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Reconfigurable Manufacturing Systems 

 
K. Kruger 

 

Department of Mechanical and Mechatronic Engineering 

Stellenbosch University 

Private Bag X1, 7602 Matieland, South Africa 

Dissertation: Ph.D. (Mechatronic Engineering) 

March 2018 

 

The dynamic and highly competitive nature of the modern manufacturing 

environment has introduced a new set of challenges, urging researchers and 

industry to formulate new and innovative solutions. The concepts of holonic and 

reconfigurable manufacturing systems showed great promise to address the 

challenges. While these concepts could not achieve significant industry adoption, 

they will play an important role in the latest emerging paradigm in manufacturing 

– the fourth industrial revolution, or Industry 4.0. 

Industry 4.0, can potentially have a significant impact on all aspects of the 

manufacturing industry, aiming to enhance individualization of products through 

highly flexible production, extensively integrate customers and businesses in value-

added processes and link production and high-quality services to deliver hybrid 

products. To achieve these goals, Industry 4.0 relies on Cyber-Physical Production 

Systems (CPPSs) to enhance the connectedness throughout all levels of the 

manufacturing enterprise. CPPSs aim to enhance the intelligence, connectedness 

and responsiveness of manufacturing systems. These goals closely resemble those 

of holonic and reconfigurable manufacturing systems, indicating the relevance of 

research on these topics to the development and implementation of CPPSs. 

The objective of this dissertation is to evaluate the suitability of the Erlang 

programming language as an alternative for the implementation of holonic control 

in manufacturing systems. The dissertation presents an Erlang-based holonic 

control implementation for a manufacturing cell. The Erlang implementation is 

evaluated through a comparison with an equivalent implementation using Multi-

Agent Systems (MASs), which is considered as the status quo for holonic control 

implementation in manufacturing systems research. 

To accomplish the evaluation of the holonic control implementations, evaluation 

criteria is formulated. The evaluation criteria focusses on both the development of 

control implementations and the adoption of the implementations by industry. The 

criteria identifies a set of quantitative and qualitative performance measures that are 

indicative of seven critical requirements for holonic control implementations. The 

Erlang and MAS implementations are evaluated and compared according to these 

performance measures and requirements. 
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The comparison shows that the Erlang implementation matches the functionality of 

the MAS implementation and even offers some advantages for the desired 

characteristics for the holonic control of manufacturing systems. The advantages in 

availability and supportability can be attributed to the enhanced modularity and 

fault tolerance of the Erlang implementation. The Erlang implementation also 

allows for increased development productivity through a reduction in software 

complexity and simplification of software verification. 

The findings of the evaluation confirms the inherent suitability of the Erlang 

programming language for the implementation of holonic control. It is 

recommended that further research be conducted on the refinement of the 

architecture and the development of a framework for holonic control 

implementations in Erlang.  
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‘n Nuwe stel uitdagings, wat na vore gebring is deur die dinamiese en hoogs-

kompeterende aard van die moderne vervaardiging omgewing, spoor navorsers en 

die bedryf aan om nuwe en innoverende oplossings te formuleer. Die konsepte van 

holoniese en herkonfigureerbare stelsels het beloof om hierdie uitdagings aan te 

spreek. Alhoewel hierdie konsepte nie beduidende bedryfsaanneming kon behaal 

nie, het dit ‘n belangrike rol om te speel in die nuutste ontluikende paradigma in 

vervaardiging – die vierde industriële revolusie, of Industry 4.0. 

Industry 4.0 het die potensiaal om ‘n beduidende impak te hê op alle aspekte van 

die vervaardigingsbedryf, deur die individualisering van produkte te verbeter met 

hoogs-buigsame produksie, breedvoerig kliënte en besighede in waarde-

toevoegingsprosesse te integreer en produksie met hoë-kwaliteit dienste te verbind 

om hibriede produkte af te lewer. Om hierdie doelwitte te bereik maak Industry 4.0 

staat op Kuber-Fisiese Produksiestelsels (KFPs) om verbondenheid tussen al die 

vlakke van ‘n vervaardigingsonderneming te verbeter. KFPs beoog om die 

intelligensie, verbondenheid en responsiwiteit van vervaardigingstelsels te 

verbeter. Die doelwitte van KFPs stem ooreen met die van holoniese en 

herkonfigureerbare vervaardigingstelsels, wat die relevansie van die benaderings 

op die ontwikkeling en implementering van KFPs aandui. 

Die doelwit van hierdie proefskrif is om die geskiktheid van die Erlang 

programmeringstaal, as ‘n alternatief vir die implementering van holoniese beheer 

in vervaardigingstelsels, te evalueer. Die proefskrif beskryf ‘n Erlang-gebaseerde 

beheerimplementering vir ‘n vervaardigingsel. Die Erlang implementering is 

evalueer deur middel van ‘n vergelyking met ‘n ekwivalente implementering wat 

gebruik maak van ‘n Multi-Agent Stelsel (MAS), wat beskou word as die status 

quo vir holoniese beheerimplementering in vervaardigingstelsel navorsing. 

‘n Evalueringkriteria vir holoniese beheerimplementering is geformuleer om die 

evaluering te vervul. Die evalueringkriteria fokus op beide die ontwikkeling van 

beheerimplementerings en die aanneming daarvan deur die bedryf. Die kriteria 

identifiseer ‘n stel kwantitatiewe en kwalitatiewe prestasiemaatreëls wat 

aanduiding gee vir sewe kritiese vereistes vir holoniese beheerimplementerings. 
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Die Erlang en MAS implementerings is ge-evalueer en vergelyk volgens die 

prestasiemaatreëls en vereistes. 

Die vergelyking wys dat die funksionaliteit van die Erlang implementering 

ooreenstem met die van die MAS implementering, en selfs voordele inhou vir die 

gewenste eienskappe vir holoniese vervaardigingstelsels. Die voordele van Erlang, 

ten opsigte van beskikbaarheid en ondersteunbaarheid, kan toegeskryf word aan 

verbeterde modulariteit en fout-verdraagsaamheid. Die Erlang implementering 

maak ook voorsiening vir verhoogde ontwikkelingsproduktiwiteit, deur die 

kompleksiteit van die sagteware te verminder en die verifikasie daarvan te 

vereenvoudig. 

Die bevindinge van die evaluering bevestig die Erlang programmeringstaal se 

inherente geskiktheid vir die implementering van holoniese beheer. Dit word 

voorgestel dat verdere navorsing gedoen word op die verfyning van die argitektuur 

en die ontwikkeling van ‘n raamwerk vir holoniese beheerimplementering in 

Erlang. 
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1. Introduction 
This section provides the background and context for the presented research. The 

objectives of the research and the contributions of the dissertation are outlined, the 

importance of this endeavour is motivated and the methodology that was followed 

is described. Finally, the section presents an overview of the dissertation structure. 

1.1. Background 
The modern manufacturing environment is characterized by dynamic change and 

aggressive global competition. This dynamic environment is subject to rapid change 

in economical, technological and customer trends (Leitao and Restivo, 2006). A 

new set of requirements is thus applied to the modern manufacturing paradigm. 

Bi et al. (2008) describe some critical requirements for modern manufacturing 

systems: 

 Short lead times for the introduction of new products into the system. This 

involves the rapid adjustment of existing functions and processes, as well as 

the integration of new functionality and technology. 

 The ability to produce more product variants. This involves the 

enhancement of production versatility and customization to satisfy customer 

demands. 

 The ability to handle low and fluctuating production volumes in order to be 

competitive in unpredictable markets. 

 Low product prices to compete in global markets. 

The concepts of Reconfigurable Manufacturing Systems (RMSs) and Holonic 

Manufacturing Systems (HMSs) presented promising solutions to the modern 

challenges. Recently, ideas like Industry 4.0, Cyber-Physical Production Systems 

(CPPSs) and the Industrial Internet of Things (IIOT) promise to address the 

challenges of future manufacturing. 

The application of the holonic systems architecture has been a popular approach to 

organize and implement the control of modern manufacturing systems. The 

implementation of holonic control is fundamental to HMSs, but also proved to be 

effective in enabling control reconfigurability in RMSs.  Holonic control 

architectures offer several advantages – increased modularity, scalability and 

robustness, while reducing overall system complexity and cost. 

Holonic control architectures have been most often implemented using Multi-Agent 

Systems (MASs) – to the extent where MASs implementations (specifically using 

the Java Agent Development (JADE) framework) have become the status quo in 

academic studies. MASs originated from the agent-oriented programming 

paradigm, which brought the theories and concepts of artificial intelligence into the 

realm of distributed systems (Bellifemine et al., 2007). The similarity between a 

holon and a software agent was the initial driving factor for the use of MASs to 

implement holonic control architectures. 
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The Mechatronic, Automation and Design (MAD) Research Group, at the 

Department of Mechanical and Mechatronic Engineering of Stellenbosch 

University, has conducted research into modern manufacturing systems since 2006. 

Initial studies focussed on the conceptualization, design and control of RMSs, while 

further studies placed emphasis on the control and coordination of the subsystems 

in HMSs and RMSs. The studies formed part of two research projects on the design 

and control of a reconfigurable manufacturing system for electrical circuit breaker 

production. The first project (2006-2012) focussed on the development of an 

automated assembly and welding cell, while the subsequent project (2013-2015) 

considered an assembly and quality assurance cell. 

This dissertation builds on the knowledge and experience obtained through the 

above-mentioned studies and contributed to the second research project, with the 

assembly and quality assurance cell being used as the case study for the presented 

research. However, it is the first study within the research group to focus on the use 

of the Erlang programming language for implementing holonic control in 

manufacturing systems.  

1.2. Objectives and Contributions 
The objective of the dissertation is to evaluate the suitability of the Erlang 

programming language for the implementation of holonic control in manufacturing 

systems. To this end, an Erlang-based holonic control implementation is performed 

for a manufacturing case study. The Erlang implementation is evaluated through a 

comparison with an equivalent MAS implementation, which is the academic 

standard for holonic control implementation in manufacturing systems research. 

Holonic control can be implemented at several levels within a manufacturing 

enterprise – from high-level logistics and scheduling, to low-level machine control. 

The presented research focusses on the control implementation at the 

manufacturing cell level, where specified production orders are executed through 

the coordination of individual workstations. This dissertation considers the 

following definitions: 

 A workstation is a collection of actuators and devices which work together 

to perform a specific task – e.g. feeding or welding. The control at this level 

involves the coordination of the various hardware actions to perform the 

desired task.  

 A cell is a collection of workstations responsible for performing a specific 

set of production tasks. Control at cell-level involves the coordination of the 

various workstations, and the flow of material and information between 

them, to accomplish the production tasks. 

A manufacturing cell resembles – and in some cases can be equivalent to – a 

manufacturing system. The manufacturing execution system entails the 

coordination of different manufacturing cells, and the flow of material and 

information between them, to produce complete product. Due to this similarity, the 

results and findings obtained from the manufacturing cell implementation can be 

extended to manufacturing execution systems. As a case study, the research 
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considers an assembly and quality assurance cell for the production of electrical 

circuit breakers. 

The development of an Erlang holonic control implementation requires a well-

defined architecture. The implementation is thus based on the well-established 

Product-Resource-Order-Staff Architecture (PROSA). For the implementation of 

the PROSA holons, an internal architecture, that is specifically suited to 

implementation with Erlang, is developed. The internal architecture is based on the 

generic internal holon architectures presented in literature, but incorporates and 

exploits the inherent features of Erlang. 

