela-
tively complemented. However, this is true in modular lattices.

Proposition 5.2 1] Every complemented modular lattice L is relatively
complemented. In fact one proves that the complement of any element x of
an interval [a,b] C L is a V (' AD).

36
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5.1. Some preliminary results on modular lattices

Theorem 5.1 |1f/(Dedekind transposition principle)
Let (L, <) be a modular lattice and let a,b € L. Consider the maps

and 1y : [aANbal — [bya Vi

Go: [b,aVb — [aAb,a]
x — bV

X — a/N\x

Then ¢ and 1y are lattice isomorphisms and ¢;' = 1. Moreover, the
image of a subinterval under either these functions is a transposed of that
subinterval. Conversely, if (L, <) is a lattice for which the maps ¢, and 1y
are lattice isomorphisms for all a,b € L, then L is a modular lattice.

Figure 5.1: Tllustration of the Dedekind transposition principle

It follows immediately from theorem 5.1 that projective intervals of a
modular lattice are isomorphic and that for any modular lattice L and any

distinct elements a, b, ¢ :

(i) If both a and b cover ¢, then a V b covers both a and b.
(ii) If ¢ covers both a and b, then a and b both cover a A b.
Every finite height modular lattice is graded and
h(a) 4+ h(b) = h(a Ab) + h(a V b) for alla,b e L.

Moreover the number of representatives of classes of projective prime quo-
tients within a maximal chain is an invariant. For instance, these two
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b b
5 10
4 9
maximal a, b-chains: 3 and 8 of the modular lattice
2 7
16 6
a a

each feature 1,1,4 prime quotients

of the dotted, fat, and thin projectivity class respectively.

Theorem 5.2 j1f] Every finite height modular lattice L in which 1 is the
join of a finite set of atoms is a complemented modular lattice of finite
height.

Proof: Let A be the set of atoms and x € L. Set dy = x. If d; # 1, then
pick a; € A such that a; £ d; (such a; exists otherwise 1 = \/ A < d; which
is a contradiction), and let d; 1 = d; V a;. Since A is finite, this construction
stops after a finite number of steps, so there exists n such that

lzdn+1 = dn\/an:dn_l\/an_l\/an:---
doVagV---Va,=xVagV---Va,.

Letting y = agVa; V---Va, yields x Vy = 1. Let us prove that x Ay = 0.
For all i« < n, we have d; A a; = 0 since a; is an atom and a; f d;. So by
modularity, h(d; V a;) = h(d;) + h(a;). That is,

h(:p\/ao\/al\/---\/ai_l\/ai):h(x\/ao\/al\/---\/ai_1)+h(ai).

Hence by induction, we have h(zVy) = h(z)+h(ag)+- - -+h(a,). Moreover,
h(y) = h(ag)+h(ay)+- - -+ h(a,). This implies that h(zVy) = h(z)+h(y).
Therefore h(x Ay) = 0, that is Ay = 0. Hence y is a complement of z in
L. |
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Definition 5.2 Let (L, <) be a lattice. We say that the interval [a,b] C L
transposes weakly down into the interval [c,d] and we denote [a,b] \,,
le,d] if b=aVd and ¢ < a. Dually [a,b] transposes weakly up into [c,d|
denoted [a,b] /" [c,d], ifa = bAc and b < d. We say that [a, ] transposes
weakly into [c,d] if [a,b] transposes either up or down into [c,d]. We say
that [a,b] is weakly projective into [c,d] if there is a finite sequence

lag, bo] = [a,b], [a1,b1], -+, [an, bu] = [c, d]

such that [a;, by transposes weakly into [a;11,bi1] for all0 < i <n—1. For
instance in the following figure, [a,b] \u [a1,01] w [a2,b2] N\ [c,d], so
la, b] is weakly projective into [c,d].

Figure 5.2: Illustration of weak projectivity.

Definition 5.3 A lattice L is said to satisfy the projectivity property if
whenever [a, b is weakly projective into [c,d], then |a,b] is projective into a
subinterval of [c,d].

Theorem 5.3 |1/ Every modular lattice satisfies the projectivity property.

Proof: Suppose that [a,b] /™ [c¢,d]. Then a = bAcand b < d. So
la,b] = [bA ¢, b] transposes up into [¢, bV ¢] C [¢,d]. Dually if [a, b] N\ [c, d],
then [a, b] = [a, aVd] transposes down into [aAd, d]| C [c,d]. So in either case
[a, b] transposes into a subinterval of [c, d]. Suppose that [ag, bo] transposes
weakly into [a1, b1] which transposes weakly into [ag, by]. Then from the pre-
vious arguments, [ag, bp| transposes into a subinterval [z1,y;] C [aq, b] and

[

[a1, by] transposes into a subinterval [z2,ys] C [ag, bo]. So [a1,b1] &[22, ys]
and [z1,y;] transposes into p([z1,y1]) C [x9,y2] by Dedekind transposition
principle. That is [z1,y;] transposes into a subinterval of [as, by]. So [ag, bo]
is projective into a subinterval of [ag, by]. The proof can now be completed
by induction on the length of the chain of weak projectivity. [ ]
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5.2 Congruences and modularity

The following lemma, which is valid in any lattice (see [16]), will be used
to prove theorem 5.4, an important result which will allow us to show that
Con(L) is Boolean for any modular lattice L.

Lemma 5.1 /1] (R.P. Dilworth[1950]) Let L be a lattice with a,b,c,d €
L such that a < b and ¢ < d. Then (a,b) € Cg(c,d) if and only if there is
a sequence

a=e<e <ep<---<e,=b

such that [e;, e;11] is weakly projective into [c,d] for all i < n.

Theorem 5.4 Let (L, <) be a modular lattice and let a,b € L with a < b.
Then Cg(a,b) is an atom in Con(L).

Proof: Let 0 < Cg(a,b) and (c,d) € 0 with ¢ # d (i.e. 8 # A). Then
(eAd)f(cVd) by proposition 3.5 on page 14. This implies that (cAd, cVd) €
Cg(a,b). Therefore there exists a sequence cAd =€y < e < --- < e, =
¢V d such that [e;,e;1] is weakly projective into [a,b] for all 0 < i <
n—1. So [e;, e;41] is projective into a subinterval of [a, b] by the projectivity
property. But a < b implies that [e;, e;,1] is projective into [a, b]. Therefore
by theorem 3.3 on page 16, (a,b) € Cg(e;,e;41) € CglcANd,cVd) C 6. So
Cg(a,b) C 6. This implies that C'g(a,b) = 6 and thus Cg(a,b) is an atom.
[

Theorem 5.5 (R.P. Dilworth[1950]) If (L,<) is a modular lattice of
finite height, then Con(L) is a Boolean lattice.

Proof: By theorem 4.3, it suffices to show that Con(L) is complemented.
Take a finite maximal chain of L, say

O=ay<a;<---<a,=1.

Trivially we have Cg(ag,a1) vV Cg(ay,as) V ---V Cg(ay—1,a,) C Cg(0,1) =
Leon(r)- But (ag, a1), (a1, as) € Cg(ag, a1)VCyg(ai, az) implies by transitivity
that (ag,az) € Cg(ag,ar) V Cg(ay,az). Also (ag,as), (as,as) € Cg(ag,ar) V
Cyg(ay,az) V Cg(as, az) implies by transitivity that (ag,a3) € Cg(ag,ai) V
Cg(ay,az) vV Cg(as, az). Therefore, continuing this process will give:

(0,1) = (ao, an) € Cg(ao,a1) vV Cg(ar, az) V- -V Cg(an-1, an).
That is:

1Con(L) - CQ(CLO, al) \ C’g(al, 0,2) VeV Cg(a'n—la a'n)~
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Therefore,

41

Leonn) = Cglag, a1) V Cglar,az) V- - -V Cglan_1, an).

Since for all 0 <i <n—1, a; < a;41, Cg(a;,a;11) is an atom in Con(L) by
theorem 5.4 and we see that 1g,, ) is a join of a finite number of atoms.

Therefore by theorem 5.2, Con(L) is a complemented lattice.

Note that if L is a modular lattice of finite height, then Con(L) is of
finite height and h(Con(L)) < h(L). For instance, considering the modular

lattice

L:= @ , we have Con(L) =:

where
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We see that Con(L) is Boolean and h(Con(L)) =3 < 6 = h(L).

Corollary 5.1 Let L be a finite modular lattice, then L is simple if and
only of L is subdirectly irreducible.

Proof: We have already noticed that if L is any simple lattice then it
is subdirectly irreducible (cf. remark 3.1). Conversely if L is subdirectly
irreducible, then C'on(L) has only one atom. Since Con(L) is Boolean by
theorem 5.5, necessarily Con(L) = 2 since 2 is the only Boolean lattice
with exactly one atom, therefore L is simple. [ |

5.3 Projective geometry and complemented
modular lattices.

Definition 5.4 A projective geometry is a couple (P, \) where P is a set
of points and A C P(P) is a set of lines satisfying the following properties:

Py: For all distinct points p,q € P there is exactly one line | € A with
p,q € L.

Py: (Pasch Axiom) FEach line | € A which intersects two sides of a tri-
angle! A := {11,113} also intersects the third side of A, in formulas:

DAIN #INL#0 = 1INy #0.

There is a finite dimensionality axiom as well, which however is void when
P is infinite.

Example 5.1 1. Let K be a finite field and n > 2. Set P = {I-
dimensional subspaces of K"} and A = {2-dimensional subspaces of
K"}. Then (P,A) is a projective geometry.

2. Suppose that A C 2F satisfies Py, and any two nontrivial lines® in-
tersect. Then Py is trivially satisfied. In this case (P,A\) is called
projective plane. The smallest projective plane is

LA triple of pairwise intersecting lines that do not intersect at the same point.
2 Lines that contain at least three distinct points.
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3. Suppose that A C 2F satisfies Py, and there are no triangles. Then Ps
is trivially satisfied as well. Here is an example (the trivial 2-element
lines are not drawn):

Let (P,A) be a projective geometry. A subset X C P is said to be

A-closed if for any line [ € A, [[NX] > 2 implies [ C X. It is clear that the
intersection of any family of A-closed subsets of (P, A) is A-closed. Hence
the set C'(P,A) of A-closed subsets of P is a complete lattice. In fact, it
happens to be a complemented modular lattice [21].
Conversely let L be a finite complemented modular lattice. Call g C J(L)
aline if g = J(a) := {z € J(L)| x < a} for some a € L with h(a) = 2.
Let A be the family of all lines g. Then the pair (J(L),A) is a projective
geometry and the set C(J(L),A) of A-closed subsets of J(L) is a lattice.
Further,

Theorem 5.6 |22/ Let L be a finite height complemented modular lattice,
then L = C(J(L), A) with the isomorphism given by a — J(a)

While each projective geometry (P, A) is coupled to a complemented mod-
ular lattice, it needs not be coordinatizable, i.e. (P,A) needs not be
associated to a field K as in example 5.1.1. As an extreme case of theorem
5.6 also notice that the finite height complemented distributive lattices (i.e.
Boolean lattices) are precisely the one with an empty set A of lines.

Definition 5.5 A projective geometry (P, ) is said to be non-degenerated
if C(P, ) is directly irreducible of height > 3. This amounts to say that
|A| > 1 and there are no trivial lines.

It turns out [13; 22| that the subdirectly irreducible factors of C(P,A)
(which here coincide with the directly irreducible factors) correspond bijec-
tively to the connected components of (P, A).
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5.4 Representation of finite modular lattices.

In this section, we will combine the Birkhoff’s representation theorem for
finite distributive lattices with ideas from projective geometries to get a rep-
resentation theorem for finite modular lattices. For starters, we introduce
the concept of A-closed order ideal.

Definition 5.6 For any integer n > 3, we denote by M, the height two
modular lattice with n atoms. An element x of a modular lattice L is said
to be a M,-element if there is a height two interval [xg, x| = M, which
contains all the lower covers x; of x. That is, if x1,x9, - ,x, are the lower
covers of x, then xo = x1 ANxa A -+ AN x, is covered by x; for all 1 < i < n.

A line corresponding to a fized M, -element x € L is an n-element subset
le = {p1,p2, -+, pu} C J(L) such that p; < x; and p; £ xo (1 < < n).
A base of lines of a finite modular lattice L is a family A of lines [, with

exactly one line corresponding to each M, -element x € L. An order ideal
K of (J(L),<) is called A-closed if for all l € A,

INK|>2 = I[CK.
We denote by C(J(L), ) the set of A-closed order ideals of J(L).

In particular, the projective geometry (J(L), A) associated to a finite height
complemented modular lattice L, yields a unique base of lines A for L (where
p; = x; throughout). Often bases of lines are not unique though.

Example 5.2 The following lattice L has two M,-elements and a base of
lines of L s given to the right. We see that b is a My-element and d is a Ms-
element with l, = {ay, as,as,c} and lg = {a1,aq,a5}. So A = {ly, 14} is a
base of lines of L. Observe that !, = {aq, a4, as} is also a line corresponding
tod, and A" = {l,,l;} is another base of lines.

d

as

L = a9

a4 G5

Figure 5.3: A lattice with two M,,-elements and a base of lines of L.
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Any order ideal K C J(L) of type K = J(a) :={x € J(L) : x < a} is
A-closed. In fact let I, = {p1,p2, -+ ,px} be aline of L and |l, N K| > 2.
Suppose that p;, p; € K. Then p; < a and p; < a. Therefore z = p;Vp; < a.
But p1,po, -+ ,pr < x < a implies that [, C K. Less obvious is that every
A-closed order ideal K C J(L) is of type K = J(a). Thus, generalizing
theorem 5.6 we have:

Theorem 5.7 (Herrmann-Wild)15; 22] Let L be a finite height modular
lattice, and let A be any base of lines. Then a — J(a) yields an isomorphism
L= C(J(L),A).

In particular, the finite distributive lattices L are precisely the ones with
empty bases of lines.
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Free modular lattices

6.1 Free lattices within a variety

Definition 6.1 A class V of algebras of given type' is called variety if
it is closed under the operations of taking subalgebras, direct products and
epimorphic images.

For instance, the class of all semigroups is a variety, and the class of all
commutative semigroups is a subvariety of it. On the other hand, the class
of all fields is not a variety since the direct product of two fields is not a
field (nonzero elements of type (z,0) having no inverse). The intersection
of any family of varieties of algebras (of the same type) is again a variety.
If K is a family of algebras of a given type, the smallest variety containing
K is a variety called variety generated by K; it is in fact the intersection
of all the varieties containing K and denoted by Var(K). By Birkhoff’s
theorem [17|, each X € V is a subdirect product of subdirectly irreducible
algebras of V.

In the sequel we focus on varieties of [attices. For starters, from Birkhoff’s
theorem and theorem 4.6 follows:

Corollary 6.1 The variety of lattices generated by Dy = 2 is the variety
D of all distributive lattices.

Theorem 6.1 The lattice variety Ms := Var({Ms}) is the class of all
subdirect products of M3 and D-.

In fact, for any lattice L, Var({L}) is the class of all subdirect products
of epimorphic images of sublattices of L [17].

LWe refer to [17] for the precise definition of the type of an algebra.

46
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Definition 6.2 A lattice polynomzial on the variables x1,x9, - ,x, is
defined recursively as follows:

(i) 1,29, -+, x, are lattice polynomials.

(ii) If p = p(x1, 29, -+ ,x,) and q := q(x1, 22, -+ ,x,) are lattice polyno-
mials, then (pV q) and (p A q) are lattice polynomials.

Example 6.1 21 V1, 1 A (21 V x3) and (x1 V x9) A1 are distinct lattice
polynomials.

The set of all lattice polynomials on the variables x,zs,- -, x, together
with the operations V and A is called term algebra and it is denoted by
(T, A\, V). Note that (T,, A, V) is not a lattice as x1 A xg # x9 Axq. If K is
a class of lattices, we define on (7),, A, V) the relation 0 by:

pliqif and only if for any lattice L € K and for any substitution
§ Az, x9,- - 10} — L
we have,
p(0(21),0(x2), -+, 6(xn)) = q(0(21),6(x2), -+, 6(xn)) in L.
In other words: The “identity” p = ¢ holds in all lattices L of K.

Example 6.2 For any class K of lattices, we have
(x1Vx1) 0k 1 and (z1 A xg) O (2 A 7).