To evaluate the suitability of the Erlang holonic control implementation, a 

comparison is performed with an equivalent implementation based on a MAS. The 

MAS approach is regarded as the academic status quo for the implementation of 

holonic control in manufacturing systems. To ensure that the implementations 

exhibit equivalent functionality, which is required for a fair comparison, both 

implementations are based on the PROSA holonic reference architecture. The 

control implementations are evaluated and compared by means of evaluation 

criteria specifically formulated for the implementation of holonic control in 

manufacturing systems. 

In order to achieve the above-mentioned objective, this dissertation offers the 

following original contributions: 

 The formulation of an internal architecture for the implementation of a 

holon using Erlang.  

 The implementation of holonic control for a manufacturing cell, using 

Erlang. 

 The formulation of criteria to facilitate the evaluation of holonic control 

implementations in manufacturing systems. 

 The evaluation and comparison of two equivalent holonic control 

implementations, using Erlang and a MAS, respectively. 

1.3. Motivation 
HMSs and RMSs have received wide academic attention for over two decades, with 

research performed in many aspects – from hardware design and configuration, to 

control and optimization. Several aspects of HMSs and RMSs have become well 

established within academic research, especially the implementation of control 

architectures using MASs. Even though MAS control implementation promise to 

realise the advantages of HMSs and RMSs, there exists very few industrial 

implementations to support its great academic acclaim. Almeida et al. (2010) 

identify several barriers to the industry adoption of MASs, of which the most 

relevant to this dissertation are: 

 The complexity involved in the design and implementation of such systems. 

 A shortage of quality measures to aid the design, validation and evaluation 

of such systems. 

 The lack of support for MAS implementation in industrial controllers. 
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 Concerns regarding the scalability of MASs for large-scale 

implementations. 

 The lack of standards and commercial products for the development of 

MASs for manufacturing system control. 

Considering the above-mentioned issues, along with the emergence of Industry 4.0, 

it is a good time to reconsider the status quo and investigate alternatives. The 

manufacturing environment is currently undergoing another paradigm shift – the 

new paradigm promises to address modern manufacturing requirements (as 

mentioned in section 1.1) through enhanced system intelligence, connectedness and 

responsiveness (Monostori et al., 2016). It is thus essential that the suitability of 

established and alternative approaches and technologies be evaluated for use in 

Industry 4.0. 

This dissertation embraces this opportunity to evaluate an alternative to MASs for 

the implementation of holonic control in manufacturing systems. The use of Erlang, 

a highly concurrent, functional programming language, is presented as a possible 

alternative. Implementation using Erlang has the potential to satisfy the 

requirements of both the previous and emerging manufacturing paradigms, and can 

narrow the gap between academic research and industrial implementation. This is 

due to several advantages offered by the Erlang language (which are described in 

detail in section 2.4.3): 

 Industrial acceptance – Erlang was developed by the research laboratory 

at Ericsson, and was subsequently implemented in some of Ericsson’s 

products. Erlang is currently used in many leading software and 

telecommunication applications. 

 High productivity – there are reports in literature that indicate that software 

development can be achieved much faster, and with fewer errors, with 

Erlang than other well-known languages (such as Java, C or C++). 

 High reliability – the initial requirements for which Erlang was developed 

specified very high reliability and robustness, leading to the inclusion of 

important mechanisms at the architectural level of Erlang. 

 High maintainability – Erlang allows for the updating of code without 

having to disturb the operation of a running program, allowing for bug fixes, 

updates and code changes to be performed without any system downtime. 

 High adaptability – Erlang is characterised by advanced modularity and 

distribution, which are two enabling factors in achieving adaptability in 

system control. 

These advantages can take academic research towards industrial implementation in 

different ways. Industrial system integrators will feel more confident to implement 

a technology that was developed, tested and used by a large, respected corporation 

such as Ericsson. Their confidence will be boosted even more by Erlang’s renown 

for reliability. The increased development productivity will allow for faster 

software development – which, together with the maintainability, will decrease the 

lead times involved with the implementation and reconfiguration of control 

systems. Furthermore, the potential of Erlang to fulfil the reconfigurability 
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requirements will improve the perception of HMSs and RMSs as feasible solutions 

for industry and as enabling technologies for Industry 4.0. 

1.4. Methodology 
To evaluate the suitability of Erlang for implementing holonic control, the 

dissertation performs a comparison of the Erlang implementation with a MAS 

implementation. Specifically, the Erlang implementation is done using standard 

Erlang that is supplemented with the Open Telecom Platform (OTP) – the software 

development is done using the Eclipse Integrated Development Environment (IDE), 

with the ErlIDE plugin for Erlang. The MAS implementation is performed using 

Java, with the inclusion of the Java Agent Development (JADE) framework – 

Eclipse is also used as the IDE. From here on, the programming language of the 

implementations will refer either to Erlang with OTP, or MAS developed with 

JADE. 

To perform a comparison of the two implementations is a challenging task – the 

implementations are different in not just the programming language, but also in 

programming paradigm (imperative and functional). While several studies have 

attempted comparisons of different programming languages (e.g. 

Harrison et al. (1996), Prechelt (2000) and Cesarini et al. (2008)), assessments 

based on generic, objective and quantitative measures are hard to come by. Aiming 

to avoid this treacherous terrain, the comparison presented in this dissertation has a 

specific focus: the suitability of the Erlang programming language as a tool for 

implementing holonic control. The comparison thus pays less attention to the 

philosophical and semantic differences between the programming languages, and 

rather compares the provisions of each programming language to facilitate the 

implementation of holonic control. This methodology is similar to that adopted by 

Chirn and McFarlane (2005) in evaluating the effectiveness of a holonic system 

design. 

The implementation of the same architecture in the two programming languages 

forms the basis for the comparison. The Product-Resource-Order-Staff Architecture 

(PROSA) (described in section 2.2.3) is used as the foundation for the development 

of both the Erlang and MAS holonic control implementations. The use of a common 

reference architecture allows for comparable functionality in the two 

implementations – the equivalence is verified through a series of verification 

experiments, as presented in section 6.2.  

As a case study, the implementations are performed for an assembly and quality 

assurance cell for electrical circuit breakers (discussed in chapter 3). While a case 

study implementation limits the extent to which the results can be generalised, it 

does facilitate an evaluation and comparison based on quantitative and qualitative 

performance measures. 

For the implementations, the software was developed according to common 

practices for each programming language – i.e. provided libraries were used as far 

as possible, and the development followed the principles outlined in literature 
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(Logan et al. (2011), Armstrong (2007) and Anonymous (s.a. (b)) for Erlang and 

Bellifemine et al. (2007) for JADE).  

To improve the reliability and validity of the proposed comparison, both 

implementations were developed by the author. The premise of using a common 

reference architecture relies on consistency in the developer’s understanding and 

interpretation of the architecture. Additionally, even though the code is significantly 

different, the developer follows a similar approach in both implementations. The 

author possesses the following relevant expertise and experience: 

 Undergraduate degree in mechatronic engineering. 

 Master’s degree in mechatronic engineering, of which the thesis focussed 

on the development and evaluation of two holonic control implementations 

– one being a MAS developed in JADE and the other an IEC61499 

application using the Function Block Development Kit (see Vyatkin (2007)) 

– further details can be found in Kruger and Basson (2013). 

 Completed an online course on Erlang programming (prior to which the 

developer was unfamiliar with Erlang programming). 

In line with the objective of this research, the evaluation criteria is set up from the 

perspective of the developers and consumers of holonic control implementations, 

as opposed to that of computer scientists. The performance measures are thus 

derived from the requirements for holonic manufacturing systems and the 

evaluation aims to emphasise the extent to which each implementation satisfy these 

requirements. 

Several aspects of the comparison involve impressions, experiences and 

philosophies, which are not suited to quantification, leading to criteria comprised 

of both quantitative and qualitative performance measures. Even though the 

evaluation is inherently subjective, the comparison strives to provide an unbiased 

reflection of the suitability of Erlang for holonic control implementation – this is 

enforced through reference to experimental data, examples from code and findings 

from literature, as far as possible. 

1.5. Dissertation Structure 
The dissertation is presented as a collection of papers and is organized into seven 

chapters. Each chapter provides an overview of the context, content and objective 

for the included paper(s). The dissertation structure is as follows: 

A review of the relevant literature is presented in chapter 2. The review describes 

the relevant manufacturing system paradigms and, specifically, the research that 

has been performed on the control of manufacturing systems. The chapter also 

provides the necessary background for MASs and the Erlang programming 

language. Beyond chapter 2, a short review of relevant literature is provided in each 

of the papers included in the later chapters. 

Chapter 3 describes the case study and testbed system that was used for the research. 

Using the case study as starting point, the development of the testbed system, which 
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was used for performing experiments with the control implementations, is 

discussed. 

The development of the Erlang and MAS holonic control implementations are 

described in chapters 4 and 5, respectively. Chapter 4 comprises two papers that 

describe the architecture and implementation of holonic control using Erlang, and 

a third that presents an additional case study implementation. A paper discussing 

the MAS implementation is presented in chapter 5. Appendix A presents source 

code for both implementations. 

Two papers describing the evaluation of the Erlang control implementation is 

presented in chapter 6. The first paper describes the formulation of the evaluation 

criteria, and the second paper presents the comparison of the two implementations. 

The dissertation concludes with chapter 7, wherein the important contributions and 

findings are summarised and some recommendations for future research are given. 

The reference list provided in chapter 8 contains all the references used in this 

dissertation, including those used in each of the papers. 

The papers that are included in this dissertation are presented as they were 

submitted for publication – changes were only made to heading and paragraph 

numbering and formatting, to improve consistency throughout the dissertation. 

Each paper includes an abstract, an introduction of the context and relevant 

literature and a reference list, and there will therefore be considerable overlap 

between these parts of the papers.  

All of the presented papers are co-authored by the academic supervisor of this 

research. However, the author is the main contributor in every paper, with the 

supervisor’s contribution limited to advice on the structuring of arguments and 

reviewing the manuscripts. 
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2. Literature Review 
This section starts with an overview of manufacturing system paradigms, including 

holonic and reconfigurable manufacturing systems and Industry 4.0. The review 

then focusses on the control of manufacturing systems – specifically the use of 

holonic systems concepts. The architectures and most prominent tools for the 

implementation of holonic control in manufacturing systems are discussed. Finally, 

an introduction and overview of the Erlang programming language is presented. 

2.1. Manufacturing System Paradigms 

2.1.1. Classic and Flexible Manufacturing Systems 

The manufacturing and assembly environment is evolving continuously. This 

evolution is driven by changes in technology and economic trends. The major 

paradigms in manufacturing and assembly, as presented by Mehrabi et al. (2000), 

are discussed in the following paragraphs. 

The Machining System paradigm entailed the installation of one or more metal 

removing machine tools. These machine tools were accompanied by auxiliary 

equipment for material handling, control and communications. The operation of the 

machines was then coordinated to produce a fixed amount of parts. This paradigm 

pursued mass production as a strategy to reduce product cost. 

The need for higher part quality and reduction in production costs brought about 

the Dedicated Machining System (DMS) paradigm. With DMSs, machining 

systems with fixed tooling and functions were designed for specific parts. The DMS 

paradigm was driven by the lean production ideology, where production costs were 

reduced by eliminating production waste. 

A market demand for increased product variety led to the Flexible Manufacturing 

System (FMS) paradigm. FMSs were based on automation configurations of fixed 

hardware with programmable software. Flexibility refers to the ability of the system 

to switch to new families of components by changing the manufacturing or 

assembly processes and functions (Martinsen et al., 2007). These systems were thus 

capable of handling changes in work orders and production schedules, and 

producing several types of parts with short changeover times. ElMaraghy (2006) 

identified several types of flexibility: 

 Machine flexibility – the execution of various operations without changing 

the machine set-up. 