Moreover if K is the variety of modular lattices, then
(ZL‘l N (I‘Q V (l‘l A ZEg))) 9[{ ((l‘l A l‘z) V (IL‘l N ZL‘3))

Theorem 6.2 The relation O is a congruence on the algebra (T,, A, V)
and
FK<:U17'T27 T 7xn) = Tn/eK

is the lattice contained in Var(K) that is generated by T; == x;/0k (1 <
Jj <n) and satisfies the following universal mapping property: For any
L € K and any substitution ¢ : {xy,z9, -+ ,x,} — L, there is a unique
homomorphism [ : FK(xq1,x9, - ,2,) — L extending ¢, i.e. the following
diagram commutes where i is the “inclusion map“ i(x;) = T;:
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.7

{x1,$2,“‘ 7'/1:11} 5 L

t El‘f foi=90

FK(xlax%’” 7xn)

Proof: The only candidate for f is

fp(y, - w0)/0k) = p(o(a), - -+, 0(xn)).

By the very definition of 6, f is well defined. That f is a homomorphism
is just as easy. If K C K’ then 0x O 0k, and so FK(xy,---,x,) is
an epimorphic image of FK'(xy,---,x,). However, if K’ is the variety
generated by K, then FK'(xy,--- ,x,) = FK(x1,---,x,). Essentially this
is because an identity p = ¢ that holds in all members of K, also holds in
all direct products, sublattices and epimorphic images of such.

Example 6.3 If K = {Dy}, then in view of corollary 6.1 and the above we
have
FK(zy, - ,2,) = FD(xy,-- - ,2y).

The cardinality fd(n) of FD(xy,- - ,x,) is only known up to n = 8. For
instance fd(3) = 18 and fd(4) = 166. This implies that taking arbitrary
unions and intersections of any sets Sy,--- , Sy one can obtain at most 166
different sets. Indeed, putting S = S; U ---U Sy, there is by theorem 6.2
a homomorphism f : FD(xy,--- ,x4) — P(S) with f(z;) = S;, and so the
sublattice of P(S) generated by Sy, --- , Sy has cardinality at most fd(4).

6.1.1 Generators and relations

Let V be a variety of lattices and put F' := FV(xy,---x,). For simplicity
we shall henceforth write x; rather that x; for the generators of F'.

Theorem 6.3 Let R be a set of pairs (t;,s;) € F x F (i € I) interpreted
as “relations” t;(xy,- -+ ,x,) = si(x1,- -+ ,x,). Put

FV(xy, -2z, R) = F/0,

where 0 is the congruence generated by the pairs (t;,s;) in R. Then FV
(x1, +++, Tp; R) has another universal mapping property in the sense that
for each L €V and all ay,- -, € L which satisfy

tilon, -, ap) =si(on, -+, ap),
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there is a homomorphism f : FV(xy, -+ ,x,;R) — L with f(z;) = o
(1<j<n).

Proof: To fix ideas, say n = 4, and t; := a1 V 29, 1 = 23 A 24 (S0
|[I| = 1). Thus put 0 = ((z1 V z9,23 A 24)) € Con(FV(x1, 2,13, 14))
and FV(xq, %9, x3,24;R) := FV(x1, 29, x3,24)/60. Let L € V be such that
ap, e, a3, a4 € L and o V as = az A ay. We look for an homomorphism
f @ FV(x1,29,23,24;R) — L with f(z;) = «;. Consider the map 0 :
{x1, 29, 23,24} — L defined by 6(z;) = «;. By the universal mapping
property of theorem 6.2, there is an homomorphism p : FV(xq, x9, 23, 4) —
L with p(z;) = a;. In particular

plx1Vas) = pl1) V() = a1 Vo
= az Aoy = p(xs) A p(rs) = p(T3 A xy).

Thus (21 V @9, 23 A x4) € Ker(p), and so 0 = ((x1 V x,23 N\ 14)) C
Ker(p). Hence by the second isomorphism theorem 3.2, there is a con-
gruence Ker(p)/0 on FV(x1, x2,23,24)/0 satisfying p(a) = p(b) <
ag(Ker(p)/0)bs. Thus f(ag) := p(a) is a well defined homomorphism from
FV(21, 39, w3, 24) /0 to L which satisfies f(z;/6) = p(z;) = . |

Example 6.4 Taking D to be the variety of distributive lattices, it is well
known that the free distributive lattice on three generators F'D(x,y, z) is:

xVz
zVy yVz

IfR={(xVy,yVz2)}, then 0 := ((xVy,yVz)) collapses the thick prime
quotients and so FD(x,y,z;R) := FD(x,y, z)/0 is given by:
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rNVNy=yVvVz

xV z Y

Hence this is the “most general” distributive lattice generated by z, vy, 2
and subject to relation z Vy = y V z; any other lattice of that kind is an
epimorphic image of it. As opposed to theorem 6.1 the relation x Vy =
y V z only holds for the generators; so a Vb = bV ¢ does not hold for all
a,b,c € FD(z,y,2z;R).

6.1.2 FV(P,<) as a special case of FV(z1, - ,2,, R)
Definition 6.3 If (P, <) is a poset on P = {xy,--- ,x,}, put
FV(P,<) = FV(x1," - ,2,;R)
where R is a set of relations of a very specific type, namely
R = {(wj,z; Nxj)|w;,z; € P, x; < xj}.

We call FV(P, <) the lattice freely generated by the poset P within the
variety V.

For V = L the variety of all lattices, F.L(P, <) has a neat description.
Namely, as easy extension of the Whitman test (see |3]) which handles
FL(xy, -+ ,xy,), it is shown in [23]| that FL(P, <) = T,/0, where 6 :=
{(t1,t2)|t1 <"ty and ty <’ t;} and <" on T, is defined by induction as
follows:

l.x<y: <= <y, forallz,y e P
2t Vity <ty = t; <'t3 and ty < 13
3. t3 <t Aly: == 13 <'t, and t5 <t
4ot <tz orty <ty =t ANty <' 3

5. 13 Sltl or ts S/t2:>t3 S/tl\/tg
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Notice that for R := () and P := 1 (the n-element antichain) we get
Fv(ﬁv S) - FV(.Tl, o 7xn7@> = FV(SUl,' te 7xn)-

Every n-generated lattice L € V is clearly isomorphic to FV(z1, -+ ,z,; R)
for a suitable set of relations R, but L needs not be isomorphic to any
lattice of type FV(P, <).

When V is the variety D of distributive lattices, we are dealing with the
lattice F"D(P) introduced in section 4.4.

z
Example 6.5 If (P, <):= I = 1+2, thenf = <(y,y/\z)>
L] y

collapses the following thick prime quotients of FD(x,vy,z):

YNz

Hence FD(P,<) = FD(z,y,2)/0=

6.1.3 Specializing the variety V in FV(P, <)

We are now giving an alternative construction of FV(P, <) in the special
case where the variety V is generated by some single finite lattice Y. We
first need to know the finitely many subdirectly irreducible members Z; of
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Var({Y}). Next take all non-equivalent P-labellings \; : P — L; (1 <
i < s) of these lattices, i.e. each ); is monotone and \;(P) generates L;
(cf. section 4.5). Notice that one Z; may give rise to many P-labellings
)‘j P — Lj where all Lj = Zz

Theorem 6.4 j24] With notation as above, the lattice FV(P) is isomorphic
to the subdirect product of Ly, - - -, Ls generated by the s-tuples (A1(p), A2(p),

5 M) (pePp).

Proof: For notational convenience we define FV(P) as the generated sub-
lattice mentioned above and verify the universal mapping property. It is
easy to see that the generating set {(A1(p), -+, \s(p))|p € P} of FV(P) is
isomorphic to (P, <), and so we identify the two. Take any X € V and any
monotone map « : P — X. By proposition 6.1, (a(P)) € V is a subdirect
product of some of the Z;’s, say («a(P)) C Z1 X Zy X Zy and correspondingly
a(p) = (ai1(p), az2(p), as(p)) for all p € P. Thus (o (P)) = Z, (a2(P)) =
(a3(P)) = Zs. Hence these a; (1 < i < 3) must be some of our P-labellings
Aj, w.lo.g. corresponding to A\ : P — Ly, Ay : P — Lo, A3 : P — Ls.
(Note that although Ly = L3(= Z), in a nonredundant subdirect product
we will have Ay # A3). Hence FV(P) — X, (a1, - ,as) — (a1, as,az) is the
sought extension of a : P — X: (A1(p), -, As(p)) — (A1(p), Aa(p), A3(p))-
|

6.2 Free modular lattices FM;3(P)

In this section, M will denote the variety of all modular lattices and M3
the variety of modular lattices generated by Ms. Thus by proposition 6.1,
X € Mj if and only if X is a subdirect product of factors Mz or D-.
Accordingly, the modular lattice freely generated by P within the variety
M, respectively M is denoted by F.M;3(P) respectively FM(P).

Recall that FM3(P) is always an epimorphic image of FM(P). As we
will see later (section 6.3), they are actually isomorphic for many types of
posets P.

L L
Example 6.6 For P := X

y 7 there are 6 non-equivalent

P-labellings of 2, namely
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X y z Xy Xz Yz

and a unique P-labelling of Mz, namely

M
3
Therefore FM3(P) is a subdirect product of (D9) x Ms. Since P is iso-

morphic to the subposet {(\(p), -+, (p))lp € P} of FM3(P), we can
identify any p € P with the corresponding T-tuple (A(p), -, A\7(p)). So

x (A(x), -+, A(x)) =(1,0,0,1,1,0,u) =: 100110,
y = 0101010
z =: 001011w

where {u,v,w} is the set of atoms of Ms. Thus the Hasse diagram of
FM;3(x,y, z) is given in figure 6.1 where:

p=x Ay = 0001000, qg=x N\ z=0000100,
r =y A z=0000010, a=xA(yVz)=000110u,
b=yA(xVz)=000101v, c=zA(xVy)=000011w,
u=pVq=0001100, v=pVr=0001010,
w=qVr=00001104, e=aVd(=e)=000111u,

f=0bvd(= f*) =000111v, g=cVd(=g*)=000111w,
0=xAyAz=0000000, d=(xANy)V(yAz)V(zAzxz)=0001110,

and p* = x V y is the dual of p, etc.

For bigger posets P, it becomes computationally cumbersome to com-
pute FM3(P) as the sublattice of Ly x - -+ x L, generated by all s-tuples
(A1(p), -+, As(p)) (p € P). It would be nice to e.g. first compute all the
join-irreducibles and then all joins thereof. However, as opposed to F'D(P)
not all join-irreducible of F M3(P) are infima of elements of P C FMj3(P).
For instance, in example 6.6 the join-irreducible a is z A (y V z).
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Figure 6.1: Hasse diagram of the free modular lattice on three generators.

In this section we show how one can predict the right V-morphisms 3;; :
L; — L; among the subdirectly irreducible factors of F M3(P) and herewith
(section 3.6) get the set J of join-irreducibles of FM3(P). Computing one
by one all the joins of elements of J is actually infeasible but the fact that
only V (and not A) is involved will allow for some other tricks to get the
job done (chapter 7).

The lattice FMj3(x,y, z) in example 6.6 coincides with the famous 28-
element Dedekind lattice FM(x,y, z). As a preview to section 6.3 we men-
tion that generally, whenever F.M(P) happens to be finite, it coincides with
FM;3(P).

6.2.1 Construction of a base of lines of FFMj3(P)

Let (P, <) be a finite poset. Suppose that \; : P — L; (1 <i < s) are the
pairwise non-equivalent P-labellingsof 2, and \; : P — L; (s+1 <1 < s+t)
are the pairwise non-equivalent P-labellings of M;5. As seen in theorem 6.4,

FM3(P) C Ly X+ X LgX Lgiqy X+ X Lgyy
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is the subdirect product generated by the tuples (A1(p), -, Ase(p)) (p €
P). For all 1 < i < s, we denote indifferently by 1 the unique nonzero
join-irreducible of L; and for all s+ 1 < j < s+, let (p,j),(q,7),(r,j) be
the three nonzero join-irreducibles of L;. Let A; = {(p, ), (q, ), (r,7)} be
the unique base of lines of L;. We define for all 1 < i < s + ¢, the map
it Ly — Ly X -+ X Lg X Loy X -+ X Lgyy by

i) := (B (@), -5 Bis(®), Bigsrn) (2), -+, Bisy ()

where as in definition 4.5, we let 3;; : L; — L; be the biggest V-preserving
morphism between L; and L; that maps labels below labels. By theorem
4.2 the B3;;’s satisfy 8;; = idy, and B, > Bji o §;;. By theorem 3.5, if we set

Ji = {1/11(1)71/12(1)7"' 71/18(1)}
J2 = U {wj(paj)vwj(Q7j)7wj(T7j)}a

then the sublattice F' of Ly x--- X Lgx Lsi1 XX Lsyy which is V-generated
by J; U Jy is a subdirect product of Ly X «++ X Ly X Lgyq X+ X Lgyy. In fact
by theorem 6.4, F' = FM3(P). Before we give an example to illustrate this
fact, let us clarify the details and the procedure involved in the computation
of the base of lines (J, A) of FM;3(P).

6.2.2 Steps to determine a base of lines (J, A) of
FM;3(P)

Step 1: Determination of the P-labellings of 2 and Ms.

We first compute the P-labellings of 2 and the P-labellings of M3. The
P-labellings of 2 are as in section 4.5, they correspond to the proper filters
of P. The computation of the P-labellings of M; relies on the number of
3-element antichains of P. In fact any 3-element antichain of P gives rise
to at least one P-labelling of Ms;.

Step 2: Determination of the morphisms (;;.

The determination of a morphism f;; between two P-labellings of 2 is
straightforward since £;;(1) = 1 < A\;7'(1) C )\]._1(1). Similarly the cal-
culation of a morphism 3;; between a P-labelling of 2 and a P-labelling
of Ms is not difficult. In contrast, the determination of a morphism [ be-
tween two P-labellings of M3 needs more attention. By considering the
quotient Mjz/ker(/3) and discarding the P-labellings for the moment, we
can distinguish five cases.
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Figure 6.2: 3 =0

1. |Ms/ker(B)| =1, i.e. ker(f) =V, then §(1) = B(0) = 0. So there is
only one morphism § =0

2. If |M5/ker(3)| = 2, then the following four subcases may arise.

a) [(1) = 1 and all atoms map to the same image y. Then necessar-
ily y = 1 since 3(a) = 5(b) = B(c) = y implies y = (a) V 3(b) =
BlaVvd)=p(1) =1

Figure 6.3: Two of the four possible morphisms, x is any of the 3 atoms.

b) 5(1) = 1 and exactly two of the atoms have the same image
y. Then again y = 1 and there are exactly 12 possible such
morphisms, exactly 3 of which satisfy 3(0) = 0.

Figure 6.4: (i) The 3 morphisms satisfying (0) = 0 and (i7) 3 of the 9 mor-
phisms satisfying 3(0) # 0 (each atom, say a for instance yields exactly 3 mor-

phisms).
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c) 0 < (1) <1 and all atoms have the same image y. Then neces-
sarily, (1) = y and there are exactly 3 possible such morphisms
corresponding to 3 choices of y.

Figure 6.5: 3 possible morphisms corresponding to 3 choices of y.

d) 0 < (1) < 1 and only two atoms have the same image y. Then
necessarily 5(1) = y and there are exactly 9—=3.3 possible such
morphisms corresponding to 3 choices for x, each of which com-
prises 3 choices for y.

Figure 6.6: 3 choices of y for a fixed z.

3. If |[M3/ker(B3)| = 3, then necessarily two atoms, together with the top
element of M3 must have 1 as image. In this case, there are exactly
9—3.3 possible such morphisms corresponding to 3 choices for x, each
of which comprises 3 choices for y.

Figure 6.7: 3 choices of z for a fixed y
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Note that the map f depicted by

is not a morphism since it is not V-preserving. In fact f(aVvb) = f(c) =

14V =0VY = fa)V f(b).

4. |Ms/ker(3)| = 4, then exactly one of the atoms, say z, together with
the top element of M3 must have 1 as image. In this case there are
exactly 18 = 3.3.2! possible morphisms corresponding to 3 choices for
x, each of which comprises 3 choices for y and 2! permutations on «a
and .

Figure 6.8: A possible such morphism.

Note that the map is impos-

sible since it is not V-preserving.

5. |[Ms/ker(B)| = 5, i.e. ker(8) = A, there are obviously 6=3! possible
morphisms corresponding to the 3! permutations on the images of the
3-element antichains.

Step 3: Determination of the base of lines (J, A).

Let Ly, Lo, -+, Lg resp. Lsi1, Lgio, -+, Lsyy be maximal sets of pairwise
non-equivalent P-labellings of 2 resp. Mj3. Considering the unique nonzero
join-irreducible 1 of L; (1 < i < s), and the three atoms (p, j), (¢,7), (1, j)
of Lj (s+1<j<s+t), we compute

(1) ¥;(1) forall e {1,2,---, s}
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(2) 1 ={;(p,7),¥i(q,4),;(r,5)} forall je{s+1,5s+2,--, s+t},

and we set

A = {ls—l—la ls+27 o 7ls+t}
J = {1/11(1)71/12(1)7 e ﬂljs(l)} U ls+1 U ls+2 U---uU lert-

Then (J,A) is a base of lines of F.M;3(P).