 Material handling flexibility – the existence of various paths for the transfer 

of materials between machines. 

 Operation flexibility – the availability of different operation plans for part 

processing. 

 Process flexibility – the ability to produce different sets of part types without 

major set-up changes. 

 Product flexibility – the agility to handle the introduction of new products. 

 Routing flexibility – the existence of several feasible routes for the various 

product types. 
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 Volume flexibility – the ability to vary production volumes profitably within 

the current system capacity. 

 Expansion flexibility – the ease in which system capability and capacity can 

be added to the system through physical changes. 

 Control program flexibility – the ability of the control system to run 

virtually uninterrupted during production or system changes. 

 Production flexibility – the ability to produce a number of product types 

without adding major capital equipment. 

There have been several investigations into the shortcomings of FMSs with regard 

to implementation in industry. Raj et al. (2007) identified high costs, the difficulty 

of design and the lack of inherent product flexibility (relative to volume flexibility) 

in FMSs as barriers to industrial implementation. Mehrabi et al. (2002) adds to this 

list a lack of software reliability, the need for highly skilled personnel, high support 

costs and a lack of support from machine tool manufacturers. They also mention 

that FMSs tend to be designed with excess features and capacity, which remain 

unutilized in many cases. 

2.1.2. Holonic Manufacturing Systems 

The concept of Holonic Manufacturing Systems (HMSs) came into being in the 

early to mid 1990s, aiming to address the requirements of the modern 

manufacturing environment (as listed in section 1.1). Early research into HMSs was 

driven by the HMS Consortium (Christensen, 1994), but numerous studies followed 

in the subsequent decades. The basic concepts and development of HMSs are 

summarized in this section. 

The concept of holonic systems was developed by Koestler (1967) as an 

explanation of the self-organizing tendencies observed in social and biological 

systems. The term holon comes from the Greek words “holos” (meaning “the 

whole”) and “on” (meaning “the particle”). Holons are then “any component of a 

complex system that, even when contributing to the function of the system as a 

whole, demonstrates autonomous, stable and self-contained behaviour or function” 

(Paolucci and Sacile, 2005).  

Holonic Manufacturing Systems (HMSs) result from the application of the holonic 

systems concept in manufacturing systems. In a manufacturing system context, a 

holon is an autonomous and cooperative building block for transforming, 

transporting, storing or validating information of physical objects. A HMS is then 

“a holarchy (a system of holons which can cooperate to achieve a goal or objective) 

which integrates the entire range of manufacturing activities” (Paolucci and Sacile, 

2005). 

Figure 1 shows the internal architecture for a holon in a HMS, as formulated by 

Leitao and Restivo (2002). The internal architecture makes provision for the two 

essential holon characteristics: cooperation and autonomy. The communication 

component enables cooperation with the other holons in the system through 

maintaining a communication interface and constructing, parsing and exchanging 
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information. The decision-making component of the holon internal architecture 

facilitates the implementation of autonomy, where the logic can be added to control 

the behaviour of the holon. 

The internal architecture in Figure 1 also includes an interfacing component. This 

component provides a mechanism to connect the software and hardware parts of 

the holon, so that process execution information can be exchanged. Even though it 

can be expected that holons in a HMS include a hardware resource on the shop 

floor, these systems also include holons that purely exist in software. Such holons 

implement a similar internal architecture, but without the need for an interfacing 

component. 

 

Figure 1: Internal architecture for a Resource holon (adapted from Leitao 

and Restivo (2002)). 

It is clear that HMSs inherently consider the software aspects of manufacturing 

systems, along with the physical hardware. Extensive research has been done on 

the application of the holonic concept to organise the control of manufacturing 

systems, within and beyond the HMS paradigm – this is reviewed in detail in 

section 2.2.3. 

2.1.3. Reconfigurable Manufacturing Systems 

The concept of Reconfigurable Manufacturing Systems (RMSs) is another solution 

to the requirements of modern systems. The development of RMSs occurred in 

parallel with HMSs, mainly driven by the research of Koren (Koren and Ulsoy, 

1997; Koren et al., 1999). This section defines reconfigurability in the 

manufacturing context and presents an overview of the key aspects of RMSs. 
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It is important to discuss the exact meaning of reconfigurability in this context. 

Martinsen et al. (2007) describe reconfigurability as the ability of a manufacturing 

system to switch, with minimal delay and effort, between a particular family of 

parts by adding or removing functional elements. These functional elements can 

form part of the system hardware or software (Vyatkin, 2007). 

Rooker et al. (2007) explain two different types of reconfiguration that can occur 

in RMSs: basic and dynamic reconfiguration. Basic reconfiguration requires the 

system to be stopped. The system is then restarted after the necessary software and 

hardware changes have been implemented. With dynamic reconfiguration, the 

changes can be made while the system is still in operation. 

RMSs and FMSs are often confused because of their similarity – each system can 

be adapted and is capable of handling production variety. It is important to consider 

the differences between the abilities of RMSs and FMSs. Mehrabi et al. (2000) 

mention that the key difference between RMSs and FMSs is that the capacity and 

functionality of RMSs are not fixed – RMSs are designed for rapid adjustment, 

through rearrangement or change of their components, in response to production 

demands. Wiendahl (2007) identified two more differences: 

1. The diversity of the workpieces that can be handled by the system. RMSs 

can be switched to accommodate different families of products, while FMS 

can only handle similar products. 

2. The extent to which the system is changed. With RMSs, the changes can be 

made through the addition or removal of components. FMSs are only 

designed to allow for changes in the production processes and the flow of 

material. 

Koren and Ulsoy (2002) identified six key characteristics that must be exhibited by 

the mechanical, control and communication components of RMSs. The 

characteristics are as follows: 

1. Modularity of the hardware and software system components, so that 

components can be replaced or rearranged to meet new requirements. 

2. Integrability of the system and the system components for both integration 

of existing technology and the introduction of new technology in the future. 

3. Convertibility of the system to allow for fast changeover between existing 

products and fast adaptability of the system for future products. 

4. Diagnosability for fast identification of the sources of quality and reliability 

errors in the system. 

5. Customization of the system capability and flexibility to match specific 

products or production requirements. 

6. Scalability of the system capacity through the addition of resources. 

RMSs satisfy all the requirements of modern manufacturing mentioned in section 1. 

Mehrabi et al. (2000) explain that RMSs permit reduction in lead times and quick 

integration of new technology and/or functionality. Bi et al. (2008) recognised that 

RMSs have the ability to reconfigure hardware and control resources, at all 

functional levels, to rapidly adjust the production capacity and functionality in 
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response to sudden changes. Bi et al. (2007) is in agreement with this statement, 

identifying that in RMSs “the system and its components have adjustable structure 

that enables system scalability in response to market demands and system 

adaptability to new products”. 

Several issues have hampered the development and implementation of RMSs. Bi et 

al. (2007) explain the key issues regarding RMS development: 

 The separation of RMS design from product design. Most RMSs are 

developed separate from the product design, which complicates the 

optimization of the system. 

 RMSs are perceived as a premature technology. Developers are still dealing 

with unresolved issues, which prohibit full automation through RMSs. 

 Indifferent attitudes toward RMSs. Many companies are uncertain of the 

advantages that reconfigurable automation holds for their production. 

 The use of RMSs as a wrong solution. RMSs should be implemented in 

production scenarios where the necessary production requirements exist and 

a sufficient level of technical competence is available. The RMS concept is 

not a suitable solution for all production scenarios. 

2.1.4. Industry 4.0 and Cyber-Physical Production Systems  

Industry has experienced three revolutions: the first was brought about by the 

invention of the mechanical loom for use in the textile industry in 1764; the second 

was driven by Henry Ford’s mass production assembly line for the T1 model in 

1913; and the third was due to the introduction of the first Programmable Logic 

Controller (PLC) in 1968. It would seem that industry is currently on the brink of 

the fourth industrial revolution – often referred to as Industry 4.0. 

Industry 4.0 is driven by an increased connectedness of the real and virtual worlds, 

forming the Internet of Things (IOT). The effect of IOT on production will be an 

enhanced individualization of products through highly flexible production, the 

extensive integration of customers and businesses in value-added processes and the 

linking of production and high-quality services to deliver hybrid products. 

Industry 4.0 will be characterized by the individualization of products and services, 

new organization and control of the entire value chain and the formulation of new 

business models. These characteristics can be facilitated through the connection of 

humans, objects and systems, and the generation and use of information in real-

time. Cyber-Physical Systems (CPSs) will play a key role in the connection of 

people, components/systems, information and services. 

CPSs are systems of communicating computational entities, which are connected 

to the physical world, that simultaneously use and provide data and services, using 

the Internet. These entities can monitor, control, coordinate and integrate the 

operations of physical or engineered systems. The maturity model for CPS 

functionality is shown in Figure 2. 

Stellenbosch University  https://scholar.sun.ac.za



 

13 

 

 

Figure 2: CPS maturity model (adapted from Monostori et al. (2016)). 

When the concept is applied to manufacturing, it is referred to as Cyber-Physical 

Production Systems (CPPSs). CPPSs then entail the convergence of the virtual and 

physical worlds of manufacturing – the first driven by developments in computer 

science and information and communication technologies, and the second by 

manufacturing science and technology. 

CPPSs consist of autonomous and cooperative elements and subsystems that can be 

connected within and across all levels of production – from high-level enterprise 

resource planning and plant management, to the lower levels of process and 

hardware control. The 5C architecture, proposed by Lee et al. (2015), explains the 

role of CPPS implementation in different levels of automation: 

 Smart Connection level – the acquisition of accurate and reliable data from 

machines. The data is obtained directly from sensors or via controller or 

manufacturing execution systems. 

 Data Conversion level – meaningful information is inferred from the 

acquired data using smart analytics. 

 Cyber level – information is gathered from all connected system 

components. The centralization of information allows for analysis based on 

historical data or through comparison between similar cases. 

 Cognition level – knowledge is generated from the comparative 

information, which provides support for expert users in making decisions 

on corrective and predictive actions. 

 Configuration level – corrective or predictive decisions are applied to the 

physical system, resulting in the adaption of machine/system configuration. 
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Through the approach and architecture described above, CPPSs aim to exhibit the 

following characteristics: 

 Intelligence – system elements are capable of acquiring information and 

acting autonomously. 

 Connectedness – connections exist between the system elements (including 

humans) and knowledge and service depositories (such as the Internet) to 

facilitate cooperation. 

 Responsiveness – the system is capable of responding to internal and 

external changes. 

The approach, architecture and characteristics described above closely resemble 

some of the aspects introduced in sections 2.1.2 and 2.1.3. In fact, Monostori et al. 

(2016) acknowledge that CPPS is not a novel, stand-alone concept, but rather a 

culmination of several preceding developments in manufacturing science and 

technology – including that of holonic and reconfigurable manufacturing systems. 

Furthermore, Wang and Haghighi (2016) believe that control implementation 

platforms, like multi-agent systems and function blocks, will play in important role 

in CPPSs. 

2.2. Control of Manufacturing Systems 
This section describes some of the commonly used classifications and approaches 

for the control of manufacturing systems. 

2.2.1. Types of Control Architectures 

Three different types of control architectures are discussed by Meng et al. (2006): 

centralized, hierarchical and heterarchical. The organizational structures of the 

control architectures are depicted in Figure 3. The architectures are described in the 

following paragraphs. 

Centralized Hierarchical Heterarchical

Controller Machine component
 

Figure 3: Types of control architectures (adapted from Meng et al. (2006)). 