Example 6.7 For the poset P of figure 6.9(a) below, there are 12 pair-
wise non-equivalent P-labellings of 2 and two pairwise non-equivalent P-
labellings of Mz as indicated on figures 6.9(b) and 6.10(a) respectively. In
any P-labellings of 2, if f C P is on top, then P\ f is on the bottom?. We
have not indicated the bottom labels for simplification.

4 5
(a) P M .
1 2 3

3 4 5 34 35 45 145 245 345 1245 1345 2345

Ly Ly Ly Ly Ly Le Ly Ls Ly Liw Lu L
Figure 6.9: (a) A poset P with (b) 12 P-labellings of 2.

2 We represent a set by listing its elements as a string, for instance 245 represents
the set {2,4,5}.
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45

12
Ly

12
Liy

Figure 6.10: (a) Two P-labellings of Ms. (b) L)5 and L;3 are equivalent P-
labellings of M3 (which would trigger redundant subdirect factors).

The morphisms 3314 and 314,13 are given in figure 6.11, while the mor-
phisms (33, and [, 13 are listed in table 6.1 for all 1 <7 < 12. Likewise the
morphisms 314, and [3; 14 are listed in table 7.3 for all 1 <¢ < 12.

L13 L14

Figure 6.11: The morphisms (31314 in thin lines and (314,13 in dashed lines.

3]
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Table 6.1: The morphisms 33;, in thin lines and the
morphisms f; 13, in dashed lines (1 < < 12).

Table 6.2: The morphisms (314, in thin lines and the
morphisms f; 14, in dashed lines (1 <7 < 12).

To compute the elements of J, we will identify (by isomorphism) any P-
labelling of M3 to the poset of figure 6.12(a) and any P-labelling of 2 to the
poset of figure 6.12(b) i.e. (p,j) =2, (¢,j) = 3 and (r,j) = 4. This does
not matter since the order under consideration on the subdirect product
FM(P)C Ly X+ -Lgx Lgyq X -+ X Lgyy is taken componentwise.
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1 1
0 0
(a) (b)

Figure 6.12: (a) Poset identifying the P-labellings of Ms. (b) Poset identifying
the P-labellings of 2.

With this notation, we have
wl(l) - (ﬁl,i(l))1§i§14 = (1, 0, O, 1, 1, 0, O, 0, 1, 0, 17 1, 2, 4) = 10011000101124
The other elements of .J are computed in the same manner and listed below.

s(1) = 01010111111131, 4b5(1) = 00101111111141, (1) = 00010000101104,
¥5(1) = 00001000101104, vg(1) = 00000111111101, t7(1) = 00000010011002,
s(1) = 00000001010103,  1g(1) = 00000000101104, 10(1) = 00000000010000,
¢11(1) = 00000000001000, 1b12(1) = 00000000000100,

13(2) = 0001100010112, ¢13(3) = 00010111111131, ty5(4) = 00001111111141,
14(2) = 00000000011002, 1b14(3) = 00000000010103, 1b14(4) = 00000000001104.

Put

Jio= {(1), (1), (1)},
Jo = {¥13(2), ¥13(3), ¢13(4), ¥14(2), ¥14(3), ¢14(4) },
A = {{¥13(2),¥13(3), ¥13(4) }, {1014(2), 14(3), ¥1a(4) } }.

Then FM;3(P) has the set of join-irreducibles J = J; U J; (the disjoint
union of the “distributive” and “modular” parts), and the base of lines (J, A)
is depicted as:
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Y1 (1) W3(1)
13(3)

Yr3(2) V13(4)

e Yo(1) m "

P13(2
7 Yo(1)

P(1) b

Y14(2) Y1a(4) 14(2)
Y14(3)
Y10(1) Y11 (1) Y12(1)

Figure 6.13: The Hasse diagram of the Figure 6.14: A base of lines of FM3(P).
poset of join-irreducibles (J, <) of FM3z(P).

6.3 A proof of Wille’s theorem

This section is devoted to the proof of Wille’s fundamental result. We will
study two crucial lemmas on posets (the Dy-lemma and the M;z-lemma)
which will be used throughout the proof.

Ny N N3 Ma ) dement antichai
Weset Ay=1+1+1+1 .- @ @ @ @ crocmentancian
and
h4 h5
Hy — 14242 —
h; @ hy hy

Proposition 6.1 Let A and B be any two nonempty sets and let f : A — B
be a surjection, then there is an injection g : B — A with fog=1p.

Proof: By the axiom of choice, pick a choice function v : P(A) — A
and define g(b) = v(f~'(b)) for b € B. Then by definition of the choice
function, g(b) = y(f~1(b)) € f~(b) implies f(g(b)) = b. Thatis fog = 1p.
Moreover if g(b1) = g(by) then f(g(b1)) = f(g(bs)). So by = by and therefore
g is injective. |

Corollary 6.2 If fi : A — B and fs : B — A are surjective maps, then
A= B.
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Proof: By the previous proposition, there are injective maps ¢; : B —
A and go : A — B. By Cantor-Bernstein’s theorem (see [25]) A= B. ®

Lemma 6.1 (Dy-lemmal9]) Let M be a subdirectly irreducible modular
lattice and let M = (Ey U Ey) where Ey, Ey are finite and M 2 Ds. Then,

\/ Eo > \ E:.

Proof: Suppose \/ Ey # A\ E1 and set

My={re Mz <\/E} and M ={yeMly> \E}

Obviously My # 0 and M; # () since \/ Ey € My and A\ Ey € M; by the
finiteness of My, My. If x € My N My, then \ By < 2 < \/ Ey which is a
contradiction, whence My N M, = (). If z,y € My U M,, then z,y € M or
x,y € My or v € My and y € M;. For the first two cases, it is clear that
x Ay, zVy € MgUM;. For the later case, xAy < x <'\/ Ey implies xAy € M
and xVy >y > A\ Ey implies xVy € M;. Therefore x Ay, zVy € MyU M.
Thus My U M is a sublattice of M. Trivially £y C My and E; C My, so
EqU E; € MyU M. Therefore M = (FEy U Ey) C My U M, since My U M,
is a lattice. Hence M = M, U M; and the map

1

f:M— := Dy defined by f(z) = {
0

0 if 2 € My,
1 ifZGMl

is well-defined since M = My U M, is a partition. Moreover it is clear that
f is an epimorphism. Therefore M/Ker(f) = D,. But by assumption
M 2 D,. This implies that Ker(f) ¢ {A,V}, and so M is not simple.
By corollary 5.1 on page 42, this is a contradiction since M is subdirectly
irreducible by assumption. [ |
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Lemma 6.2 (Mj-lemmal|9]) Let M be a subdirectly irreducible modular
lattice and M = (EqU FEy U E3U E5 U Ey) where Ey # 0, E3 # 0, Es # 0
and all E; are finite. Set

d; = SupU{E]M divides j} and d;:= InfU{Eij divides i} (i =2,3,5)
If M 22 Ms, then
@G ATV @GAT)V ([EAT) > (dyVd) A (dy v ds) A (ds V d).

To fix ideas take,

E5, QS

M is clearly subdirectly irreducible since any congruence collapsing a
prime quotient collapses the whole M. For simplicity, a point a € M is

labelled E; if a € E;. One checks that indeed
@ANT)V ([HAT) Y (@A) > (dyVda) A (dyV ds) A (ds V ds),

which here boils down to 1 > 0.

Proof of lemma 6.2: Suppose that

@ AT)V (@ ATV (@ AT) # (v ds) A (daV ds) A (ds V ds).
1

We will prove the existence of an epimorphism M — M3 :—

0

This will be a contradiction since M is simple and M 2 M3 by hypoth-
esis. Put

(0) = do, 7(0) = (da A d3) V (do A ds) V (d3 A ds),
o(A) =dy A(ds V ds), Y(A) = dy V (ds A ds),

o(B) =ds \(dyV ds), V(B) =ds V (dy A dy),

0(C) =ds A (d2 V ds), Y(C) =ds V (dy A ds),

o(1) = (d2 V ds) A (d2 V d5) A (d3 V ds), (1) = du.
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O'(A) S 9 = /\(E1 UEQ) S /\E2 S \/E2 S \/(EQUEQ) = dz S ’)/(A)

Similarly o(P) < v(P) for all P € Mj. Put

We show that:

1) (VP,Q € Ms)
2)
3) M
)
Proof of 1):

oc(A)Vo(B) =

On the other hand,

WA AY(B) =

5= [o(P),2(P)]

o(PVQ) =0a(P)Va(Q)and y(PAQ) = 7(P)AY(Q).

S is a sublattice of M.

4) The five intervals [o(P),v(P)] (P € Mj) are mutually disjoint.

(da A (ds v ds)) V (ds A (da V ds))

(@2 (ds v d3)) v ds) A (8 v o)

by modularity since dy A (dsV ds) < dyV ds
(da Vds) A (ds V ds) A (d2 V ds)

by modularity since ds < dsV ds

(1)
o(AV B) since AV B =1.

@V (@ AT) A (@ v (@ £ T5)

(@ N 5) v (d A (& v (d 1 5))

by modularity since ds Ads < dsV (dy A ds)
(ds ANds) V (dy Ad3) V (da A ds)

by modularity since ds A ds < do

7(0)
(AN B) since AAB=0.
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Similarly, o(P V Q) = o(P) V o(Q) and y(P A Q) = v(P) A v(Q) for all
P,Q € Ms.

Proof of 2): Take z,y € S. If z,y € [0(P),y(P)] for some P € Ms,
then obviously Ay, zVy € [o(P),(P)] C S. Suppose say z € [o(B),~(B)]
and y € [0(C),~v(C)]. Then

zVy>o(B)Vo(C)=0c(BVC)=0c(l) and
zVy<y(B)Vy(C)<y(1) = zVyelol)y(1)] S
Also
z Ay <v(B)Ay(C) =v(BAC)=~(0) and
zANy>o(B)ANo(C)>0(0) = xAyel0(0),7(0)] CS.
Therefore S is a sublattice of M.

Proof of 3): For each e € E,,
o(A) < dy = \(E1UE:) < \ By < e < \/ B < \/(BoUE,) = dy < y(A).
So E2 - [O‘(A),’)/(A)] - S. Slmllarly, all Ez - S. So EOUE2UE3UE5UE1 -
S implies M = <E0 UFEyUFEsUFEsU E1> = S since S is a sublattice of M.

Proof of 4): Suppose for instance that [o(A),v(A)|N[o(B),v(B)] # 0.
Pick 2 € [0(4), 1(A)] 1 [o(B), 1(B)].
Y(A) Y(B)

0(A) <x<~v(B)and o(B) <x <~v(A)

G(A) a(B)
Then 0(A) Vo (B) <~v(B) and 6(AV B) =0(A) Vo(B) <~v(A) imply
(1) < ~(A) Ay(B) = v(AA B) = «(0). This is a contradiction since by
assumption

0) = (Ao Ads) v (J Ads)V (d5 A s) # (daVds) A(daV ds) A (ds Vds) = o (1),

Similarly other intervals are mutually disjoint.

From (3) and (4) follows that f: M — Mj defined by:
f(x) =P: = xeclo(P),(P)]

is well-defined, and so is obviously an epimorphism by (1). [ |
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Definition 6.4 For h € (H,<), denote by r(h) the length of the longest
chain between h and a minimal element of H. All sets p,(H) = {h €
Hlr(h) =n}, (n > 0) clearly are antichains.

Lemma 6.3 Let (H, <) be a poset not containing Ay as subposet and let
po(H) :=={mg,m1} (i.e. H has exactly two minimal elements). If

U(m;):={p€ Hlp¥*m} (i=0,1),
then either U(myg) or U(my) is a chain.

Proof: Let p € U(my) and ¢ € U(my). We show that p and ¢ are
incomparable. In fact if p > ¢, then ¢ > mg = p > mg which is a
contradiction since p € U(mg). Therefore p # ¢. Ditto ¢ # p. Now if
neither U(mg) nor U(m;) is a chain, then at least two elements of U(my)
say a,b are incomparable and at least two elements of U(m;) say c,d are
incomparable. By the previous arguments, this implies that {a,b,c,d} is a
4-element antichain of H, contradicting the assumption. |

Lemma 6.4 If Ay ¢ H and H; ¢ H, then each subdirectly irreducible
factor of FM(H) is Dy or Ms.

Proof:
Fix any subdirectly irreducible factor M of FM(H). By proposition

3.6 on page 17, there is an epimorphism FM(H) L M. Tts monotone
restriction ¢ : H — M is fixed throughout the proof. We emphasize that
1 could be highly non-injective. We assume that M 2 Dy, and M 2 M3 and
we show that |M| = 1. Namely, we shall prove by induction on n := |H|
that

if M= <w(H)>, then |M|=1.

e For n = 1, this is trivially true

e For n > 1, we may by induction suppose that if M = <w(H’)> for
some H" & H, then |M| = 1.

Put £ := ¢ (H) and e; := ¢(h;) for any h; € H. Let min(E) be the set of
minimal elements of . We proceed now by case distinction according to
|min(H)|. With (H, <) a fortiori (£, <) has no subposet A,. In particular
|min(E)| < 3.

Case 1: |min(E)| =1, say min(E) = {e}.
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Since M = (E) = ({eo} U (E\ {eo})) and M % Ds, eg > N(E \ {eo}) by

the Dy-lemma, i.e. lemma (6.1). Hence since ey is the minimum element
of E, eg = N(E\ {€}) and thus M = (E\ {eo}) = (¢¥(H')) for some
H' C H\ {ho}. So by induction hypothesis |M| = 1.

Case 2: |min(FE)| =2, say min(E) = {egp, e1}.

Set Ule;) = {e € Hle # e;}. By lemma (6.3), either U(eg) or U(ey) is a
chain. Suppose that U(ep) is a chain. Then (£, <) looks so:

enI
e,
91I €
We have M = (E) = (Eq U Ey) where Ey = 1(U(eg)) = {e1, - ,en}
and Ey = ¢(U(ey)) = {ele > ep}. So by the Dy-lemma

VAen - e} = Ndlele > e}
That is,

en > € (6.3.1)

By the Ds-lemma again,

\/{61,---,6,} > /\{e|e7éel,---,e,~} (1<i<n-—1),

hence
€; Z €it+1 A €p (1 S 1 S n — ].) (632)
Therefore,
er > ex e by (6.3.2)
> (e3 Aeg) A eg by (6.3.2)
= €3 AN €o
> e, Neg

eo by (6.3.1)
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From e; > ey follows at once (see the sketch of (E, <)) that ey is the
minimum element of E. As in case 1, one concludes that eg = A\(E\ {eo}),
whence M = (E'\ {ep}), whence |M]| = 1.

Case 3: |min(E)| = 3.

Then necessarily |po(H)| = 3. We will distinguish 3 subcases according to
the number |p;(H)| < 3 of elements of H with length 1.

Case 3.1: |pi(H)| =1, say pi(H)={hs}.

There is at least one element in py(H ), say ho with hy < hs. From |po(H)| =
3 follows po(H) = {ho, h1, ho}. If the set {h € H|h # hoand h # hy} (which
at least contains hs) contains two incomparable elements, say a and b, then
{a, b, ho, h1} would be a 4-element antichain of H which is a contradiction.
So

{he Hh# ho and h # hi} ={hy <h3 <---<h,} (n>2)(6.3.3)
is a chain. Moreover since p;(H) = {hs}, we have

ho < h or h1 <h = h > hg > hg. (634)

< e

For instance (H, <) is

We will show that ¢ (hg) > 1(hy) which will bring us back to case 2.

By (6.3.4), h > hg implies e > ey. Trivially h > h; implies e > e; (i =
1,2), and so A(E\{eo}) > e1 Aes. But by the Dy-lemma, eg > A(E\{eo}).
S0

€0 Z e1 N es. (635)

Next, M = ({eg, e1}U ({ele > e} U{ele > e1}U{e;|2 < i < n})) by (6.3.3).
So by the Ds-lemma,

eoVer > (N\lele>e}) A (Nfele>ei}) Aen
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Subcase A: Either ey, e, or eg, e3 are comparable. Then |min(E)| < 2 and we are
back to case 2 or case 1.