The centralized control architecture achieves system control by means of one 

central controller. This controller is then responsible for the execution of all the 

automated processes in the system. The architecture is typically implemented in 

conventional control systems (discussed in section 2.2.2). 
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The hierarchical control architecture implements the hierarchical arrangement of 

multiple controllers in a system. Different levels of control exist within the system. 

This implementation sees the passing of instructions in a downward direction and 

feedback in an upward direction. The hierarchical architecture is typically 

implemented in conventional control systems, while mixed architectures 

(combinations of hierarchical and heterarchical architectures) are often 

implemented in distributed control systems like holonic control (discussed in 

section 2.2.3).  

Heterarchical control architectures apply no hierarchical levels of control. The 

control of the system is achieved by several independent controllers. These 

controllers each have their own goals and specific functionality. Communication 

and coordination between these independent controllers enable complex system 

functionalities and the pursuing of the system goals. Mixed or strict heterarchical 

control architectures are typically implemented in holonic control systems. 

2.2.2. Conventional Control 

Conventional manufacturing control systems are typically large, centralized 

applications that are developed and adapted on a case-by-case basis (Leitao and 

Restivo, 2008). These control systems implement centralized or strict hierarchical 

architectures (as was described in section 2.2.1). These control systems exist within 

the concept of Computer Integrated Manufacturing (CIM), which utilises large 

central databases to support the system information (Scholz-Reiter and Freitag, 

2007). Conventional control hardware and programming techniques greatly rely on 

Programmable Logic Controllers (PLCs) (Black and Vyatkin, 2009). 

Leitao and Restivo (2008) explain that conventional control systems do not 

efficiently satisfy the requirements of modern manufacturing and assembly (such 

as those specified in section 1.1). These control systems require expensive and time-

consuming efforts to implement, maintain or reconfigure the control application. 

Scholz-Reiter and Freitag (2007) noticed that “the complexity of the control system 

grows rapidly with the size of the underlying manufacturing system”. Meng et al. 

(2006) explains that conventional control is not reconfigurable-friendly due to 

shortcomings such as structural rigidity, lack of flexibility and convertibility and 

inability to tolerate faults or disturbances. The monolithic nature of general PLC 

software increases the difficulty of system modification and maintenance, and 

reduces the scalability of the system. This centralized approach also cannot be 

appropriately applied to applications of wide physical dispersion of hardware 

(Black and Vyatkin, 2009).  

2.2.3. Holonic Control 

The distributed holonic model represents an alternative to the traditional 

centralization of functions (Paolucci and Sacile, 2005). Holonic control usually 

combines the best features from both hierarchical and heterarchical control 

architectures (Kotak et al., 2003). Kotak et al. (2003) explain that individual holons 

have at least two basic parts: a functional component and a communication and 

cooperation component. The functional component can be represented purely by a 
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software entity or it could be a hardware interface represented by a software entity. 

The communication and cooperation component of a holon is implemented by 

software. 

The implementation of holonic control in assembly systems holds many 

advantages. Holonic systems are attractive because they are resilient to disturbances 

and adaptable in response to faults (Black and Vyatkin, 2009). Holonic systems 

have the ability to organise production activities in a way that they meet the 

requirements of scalability, robustness and fault tolerance (Kotak et al., 2003). 

Scholz-Reiter and Freitag (2007) describe advantages of holonic control systems 

due to the incorporation of heterarchical control. These advantages are: 

 Reduced system complexity due to the localization of information and 

control. 

 Reduced software development costs by the elimination of supervisory 

control levels. 

 Higher maintainability and modifiability due to system self-configurability 

abilities and system modularity. 

 Improved reliability due to a fault-tolerant approach as opposed to a fault-

free approach. 

The two reference architectures for holonic control that are most often encountered 

in the literature are PROSA and ADACOR. These two architectures are discussed 

in the remainder of the section. 

The first proposed holonic control architecture is PROSA (Product-Resource-

Order-Staff Architecture), which is comprehensively described by van Brussel et 

al. (1998). PROSA defines four classes of holons: Product, Resource, Order and 

Staff.   

The first three classes of holons can be classified as basic holons. This is because 

their existence is based on that of three independent manufacturing concerns: 

i. Product related technological aspects, such as the management of process 

sequence and the product life cycle. Product holons hold the product and 

process information required for the production of system products. These 

holons contain the various “product models” and can provide the other 

holons in the system with product information. 

ii. Resource aspects, such as optimizing the performance of machines and the 

maximizing of machine capacity. Resource holons contain the physical 

hardware, accompanied by the control software, for production line 

components. These holons then offer their functionality and capacity to the 

other holons in the system.  

iii. Logistical aspects, such as those concerning customer demands and 

production deadlines. The Order holons can be represented as tasks within 

the manufacturing system. These holons manage the logistical information 

related to the product being produced. Order holons contain the “product 

state model” and can thus provide production information to the other 

holons in the system. 
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The basic holons can interact with each other by means of knowledge exchange, as 

is shown in Figure 4. The process knowledge, which is exchanged between the 

Product and Resource holons, is the information and methods describing how a 

certain process can be achieved through a certain resource. The production 

knowledge is the information concerning the production of a certain product by 

using certain resources – this knowledge is exchanged between the Order and 

Product holons. The Order and Resource holons exchange process execution 

knowledge, which is the information regarding the progress of executing processes 

on resources.  

Staff holons are considered to be special holons, operating in an advisory role to 

basic holons. The addition of Staff holons aim to reduce work load and decision 

complexity for basic holons, by providing them with expert knowledge. The Staff 

holons consider some aspects of the problems faced by the basic holons, and 

provide sufficient information such that the correct decision can be made to solve 

the problem. 

The holonic characteristics of PROSA contribute to the different aspects of 

reconfigurability. The ability to decouple the control algorithm from the system 

structure and the logistical aspects from the technical aspects adds integrability and 

modularity. Modularity is also added by the similarity that is shared by holons of 

the same type, since this allows holons to be interchanged easily. 

 

 

Figure 4:  Structure of PROSA architecture (adapted from van Brussel et al. 

(1998)). 
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Another proposed control architecture for holonic systems is that of ADACOR 

(ADAptive holonic COntrol aRchitecture for distributed manufacturing systems). 

Within ADACOR, each holon represents a physical resource or logic entity. 

ADACOR defines four holon classes according to their roles and functionalities: 

Product holons (PH), Task holons (TH), Operational holons (OH) and Supervisor 

holons (SH). The structure of the ADACOR architecture is shown in Figure 5. 

The Product, Task and Operational holons are similar to the Product, Order and 

Resource holons of the PROSA architecture. The Product holons represent the 

products available for production – these holons have access to all the relevant 

product information. The Task holons represent the processes, along with the 

necessary resources, required to satisfy the production orders. The Operational 

holons represent the physical shop floor resources. The Supervisor holon is quite 

different to the Staff holon.  Supervisor holons are capable coordinating groups of 

holons and optimizing their collective actions. The Supervisor holons can thus 

introduce some hierarchy into the decentralized system. 

The ADACOR holons comprise a Logical Control Device (LCD) and a physical 

resource (if it exists for the specific holon), as is shown in Figure 1. The LCD has 

three functional components: a communication component for inter-holon 

communication, a decision component for regulating holon behaviour and an 

interface component for integrating with the physical resources. 

PH PH PH

TH TH TH

SH

OH

OH

OH

 

Figure 5: Structure of ADACOR architecture (adapted from Leitao and 

Restivo (2006)). 
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According to Leitao and Restivo (2008), ADACOR addresses the improvement of 

flexibility and response to change of manufacturing control systems operating in 

volatile environments. ADACOR is suited to dealing with control problems in a 

distributed manner by being “as centralized as possible and as decentralized as 

necessary”. An ADACOR control system can be formally specified and modelled 

using Petri nets. ADACOR is “built upon a community of autonomous and 

cooperative entities, designated by holons, to support the distribution of skills and 

knowledge, and to improve the capability of adaption to changing environments”.  

2.3. Holonic Control Implementation 
Two platforms have been regularly used to implement the holonic control 

architectures presented in section 2.2.3 – multi-agent systems and IEC 61499 

function blocks. The basic concepts, advantages, standards and platforms for 

development and existing implementations are discussed for each platform. 

2.3.1. Multi-Agent Systems 

The use of agent-based software to control manufacturing systems has received 

much attention in the research community. MASs have become a popular choice 

for the implementation of holonic control architectures in both holonic and 

reconfigurable manufacturing systems. 

2.3.1.1. Definition of Agents and Agent Systems 

An agent can be defined as a computational system with goals, sensors and 

effectors, which can autonomously decide which actions to take, in a given 

situation, to maximize its progress towards its goals (Paolucci and Sacile, 2005). 

With reference to a multi-agent system, Xie et al. (2007) define an agent as “a 

software system that communicates and cooperates with other software systems to 

solve a complex problem beyond their individual capabilities”.  

Paolucci and Sacile (2005) explain that an agent is different to a holon in the sense 

that a holon can consist of other holons, while an agent cannot include other agents. 

With this said, agents can practically be equivalent to holons in some cases. This is 

usually the case with agents which directly control a physical device. Here the agent 

then represents the software component of the holon introduced to decentralize the 

control system at the lowest level.  

According to Paolucci and Sacile (2005) three different classes of agents can be 

identified: 

 Agents that execute tasks based on predetermined rules and assumptions. 

 Agents that execute well-defined tasks at the request of a user. 

 Agents that volunteer information or services to a user whenever it is 

deemed appropriate. 

The main characteristics of these agents are then as follows: 

 Autonomy – agents should be able to perform most of their tasks without 

user intervention. 

 Social ability – agents should be able to interact with other agents and users. 
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 Responsiveness – agents should be able to respond to changes in their 

environment. 

 Proactiveness – agents should exhibit opportunistic and goal-orientated 

behaviour. 

 Adaptability – agents should be able to modify their behaviour in response 

to changes in their environment. 

 Mobility – agents should possess the ability to change physical location to 

improve their performance. 

 Veracity – agents should communicate reliable information. 

 Rationality – agents should act in a manner as to achieve their goals. 

Agents of different classes, performing different roles and functions, can cooperate 

and communicate within a Multi-Agent System (MAS) to achieve their individual 

goals and the goals of the system. MASs can be understood as societies of 

autonomous entities that, by their own convenient interaction and coordination, 

attempt to achieve local and global goals. MASs can then be summarized as 

“flexible networks of problem solvers that tackle problems that cannot be solved 

using the capabilities and knowledge of the individual solver” (Paolucci and Sacile, 

2005). 

2.3.1.2. Design Methodologies for MASs 

Paolucci and Sacile (2005) discuss three design methodologies for the design of 

MASs: problem-oriented, architecture-oriented and process-oriented MAS design. 

The problem-oriented MAS design process is guided by the identification of the 

reasons for which the MAS is needed. This usually involves obtaining an MAS 

solution to an existing problem or enhancing certain aspects of a system. The types 

of problems are then identified and transformed into tasks, which can be performed 

by agents. Two promising approaches to problem-oriented MAS design are the 

GAIA approach and the Multi-agent Systems Engineering (MaSE) approach.  

The architecture-oriented MAS design process is oriented by the requirements and 

implications of the design on the system architecture. The architecture determines 

the capabilities of the agent system. The Synthetic-Ecosystems approach is 

proposed for architecture-oriented MAS design.  

Process-oriented MAS design is guided by the definition of time constraints 

imposed by the different processes in the manufacturing system. The real-time 

behaviour is an important aspect of MASs, as they have to deal with internal and 

external asynchronous signals, along with the necessary time constraints. A 

proposed approach to process-oriented MAS design involves a four-layer, real-time 

holonic control architecture. 