Subcase B: Neither eg, e; nor eg, e; are comparable. It then follows from e =
p(h) > eg and po(H) = {ho,hl,hg} that h > hg or h > hy or h > hs.
By (6.3.4) e > e3, and so A{e|le > ep} > e3. Similarly A{ele > e} >
e3, and therefore

€0 V €1 Z €3 VAN €3 A €9 = €9. (636)

In the lengthly sequel we are going to strengthen (6.3.6) to ey > es.
In other words, it will turn out that subcase B is in fact impossible. For
starters, consider the partition £ = FyU Fy U E3 U E5 U Ey depicted below
for some fixed i € {2,3,--- ,n}:

E; =E\{ep,e1,€2, -+ €}

Ey = {eo} Es ={ese3,--- €}

E3 = {61}
EO - @

Letting
6; = /\El,

we have e/ > ey by (6.3.4). We define

dy:=\(EoUEy) = ey, d3:=\(EoUEs)=ey, ds:=\(EUEs)=e;,
dy = N(EWU Ey) =€ Neg, ds:= N\(E1UE3) =e) Ney,
ds == N(E1UEs) =€, Nex = ey since €] > es.

By the Mj-lemma, i.e. lemma (6.2),
(dy Ad3) V (dy Ads) V (ds A ds) > (dy V ds) A (da V ds) A (ds V ds).

So

(o Ner)V(eoNe) Vet Ae) > ((eoAes)V(er Aeh)) A ((eo AV es)
A((er N €)) Ver)

Since ey < ¢, it follows by modularity that:
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(eoNe)) Ve = (eVe)Ae;
(eg Nej)Vey = (e3Vey)Ae]

Taking into account that (eg A €}) V (e; Ae}) < e} we get for all 2 <i<n

(o Nel)ViegNe) Vet Ae) > ((egNel)V(er Aep)) A e Vea)
/\(61 vV 62). (637)

Putting
€p 1= /\{e € Ele>ey} and é; := /\{e € Ele > e},

we get € = e;41 A ég A ép by (6.3.3). If we set

Cnil 1= /\{e € Ele > e, },

this includes €/, = e,11 A ég A é;. We further process the right hand side of
(6.3.7):

((eo N €f)V (e A€))) Aleg Vea) Aler Ves)

= ((eo Neir1 Nér)V(er Aeigr A éo)) A (eg Vey) A (e Vey) since eg < ég
and €1 S él

= ((eo Aeix1 Aé1) V (er Aeir1)) Aég A(eg Vea) Aer Vez) by modularity
= ((eg Aeir1) V(ex Aeip1)) Nég A ér A ey Vea) A(er Ves) by modularity
= (60 AN €i+1) V (61 N €i+1) A (60 V 62) AN (61 V 62).

The last equality holds since by subcase B and (6.3.4), ey < éy and ey < é;
imply ey V es < €y and e; V ey < é;. Coupling the above inequality with
inequality (6.3.7) and then taking the meet with (egV es) A (e1 Ves), we get

((60 A 61) V (60 N 62‘) V (61 A 61)) A (60 V 62) A (61 V 62)
Z ((60 A 6i+1) V (61 A 62‘+1)) VAN (60 vV 62) A (61 vV 62), 2 S ) S(ﬁSS)

Since ey A e < (eg V e2) A (e1 V e3), modularity applied to the first part of
(6.3.8) yields

((60 A\ 61) V (60 N 62‘) V (61 A 62)) A (60 V 62) A (61 V 62)

= (60 N 61) V (((60 VAN ei) V (61 VAN 62)) N (60 V 62) VAN (61 V 62))
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Hence, taking the union of both sides of (6.3.8) with ey A ey leaves invariant
the first part of (6.3.8) and yields:

(60 A 61) \V4 (((60 A 62‘) Vv (61 A 62)) A\ (60 Vv 62) A\ (61 \V4 62))

Z (60 A €1) V <((€0 A €i+1) V (61 N €i+1>) N (60 V 62) A (61 V 62))

= ((60 A 61) V (60 A €i+1) V (61 A €i+1)) A (60 V 62) A (61 V 62)
by modularity since ey A e; < (eg V ez) A (€1 V es).

So we get the following inequality for each 2 <i <n:
((60 A €1> V (60 A 62‘) V (61 A 61)) N (60 V 62) A (61 V 62)
Z ((60 A 61) vV (60 A 6i+1) vV (61 A 62‘4_1)) A (60 vV 62) A (61 V 621639)
[terating (6.3.9) from i = 2 to i = n, we get:

((60 N 61) V (60 N 62) V (61 A 62)) N (60 V 62) N (61 V 62)

> ((eo Ner) V(eg Aes) V(er Aez)) Aleg V) A(er Ver)
> ((60 Nep)V(eg Aey) V(ep A en)) A (e Vea) A (e Ves)
> ((eo Aer) V(eg Aens1) V(er Aentr)) Aleo Vea) Afer Ves)

Therefore, since ey > e A ey by (6.3.5), we have

€0 Z (60 N 61) (60 A\ 62) V (61 A\ 62)
Z ((60 VAN 61 60 VAN 62) vV (61 A 62)) VAN (60 V 62) VAN (61 vV 62)
Z ((60 A 61 60 A 6n+1) V (61 A 6n+1)) A (60 V 62) A (61 V 62)
Z ((60 N 61 60 N €n+1) V (61 AN €n+1)) N es
By (6.3.3),

Cnpl = (/\{eEE|e>en and e>eo}> A (/\{66E|e>en and 6>61})

_ 0 1
= Cp1 N 2 € Ne

where €}, := {e € Ele > ¢, and e > eg} and e}, := {e € Ele >
e, and e >ej}. So
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eo > ((eoNepyy)V 61/\62+1))/\62
= < eo V (e1 A €n+1>) A 6,11+1> A ey by modularity

(eoVer) A€y Aepy Aes by modularity
= el Aeh. Aex by (6.3.6)
= ey since egﬂ, eilﬂ > eg.
This is the desired contradiction to the hypothesis of subcase B.

Case 3.2: |pi(H)| =2, say pi(H)={hs, hs}.
If both hs and hy cover only one element of p(H), then one either has
T %h, ¥, “hs ¥h,
o (H) whence Hs C H or one has  g(H) whence A, C
0

H. In either case we obtain a contradiction. Hence we may assume that

o, %,
po(H) = {ho, hl, hg} and h(), hl < hg: i
ho h, eh:

Case 3.2.1: if hy <hy (Case hy < hy is analogue).
Consider the new poset H := H U {h,} where h; < hy < hs,hs and no

other new relation. By transitivity, H looks so:

N 'lhl

We claim that (H <) contains no A, and no Hs and p;(H ) = {h}}. In fact

e If H contains an Ay, then necessarily h| € A, since Ay g H. So
hi ¢ Ay and h ¢ Ay for all h > . Therefore Ay C {h}, ho, ho} which

is a contradiction.

e If [ contains a Hy, suppose that there exists h € Hs\{}', ho, hq, ha, h3, hy},

then necessarily h > hs or h > hy since pi(H) = {hs, hy}. So
{h} < hs < h} C Hs or {h} < hy < h} C Hj which, in either case, is

a contradiction since E ¢ Hs. So Hs C {h!, ho, h1, ho, hs, hy}. But

then each of the 5-element posets {h}, ho, h1, ha, hs}, {h}, h1,ha,hs,hy},
{h/l, hg, hg, h4, ho}, {h/l, hg, h4, ho, hl} and {hll, h4, ho, hl, hg} contains
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at least 3 relations of type a < b which is a contradiction since Hj
contains only 2 such relations.
So (H, <) contains no A, and no Hj as claimed.

It is clear that py(H) = {R}} since hi < I’ is the only maximal chain
ending at h’. Extend Y H— M to 1/1 H— M with w(h’) = (hy).
Because M = <@/} )) where (H, <) satisfies }pl ’ =1, case 3.1 implies
that |M| = 1.

Case 3.2.2: ho { h4, hl 7( h4

ha
Then necessarily ho < hy. So H looks so: 31\2 Im
1

Whence H \ {hg, he} = H™ =: hBI’ Ths

hl
From po(H ™) = {h1, ha}, applying lemma (6.3) to H~ yields U(hy) = {h €
H~|h # hi} is a chain or U(hy) = {h € H™|h # hy} is a chain.

Subcase (a): U(hy) ={h € H |h # h} isachain hy < hg << hop.

'"‘74\

For instance H™ := and so H =

We would like to extend H to a poset H := H U {Rh}} where hy < h} < h3
and h} < hy.
\Ith

A

So H 1ooks so:
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Correspondingly we would like to extend ¢ : H — M to a monotone map
o H — M with H(R}) = (hy). 1If we manage to do that, then we can
apply case 3.1 to 1 (since clearly py (H H) = {I,}) and conclude that [M]| = 1.
The problem is that if we want @/) to be monotone, then @Z)(hl) < ¢(h4) (since
hy < hy in H) This works only when v (h;y) < 1 (hy). Thus we must show:

W(hy) > W(hy), i.e. eq > ey. (6.3.10)
Proof of (6.3.10):
Let hox be the biggest element of U(h;) which is not greater or equal
ho. Put eg,i0 := A{e € Ele > ey, } and for 2 < i <k
By = {ez,eq, -+ e} and By = {eg,e1,e3, €242, €}
Applying the Dy-lemma to M = (EyU E) yields \/ Ey > A By, ie.
€9 > egNeypNegiro, 2<1i<k. (6.3.11)
Iterating (6.3.11) from i = 2 to i = k yields
es > egNegNeg = -+ > ey Nep N eapqo
Taking into account that esr o > eg by definition of hyy, we get
es > ey Ney. (6.3.12)
Also, applying the Dy-lemma to M = <E0 U E1> where
Eo = {eo,e2,€4,-+- €3} and E; = {ey, e3,- -, €42, ,Con},
we get
eoVeg > e Negipe, 2<i<k. (6.3.13)

FOI‘QS]S/{?,M:<E0UE2UE3UE5UE1> where

dy := \/(Eo U Ey) = ep, d3 = \/(Eo U E3) = ey,
d5 = \/(Eo U E5) = 62]', d2 = /\(El U Eg) = €y A\ €2j+27
@ = /\(El U E3) =e1 A €25+2, d5 = /\(El U E5) = e9 N\ e3.
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El - {637“ © 62549, 76277,}

E2 = {60} E5 = {€2a €4, 7€2j}

5=
I
=

By the M;3-lemma, we have

(eo Nep) V (eg Aesgj) V (e1 A eay)
( (eo A €gj+2) V (€1 A 62j+2)) A ((60 N egjta) V (ea A 63)) A ((61 A egjra) V (e2 A 63))
( eo A €egjr2) V (1 A €2j+2)) A ((eo V (eg A 63)) N egjia N ((61 V (ea A 63)) N egjio
by modularity since es A eg < ey < €254
= ((60 A egjia) V (er A 62j+2)) A (eo Vez) Neg A (e1 Vea) Aes Aegjio
by modularity since eg, e; < e3
= ((eo Aezjya) V(€1 Aezjga)) Aleg Vea) A (er Ves)
since eq, e; < ez = (eg A egjra) V (e1 A egjra) < €3 A egjto
= ((eo Aer) V (e A€gjpa) V(€1 A€zjia)) Aleg Vea) A (er Ves)
since eg A ey < eg < egji0 by (6.3.12)= eg A ey < e A €jia.

v

That is for 2 < j < k;

(60 A 61) V (60 VAN 62]') V (61 N egj) (6314)
Z ((60 A\ 61) V (60 N €2j+2) V (61 A €2j+2)) N (60 V 62) A (61 V 62).

Taking the intersection of both sides of (6.3.14) with (eg V e3) A (e1 V e3)
yields, for 2 < j <k,

((60 A 61) V (60 VAN egj) V (61 A 62]')) N (60 V 62) A (61 vV 62) (6315)
> ((60 A 61) V (60 N €2j+2) V (61 A €2j+2)) N (60 V 62) A (61 V 62).

Since e > eg A ey by (6.3.12) and ey > (eg A eyq) V (€1 A ey), we have
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(eo Aer) V (eg Aeg) V (e1 Aey)

((eo Aer) V 60/\64)\/(61/\64)) A (eg Vea) A (e1 Ves)
( eo Nep)V(eg Aegria) V(eg A €2k+2)) A (eg Veg) A(e1 Ves)
by 1terat1ng (6.3.19) from j =2to j =k

((60 A egpia) V(€1 A 62k+2)) A (eg Vex) A (e Vey)
since eg N ey < eq < egpqa = eg A ey < g A eapyo

(60 V(er A 62k+2)) A (eg Vey) A (e1 Vey)

since by definition of hok, ey < egpio = €9 A egxi2 = €9
(eo Ve1) A eagia A (eg Ves) A (e Ves)

by modularity since ey < egpio

(eo Ver) A (egVez)A(erVes)

since eg, e < €940 = €api0 A (€9 V eg) = €eg V ea.

es > (eg Ver) Aleg Ves) A (e Ves). (6.3.16)

On the other hand, M = (EyU FEy U E3 U E5 U Ep) where for 1 <i < j <k

Ey ={es, - €942, - ,€,}

Ey = {60}

dy
d5

|5 &
Ii

Es = {621'—‘,-27 T 7623'}

Ey = {627 €4, 762@'}

V<E0 U EQ) = €y V €2;,
V(Eo U E5) = ey, d2
A

(El U E3) =e1 A €25+2,

QU
w
i

V(EoU E3) = €1V e,
/\(El U E2) =g N €25+2,
/\(El U E5) =e3 A €2i19.

Q.
c_n
i
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By the Mj-lemma, we have

((eo Voeg) A (ep V 622‘)) Vv ((eo Voeg) A 62]») Vv ((61 Voeg) A 62]»)
((eo A ezjpa) V (e1 Aegjra)) A ((eo A eajya) V (€3 A eaiga))
A((e1 A egjpa) V (€3 A €2it2))
= ((60 A egjra) V(€1 A €2j+2)) A ((60 A egjtp2) V €2i+2) ANCE
/\((61 N egjia) V 62i+2) A es
by modularity since ey A egj12 < eg < ez and e Aegjro < e < e

v

= ((60 A €2j+2) V (61 A €2j+2)) A (60 V €2i+2) A €2j+2 A (61 V €2i+2> A €2j+2 A €3

by modularity since eg;1o < €942
= ((60 A €2j+2) V (61 A €2j+2)) A (60 V €2i+2) A (61 V €2i+2>
since e, e; < e3 = (60 AN €2j+2) V (61 N €2j+2) <ezA €2j12.

Therefore for 1 <i < j <k,

((60 V 622‘) A (61 vV Ggi)) V ((60 vV 622‘) A egj) V ((61 vV 622‘) A 62]')
> ((60 VAN €2j+2) V (61 VAN €2j+2)) N (60 V €2i+2) AN (61 V €2i+2) (6317)

Since for 1 <i < j <k, ey < eyj, the left hand side of (6.3.17) yields
by modularity

((60 V 622‘) N (61 V €2i>) V ((60 V €2i> N €2j) V ((60 V 622‘) N egj)

= (60 V €2i) A (61 V 622‘)) V (60 A egj) V €9; V (61 A 62]') V €92;
= (60\/622‘)/\(61\/622‘))V(eo/\egj)\/(el /\62]') since €9; S (60\/€2i>/\(€1\/€2i>
That is, by (6.3.17)

((60 vV egi) N (61 V Ggi)) V (60 A egj) V (61 N 62]')

Z ((60 A\ 62j+2) V (61 A 62j+2)) A (60 \V/ 621’-‘,—2) N (61 V 62@'—1—2)-

Taking the union of both sides of the previous inequality with (eg V ey;) A
(e1 V ey;) yields

((60 V 622‘) N (61 V 622‘)) V <((60 V 622‘) A (61 V Ggi)) vV (60 N egj) V (61 N 62]'))
Z ((60\/622‘)/\(61\/621'))\/(((60/\62j+2)\/(61/\62j+2))/\(60\/622‘4_2)/\(61\/62“_2)).

That is,
((60 V egi) N (61 V 622‘)) V (60 A egj) V (61 N 62]')

Z ((60\/62@')/\(61\/62,‘))\/(((60/\62j+2)\/(61/\62j+2))/\(60\/62@'4_2)/\(61\/62“_2))
since (60 V 622‘) A (61 vV egi) < ((60 V 622‘) A (61 V Ggi)) V (60 N 62]') V (61 VAN egj).
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Taking the intersection of both sides of the previous inequality with
(€0 V €gira) A (€1 V egi49) yields

(((eo Ve ) A(erV 622‘)) V(egNegj)V(er A 62j)> A(egVegio) A(erVeirs)
> [ eo Voegi) A (€1 V eQi)) V (((eo A egjra) V (e1 A 62j+2)) A (€eg V ei40)\
(e1V 6214_2))] N(eg V egi12) A (€1 V €2;12)
= ((eoVez)A(e1Ven))V [((eo/\eQHQ)\/(el Aeajra)) A€oV eaia) AlerVesiia)
A(eg V ei2) A (e1 V eQHQ)] by modularity since
(eo Vegi) A (e1Vey) < (eg Vegiga) A1V egiga)
= ((eo\/egi)/\(el \/622‘)) Vv <((60/\62j+2)\/(61 /\62j+2)) N(eoVesira)A(ey \/62,~+2)>

== (((60\/620 N (61 Vegi)) vV (60 /\62j+2) vV (61 /\62j+2)> A (60 \/62i+2) A (61 \/62i+2)
by modularity since (60 V 622‘) VAN (61 vV egi) < (60 V 622‘4_2) VAN (61 V 622‘4_2).

That is for 1 < i < j < k, we obtain the following recurrence (with
respect to j) inequality:

<((€0 V 622‘) A (61 V 622‘)) V (60 A 62]') V (61 A\ egj)) A (60 V €2i+2> A\ (61 V €2i+2)

Z (((60 \V4 egi) A (61 Vv Ggi)) V (60 A 62j+2) Vv (61 A 62j+2)) A (60 V 621’-‘,—2) A\ (61 V 622‘4_2)

Iterating the previous inequality from j =17+ 1 to j = k yields

(((eo Voegi) A (€1 V 622‘)) V (eg A egira) V(€1 A 62i+2)> A (€g V egi40)
INCGRY eQHQ) (6.3.18)

> (((60 Veg) AerVey)) V(eo A egga) V (€1 A 62k+2)) A (eo V egig2)
N(ey V 62,+2)

On the other hand, we have

€0 V 622 61 V €2i>) V (60 A €2i+2) V (61 A €2i+2)> A €1

((«

> (( (eo V e2;) A (€1 Vea)) V (eo A eaiva) V (€1 A 62i+2)> A (e V eziy2)
N(ey V 62,+2) A eq

> (((eo Veg) A (€1 Vey)) V(eg Aearra) V (61 A €2k+2)) A (eo V €9i42)
A(
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That is,

60 V 62/L 61 V 622‘)) V (60 N €2i+2> V (61 A\ €2i+2>> N €1 (6319)

vV
ey

60 Voeg) A (er V 62i)) V (eg A egig2) V (e1 A 62k+2)> A (e V eziy2)
/\(61 V 621_’_2) N €1

But

((60 vV egi) N (61 V Ggi)) V (60 A €2k+2) V (61 N 62k+2)
= <<€1 V 622‘) A ((60 V 622‘) V (61 A €2k+2))) V (60 A €2k+2)

by modularity since ey V ey; > €1 > €1 A egp 19
= ((61 Voegi) V (eg A €2k+2)) A ((eo Voeg) V (er A €2k+2))

by modularity since (eg V eg;) V (€1 A egria) > €9 V eg; > €9 > €y A €apia
= (e1Veg Vey) Aearia N (egV ey Ver) A egio

by modularity since ey; < egpio

== (60 V €1 vV 622‘) A €ok+2-

Therefore,

(((60 Voegi) A (er V €2i)) V (eg A eapqa) V (€1 A €2k+2)> A (eo V egita)

A(er V egiia) N ey

(€0 V€1V eg) Aearia N (€9 Vezia) A(e1Veia) Ae

(eo V ey Vey) A(egVegira) A(erVesira) Aey

since by definition of hog, eorro > €9 and eggio > €9i10 = €ap10 > €9 V €940
= (egVezt2) Nex

since(eo VeV egi) A (61 V 621’-‘,—2) Z €1
That is,
(((60 V egi) A\ (61 V 622‘)) V (60 A €2k+2) V (61 A 62k+2)> A\ (60 V 622‘+2)

/\(61 vV 62i+2) A (&)
- (60 V 622‘+2) A €1 (6320)

On the other hand eq V 9,10 > €1 A eg;rq by (6.3.13), €9 V €910 > €9 A €944
and eg V egi42 > (€9 V egi42) A (€1 V egiq2) imply

€V €40 > ((60 Vegita) A (e1 V 62i+2)) V (e A egiva) V (€1 A €giya).
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Whence
(eo Vegiga) Ney 2> <((60 Vegit2) A (€1 V ezit2)) V (eo Aeaiga) V (€1 A 621‘—}—4)) Ner.

That is, by (6.3.20)

((60 V 622‘) A (61 V €2i>) V (60 A €2k+2) V (61 N €2k+2)> A (60 V €2i+2)
(61 V 622‘+2) A (&) (6321)

> (((eo V eaiga) A (€1 V €2i42)) V (€g A €aigs) V (€1 A 62i+4)) Ner.

A/~ >/~

That is, by (6.3.19) we have the following recurrence inequality for 1 <1i < k
(((eo Vesi) A (er Veai)) V (€0 A eaiga) V (€1 A ew)) Aer (6.3.22)
> (((60 V egita) A (€1 V €e2i42)) V (€9 A €aiva) V (€1 A €2i+4)> A er.
By Wille [9], page 24T:
(eo Veax) Nep > e A egpra. (6.3.23)
But then also (shift indices)
(eg Veggra) Ner > e1 A eggyy. (6.3.24)
Now ey < egp12, and so
eo N eapro => (e V eagia) A ey. (6.3.25)
Together with (6.3.24) follows
€1 A€o > €1 A gy, (6.3.26)
Because ey < ey (6.3.23) because
e1 Ve, > e egyo. (6.3.27)
From (6.3.27) and (6.3.26) follows by induction that

€1 N €9l Z (&) A €2k+2 Z s Z €1 A €on+2.- (6328)
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In summary, since e4 > (eg A eyq) V (€1 A e4), one obtains from (6.3.16)
that

€y = ((60 Ver) A (e Ves) A (e V 62)) V(eg Aeg) V(er Aey)

= (((60 Ves) A (e V 62)) V(eg Aeg) V(er A 64)) A (eg V eq)
by modularity since eg V e; > (eg A ey) V (€1 A ey)

> (((60 V) AferVes)) V(e Aes) V (er A 64)> A ey
since eg V e; > €;

> (((60 Vo egni2) A (€1 V eai2)) V (g A €aiia) V (€1 A 62k+4)> N eq
by iterating (6.3.22) from i =1toi =k

> ((eans2 Veo) V(€1 Aepsa)) A
since ey < egpro < €gpro = (€0 V €app2) A (€1 V €ap12) = €y
and ey A egpiq = €

= (eo Veaqa) Aey
since eg V egpio > €1 A egprg by (6.3.13)

> e A\ egpqa since ey < €gpo

e1 A egnyo by (6.3.28)
ey since es,.19 > €1 by definition of eg,0

Therefore e4 > e1, which was to be shown

Subcase (b): U(hy) isachain hy < hy <--- < hoy_;.

So H™ := H \ {ho,h1} and so H =

If we can show that «(h;) > ©(hs), then E = t(H) has (at most) two
minimal elements, whence |M| =1 as in case 2.

Claim: ?/)(hl) Z ’ll)(hg) i.e. €1 Z €9.
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Proof of the Claim: Let hy,_1 be the biggest element of U(hy) which is not
# ha. Moreover let eg,41 := {€e € Ele > eg,_1} and let hy < hy < -+ < hgpy
be the elements in the set {h € H|h # ho and h % hq} (they form a chain
since otherwise Ay C H). Put ey10 := A{e € Ele > ea,,}. Applying the
Ds-lemma to M = ({e;} U (E\ {e1})) yields

€1 Z €0 A €9. (6329)

Also for 1 < i < k, we apply the Dy-lemma to M = <E0 U E1>, where
Ey = {60761, €3, " 7621'71} and By = {62764, T, 6241 ,€2n71} to obtain
€p V €21 Z €9 A €2i+1, (]_ S 1 S k’) (6330)

For 1 < j < m, applying the M;s-lemma to M = <E0 UFEyU E3 U Es U E1>
where

Ey ={es, - €942, " ,€am}

Ey ={eo} Es = {ey, €4, €95}

yields

(60 A 61) (60 N egj) V (61 A 62]')

by modularity since egj1o > €3 > €2 Aeg
= ((eo Aezjya) V(€1 Aezjya)) A (eo V (e2 Aes)) A (e1 V (ea Aes))
since ez > (eg A €gj42) V (€1 A €2j12)
= ((eo Aeajsa) V(€1 Aeajpa)) Aleg Vea) Afer Ves) Aes
by modularity since eg, e; < es
= ((eo Aegjya) V(€1 Aegjya)) Aleg Vez) Aer Ves)
since eg > (eg A €g;4+2) V (€1 A €gj42)

( €0 VAN €2J+2 (61 A €2j+2>) VAN ((60 N €2j+2> V (62 VAN 63)) N ((61 VAN €2j+2) V
= ( €0 AN €2J+2 (61 A €2j+2>) VAN (60 V (62 N 63)) VAN €25+2 VAN (61 V (62 VAN 63)) A €25+2

(62 A 63))
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Therefore taking the intersection of both sides with (eg V e2) A (€1 Vey), we
get

((60 A 61) V (60 A egj) V (61 N 62]')) N (60 V 62) N (61 vV 62)
Z ((60 VAN 62j+2) V (61 A 62j+2)) VAN (60 V 62) A (61 V 62) (6331)

On the other hand, ey Ve; > ey > ey Aep and ey V ey > €1 > eg A e imply
(egVea)A(erVey) > (egVer). Also, (egVer)V(egVes)V(erVeyj) > egVes.
So ((60 A 61) V (60 N egj) V (61 A egj)) VAN (60 V 62) A (61 V 62) Z €0 Neq. Therefore
taking into account (6.3.31), we get

((60 N 61) V (60 N 62]') vV (61 A egj)) A (60 vV 62) A (61 vV 62)
- (60 N 61) V <((60 N 61) V (60 N 62]') vV (61 A egj)) A (60 vV 62) A (61 V 62))

Z (60 A\ 61) V <(<€0 A €2j+2) V (61 A €2j+2)) A (60 V 62) A (61 V 62))
= ((60 N 61) V (60 N €2j+2> V (61 N €2j+2)) A (60 V 62) N (61 V 62)
by modularity since ey A e; < (eg V ea) A (e1 V ea)
That is for 1 < 5 < m, we obtain the following recurrence inequality

((60 N 61) V (60 N 62]') V (61 A egj)) N (60 V 62) A (61 V 62)
Z ((60 N 61) V (60 A €2j+2> V (61 N €2j+2)) A (60 V 62) N (61 V 62).

Iterating the later inequality from j = 1 to j = m yields
((eoAer) V(g Aea) V (e1 Aea)) Aleg Vea) Afer Ves)
> ((egNer) V(egAes)V(er Aes)) Aeo Vea) A(er Ves)

Z ((60 A\ €1> V (60 A\ €2m+2) V (61 N €2m+2>) N (60 V €2) N (61 V 62)

That is
((eoAer) V(eg Aea) V(e1 Aea)) Aleg Vea) Aler Ves)  (6.3.32)

> ((eo Ner)V (eg A egmaiz) V(1 A 62m+2)) A (eg Vea) A (e Ves).
But e; > eg Aeg, e1 > e1 A ey and by (6.3.30) e; > eg A ey. So
(eo Aer)V (eg Aea) V (er Aes)
((eoAer) V (eg Aea) V(e1 Aea)) Aleg Vea) Afer Ves)
((eo Aer) V(e A €amya) V (€1 A €amia)) Aleg Vea) Aer Ves) by (6.3.32)
((e0 A €2mg2) V (€1 A eamia)) A (€0 V e2) A (e1 V e2)
since by construction ey < €940 Or €1 < €910 implies eg A e; < eg A €gppio

€1

AVARAVARAY

or eg A ey < ep A ey
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But,
{e € Ele > eg,} = {e € Ele > ey, and e > ey} U{e € Ele > ey, and
e>e}. So

eami2 = \{e € Ele > ean} = €500 A€o,

where €3,,,, = {e € Ele > eg,, and e > ¢} and €},,,, = {e € Ele >

eom and e > e} So ey A eamya = € A€, 0 A€o = € A€y, , since
0 - _ 0

€o < €5,,49- Ditto e; A egmyoa = €1 A€y, 5. Therefore,

er > ((eo A egmnia) V(e1 A€, 0)) Aleg Ve) A (e Ver)

= ((eo A €gpya) Ver) Aed, o AleoVea) Aler Ves)
by modularity since eg A €3,,.5 < eg < €9,

= (egVer) A€y, o AeonioA(eoVe)A(erVes)
by modularity since e; < e}, .,

== (60 vV 61) A (60 vV 62) A (61 V 62) N Com+2
since €gpmy2 = e(2)m+2 A 6%m+2

= (60 V 61) AN (60 V 62) AN (61 V 62)

since €g, €2 < €gpy2 OT €1, €2 < €42 IMplies ey V ea < €gpya OT €1V €3 < €240
> (egVer) ANey since (egVey)A(er Vey) > e

This is:
€1 Z (60 V 61) N €9.

Thus it remains to show that ey V e; > es to get e; > e5. Taking ¢ = 1 in
(6.3.30) yields

eo Ve > ey Aes. (6.3.33)
Since eg;_1 > e3 > eg for 2 < i < k, (6.3.30) implies eg; 1 > €3 A €941, i.€.
ea Negi1 > eaNegiyr  2<1<k
Iterating the later inequality from ¢ = 2 to ¢ = k yields
ea/\eg > eg/\es > - -+ > exN\egp1 = €9 since ey < egri 1 by definition of hgp 4
Therefore (6.3.33) yields ey V e; > ey which was to be shown.

Case 3.3: |pi(H)| =3 say pi(H) = {hs, ha, hs}.
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g <7

h3 \ /h4 h

Since Ay ¢ H, for instance I\'h °  with no other relation is not
ho 1 N\,h
2

:’( <

\\\ /’I’; N /h N ,H,’
allow. Thus without lost of generality, if these I ’ I * I °  where the
h h,

o oM
only relations among hg, hq,--- , hs, then we would have H; C H. Thus
| | R R 0% (A |
without lost of generality, we have with possibly more
ho hl h2

relations.

In order to avoid that {hg, hq, -+, hs} = Hj, one of these cases must
occur:

Subcase (a): hy > ho.

Extend H to H := HU{h'} so H :

Extend 9 to {b\ H— M by setting {p\(h’) = 1(hs) A(hy). We claim that
Ay g H and Hjy g H. In fact

o If Ay C ﬁ, then there are hg, hy € 2] \ {W, ho, hy,- -, hs} with Ay =
{W', hs, hg, h7} or Ay = {I, ho, he, h7}. But then hg > hs or hg > hy
or hg > hy since p1(H) = {hs, hy, hs}. This implies that hg > A’ or
he > hs which is a contradiction.

o If H; C H, then there is h € H\ {I',ho, h1,- - , hs} with h, h' € Hj;
since Hy & {I, ho, hy,---hs}. But then as before h > h' or h > hs.
If h > k', then {h' < hg < h} C Hs or {h' < hy < h} C Hs which is
impossible. If h > hs, then automatically any other k£ € Hj is such
that & > A’ or k < h/ which is also impossible.

So neither Ay, nor Hs is contained in . 1//1\ is clearly monotone and since
pi(H) = {hs,)'} and M = (¢(H)) where |py(H)| = 2, case 3.2 implies
|M| = 1.

Subcase (b): hy > hs.



88 Chapter 6. Free modular lattices

That is Extend H to H := HU {Rh}} so:
ho hl h2

and extend ¢ to ¢ : H — M via @Z(h’Q) =1 (hy).

If Ay C ﬁ, then necessarily hl, € A4. Since hy < hy, < hy, hs, there is
at least a point h € Ay \ {h}, ho, b1, h3}. But then h > hy or h > hs or
h > hs. In the two first cases, h > hi} which is impossible. In the later
case h > h3 > hg, ha. So hg, hi, hs ¢ Ay. therefore Ay = {h), a,b,c} where
a,b,c < hs. But then H D {hs,a,b,c} = A, is a contradiction.

If Hys C ﬁ, then necessarily hl, € Hs. Since Hs € {ho,h1,- -, hs}, there is
a point h € Hy \ {h, ho, -+ ,hs}. But h > hy or h > hs or h > hg. The
first two cases implies that Hs contains a chain of type a < b < ¢, which is
impossible. The later case implies that {h3 < h} C Hj. Therefore there is
a k € Hs such that {hy < k} C Hs or {hs < k} C H;. Either of these cases
yields a contradiction. R R

Ay € H and Hs € H. Clearly ¢ is monotone and |p;(H)| = 2. So |[M| =1
as in case 3.2.

Subcase (c): hs > hy.

Hé - H;l - N }’15 hé h4\ - < h5
So is isomorphic to and the conclusion
ho hl h2 ho hl h2

is as in subcase (b).

Subcase (d): hs > hy.