2.3.1.3. Standards and Platforms for MASs 

The establishment of methodologies and techniques for MAS design and operation 

are required to increase the amount of practical applications of MASs in industry. 

“The Foundation for Intelligent Physical Agents (FIPA) is an IEEE Computer 
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Society standards organization that promotes agent-based technology and the 

interoperability of its standards with other technologies” (FIPA, 2010). FIPA was 

founded in 1996 and became an official IEEE standards organization in 2005. FIPA 

has thus begun to establish standards for the development and communication of 

agent-based systems. The most significant of the FIPA standards is the agent 

communication standard (FIPA, 2010). Paolucci and Sacile (2005) explain that the 

standard formalizes the conversations between agents with two concepts: the 

communicative act and the Agent Interaction Protocol (AIP). The communicative 

act associates a predefined semantic to the content of messages to allow messages 

to be univocally understood by all agents. The AIP defines which communicative 

acts must be used in a conversation and the sequence of messages to allow 

meaningful communication between agents. Other FIPA standards deal with issues 

surrounding the specification of the agent communication language and the 

mandatory components for agent platform architectures. 

The FIPA standards mainly focus on specifications regarding agent interoperability. 

FIPA thus only describes an abstract architecture with little detail regarding aspects 

of the implementation platforms (Paolucci and Sacile, 2005). Despite the lack of 

detailed standards, several agent implementation platforms have been developed. 

The most widely used platforms are JADE, FIPA-OS and ZEUS. JADE (Java Agent 

DEvelopment framework) was developed by Telecom Italia Lab, in collaboration 

with the University of Parma, Italy. JADE was fully developed in Java language 

and runs in the Java run-time environment. JADE is also fully FIPA compliant. 

Several platforms have also been developed for the simulation of MASs, of which 

the most renowned are Swarm, RePAST and MAST.  The Swarm project was 

started to create a standard support tool for the management of swarms of objects – 

a concept necessary for handling MASs. Swarm is based on an object-oriented 

framework for the definition of agent behaviour and interaction. RePAST 

(Recursive Porous Agent Simulation Toolkit) was initially viewed as a set of 

libraries intended to simplify the use of Swarm, but was later redesigned as a 

completely new framework. RePAST provides a library of classes to create, 

perform, view and collect data from agent simulations (Paolucci and Sacile, 2005). 

Research by Vrba (2003) brought about a simulation tool for agent-based systems 

in the form of MAST (Manufacturing Agent Simulation Tool). MAST is entirely 

devoted to the simulation of manufacturing processes. It has been implemented to 

simulate the material-handling activities of a manufacturing system. MAST is also 

based on the JADE platform and is fully FIPA compliant. 

2.3.1.4. Advantages of MASs 

MASs hold several advantages for implementation in RMSs. MASs have high 

modularity and reconfigurability. The addition or modification of resources can be 

achieved by simply inserting a new agent into the system or modifying the 

behaviour of an existing agent (Paolucci and Sacile, 2005). Vrba et al. (2009) 

recognised that due to its modular and decentralized characteristics, MASs are a 

way to reduce complexity and increase flexibility in a system. MASs can allow the 

simultaneous production of different products and improve the integration of legacy 
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equipment (Candido and Barata, 2007). Xie et al. (2007) also recognised that MASs 

can respond quickly to dynamic changes in the manufacturing or assembly 

environment. Furthermore, agent-based technologies are capable of dealing with 

autonomy, distribution, scalability and disturbance (Bi et al., 2008). The distributed 

and redundant nature of agent-based control systems minimizes the effect of local 

failure on the overall functionality of the system (Vrba and Marik, 2009). This is 

also confirmed by simulations performed by Lepuschitz et al. (2009), showing that 

agent-based control is “extremely robust against disturbances of machines, as well 

as failure of control units”. 

2.3.1.5. Implementations of MASs 

There have been several practical implementations of agent-based control. The 

ADACOR architecture (described in section 2.2.3) was implemented on a test 

production system, using multi-agent technology, by Leitao and Restivo (2008). 

The production system consisted of a manufacturing cell, an assembly cell, a 

storage and transportation cell and a maintenance and setup cell. The control system 

was then integrated with PLCs and PCs (running different software platforms), 

various robots and vision sensors and an Automatic Guided Vehicle (AGV). 

Candido and Barata (2007) implemented a multi-agent control system for the 

NovaFlex shop floor assembly case study. The NovaFlex system is composed of 

two assembly robots, an automatic warehouse and a transport system connecting all 

the modules. DaimlerChrysler’s Production 2000+ project implemented an agent-

based control system for a flexible cylinder head production system. This 

production system is composed of modules, each consisting of a CNC machine, 

three conveyors, two switches and a shifting table (Marik et al., 2010). Marik et al. 

(2010) also reported an agent-based control solution which added flexibility to a 

steel rod bar mill for BHP Billiton. A multi-agent control system was also 

implemented in the holonic packing cell of the Centre for Distributed Automation 

and Control (CDAC) at the University of Cambridge. Recently, MASs were 

implemented as a key technology in four European innovation projects focussed on 

the development of CPPSs (Leitao et al., 2016). 

Even though there have been several test cases and some industrial 

implementations, the manufacturing and assembly industry is still hesitant to apply 

agent-based technologies. Candido and Barata (2007) give four reasons for this 

hesitation and a fifth is mentioned by Marik et al. (2010): 

 A paradigm misunderstanding still exists due to a lack of practical test cases. 

 Members of the industry are still unaware about the changes in modern 

manufacturing and assembly requirements. 

 There is a lack of experience in agent-based technology by actual system 

integrators. 

 There is a pioneering risk involved in investing in an unproven technology. 

 The unpredictability of emergent behaviour in agent-based systems 

complicates the quantitative comparison to other technologies. 
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2.3.2. IEC 61499 Function Blocks 

The IEC 61499 standard specifies a framework for distributed and embedded 

control using function blocks. The ability to control distributed systems has made 

this approach a candidate for use in holonic and reconfigurable manufacturing 

systems. 

2.3.2.1. IEC 61499 Standard 

The IEC 61499 standard is a successor to the IEC 1131 standard, which later 

became IEC 61131.  The IEC 1131 standard is aimed at control applications in 

PLCs. The standard provides specifications ranging from PLC programming to the 

fieldbus communication of applications in PLCs.  The standard is divided into 

several parts dealing with the various aspects concerning PLCs. The IEC 61131-3 

part of the standard deals with the programming of PLCs. According to 

Lewis (1998), this part of the standard aims to improve the following aspects of 

PLC programming: 

 Capability of a system to perform its intended design functions. 

 Availability of a system during its life cycle when it is available for its 

intended design functions. 

 Usability, which indicates the ease with which a specified set of users can 

acquire and exercise the ability to interact with the system in order to 

perform its intended design functions. 

 Adaptability, which refers to the ease with which a system may be changed 

in various ways from its initial intended design functions.   

The IEC 61131 standard has had implied limitations when dealing with complex 

computations, knowledge processing, advanced network messaging and service 

orientation (Vrba and Marik, 2009). The IEC 61499 standard addresses these 

limitations and extends the IEC 61131 standard by adding event-driven execution. 

The IEC 61499 standard was also developed, according to Rooker et al. (2007), to 

address the following shortcomings of its IEC 61131 predecessor: 

 Non-deterministic switching points – this is due to the cyclic execution 

policy which is implemented by the IEC 61131 standard. 

 Lack of task level granularity1 complicates communication and re-

initialization. 

 Jittering effects – a change in one system task influences the other tasks in 

the system.  

 The possibility of entering inconsistent states during system 

reconfiguration, which may lead to deadlocks.  

The IEC 61499 standard is then a developed set of specifications for distributed 

processes and control systems (Wang et al., 2007). Black and Vyatkin (2009) 

mention that the IEC 61499 standard “provides an architectural framework for the 

design of distributed and embedded control systems” and has “undoubted 

advantages concerning distributed automation” (Vrba et al., 2009). The IEC 61499 

standard defines a component-based modelling approach using function blocks. 

                                                 
1 Presumably the extent to which control programs can be subdivided into smaller modules. 
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The standard enables the development of new technologies that aim to reduce 

design efforts and enhance reconfiguration. The goal of the IEC 61499 standard is 

“to offer an encapsulation concept that allows the efficient combination of legacy 

representation forms (such as ladder logic) with the new object and component-

orientation realities” (Vyatkin, 2007). The IEC 61499 standard uses a bottom-up 

approach in implementing decentralized control. This approach then starts at the 

shop floor level, where it effectively prepares for the distributed placement of 

holons (Paolucci and Sacile, 2005). The requirements for holonic control are thus 

inherent in the IEC 61499 specification (Black and Vyatkin, 2009). 

The function block of the IEC 61499 standard can be understood as an abstraction 

that represents a component. This component can be implemented and controlled 

by the function block software (Vyatkin, 2007). The function block concept is 

applicable to the data encapsulation and adaptive process plan execution involved 

in the assembly or manufacturing processes. The event-driven model of the function 

blocks then adds intelligence and autonomy to the resources of the system, 

increasing its decision-making ability (Wang et al., 2007). 

2.3.2.2. Platforms for Function Block Control 

There exists a few platforms and tools for the design of function block control 

systems. The Function Block Development Kit (FBDK) is the most widely used 

design platform (Black and Vyatkin, 2009). The model-view-control design pattern 

for function blocks is also applied in FBDK. This platform also includes the 

Function Block Run-Time (FBRT) environment. The entire platform is based on 

Java programming structures. Another commercial support tool is that of the 

ISaGRAF industrial control design software, which can also support the IEC 61499 

function blocks (Black and Vyatkin, 2009). 

2.3.2.3. Advantages of Function Block Control 

Function blocks provide an advance from established ladder logic and structured 

text programming languages, but its application extends past the simple 

replacement of these systems. This is due to the inherent support for distributed 

applications and the ability to provide a modelling and simulation platform with 

well-defined interfaces (Black and Vyatkin, 2009).  

Rooker et al. (2007) mention that the distributive properties of IEC 61499 function 

blocks hold several advantages. The programmed function block networks are 

directly mapped to the real system controllers and devices, where the execution 

takes place. This facilitates the movement of functionality amongst controllers and 

devices. This support of distribution then also facilitates the implementation of 

component-based information. Another benefit of using IEC 61499 function blocks 

is that, as a modelling language, it is directly executable and is thus ready for 

simulation. This allows the testing of the control system prior to deployment. This 

simulation model can then be seamlessly substituted by a hardware interface to real 

sensors and actuators. The use of function blocks also greatly increases the 

modularity of the system and enables the reusability of software components in the 

system (Black and Vyatkin, 2009). Function blocks also have a robust character 
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that makes it appropriate for implementation in the broader embedded systems 

domain (Vyatkin, 2007). 

2.3.2.4. Implementations of IEC 61499 Function Block Control 

Due to the predominant presence of the IEC 1131-3 standard in industry and 

relatively recent development of the IEC 61499, it has seen very few practical 

implementations. IEC 61499 function block control was implemented in the 

automation of a baggage handling system by Black and Vyatkin (2009). Vyatkin 

(2007) describes the first factory installation of an IEC 61499 function block control 

system by Tait Control Systems in New Zealand. 

2.4. Erlang 
Since its initial development for telecommunications switching systems (TSSs), the 

Erlang programming language has been implemented in a wide field of 

applications. This section provides a brief introduction of Erlang and OTP, 

discusses the advantages that are offered and presents an overview of significant 

implementations. 

2.4.1. Erlang Programming Language 

Erlang is a concurrent, functional programming language that was developed for 

programming concurrent, scalable and distributed systems. The language was 

developed at the Ericsson Computer Science Laboratory and implemented by 

Ericsson from 1986 to 1998 (Armstrong, 2003). The development of Erlang was 

inspired by an investigation into whether modern declarative programming 

paradigms could be used for programming large industrial TSSs (Armstrong et al., 

1996). Table 1 summarises the design requirements of TSSs, matched with the 

characteristics of Erlang. 

Erlang owes its concurrency to the process model on which it is built. Processes, as 

the basic unit of abstraction, are extremely lightweight with memory requirements 

that can vary dynamically. Erlang processes are not operating system (OS) threads 

– processes are implemented by the Erlang runtime system, which facilitates and 

schedules the process execution within the OS (Logan et al., 2011). 

Unlike OS threads, Erlang processes do not share a memory space. Process are 

strongly isolated, having no shared memory, and can only interact through the 

asynchronous sending and receiving of messages (Logan et al., 2011). These 

characteristics not only allow many processes to work concurrently, but they can 

also be distributed across many devices (referred to as nodes).  

Erlang provides simple mechanisms for inter-process data exchange through 

asynchronous message passing. To send a message, the “!” operator (called the 

bang operator) is used. For example, to send a message to another process can 

simply be done by: 

ProcessID ! Message 
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Where ProcessID represents the unique process identifier or registered name of 

the recipient process and Message is a variable storing the message content. To 

receive and handle messages is equally simple. Every process has a mailbox that 

stores incoming messages as they arrive. Messages can then be searched and 

retrieved with the receive expression: 

receive 
 MessageTemplate1 -> Action1; 
 MessageTemplate2 -> Action2 
end. 

The comparison of the received message to defined templates is called pattern 

matching. The action that the process executes depends on the template that 

matches to received message. 

Table 1: Matching the requirements of TSSs to the characteristics of Erlang 

(adapted from Däcker (2000)). 

Requirements of programming technology 

for TSSs 
Erlang characteristics 

Handling of a very large number of 

concurrent activities. 

Concurrency is provided through a lightweight 

process concept which can be spread across 

nodes. 

Actions to be performed at a certain point in 

time or within a certain time. 

Erlang operates in soft real time (where 

response times in the order of milliseconds are 

required). 

Systems distributed over several computers. 

An Erlang system may contain nodes 

distributed over many computers running 

different operating systems, over a network. 

Interaction with hardware. 

Erlang can easily communicate with hardware 

drivers and programs written in other 

languages. 

Very large software systems. 

Erlang is based on the modularity concept, 

which allows for the expansion of the control 

program. 

Complex functionality such as feature 

interaction2. 
Depends on the application. 

Continuous operation for many years. 

Erlang permits hot code loading, so that the 

system does not have to be stopped for any 

maintenance or reconfigurations. 

Performing software maintenance, 

reconfiguration, etc. without stopping the 

system. 

Erlang permits hot code loading, so that the 

system does not have to be stopped for any 

maintenance or reconfigurations. 

Stringent quality and reliability requirements. Depends on the application. 

Fault tolerance to both hardware failures and 

software errors. 

Erlang contains functions to catch and contain 

run-time errors, and to design supervision 

structures. 

                                                 
2 Feature interaction is a euphemism for the concept that complicated systems have complicated 

behaviour, and that every time you add a feature to a system, it is likely to have unpredicted and 

unwelcome effects on the behaviour of existing features. 
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The process model enables Erlang as a concurrent programming language, but the 

language is also functional. Logan et al. (2011) summarise the main concepts of 

functional programming as: 

 functions are treated as data – just like strings or integers; 

 algorithms are expressed in terms of function calls, instead of loop 

constructs like for and while; 

 and variables and values are not updated in place – a property termed 

referential transparency3. 

Erlang implements the above-mentioned concepts, but is not a “pure” functional 

language as Erlang relies on side effects. However, the reliance on side effects is 

limited to one operation – message passing. Each message represents an effect on 

a component of the program or outside world. Apart from this effect, each Erlang 

process essentially runs a functional program. 

In order to aid the reader in understanding the Erlang code presented in this 

dissertation, a brief overview of the syntax is presented in Table 2. Erlang was 

initially implemented in the Prolog programming language and inherited many of 

its syntactical conventions. 

Table 2: Erlang syntactical conventions. 

Data type/ 

construct 
Description Syntactical convention Example(s) 

Atom 

A special kind of 

string constant, 

similar to enum 

constants in C. 

Starts with a lowercase letter 

ok 
error 
undefined 

Tuple 

A fixed-length 

ordered sequence 

of other Erlang 

terms. 

Written within curly 

brackets 

{1, two, 3} 
{nested, {structure}} 

List 

An collection of 

Erlang terms with 

variable length. 

Written within square 

brackets 

[1, two, 3] 
[list, {with, tuple}] 
[nested,[list]] 

Process 

identifier 

A unique 

identifier for an 

Erlang process. 

Three integers enclosed in 

angle brackets 
<0.35.0> 

Variable 

Construct for 

storing Erlang 

terms. 

Start with an uppercase letter 

Name 
SomeInfo 
Some_info 

Function 

A collection of 

related Erlang 

expressions. 

Function name starts with a 

lowercase letter, followed by 

input arguments within 

round brackets 

execute() 
add(1,2,3) 
get_message(Message) 
do_something() 

                                                 
3 Logan et al (2011) explain reference transparency as follows: if a process obtains some value or 

term, and assigns a name to it (i.e. assign the value to a variable), then it is guaranteed that the value 

of the variable will not change, even if a reference thereof is passed to some other part of the 

program. 
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2.4.2. OTP 

The Erlang language is supplemented by the Open Telecom Platform (OTP). In 

1995, Ericsson decided to restart a failed C++ project, using Erlang instead. The 

project was a success, largely due to the work of the Erlang language support 

department on the development of OTP (Logan et al., 2011). 

OTP includes a set of Erlang libraries and design principles, providing middleware 

to develop Erlang systems (Anonymous, s.a. (a)). OTP includes the following 

components (Armstrong, 2003): 

 Compilers and development tools for Erlang. 

 Erlang run-time systems for a number of different target environments. 

 Libraries for a wide range of common applications. 

 A set of design patterns for implementing common behavioural patterns. 

 Educational material for learning how to use the system. 

 Extensive documentation. 

From a design and implementation perspective, the primary aim of OTP is to 

improve robustness and uniformity (Armstrong, 2003). The OTP behaviour 

libraries were developed and tested by expert programmers over several years. 

Furthermore, behaviours hide the complexity and exposes simple, generic 

interfaces to the developer. Behaviours also enforce a regular structure, leading to 

uniformity in the design and implementation of solutions. This uniformity allows 

for increased productivity and fewer errors in multi-programmer environments. 

2.4.3. Advantages of Erlang/OTP 

Traditionally, concurrency in a programming language has been achieved with 

threads. The execution of a program is split into concurrently running tasks, 

operating on shared memory. This leads to problems that can be hard to debug, such 

as the lost update problem. A solution to this is the use of locks, but this may lead 

to a deadlock problem. The Erlang processes have no shared memory, which 

eliminates the above-mentioned problems with threading. The Erlang processes are 

also very lightweight, making process creation orders of magnitude faster than 

thread creation in most programming languages (Armstrong, 2003). 

Erlang holds a critical advantage over other programming languages when it comes 

to robustness. Erlang has improved fault-tolerance due to its inherent fault-isolation 

structure. Armstrong (2003) explains that processes act as abstraction boundaries, 

limiting the propagation of errors through the software. OTP contributes 

significantly to the robustness of Erlang applications in providing a reliable, stable 

code base in behaviours (Logan et al., 2011). OTP also includes the supervisor 

behaviour, which facilitates the implementation of supervision trees to monitor 

processes and trap and handle errors. 

The Erlang run-time environment is independent of the properties of the host 

operating system (Armstrong, 2003). The Erlang processes, and their concurrent 

operation, synchronization and interaction, are handled by the programming 

language and not by the operating system. Erlang makes use of very little operating 
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system services, and can thus be ported to specialised environments (such as 

embedded systems) with relative ease. 

Erlang/OTP has primitives that allow code to be replaced in a running system, 

enabling old and new versions of code to execute at the same time (Däcker, 2000). 

When a new module is loaded, newly started process will run the new version, while 

on-going processes will continue and finish undisturbed. This capability enables the 

uploading of bug fixes and upgrades in a running system without disturbing the 

current operation. 

Since Erlang processes share no memory and interaction is only done through 

message passing, programs can very easily be distributed (Armstrong, 2003). 

Erlang programs that are designed for implementation as independent, concurrent 

processes can be implemented on a multi-processor or run on a distributed network 

of processors. This distributive characteristic is thus inherent in the Erlang design.  

Wiger (2001) claims that comparisons, made between internal software 

development projects at Ericsson, have shown that Erlang allows for much higher 

productivity. When compared with C++, Erlang applications resulted in a ten-fold 

reduction in the number of uncommented source code lines – other comparisons 

have indicated a four-fold reduction. The same relationship tends to exist with code-

error density (errors per line(s) of source code). The reuse of generic OTP 

behaviours further enhances productivity. 

Erlang/OTP also allows for integration with software written in other programming 

languages. Ports allow programs to be called and interfaced to the Erlang 

application in such a way that they appear to the programmer as if they were written 

in Erlang (Armstrong et al., 1996). 

2.4.4. Erlang Implementations 

Armstrong (2010) provides a short overview of the most significant implementation 

areas for Erlang/OTP: 

 Switches – The largest implementation with Erlang, to date, is Ericsson’s 

AXD301 asynchronous transfer mode switch. The switch contains 1.6 

million lines of Erlang code implementing a modular, distributed 

architecture and achieving a scalable capacity between 10 Gbit/s to 160 

Gbit/s. 

 Instant messaging – Erlang’s usefulness for developing instant messaging 

services for Internet applications is reflected in three projects: MochiWeb, 

Ejabberd and RabbitMQ. MochiWeb is an Erlang library for building HTTP 

servers with high-throughput, low-latency analytics and it used by Facebook 

Chat to serve 70 million users. Ejabberd is an Erlang implementation of the 

XMPP protocol and is amongst the most widely used open source XMPP 

servers. RabbitMQ is an implementation of the Advanced Message Queuing 

Protocol with Erlang, which provides reliable asynchronous message 

passing. 
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 Schema-free databases – Erlang is well suited for the creation of databases 

to store associative array or arbitrary tree-like data structures, as is reflected 

by the CouchDB (open source) and Amazon SimpleDB (commercial) 

implementations. 
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3. Case Study and Testbed System 
This section describes the case study that is considered in the research, as well as 

the testbed system that was developed to facilitate the evaluation of the holonic 

control implementations. For the case study, the context and essential details are 

provided. The need for a testbed system is motivated and the development thereof 

is described – this description is followed by a paper that presents the use of an 

object-oriented simulation framework to create an emulation model for the testbed 

system. 

3.1. Case Study Description 
As case study, the research considers the proposed assembly and quality assurance 

cell for electrical circuit breakers for the production of a South African 

manufacturer, CBI Electric Ltd. The presented research formed part of larger 

research project conducted by the MAD research group at Stellenbosch University, 

which entailed the design and demonstration of a manufacturing cell to replace an 

existing manual labour production line. 

The assembly and quality assurance cell poses all the challenges faced by modern 

manufacturing – the cell must be capable of handling product variation and 

fluctuating production volumes, with minimal changeover time and effort. The cell 

is thus considered suitable for design and implementation as a HMS. 