So W extend H to H := H U {h}} so
ho hl h2

extend ¢ to ¢ : H — M via @E(h’l) = 1(hy). One can show as in case
(b) that Ay ¢ H and H; ¢ H. Clearly t is monotone and M = (¢(H))
pl(ﬁ)’ = 2. So [M] =1 as in case 3.2. Because Ay € H, we have

< 3 and ’pl(H)’ < 3, i.e. all cases have been dealt with. [ |

and

where

’PO(H)

We recall Wille’s theorem.

Theorem 6.5 [¢/(R. Wille[1973]) For each finite poset (H, <), the fol-
lowing statements are equivalent:
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(i) |[FM(H)| < o0

(ii) H contains no subposet Ay or Hs.

Proof: (i) = (i) If H contains A4, then put
ﬂmy:«LQ®§ ﬂmyzga,m%
f(h3) : <(0’071) ) .f(h4) = (17 ’1)>'

Define f(h) € Sub(Q?) arbitrary for h € H \ Ay. Then (f(H)) C Sub(Q?)

is known to be infinite. Therefore |FM(H)| = oco.
If H contains Hj, then put f(hy), f(hy) and f(hs3) as above and

f(h4) - <(1a070)’ (17 L, 1)>a .f(h5) = <(O> 1’0)7 (1’ L, 1)>

and take f(h) € Sub(Q?) arbitrary for h € H \ Hs. For the same reason as
above |[FM(H)| = .

1
1

(i1) = (i) Lemma 6.4 implies that FM(H) € Mj. Therefore by theo-
rem (6.2), H < FM(H) extends to an epimorphism FMs(H) — FM(H).
Conversely, FM(H) — FMs3(H) is an epimorphism since M3 C M.
Hence by corollary (6.2), FM(H) = FMs3(H) which is finite since M3
is locally finite [17]| (i.e. any finitely generated free lattice in Mj is fi-
nite). |



Chapter 7

The (a, B)-Algorithm

In this chapter, we implement an algorithm called (a, B)-Algorithm' to
compute all the elements of a closure system on any finite set. We give
some simple examples and we apply this algorithm to compute F'D(P) and
FM(P) for posets of small size.

7.1 The principle of exclusion

Let C be a set and let P, P, --- , P, be a set of properties that the elements
of C' may have. In general an element can have zero, one or more than one
of these properties. We write P;(x) to indicate that element x has property
P; and we denote by N(FP;) the number of elements that have property P;.
We want to compute the elements of C' that satisfy all the properties P; .
Recall that the principle of inclusion-exclusion states that

N(P, A Py) =N(P))+ N(P,) — N(P,V B).

More generally,

N(PLAPyA---AP,) = > N(P)— )  N(RVP)
i=1 1<i<j<n
+ > NEPVPVP)+--
1<i<j<k<n

+ N(PLVPV---VP,)

IThe justification of the name will be apparent later on.

90
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which can be written in a compact form as

NP APy A---ANP,) = > "IN\ R).  (711)
IeP({1,2,-- ,n})\{0} icl

Note that there are 2™ — 1 terms on the right hand side of formula (7.1.1)
that need to be added or subtracted. So the principle of inclusion-exclusion
has exponential time complexity O(2"), therefore it will be costly to be
implemented.
An alternative solution to this problem was proposed by M. Wild [26],
namely the principle of exclusion. Basically, the idea behind this prin-
ciple is very simple. We start with a set Cy = C' and then we recursively
exclude all the elements that fail to have property Py, Ps,---, P,. That is,
given Cj, we compute

C; = {x€Cy: Pi(x)}, the set of elements satisfying P;.
Cy = {xe€Cy: Py(x)}, the set of elements satisfying Py and Ps.
C, = {x€C,1: P,(x)}, the set of elements satisfying P, Py up to P,.

Obviously we have
C’OQC’lQQCn and N(Pl/\PQ/\/\Pn):|Cn|

Observe that the principle of exclusion uses only n “steps” to compute
N(Py APy A\ --- A P,) as compared to the 2" — 1 steps involved in the
principle of inclusion-exclusion. The circumstances under which this ap-
parently naive approach is successful are discussed in Wild [26]. Besides
the generalities, Wild [26] furthermore focuses on certain properties P; cou-
pled to so called implications A — B, and introduces the (A, B)-Algorithm.
The (a, B)-Algorithm is a special case of the (A, B)-Algorithm in that A
becomes {a}, but it will be further tailored to fit our modular lattices.

7.2 The (a, B)-Algorithm

7.2.1 Preliminaries and notations

Definition 7.1 Let M be a set. An implication on M is a pair (A, B) of
nonempty subsets of M which will be sometimes denoted by A — B. In
the implication A — B, A is called premzise and B is called conclusion.
A subset X C M is said to be (A, B)-closed if A C X = B C X (equiva-
lently: AZ X or B C X ). More generally, if ¥ is a set of implications on
M, a subset X C M is said to be X-closed if X is (A, B)-closed for every
implication A — B in Y. The set of X-closed subsets of M is denoted by
c(x).
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One easily shows:

Proposition 7.1 C(X) is a closure system on M, whence a complete lat-
tice. Conversely any closure system on M is of the form C(X) for some
family X2 of implications on M.

Proposition 7.2 Let P be a finite poset. For any non-minimal element a
of P, let B, be the set of lower covers of a and ¥ = {{a} — B, : a is
non-minimal in P}. Then C(X) = Id(P).

Observe that in proposition 7.2, each implication in X is of the form
{a} — B i.e. with singleton premise. This justifies the name of the
(a, B)-Algorithm. We will only deal with this kind of implication, but will
later see how the (a, B)-Algorithm can be improved in order to take into
account the implications that do not have singleton premises.

Definition 7.2 A linear extension of a poset (P, <) is a poset (P,<')
where <" is a linear order containing <.

As is well known, this amount to iteratively “shelling of” (in any order) the
minimal elements of P (refer to [27] for more details about linear extension
of a poset).

g
d f 4
e\
a b c 1 2 3 2 5 1

Figure 7.1: A poset P (on the left) and two linear extensions {1 <2 < --- < T}
of P.

Before we state the exact formulation of the (a, B)-Algorithm, we begin
by introducing an example to illustrate some of its computational details.
Let (P, <) be a poset with a linear extension p; < py < --- < p,. Any
subset X of P is identified with its characteristic function encoded by the
0,1-vector (0;)1<i<n, Where
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By definition, a 3-valued row r = (ry,rg, -+ ,1,) € {0,1,2}" is the family
of all subsets X of P that satisfy for all 1 <i < n:

r, =1 = piEX

It follows that for r; = 2 there is no restriction on p;, and so the
cardinality of a 3-valued row r is 2™ where m is the number of occur-
rences of 2 in the vector r. If for example P = {p1,p2, ps, ps, s}, then
X = {pe,ps,ps} is encoded by ox = (0,1,0,1,1). If we consider the 3-
valued row r = (2,1,0,2,1), then |r| = 2% and r represents the family

{(0,1,0,0,1),(0,1,0,1,1),(1,1,0,0,1),(1,1,0,1, 1)},
which is the same family as
{{p2, ps}, {p2, P4, 25} {p1, P2, ps} {pr. 2, pa ps} )
The power set P(P) is encoded by (2,2,2,2,2).
Example 7.1 Consider the poset P of figure 7.1 and set
Y={4—{1,2}, 5— {1,3}, 6 — {1,3}, 7T — {2,4,6}}.

We want to compute Id(P), the lattice of ideals of P. Putting

Co="P(P)=1(2,2,2,2,2,2,2), Cir={XeClde X={1,2} C X},

Co={XeCheX={1,3} CX}, C3={Xely6e€X={1,3}CX},
C4Z{X603|7EX:>{2,4,6}QX},

Cy can be written as (C1N{X € Cy: 4€ X}) U (C1N{X € Cp: 4¢ X}).
But

CiN{XeC:4eX}={XeCy: 1,24 X} =(1,1,2,1,2,2,2)
and CyN{X €Cy:4¢ X} =(2,22,0,2,22).So
Cy=(1,1,2,1,2,2,2) U (2,2,2,0,2,2,2).

Y ) Y ) Y )

We can compute Cy, C5 and Cy in the same manner.
The steps involved in the computation are summarized on the following
table 7.2.



94 Chapter 7. The (a, B)-Algorithm

0/2 2 2 2 2 2 2| Co=P(P)
11 1 21 2 2 2[C:4—1{1,2}
2 2 2 0 2 2 2
11111 2 2
2111 2 1 0 2 2|Cy:5— {1,3}
1 21 01 2 2
2 2 2 0 0 2 2
11111 2 2
11110 1 2
3111 21 0 0 2[C5:6— {1,3}
1 2101 2 2
1 2100 1 2
22 2 0 0 0 2
111 1111
11111 20
11110 1 2
4011 21 00 0[Cy:7— {2,4,6)
1 21 01 20
1 21 0010
2 2 2 0 0 0 0

Table 7.2: Summary of the steps to compute Cy

By the principle of exclusion we know that Cy = C'(X). From table 7.2
and from proposition 7.2, we deduce that |C(X)| = |[Id(P)|=1+2+ 2+
2422+ 2+ 23 = 21. We can explicitly compute the elements of Id(P)
by considering the 3-valued rows in Cj, for instance, (1,1,1,1,1,1,1) =
{1,2,3,4,5,6,7} = Pand (1,1,1,1,1,2,0) = {(1,1,1,1,1,1,0),(1,1,1,1,1,0,0)} =
{{1,2,3,4,5,6},{1,2,3,4,5}} =: {123456, 12345}2. If we express the rest of
elements of Cy in the same manner, we obtain

Id(P) = {0,1,2,3,12,13,23,123, 124,135,136, 1234, 1235, 1236, 1356, 12345,
12346, 12356, 123456, 123467, P}.

The Hasse diagram of Id(P) is given in figure [7.2

2For simplification we represent a set by listing its elements as a string.
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P
123467/ 123456

Figure 7.2: The Hasse diagram of the lattice (Id(P), Q)

We will now adopt a shorthand notation, for instance r = (2,5,0, 1, a) to
represent the family of subsets X € (2,2,0,1,2) satisfying the implication
ps — p2. Thusr = (2,0,0,1,a) is defined asr = (2,1,0,1,1)U(2,2,0, 1,0).
Indeed for a fixed X € r, either p; € X or p5 ¢ X. If p; € X (whence
a = 1), then py € X (whence b = 1). This yields the first vector (2,1,0, 1, 1).
If ps ¢ X (whence a=0), the implication p; € X = p, € X is always true no
matter whether or not p, € X (whence b=2). This yields the second vector
(2,2,0,1,0). Similarly we write for instance s = (b,2,b,a,1) to represent
the family of subsets X € (2,2,2,2,1) such that p, € X = {p1,p3} C X.
Hence s = (1,2,1,1,1) U (2,2,2,0,1).

From table (7.2), one can observe that the number of rows increases (or
remains constant) from one context (or working stack) to the next. This
might cause a space problem but in the new variant of the (a, B)-Algorithm,
M. Wild |26] exploited the well known technique of LIFO (Last In, First
Out) so as to keep the number of rows in the working stack below the num-
ber of implications to be imposed. The a, b symbolism we have introduced



96 Chapter 7. The (a, B)-Algorithm

helps to minimize the number of row splittings necessary and therefore con-
tributes to speed up the program. For instance from the previous example
(7.1), replace C; = {X € Cy : 4 — {1,2} C X} by the 3-valued row
(b,0,2,a,2,2,2). This yields table 7.3 which is more compact than the
previous one.

i1 2 3 4 5 6 7|C;:a;— B;
0[2 2 2 2 2 2 2] Co=P(P)
1[b b 2 a 2 2 2(C:4—1{1,2}
21 b 1 a 1 2 2| Co:b—{L3}
b b 2 a 0 2 2
31 b L a 1 2 2| C3:6— {13}
1 b1 a 0 1 2
b b 2 a 0 0 2
1 1 1 1 1 1 1
1 b1 a1 2 0
401 1 1 1 0 1 1|C:7— {2,4,6)
1 b1 a 0 1 0
b b 2 a 0 0 0
Table 7.3: Contracted form of table 7.2

One does not need to cancel® any row if the order of the implications in
> is chosen properly. This order is suggested once a linear extension of the

underlying poset is given. For instance, the linear extension of the poset
4

3
P = , suggests that the premises of the implications should be taken

1
in an increasing order, i.e.

Y={2—{1},3 —{2},4 — {3}}.

In this case, no row needs to be cancelled (see table (a)) as the premises
always fall in a label 2. But if the order in X is random, say

={2— {1},4 — {3},3 — {2}},

one may have to cancel a row, see table (b) where row 2 0 1 1 is cancelled
because of the implication 3 — {2}.

3The cancellation operation is costly to the program.
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1234 1234
22 22 Cy 2 22 2C
202 2 2022
2—=1 2—= 1
1122 1122
2002 ¢ o 2020
1122 23 2 2011 g4 3
2000 1120 2
1120 Cjt4—=3 1111
1111 2000
2011 ' 3—=2
Table (a) 1120C3
1111
Table (b)

Having given this example, we are now in a position to state the (a, B)-
Algorithm.

7.2.2 Statement of the (a, B)-Algorithm
The (a, B)-Algorithm can be stated as follows:

Input: A poset (P, <) with a linear extension p; < ps < -+- <
pn and the corresponding set of implications ¥ = {a; — Bj,as —
By, -+ ,ar — By} defined as in proposition 7.2.

Output: C(X), the set of 3-closed subsets of P, i.e. the set of order
ideals of P.

1. Initialize i = 0 and Cy = (2,2,---,2) = P(P).
2. Suppose that C; is computed do,

2.4) i=1i+1
21)) CZ‘:{XGCZ‘_ll aieX:>BZ-§X}.

3. If i < k, go to step 2. Otherwise output Cj and stop.

It is straightforward by the principle of exclusion to see that C, = C'(%).
Let us now compute the complexity of the (a, B)-Algorithm. Step 1 can
be computed in time O(1). If one imposes the implications in the order
listed in X, as does the (a, B)-Algorithm, then we will never delete a 3-
valued row because the premise of any implication always falls on a label 2.
So since the 3-valued rows are mutually disjoint, the list of 3-valued rows
at the end comprises at most N(P) rows, where N(P) is the number of
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order ideals of P. Further any row has been subjected to exactly £ < P
iterations (steps 2 and 3), each of which costs O( max |Ba,|) = O(|P]). So

the (a, B)-Algorithm has complexity O(N(P)|P|?).

Theorem 7.1 Given a finite poset P, the (a, B)-Algorithm computes the
N(P) order ideals of P in time O(N(P)|P|?). [

Example 7.2 For the poset of figure 7.5, we apply the (a, B)-Algorithm to
determine 1d(P).

Figure 7.3: P has 4 minimal elements, namely 1, 2, 3 and 4.

By proposition 7.2, Id(P) = C(X) where ¥ = {5 — {1,2,4}, 6 —
(1,4}, 7 — {2,3,4}, 8 — {3,6}, 9 — {5,6,7}, 10 — 6}. The
(a, B)-Algorithm applied to ¥ yields table 7.5.

t1 2 3 45 6 7 8 9 10||Ci:a— B
02 2 2 2 2 2 2 2 2 2| Co=P(P)
110 b 2 b a 2 2 2 2 2C:5—{124
5T & 2 1 a 1 2 2 2 2| Csi6—{L4)
b b 2 b a 0 2 2 2 2
111 1 2 11 2 2 2
31 6 2 1 a1 0 2 2 2| C5:7—1{234)
b 1.1 1 a 0 1 2 2 2
b b 2 b a 0 0 2 2 2
T 111 2 11 2 2 2
401 bV 1 a 1 0 d 2 2|C:8—{3,6}
b1 1 1 a 0 1 0 2 2
b b 2 b a 0 0 0 2 2
11 1161 1 2 a 2
501 b b 1 a1 0 d 0 2 |C5:9—4{56,7}
b1 1 1 a 0 1 0 0 2
b b 2 b a 0 0 0 0 2
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11 1 1 61 1 2 a 2

611 b0V 1 a1 0 & 0 2|Cs:10—6
b1 1 1 a 0 1 0 0 O
b b 2 b a 0 0 0 0 0

Table 7.5: Summary of the (a, B)-Algorithm applied to
the poset of figure 7.3

Note that in a 3-valued row r, any occurrence of a (respectively a’, a”,
-+) is coupled to t > 1 occurrence(s) of b (respectively ¥, b, ---) and
contributes a factor of (2' + 1) to |r| whereas m occurrences of 2 account
for a factor of 2™ in |r|. For instance
1(1,1,1,1,b,1,1,2,a,2)| = (21 + 1) - 22 = 12,
(1,0,0,1,a,1,1.0,d",2)| = (2" + 1)(2' + 1) - 2 = 18,
(b,1,1,1,a,0,1,0,0,0)| = (2! +1) =3, and
|(b,b,2,b,a,0,0,0,0,0)| = (23 +1) - 2t = 18.
So |Cs| = |Id(P)] =12+ 1843+ 18 = 51.