The layout for the assembly and quality assurance cell is shown in Figure 6. A 

modular, palletized conveyor system transports the circuit breakers between the 

various automated and manual workstations, each performing a specified 

production task. The cell consists of the following workstations: 

 Manual assembly station – the sub-components of circuit breakers are 

assembled and placed on empty carriers on the conveyor. 

 Inspection station – a machine vision inspection is performed on the circuit 

breakers as the carriers are moved by the conveyor. 

 Electrical test station – circuit breakers are picked up by a robot and placed 

into testing machines. The testing machines perform the necessary 

performance and safety tests on every breaker. When the testing is 

completed for a breaker, it is removed from the testing machine by the robot 

and placed on an empty carrier on the conveyor. 

 Stacking station – multiple circuit breakers are stacked to produce multi-

pole circuit breakers. The breakers are removed, stacked and placed on 

empty carriers by a robot. 

 Riveting station – the casings of the circuit breakers are manually riveted 

shut. 

 Removal station – the completed circuit breakers are removed from carriers. 

The breakers are then moved to the next cell for packaging. 

The conveyor moves product carriers between the various workstations. The 

conveyor is equipped with stop gates and lifting stations at every workstation. The 

carriers are fitted with Radio Frequency Identification (RFID) tags and RFID 
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readers are placed at multiple positions along the conveyor, to provide feedback of 

carrier location. 

3.2. Testbed System 
In order to investigate the case study and facilitate the implementation of holonic 

control, a testbed system was developed. The testbed system design followed the 

layout of the assembly and quality assurance cell, as shown in Figure 6. 

The assembly and quality assurance cell was only proposed as a design and thus the 

hardware was not available to construct a real testbed system. Instead, the testbed 

system was constructed as an emulation model, representative of the cell’s low level 

control and hardware, using the Simio simulation framework. 

The model was developed to provide a realistic emulation of the production 

processes of the manufacturing cell. The emulation entailed the following: 

 The provision of a mechanism for receiving inputs from the control 

software. 

 The execution of the manufacturing processes in reaction to received 

inputs. 

 The provision of feedback from the execution of manufacturing processes 

to the control software. 

 The visualization of the processes of the manufacturing cell. 

The emulation was designed with a TCP/IP interface that replicated those that 

would be used when using a real testbed system. In previous implementations, the 

MAD research group used TCP/IP sockets as a generic communication interface 

between the high and low level control programs. 

 

 

Figure 6: Layout of the assembly and quality assurance cell. 
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The use of Simio to construct an emulation model for the testbed system is 

presented as a paper in the next section – “Validation of a Holonic Controller for a 

Modular Conveyor System using an Object-oriented Simulation Framework” 

(Kruger and Basson, 2017 (c)). The paper describes the use of the Simio simulation 

framework to emulate manufacturing processes by receiving execution commands 

as inputs and providing output information on execution status and events. A 

discussion of the Interpreter application, which provides a communication interface 

between the holonic control software and the Simio emulation model, is also 

included. The paper was presented at the sixth international workshop on Service 

Orientation in Holonic and Multi-Agent Manufacturing (SOHOMA) in Lisbon, 

Portugal, in 2016. 
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Abstract 

This paper presents the use of a commercial, object-oriented simulation framework 

to facilitate the validation process of a holonic controller. The case study involves 

a holonic controller for a modular conveyor system. The holonic control is 

implemented using Erlang and thus exploits the scalability and concurrency 

benefits it has to offer – the simulation model and necessary interfacing was then 

customized to accommodate the nature of the implementation. The simulation 

model interface, incorporating TCP communication and Windows Communication 

Foundation services, was designed to mirror that of the conveyor hardware to allow 

for the seamless changeover between emulated and real operation. 

Keywords: Emulation; Holonic Manufacturing Systems; Reconfigurable 

Manufacturing Systems; Manufacturing Execution Systems 

3.3.1. Introduction 

Modern markets have enforced a new set of requirements on the manufacturing 

industry – increased adaptability to accommodate market trends and fluctuations, 

shorter lead times, increased product variation and customizability [1], [2]. This 

was already anticipated more than two decades ago [3] and, since then, research has 

been done on many aspects concerning the transformation of modern 

manufacturing systems. 

A popular approach used in several studies and implementations, is that of holonic 

systems. This idea, originally presented by Koestler [4], can be understood within 

the manufacturing system environment as the division of a system into autonomous, 

cooperating entities which work together to accomplish the system functions [5]. 

The holonic approach to manufacturing systems have provided many benefits – 

enhanced system scalability, customizability and fault tolerance, which lead to 

increased system reconfigurability and reliability, and reduced complexity [6]. As 

can be expected, holonic systems have encountered some challenges – of which the 

most relevant to this paper is that of system validation. 

The validation of manufacturing systems can be understood as the means to test the 

system and obtain assurance that the system functions as desired. The validation of 

holonic systems can be difficult since the system functions are distributed over 

several processes and/or controllers. Since holonic systems are based on holon 

cooperation and is often distributed, it becomes harder to validate a control 

application [7]. 
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Regarding the validation of holonic systems, there has been some research done 

into tools to aid in the endeavour. One example is that of the Multi-Agent 

Simulation Tool (MAST) presented in [8]. MAST uses a multi-agent system to 

control a graphical simulation. A discussion of the use of simulation in holonic 

systems is presented in [9]. 

There are several simulation software packages available which have been used in 

many different fields and applications. One such package is Simio, a modelling 

framework based on object-oriented principles [10]. The inherent architecture of 

Simio fits well with the idea of holonic systems and is discussed further in section 

3.3.2. 

This paper describes the use of the Simio simulation framework to validate a 

holonic control implementation through hardware emulation. The hardware 

emulation is configured to extend the holonic principles of the higher level control 

architecture by facilitating control distribution and modularity within the simulation 

framework.  

For a case study implementation the control and emulation of a modular, palletized 

conveyor system is used. Conveyor systems entail complex interactions and logic, 

and require significant programming and testing efforts during commissioning and 

reconfiguration activities. These challenges motivate the need for a simulation tool 

to validate the routing and control logic – especially for systems large in size and 

complexity – to decrease lead and ramp-up times. 

This paper presents a discussion of the holonic architecture, with focus on the 

inclusion and use of the Simio emulation model to facilitate the control validation. 

The validation process and the useful tools provided by Simio are also discussed.  

3.3.2. Simio Modelling Framework 

[11] presents Simio as a graphical modelling framework which implements object-

oriented principles in both the simulation logic programming and the construction 

of simulation models. Simio provides the developer with the infrastructure to build 

up a simulation model with customizable objects. The behaviour of the Simio 

objects can be customized by adding processes that define the execution logic. 

Processes are sequences of steps that are executed in a thread of execution. Steps 

perform some specified function, such as handling or triggering events that 

influence the state of the object. 

Furthermore, Simio is programmed in Microsoft Visual C# - this opens the 

framework for incorporation with powerful tools like .NET and Windows 

Communication Foundation (WCF). Simio also explicitly provides an API for C#, 

which provides several useful functions for the construction and running of Simio 

models. 

3.3.3. Holonic Cell Control 

At cell control level, a holonic architecture was implemented in accordance with 

the PROSA [12] reference architecture. As is clear from Figure 7, the modular 

Stellenbosch University  https://scholar.sun.ac.za



 

36 

 

conveyor system is represented as a Resource holon at cell control level. The 

conveyor holon is comprised of three components – High Level Control (HLC), 

Low Level Control (LLC) and the physical hardware. The HLC component 

represents the holon in the virtual cell control environment. This component 

handles all communication with the holons in the cell, such as service bookings, 

service cancellations, etc. The HLC activates execution of a desired service through 

communication with the LLC component. The LLC has interfaces with the physical 

actuators and sensors of the hardware and can thus coordinate the sequence of 

hardware actions required to perform a desired service. 

Order Holons Staff HolonsProduct Holons

Conveyor HLC Station A HLC Station Z HLC

. . .
Conveyor LLC Station A LLC Station Z LLC

R
e

so
u

rc
e

 H
o

lo
n

s

Conveyor Holon Station A Holon Station Z Holon  

Figure 7: Manufacturing cell control architecture. 

3.3.4. Conveyor Holon 

3.3.4.1. Holonic Controller 

The Conveyor holon component which forms part of the PROSA cell control 

application is implemented using Erlang. Erlang is a functional programming 

language with inherently strong scalability, concurrency and fault-tolerance 

characteristics. 

The Conveyor holon HLC implementation was aimed at exploiting the modularity 

and scalability advantages that Erlang offers. The HLC component is itself 

implemented as a collection of holons which encapsulate, and through cooperation, 

constitute the Conveyor holon functionality. A detailed description is given in [13]. 

3.3.4.2. Interpreter 

The Interpreter program provides a link between the holonic controller and the 

emulation model. The Interpreter maintains an interface to the holonic controller 
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that is similar to that of the low level PLCs of the conveyor (shown in Figure 8) – 

this interface facilitates TCP communication over multiple ports (the same number 

as the number of PLCs used in real operation). The Interpreter program creates a 

link to the emulation model by making use of the Windows Communication 

Foundation (WCF) services. The two mentioned interfaces are discussed in the 

following sections. 

Conveyor HLC

Conveyor LLC

Conveyor Holon

Conveyor HLC

Interpreter

Conveyor Holon  

(a)        (b) 

Figure 8: Conveyor holon architecture for (a) real and (b) simulated 

operation. 

3.3.4.2.1. TCP Communication with HLC  

As mentioned, the Interpreter program facilitates TCP communication which 

emulates the communication to the PLCs that control the conveyor hardware. To 

the Erlang-based holonic controller programs, there is no difference in the 

communication whether real operation or emulation is performed. 

The Interpreter program maintains a port for every PLC that is installed on the 

conveyor. To communicate the information received from the holonic controller to 

the emulation model, the Interpreter program parses XML encoded strings received 

over the TCP ports. The parsing extracts the critical information that must be 

communicated to the emulation model. In the same way the PLCs will provide 

notifications based on the feedback of their connected sensors, the emulation model 

provides feedback based on events in the emulation model.  This feedback 

information is then encoded into an XML string and is sent via the TCP port to the 

holonic controller. 

3.3.4.2.2. WCF Interface with Emulation Objects 

In order to interface the Interpreter C# program with the Simio objects during 

runtime, WCF was chosen to provide the infrastructure for communication. WCF 

is a software development kit for implementing services on the Windows operating 
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system. Services, in this case, refer to units of functionality and coincide with that 

used in service-orientation principles. [14] 

In the Interpreter program, WCF is used to host a service that exposes both events 

and event handlers. The service can be accessed by clients through bindings, which 

are configured in a service contract. The service contract allows the various 

EventInterface step object instances in Simio (discussed in section 3.3.5), which 

form part of the model processes, to trigger an event that will be handled by the 

Interpreter program. The contract also allows for the Interpreter program to trigger 

an event which is handled by the EventInterface objects. 

Using the WCF service, the process step of each transfer node in the Simio model 

triggers a “notification” event that is handled by the Interpreter. This event is 

triggered whenever a carrier arrives at a transfer node and the carrier name is 

supplied as an event data parameter. This notification is forwarded as an XML 

string to the HLC. 

With the notification received, the HLC must determine to which transfer node the 

carrier in the model must be directed next. This information is then sent to the 

Interpreter program, where an event is triggered (the name of the next transfer node 

is specified in the event information). This event is then handled by the process step 

of the relevant transfer node and the extracted information is used to direct the 

carrier in the desired direction. 