The (a, B)-Algorithm has been implemented with the Mathematica
6.0 (refer to [28; 29]), the code of this algorithm will be given in chapter
8. A number of algorithms to compute the set of order ideals of a finite
poset exists in the literature (see [3(; 31]), most of which have complexity
O(N(P)|P|*). George Steiner |31] was the first (in 1986) to present an
enumeration algorithm with complexity O(N(P)|P|).

Despite O(N(P)|P|?), the (a, B)-Algorithm is usually faster than the Steiner
algorithm since one row can encode many ideals.

7.3 Applications of the (a, B)-Algorithm

7.3.1 Explicit computation of free distributive lattices

In chapter 4, we gave the procedure to compute the free distributive lattice
FD(P). In this section, we will discuss two examples to see how the (a, B)-
Algorithm comes into play. We saw in step 3 of this procedure that we need
to determine (/d(K), <) which can now be done via the (a, B)-Algorithm.
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Example 7.3 (1) Compute FD(P, <) where (P,<) =

and sketch its graph.

The eight non-equivalent P-labellings of 2 are:

6 46 56 246 456 2456 3456 23456
12345 1235 1234 135 123 13 12 1
Dy Dy D3 Dy Dg De D7 Dg

Figure 7.4: The eight non-equivalent P-labellings of 2.

Now we compute the morphisms 3;;. Obviously 3;; = id since 6 € f; for
all proper filters f; of P. In figure 7.5, we compute ; and ;5 for 1 < i < 8.
Note that for a fixed i, (o (in dashed lines) and ;2 (in thick lines) are given
in the same figure.

Figure 7.5: (21 = (a3 =0, [z = Poa = o5 = P = [ar = Pog = id and [ia=
id, 62‘2 =0 for all ¢ > 2.
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One can similarly show that

® (31 =034 =0, and f33 = O35 = [36 = O37 = P3s = id.

o By = Byo = Pus = Bur = id, and By = Bys = [as — id.

® (51 = Bs2 = P53 = Psa and P55 = 56 = 57 = O = id.

® Bs1 = Bs2 = B3 = Boa = Pes = 0 and Bgg = Be7 = Bgs — id.
e B, =0for 1 <i<6and ;7 = (g = id.

e Og; =0for 1 <i<7and fgg = id.

We next compute K = {11(1), (1), - ,1¢s(1)} where

$i(1) = (B (1), Ba(1), -+, Bis(1))-

(1) =(1,1,1,1,1,1,1,1), (1) =(0,1,0,1,1,1,1,1),
w?)(]-) - (0707 ]‘707 ]‘717]‘7 1)7 ¢4(1) = (070707 ]‘707 ]‘707 ]')7
7/’5(1) - (07 07 07 07 ]-7 17 ]-7 1)7 ¢6(1) - (07 07 07 07 07 ]-7 07 1)7
¥7(1) = (0,0,0,0,0,0,1,1), (1) = (0,0,0,0,0,0,0,1).
The Has diagram of (IC, <) is given below. Note that (I, <) =
Fil*(P), D), as has already been proved.
( y
e .
¥, v 6 7
W, (D) g (1) . .
Wy (1) b (1) 5 3
Wy (1) 1

Figure 7.6: The Hasse diagram of (IC, <). Figure 7.7: A linear extension of (K, <).

We now apply the (a, B)-Algorithm to compute [d(K, <). We consider
a linear extension (figure 7.7) of (IC, <) and we set By = {1}, By = {1},
B4 = {2}, B5 = {2,3}, B@ = {4,5}, B7 = {5} and Bg = {6, 7} and
¥ ={2— By,3 — Bs,---,8 — Bg}. Then by proposition 7.2, Id(C, <
) = C(%).
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Table 7.6: Summary of the (a, B)-Algorithm.
From table 7.6 one can see that [FD(P,<)|=14+6+3+1+3=14.

Precisely,

{1234567, 123456, 123457, 12345, 12357, 1235}
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—— R e
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FD(P,<) = {12345678, 1234567, 123456, 123457, 12345, 12357, 1235,
1234,123,13,124,12, 1, 0}

and its Hasse diagram is given below.

12345678

1234567
123457 123456
12357 .j 12345

1235

123

13

Figure 7.8: The Hasse diagram of the free distributive lattice FD(P, <), the six
generators (doubly irreducible elements) are indicated.

We next illustrate with this example the fact that F'D(P) satisfies the
definition of a free distributive lattice. It is clear that F'D(P) contains a
copy of (P, <) which generates F'D(P) as we can see from the following
pictures.
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f
dVe
/ cVd e
d (cvd)Ne
d e
dAe bVe
b (bve)ANd c
c
b c/Nd
bAc
a
a
FD(P)

(P, <)

Suppose that D is the distributive lattice D = $

We pick any order preserving map, say for instance ¢ : P — () depicted
as follows:

Consider the map ® : F'D(P) — D depicted by the following figure:
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One can check by inspection that ® is a lattice morphism which extends

o.

(2) Consider the poset of figure 4.4(a) on page 34. The corresponding
poset (I, <) is given in figure 4.5. To apply the (a, B)-Algorithm on (I, <
), we first give (figure 7.9) a linear extension of (K, <), then the (a, B)-
Algorithm applied to (K, <) yields the next table where the first three
steps and the last two steps are summarized.

11 12 13

o
N

46

2

N

Figure 7.9: A linear extension of the poset (IC, <) of figure 4.5.
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From this table we see that

(22 +1) -2 = 36.

|[FD(P)| =22+ (2! + 1)(2' + 1) + -

, a0} where

bb2a000000000 = {aq, az, - - -

Precisely,

=
e
o &
A
I I
(e
0 —
S 3
iy
SN
o
1
~t Q0
S 3
5
-
AN
1
[ag) 0
SHES
Y
—
1
~N I~
S 3
o
= =
N1
— O
S

6112010000000 = {an, a2, 0,13} where

= 1236, a3 = 12346

a12

235,

161a100000000 = {aq4, ais, a1g} where

aii

135, a5 = 1235, a1 = 12345,

A14
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111611a000000 = {a47, ais, a19} where

a7 = 12356, aig = 123456, 19 = 1234567,

1111111001000 = {ago} where agy = 1234567(10),
1111111016004 = {a,gl, ag9, (lgg} where

as1 = 12345679, as = 12345679(10), azs = 12345679(10)(13),

1111111166 aa’0 = 111111116110 U 1111111162600
1111111162000 = {a24, ags, 26, A27, A28, Cng} where

aoyq4 = 12345678, o5 — A24 U (10), o6 — A24 U (9),

o7 = A94 U 9(10), 98 =— A94 U 9(11), 29 = A94 U 9(10)(11)
11111111b1al0 = {0,30, asq, (lgg} where

a3np = A4 U (10)(12), a3y = a4 U 9(10)(12), 32 = A4 U 9(10)(11)(12),

Finally 1111111111221 = {as3, ass, ass, ass} where

ass = azy U9(10)(13), asy = azy U9(10)(12)(13),
ass = 94 U 9(10)(1 )( ) o — K.

The Hasse diagram of F'D(P) is given below.
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Figure 7.10: The Hasse diagram of FD( IB% ), the six generators are

indicated.

A complete list is given in chapter 7, where for all posets P with 1 <
|P| < 6, the cardinality of F'D(P) and the number of factors 2 in the
subdirect product decomposition of F'D(P) are computed.

7.3.2 Explicit computation of free modular lattices

We have already seen that each finite modular lattice L is isomorphic to
C(J(L),A\) where C(J(L),A) is the set of A-closed order ideals of J(L).
Since we are only concerned with the variety M3 of modular lattices having
factors 2 or M3 in their subdirect product decomposition, any line [ € A
has exactly three elements, and the lines are mutually disjoint.
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Recall that an ideal I of J(L) is A-closed if [INI| > 2 =1 C I for all
le A Ifl={p,q,r}, this means that

{pa}CI = {pqr}CI
{p,r}CI = {p.qr}CI
{g.7} 1 = {p,q,r} C1I.

Which can be simplified to

{pa}yCI = rel
{pr}cl = qel (7.3.1)
{g.7r}CI = pel.

Recall that if @ is a non-minimal element of the poset J(L), B, denotes
the set of lower covers of a. By proposition 7.2, a subset I C J(L) is an
ideal of J(L) if and only if I satisfies a € I = B, C I for all non-minimal
elements a € J(L). Therefore a subset [ C J(L) is a A-closed order ideal
of J(L) if and only if I satisfies the implications a € I = B, C I for
all non-minimal elements a € J(L) together with the implications (7.3.1)
for all I = {p,q,r} € A. So the (a, B)-Algorithm cannot be applied to
(J(L),A) without modification since the implications (7.3.1) do no longer
have singleton premises. In this section, we show how we can upgrade the
(a, B)-Algorithm. For convenience we define:

333 := {000, 100,010,001, 111}
and we set
44 := {00,01, 10} and 55 := {00, 11}
since then

333 = 044 U 155.

This definition is handy because for each line [ = {p,q,r} C J(L), and for
each [-closed set X there are exactly five possibilities for X N:

g, {p}, e}, {r}, or {p,qr}

and this is encoded by 333. For instance if J(L) = {p1, p, ps, P4, ¢, D6, 7, Ps }
(obvious notation), then C'(J(L),A) = (2,3,2,2,3,2,3,2). Furthermore if
the implication p — {ps3,p4} is imposed, then (2,3,2,2,3,2,3,2) shrinks
to

(2,0,2,2,4,2,4,2) U (2,1,1,1,5,2,5,2).
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In fact if p ¢ X, then it does not matter whether or not ps3 or py € X,
and because X is A-closed, q,r ¢ X or either g or r € X exclusively. This
yields the first 8-tuple (2,0,2,2,4,2,4,2). If p € X, then {ps,ps} C X,
and because X is A-closed, either {¢,r} C X or ¢,7 ¢ X. This yields
the second 8-tuple (2,1,1,1,5,2,5,2). To see how to handle the label 4
and the 5, suppose we further impose the implication p; — {r}, then
(2,0,2,2,4,2,4,2) reduces to
(1,0,2,2,0,2,1,2)U(0,0,2,2,0,2,1,2) U (0,0,2,2,2,2,0,2)
and (2,1,1,1,5,2,5,2) reduces to
(1,1,1,1,1,2,1,2)U(0,1,1,1,1,2,1,2) U (0,1,1,1,0, 2,0, 2).

With the modifications we have just described, we are now able to use
the (a, B)-Algorithm to compute the A-closed order ideals of J(L). We
next give two examples to illustrate the procedure discussed in chapter 5
to explicitly compute FM(P).

Example 7.4 (1) In this example we compute FM(1+1+1), the free
modular lattice on three generators.

There are six non-equivalent P-labellings of 2 and only one P-labellings of
M.

a b c ab ac bc

be ac  ab c b a
L1 LQ L3 L4 L5 LG

Lq
Figure 7.11: The P-labellings of 2 and M3

The morphisms between two P-labellings of 2 are computed as in ex-
ample 7.3(1). The morphisms ;7 and [; are given in figure 7.12 for all
1<i<6.
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a

Figure 7.12: The morphisms between the six P-labellings of 2 and the unique
P-labelling of Mj.

QZ}l(l) - (ﬁli(l))1§i§7 = (17 0,0,1,1,0, a) 77Z)2(1) - (BQi(l))1§i§7 = (07 1,0,1,0,1, b)
P3(1) = (Bsi(1))1<i<r = (0,0,1,0,1,1,¢)  ¥hy(1) = (Bu(1))1<i<7 = (0,0,0,1,0,0,0)
7vb5(1) = (551'(1))1957 = (07 0,0,0,1,0, 0) 1/}6(” = (561'(1))1957 = (07 0,0,0,0,1, 0)
Yr(a) = (Bri(a) )i<i<r = (0,0,0,1,1,0,a)  ¢7(b) = (B7:(b))1<i<7 = (0,0,0,1,0,1,b)
Q/}7(C) = (ﬁ?i(c))1§i§7 = (07 0,0,0,1,1, C)

l7 ={a,b,c}isaline of Lz, so A = (l7) = {¢7(a),7(b),¥7(c)} is a base of

lines of FM(P) and J = {¢1(1), ¥2(1), ¥3(1), a(1), ¢5(1), ¥6(1), ¥r(a), ¥7(b), ¢r(c)}
is the set of nonzero join-irreducibles of FM(P). The Hasse diagram of

(J,<) and a linear extension of (J, <) are given below.

(1) Y1) 3(1) wr(c) 7 8 9
V1@ 0 (b) avr(c) vr(b) 4 5 L6
A
Y7 (a)
Ya(1) Ps(1) (1) 1 2 3

Figure 7.13: A linear space (J, \). Figure 7.14: A linear extension of (J, <)
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We now apply the modified (a, B)-Algorithm to compute C(J,A). We
set B4 = {1,2}, B5 = {173}, BG = {273}, B7 = {4}, Bg = {5}, Bg = {6}
Since {7 (a),17(b),17(c)} is a line, the corresponding elements 4,5,6 in the
linear extension will be coded by the sequence 3,3,3 in the (a, B)-Algorithm.

if1]2134[5[6]7[8[9] Ci:ay— B
0[2]21213]3[3[2]2]2
Tt 1 (2155|222 Cr:4—{L2]
202210 /4]4]2]2]|2
T[T ]1][1][2]2]2
2011 ]2](1]0[0|2|2]2]Cy:5—{1,3)
1]2](1]of1]o0[2]2]2
2/2210/0]2]2]2]2
T[1]T[T]1][1]2]2]2
3ll1f1]2]1]o]o|2|2]2]|Cs:6—{2,3)
1l2]1]of1]o]2|2]2
2/ b|bl0|0]al2]2]2
T[T ]1][1][2]2]2
alftf1]2]t]{olol2|2]2]| Ci:7— {4}
1]2(1]of1]0]0|2]2
2/ b|blo|0]al0o]2]2
T[1]T[T]1][1]2]2]2
51121002/ 0]2]|| C5:8— {5}
1l2]1]of1]ofo|2]2
2/ b|bl0|0]al0]0]2
T[T ]1][1][2]2]2
6l1[1]2]1]0]0[2]0]|0]| Cs:9— {6}
1{2(1]of1]o]0|2]0
2/1|1|0|0|1]|0]0]|1
2/ b|bl0|0]|al0]0]|0

Table 7.8: Summary of the modified (a, B)-Algorithm
applied to (J,A)

So [FM(1+4141)| = [Ce| = 23 +22 +22 4+ 2+ (22 +1).2 = 28. We
explicitly compute FM(14141) as follows.

(1,1,1,1,1,1,2,2,2) {123456} U P(789)
{123456, 1234567, 1234568, 1234569, 12345678,

12345679, 12345689, 123456789}
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(1,1,2,1,0,0,2,0,0) = {124} UP(37)

= {124,1243,1247,12437}
(1,2,1,0,1,0,0,2,0) = {135} UP(28)

= {135,1352, 1358, 13528}
(2,1,1,0,0,1,0,0,1) = {12369, 2369}

(2,0,,0,0,a,0,0,0) = (2,1,1,0,0,1,0,0,0)U(2,2,2,0,0,0,0,0,0)
(2,1,1,0,0,1,0,0,0) = {1236,236}
(2,2,2,0,0,0,0,0,0) = 7P(123)

= {0,1,2,3,12,13,23,123}.

So FM(1+1+1) = {0, J, 1, 2, 3, 12, 13, 23, 123, 124, 135, 236,
1234, 1235, 1236, 1247, 1358, 2369, 12347, 12358, 12369, 123456, 1234567,
1234568, 1234569, 12345678,12345679, 12345689}. The Hasse diagram of
FM(14141) is given by the following picture.

12345689

1234569

12369

Figure 7.15: The free modular lattice on three generators FM(14141), the
generators are indicated.

(2) Applying the modified (a, B)-Algorithm to the poset of figure 6.9,
page H9, we obtain |FM(P)| = 80.

Prior to the execution of the (a, B)-Algorithm, a first program called
base-of-line.nb is run. It takes input a poset P determined by its covering
relation and output the Hasse diagram of J(FM(P) (resp. J(FD(P))), a
base of lines and a complete set of implications.



Chapter 8

Numerical results

8.1 Cardinalities of the free lattices FD(P)
and F./\/lg(P)

In this section, we consider all the posets P with 1 < |P| < 6. For each one,
we compute the cardinality of the free distributive lattice F'D(P) and the
cardinality of the free modular lattice F . M3(P) within the variety M3 of
modular lattices with subdirectly irreducible factors 2 or Ms. The number
of subdirrectly irreducible factors is also computed and listed in the form
s+ t, where s is the number of factors 2, i.e. the number of P-labellings
of 2, and ¢ the number of factors Ms, i.e. the number of P-labellings of
Ms. Observe that the height h(P) of FMj3(P) and the number j(P) of
nonzero join-irreducible elements of F'M3(P) can be determined as h(P) =
s+ 2t and j(P) = s + 3t. Further by theorem 6.5, the modular lattice
FM(P) freely generated by P is finite if and only if |P| < oo and P
contains no subposet isomorphic either to 14+1+41+1 or 14+2+42. In this
case FM(P) = FMj3(P), and so the given cardinality of FM;3(P) also is
the cardinality of FM(P). If the cardinality of FM3(P) is boldface, this
warns that P contains one of the forbidden subposets, and so |[FM(P)| =
00. These results perfectly match those obtained by Berman and Wolk [32].

114
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Pl =1
(P,<) | [FD(P)| | [FM3(P)| | s+t
. 1 1 0+0
Table 8.1: The only one poset of order one.
|P| =2
(P,<) | IFD(P)| | [FM3(P)| | s+t | (P,S) | [FD(P)| | [FM3(P)| | s+1
. 4 4 240 ! 2 2 1+0
Table 8.2: The 2 non-isomorphic posets of order 2.
|P| =3
(P,<) | IFD(P)| | [FM3(P)| | s+t | (P,S) | [FD(P)| | [FM3(P)| | s+1
! 3 3 200 | A 5 5 340
N 5 5 3:0 | 1. 8 8 440
.o 18 28 611
Table 8.3: The 5 non-isomorphic posets of order 3.
|P| =4
(P,<) | IFD(P)| | [FM3(P)| | s+t | (P,<) | |[FD(P)| | [FM3(P)| | s+t
% 4 4 340 Y 6 6 440
.)\ 6 6 440 | e 6 6 440
|| 8 8 5+0 f\ 9 9 5-+0
E/ 9 9 510 | I 12 12 6-+0
E . 13 13 6+0 | 3° 19 29 7+1
o 19 29 7+1 11 18 18 740
AR 25 36 8+1 | V. 25 36 8+1
Loo| 48 138 | 1043 |e o es| 166 10982 | 14114

Table 8.4: The 16 non-isomorphic posets of order 4.
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|P|=5

(P,<) | |[FD(P)| | [FM3(P)| | s+t | (P,<) | |[FD(P)|| |[FM3(P)| | s+t
; 5 5 440 \( 7 7 5+0

f 7 7 540 ~<§>' 7 7 5+0
/L. 7 7 540 %/ 10 10 6-+0
1351 9 9 6-+0 X 9 9 6-+0
'@ 10 10 6+0 IQI 9 9 6-+0
%\ 10 10 610 %/‘ 14 14 740
'\i/ 20 30 8+1 f><I 12 12 740
ot 13 13 7+0 ‘ I\ 12 12 7+0
/§ 14 14 740 <§>’ 20 30 8+1
<o, 13 13 740 /E\ 20 30 8+1
% . 19 19 810 | <2 26 37 841
2 2% 37 911 | VA& 929 39 9+1
f><1 23 23 940 E\I 17 17 8-+0
U 19 19 8+0 YI 17 17 8+0
S 22 32 9+1 & 26 37 9+1
Sl 9% 37 o1 | {1 19 19 840
e | 33 45 1041 | oo 33 45 1041
Y. 33 15 1001 | e | 32 44 1041
\&' 49 139 11+3 poserd 29 40 10-+1
>N 29 40 10+1 E\I 23 23 940
E/I 23 23 940 4\ 49 139 11+3
3\ * 59 154 12+3 . 51 80 12-+2
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&'. 59 154 1243 | & 55 147 1243
N 55 147 1243 | “° 167 19983 15-+14
Vs 39 51 11+1 | &NA 39 51 11+1

E ! 33 33 1040 | o 167 19983 15414
o o 187 20180 16+14 | . 93 352 14-+5

f .o 103 629 14+6 | N 187 20180 16414
N 75 185 14+3 | N1 75 185 13+3

1. 173 2603 1649 | &« e 297 63639 18418
e 207 63639 18418 | Seee 885 160228749 | 22+39
7727 30-+125

Table 8.5: The 63 non-isomorphic posets of order 5.

|P|=6
(P,<) | [FD(P)| | |[FM;3(P)| s+t | (PS) | |[FD(P)| | [FM;3(P)] s+1
cosese | 7828352 624910 | leses | 160946 46+333
Soese | 22950 38+174 | &leee 9944 34+133
oo 7748 324125 | «dlee 7580 31+125
eeo | 22050 38+174 | $3es 8788 34-+108
%P 2990 3068 | Mole 2024 28451
Ve 1195 179700889 | 26+43 | &% 1075 160667032 | 25+39
7 906 179700889 | 24139 E 3488 3076

.

1326 296198143 | 26+45 E\'o 936 160224000 | 24+39

E\' 886 160228750 | 23+39 | .. 1058 6306868 26-+37
M. 670 434366 24126 | Pdee 407 68915 22420
AL 590 2472286 23+22 | N 354 64461 21+18
&N 304 64461 21+18 }\ 490 213428 23422
A 395 64004 20018 | A | 208 63640 1918
A 255 20984 20+15 | «¥0 218 20392 19-+14
7 191 20184 18+14 /E\ 209 20379 18+14
/k 188 20181 17414 | AN 170 19986 17+14
2\\. 168 19984 16+14 | “Vee 9944 344133
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AV 2024 | 2610806855 | 28-+51 | N4 1195 | 179700889 | 26143
VA 596 153926 23422 | 428 121130 22422
E/'. o 1326 296198143 26-+45 w. 472 138454 22422
vl 318 63872 | 20118 | =om. | 492 210044 | 22123
< 325 63943 20418 | v | 208 63640 19418
Val 670 434366 24426 | 111 987 1007808 | 25427
i 434 14616 22415 | VN 243 3311 20+11
i l. 488 60962 22418 E\I 273 32449 20-+12
E\I 234 2895 19-+9 4\1 184 2626 18+9
ﬁ. 194 2665 1849 {?‘ 174 2604 1749
R 194 2665 1849 | MNA 243 3311 20+11
Vil 188 756 18+7 | W1 138 584 1847
Y. 273 4936 20-+12 kI . 154 649 1847
L 127 415 1745 %’ 100 361 1645
I%. 167 1060 1848 I/}\' 104 369 1645
I% * 108 377 1645 ﬁ' 94 353 1545
b 198 622 1946 | & 108 243 17-+4
LA 180 821 1846 N 100 216 1643
M 80 190 1543 | ¢ }\ 110 242 16+3
ﬁ\ 83 195 1543 I?& 76 186 1443
2 81 195 16-+4 . 130 686 1746
Bﬁ\ 73 170 1543 % 59 151 1443
A 63 157 1443 Iﬁ\ 56 148 1343
T | 490 213428 | 22423 | it | 167 1060 1848
e 110 639 1646 § .o 194 2784 18410
i\. 119 661 1646 {k 104 630 1546
i 97 230 1644 3t 78 178 1543
EXI\ 63 158 1443 i\ 71 171 1443
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% 60 155 13+3 I 52 142 13+3
%*' 50 140 12+3 | ¥ 255 20984 20415
Rl 108 243 14+4 | ¥ 81 195 1644
L. 97 230 16-+4 ‘i 58 88 1442
{3, 62 93 1442 ‘% 52 81 1342
Ml 80 106 16+2 | Kl 60 84 1542
A 58 71 1441 | A1 44 56 13+1
A 40 52 1241 | ¥ 46 68 1442
b 43 55 13+1 % 33 44 1241
1, 34 45 12-+1 2, 30 41 11+1
< 62 93 4o | Ko 37 49 1241
§\ . 42 55 12+1 i: 34 46 11+1
£ 29 40 11-+1 %ﬁ 27 38 10+1
b 36 56 1342 | H 26 36 11+1
N 23 33 10-+1 >1< 23 33 10-+1
/i\ 21 31 9+1 | "W | 7748 324125
NPT 1074 160667032 | 25139 | "3 906 160229710 | 24439
Lz 936 160244000 | 24439 Ay 318 63873 20+18
R 325 64227 20+18 G| a8 20378 18+14
'@" 209 20379 18+14 <§>‘ 188 20181 17+14
A 590 247228 23422 | N 354 64461 21+18
%/ ! 234 2895 19+9 VI\I 127 415 1745
<ol | 110 249 1613 | | 83 195 1543
v 180 873 18-+6 \/f 130 730 1716
7t 86 201 15+3 o 76 186 14-+3
W 304 63651 2018 %4 184 2626 18+9
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31 | 100 361 1615 | 21| 83 195 1543
1 62 156 1403 | 110 639 1616
Xy 66 163 1403 | < 56 278 1343
o os 64004 20418 | W 104 369 165
4, 194 2665 1849 | W\ 86 201 15+3
ol 108 377 1615 | % 66 163 14+3
§/ . 119 661 166 &‘ 70 170 14+3
Q‘ . 71 171 1443 I?' 60 169 1343
S 58 88 1409 | T 46 59 1341
27 A7 60 1301 | @ 36 48 12+1
e 40 53 1241 /@ 33 45 11+1
3, 62 93 1409 | 37 49 12+1
'5?. 42 55 1241 '& 34 46 11+1
‘fﬁ 29 40 11+1 ?I“ 27 38 10-+1
3 218 20392 19414 Iv\/ 100 216 16+3
o 73 170 15+3 o 46 59 13+1
W 78 178 15:3 | W 47 60 1341
* 40 52 1201 | ¥ 110 242 16+3
Ty 58 71 1401 | b 68 68 1440
% 48 48 1300 | 11 38 38 1240
§ : 54 54 1340 %\I 39 39 1240
i\ 34 34 1o | Y 43 55 13+1
X 34 34 1200 | 59 27 27 1140
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.\{ 8 8 6+0 6 6

5+0

Table 8.6: The 318 non-isomorphic posets of order 6.

8.2 Cardinalities of F'M(P) for good posets
on seven points

In this section, we compute the cardinalities, together with some important
parameters, of the free modular lattices generated by good posets on seven
points. We call good poset any poset that does not contain a 4-element
antichain or the poset 14242 as subposet. Recall that FM(P) is finite if
and only if P is a good poset. In this case F.M(P) is a subdirect product
of factors M3 and D,. There are several algorithms for generating non
isomorphic posets on a given number of points (|33; 34; 35]) in the literature,
the one we used for this project can be found in [14]. Thanks for Prof G.
Brinkmann from Bielefeld University in Germany who sent us the code
(written in CT) of this program from which we where able to extract the
2045 non isomorphic posets (their order relations more precisely) on seven
points. We then wrote a program that select all the good posets from any
finite set of posets on a given number of points. For the 2045 non isomorphic
posets on seven points, we obtained 1101 good posets. These good posets
are listed below. On top of each good poset P is a list containing |FF M (P)],
the number of factors Mj, and the number of factors D,. With our program
we can also compute FM(P) for good posets of higher order, we are only
limited by computing time constraints.
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8.3 The code of the (a, B)-Algorithm

A linear extension 1,2,...,m,m + 1,...,w of the poset P is considered for
which m is the number of minimal elements of P. For any non-minimal
element k, m < k < w, the set By of lower covers of k is listed in the form
Blk] = By. The algorithm then compute the cardinality of the lattice of
order ideals of P.

(¥*Enter the value of m and the value of w where indicatedx)

m=value of m;
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w=value of w;

(*Enter the list of conclusions of the implications k --> B_kx*)
B[m+1]= B_{m+1} ; B[m+2] =B_{m+2} ; ...; B[wl= B_w;

c=1; (*the initial length of the many-valued context*)

zeros[1]= ones[1]1={}; twos[1]= Rangel[w];
SetOfPremises[1]= {};

Do[ p= c;
(* p is a pointer of the current row to be splitx)
While[ p>O0,

BkRest= Complement[ B[k], ones[p] ];
If[ BkRest == {3}, Goto[Next] 1;
(¥ leave row p unchanged since B[k] is contained in ones[p] *)
If[Intersection[BkRest, zeros[pll#{} ,
zeros[p] = Union[zeros[p]l,{k}];
twos [p]l= Complement [twos[p],{k}];
Goto[Next]; 1;
(*the O in the conclusion of {k}-->B[k] forces 0 on position k in row p*)
Set0fPremises[p] =Union[SetOfPremises([p],{k}] ;
con[p, k]= BkRest;
twos [pl= Complement [twos[p],{k}, BkRest];
Goto[Next] ; 1;
(* the implication {k}-->BkRest falls completely into twos[p] *
(* there are only 2’s and a’s and b’s in Bkrest ( and at least one
a or b does occur ) *)
(* that means row p is split into a row O at position k and an c+l-endrow
with 1’s at the positions in B[k] union {k} : *)
Nullen = zeros[p]; Einsen = ones[p]; Zweien=twos[p];
zeros [p]=Union[Nullen,{k}];
twos [p]=Complement [Zweien,{k}];
c= c+1;
zeros[c]=Nullen;
ones[c]=Union[Einsen, {k},BkRest];
twos[c]= Complement[Zweien,{k}, BkRest];
S1= Intersection[SetOfPremises[p], BkRest];
sl=Length[S1];
Do[ aa=S1[[il];
ones[c] = Union[ ones[c] ,con[p,aal 1;

,{i,s1} 1;
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S2=Complement [Set0fPremises[p],BkRest];
s2=Length[S2];
SetOfPremises[c]={};
Do[ aa=S2[[il];
BB= Complement[ con[p,aal, BkRest];
If[{ BB = {} ,
(* so conclusion of {aa}-->con[p,aa] is in B[k] *)
twos [c]=Union[twos[c],{aa}] ;
(* con[p,aal] not in B[k] *),
SetOfPremises[c] =Union[SetOfPremises([c],{aal}];
con[ c,aal=BB; ];
,{1,82} 1;
Label [Next]; p=p-1; 15,
{k,m+1,w} 1;
(* Compute number of order ideals: *)
card=0;
Do[ t=Length[twos[pl] ;
cardl=2"t;
s=Length[Set0fPremises[pl];
Do[aa=SetO0fPremises[p] [[i]];
cardl=card1*(2~Length[con[p,aal]+1) ;
,{i,8}];
card=card+cardil;
, {p,c}r 1 ;
Print["The context has at the end ",c," three-valued rows"];
Print["The number of order ideals is ", card] ;

8.4 Concluding remarks

The computation of free lattices in general and free modular lattices in par-
ticular are interesting problems. The method often used is that which deals
with words on the set of generators (i.e. the poset under consideration).
In this thesis, we have proposed another approach based on the representa-
tion of modular lattices by closure systems. An algorithm to generate the
elements of any finite closure system has been implemented with the Math-
ematica software suite, enabling us to achieve our main objective which was
to effectively compute the elements of a free modular lattice generated by a
finite poset and draw its Hasse diagram. Practically, given any finite poset
P determined by its covering relation, the first subroutine of the program
computes J(FM(P)) together with a base of lines and the resulting set
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of implications. The second subroutine which is the (a, B)-Algorithm then
takes this set of implications and outputs |[FM(P)| and the number of fac-
tors (2 or Ms) in the subdirect product decomposition of FM(P).
Theoretically, our program can compute |FM(P)| for any finite poset but
practically, this is only feasible for small posets. With this program we were
able to compute |FM(P)| for all posets P with |P| < 6 except for few crit-
ical cases. We also computed |FFM(P)| for the 1101 good posets on seven
points. It would be interesting to improve the algorithm in order to (a)
generate | FFM(P)| for bigger posets, and (b) to develop a similar algorithm
to effectively compute the elements of a lattice freely generated by a poset
within a fixed locally finite variety. As to (b), I am currently pursuing this
in collaboration with Prof. Wild. As to (a), there is hope to handle large
posets as long as their structure is symmetric. In fact the exploitation of
symmetry is a crucial issue in the general framework [26] of the principle of
exclusion.



Appendix A

More pictures of F'D(P) and
FM(P)

We start with posets with no 3-element antichain. For these posets, FD(P) =

FM(P).
P FD(P)= FM(P) P FD(P)= FM(P)
n n 1+1
o/.\o 142

150
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Table A.1: Posets with no 3-element antichain.
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For poset having a 3-element antichain, F'D(P) # FM(P).

P FD(P) FM(P)

1+1+1
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Appendix A. More pictures of FD(P) and FM(P)

b

Table A.2: Posets with a 3-element antichain.
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