3.3.5. Conveyor Model 

The Simio emulation model for the conveyor is shown in Figure 9. As will be 

explained in the following sections, the model is constructed using standard Simio 

objects and the logic is implemented through Simio processes with customized 

process steps. 

 

Figure 9: Conveyor emulation model. 
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3.3.5.1.1. Simio Model 

The conveyor system is modelled as a network of nodes linked by transitions (also 

referred to as paths or links). Nodes are points on the conveyor where two or more 

transitions meet – on the physical system, nodes are implemented by stop gates 

(usually in combination with lifting stations or transverse conveyors, and are 

equipped with RFID readers), as is shown in Figure 10. These physical entities can 

be modelled in Simio by transfer node objects for node entities and either conveyor 

objects (for one-directional transitions) or path objects (for bi-directional 

transitions). 

The model of the conveyor also includes means of carrier storage (i.e. a mechanism 

to unload or store carriers). For the conveyor used in this case study, this function 

is performed by an automated carrier magazine. The same functionality can be 

achieved in the emulation model by using the source and sink standard Simio 

objects. The source object unloads carriers for the conveyor and the sink model 

stores carriers. 

Figure 10: Schematic of the conveyor with all nodes indicated 

3.3.5.1.2. Simio Processes 

The behaviour of the standard Simio transfer node objects can be customized by 

adding processes to the object instance. Processes are constructed through a 

specified sequential execution of functional steps. The processes are executed when 

specific events occur – in the transfer node case, when an entity (carrier) enters the 

transfer node and the “entered” event is triggered. The process executed when the 

“entered” event is triggered is shown in Figure 11. 

Figure 11 shows the process which is executed by transfer node objects when they 

are entered by an entity object. When an entity enters a transfer node, the first step 

executed in the process is NotifyReady. During this step, the notification event is 

triggered which is handled by the Interpreter. The step then also subscribes to the 

event that the Interpreter will trigger when it receives a message from the HLC 

specifying the next transfer node. When the event is triggered and handled by the 

NotifyReady step, the process next enters an Execute step – this Execute step then 

calls the SetNode process, which uses the obtained event information to specify the 

node to where the entity must be directed. 

Source & 
sink nodes
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3.3.5.1.3. Conveyor Emulation 

During operation, the first task for the conveyor will be to unload a carrier from 

storage onto the conveyor – this unload task will be initiated from the controller. 

This unloaded carrier will be moved to some location, as controlled by a 

corresponding process in the holonic controller. After unloading, the carrier will 

arrive at the first transfer node and a notification will be sent to the Interpreter 

program, where it will be encoded into an XML string and be forwarded to the 

holonic controller. The controlling process can then react to this notification and 

send an XML string to the Interpreter which specifies the next transfer node to 

where the carrier must be moved. The transfer node currently occupied waits for 

this command to be received from the Interpreter and subsequently directs the 

carrier on the desired path towards the desired next transfer node. 

3.3.6. Control Validation 

Validation, in this context, refers to the assurance that the holonic control 

application is performing the system functions as desired. The emulation of the 

conveyor system using a Simio model offers several advantages for the validation 

of the control logic.  

An important advantage is the ability to perform long-running emulations in short 

times, as the execution speed of the emulation model can be controlled. Also, the 

use of Simio emulation allows for testing of specific production scenarios – this is 

especially useful in the event of reconfiguration. The initial conditions of the 

emulation environment can be customized to adhere to some HLC scenario – i.e. 

the conveyor emulation can begin with a “clean” startup, or with carriers in 

predefined locations. The combination of Erlang and Simio simplifies this process 

– the stateless nature of Erlang programs allow for the various system holons to be 

launched with specific state data, while the “open” nature of Simio, together with 

the C# API functions, provide the infrastructure to create custom scenarios. 

Even though the research community is still striving toward standardized 

benchmarks for the performance of holonic systems, the collection of performance 

data is critical for the validation process. Simio incorporates the functionality to 

record and process diagnostic data from a performed emulation – this can include 

 

Figure 11: Simio processes for conveyor node objects. 
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information on travelled carrier paths and times, collision detection and time-out 

errors.  

Two quantitative measurements that are easy to obtain through this presented 

Erlang-Simio application, are throughput and resource utilization. For the 

conveyor, Simio reports data on each conveyor segment – e.g. the throughput, 

maximum and minimum carriers present at a given time and average time spent by 

carriers in that segment. When the other Resource holons are also integrated in the 

Simio emulation, Simio can report the time a specific resource was used during the 

total emulation time.  

3.3.7. Conclusion and Future Work 

This paper presented the use of simulation software in the validation of a holonic 

control implementation. The case study focused on the validation of an Erlang 

based holonic controller for a modular conveyor system, where Simio is used to 

provide a hardware emulation model. 

To create an interface between the holonic controller and the emulation model, an 

Interpreter program was developed. The Interpreter program maintains an interface 

that emulates that of the physical conveyor system by handling TCP communication 

on multiple network sockets. The Interpreter also provides the means for 

communication with the emulation model using several instances of WCF services. 

With further enhancement, the use of the Simio emulation model could prove to be 

valuable in the control validation process. The emulation of customized production 

scenarios is a great advantage in the context of reconfigurable manufacturing 

systems. The object-oriented nature of Simio also strongly resembles the principles 

of holonic systems and it thus interfaces well with higher level holonic control 

implementations. 

Future work will entail the enhancement of the Simio emulation, with particular 

focus on enriched information flow between the control and emulation levels, and 

also the incorporation of measurement tools within Simio to capture and interpret 

diagnostic information from emulation experiments. Further work will be done on 

the construction of Simio models to accurately represent the real system 

components.  
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4. Erlang Holonic Control Implementation 
This section describes the development of a holonic control implementation using 

Erlang. The development is documented in three papers, each presented in a 

dedicated subsection. 

The first paper, “Implementation of an Erlang-based Resource Holon for a Holonic 

Manufacturing Cell” (Kruger and Basson, 2015), is presented in section 4.1 and 

describes the implementation of a Resource holon using Erlang. The holon internal 

architecture is described in terms of the functional components and inter- and intra-

holon communication. The paper also presents the case study implementation of 

the Erlang-based Resource holon for a pick-‘n-place robot. The paper was presented 

at the fourth international workshop on Service Orientation in Holonic and Multi-

Agent Manufacturing (SOHOMA) in Nancy, France, in 2014.  

In section 4.2, the second paper presents a methodology for implementing holons 

using Erlang and is titled “Erlang-based Control Implementation for a Holonic 

Manufacturing Cell” (Kruger and Basson, 2017 (a)). The methodology provides 

guidelines for the implementation of holon functionality and the facilitation of 

communication in holonic control implementations. An implementation of the 

presented methodology is illustrated through the extension of the case study 

introduced in section 4.1. This paper was published in the International Journal of 

Computer-Integrated Manufacturing in March of 2017. 

The third paper, “Erlang-based Holonic Controller for a Modular Conveyor 

System” (Kruger and Basson, 2017 (c)), is included in section 4.3 and describes the 

holonic control implementation for a conveyor system. The development of a 

holonic controller was required for the conveyor system that forms part of the 

testbed system, as discussed in section 3.2. The controller for the conveyor system 

was implemented using Erlang, providing an additional case study example. The 

Erlang holonic controller is also used by the MAS implementation (discussed in 

chapter 5) and is not included in the evaluation and comparison presented in 

chapter 6. The paper was presented at the sixth international workshop on Service 

Orientation in Holonic and Multi-Agent Manufacturing (SOHOMA) in Lisbon, 

Portugal, in 2016.  
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Abstract 

The use of holonic control in reconfigurable manufacturing systems holds great 

advantages, such as reduction in complexity and cost, along with increased 

maintainability and reliability. This paper presents an implementation of holonic 

control using Erlang, a functional programming language. The paper shows how 

the functional components of a PROSA Resource holon can be implemented 

through Erlang processes. The subjection of a case study implementation to a 

reconfigurability experiment is also discussed. 

Keywords: Erlang/OTP; Holonic Manufacturing Systems; Reconfigurable 

Manufacturing Systems; Manufacturing Execution Systems; Automation 

4.1.1. Introduction 

Reconfigurable Manufacturing Systems (RMSs) are aimed at addressing the needs 

of modern manufacturing, which include [1]: short lead times for the introduction 

of new products into the system, the ability to produce a larger number of product 

variants, and the ability to handle fluctuating production volumes and low product 

prices.  

RMSs then aim to switch between members of a particular family of products, by 

adding or removing functional elements, with minimal delay and effort [2, 3]. For 

achieving this goal, RMSs should be characterized by [4, 5]: modularity of system 

components; integrability with other technologies; convertibility to other products; 

diagnosability of system errors; customizability for specific applications; and 

scalability of system capacity. RMSs thus have the ability to reconfigure hardware 

and control resources to rapidly adjust the production capacity and functionality in 

response to sudden changes [1, 6]. 

A popular approach for enabling control reconfiguration in RMSs is the idea of 

holonic control. Holons are “any component of a complex system that, even when 

contributing to the function of the system as a whole, demonstrates autonomous, 

stable and self-contained behaviour or function” [7]. Applied to manufacturing 

systems, a holon is an autonomous and cooperative building block for transforming, 

transporting, storing or validating information of physical objects.  

Several experimental implementations of holonic control have been done using 

agent-based programming (such as in [8]), often using JADE as development tool. 

From our experiences with JADE, we believe there is room for improvement 

concerning complexity, industry acceptance, robustness and scalability. 
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This paper describes the implementation of holonic control using Erlang. Erlang is 

a functional programming language developed for programming concurrent, 

scalable and distributed systems [9]. The Erlang programming environment is 

supplemented by the Open Telecommunications Platform (OTP) - a set of robust 

Erlang libraries and design principles providing middleware to develop Erlang 

systems [10]. 

Erlang has the potential to narrow the gap between academic research and industrial 

implementation. This is due to several advantages offered by the Erlang language, 

such as increased productivity, reliability, maintainability and adaptability. 

This paper describes an Erlang-based implementation of the control component for 

a PROSA Resource holon in a reconfigurable manufacturing cell, focusing on: 

 The functional components of a Resource holon which must be incorporated 

by the Erlang implementation (section 4.1.2) 

 A case study which demonstrates the Erlang-based holonic control 

(section 4.1.3) 

 The implementation of the functional components of Resource holon 

control through Erlang/OTP processes (section 4.1.4) 

 The reconfigurability of the Resource holon in reaction to changes in the 

holon’s service specification (section 4.1.5). 

4.1.2. Holonic Control 

4.1.2.1. Holonic Architecture 

There are several existing reference architectures which specify the mapping of 

manufacturing resources to holons and to structure the holarchy (e.g. [11], [8]). Of 

these reference architectures, the most prominent is that of PROSA [12]. 

PROSA (Product-Resource-Order-Staff Architecture) defines four holon classes: 

Product, Resource, Order and Staff. The first three classes of holons are basic 

holons, which interact by means of knowledge exchange. The process knowledge, 

which is exchanged between the Product and Resource holons, is the information 

describing how a certain process can be achieved through a certain resource. The 

production knowledge is the information concerning the production of a certain 

product by using certain resources – this knowledge is exchanged between the 

Order and Product holons. The Order and Resource holons exchange process 

execution knowledge, which is the information regarding the progress of executing 

processes on resources.  

Staff holons are considered to be special holons which aid the basic holons by 

providing them with expert knowledge to reduce work load and decision 

complexity.  

4.1.2.2. Resource Holon Internal Architecture 

A Resource holon requires several capabilities, such as communication, execution 

control and hardware interfacing. The Resource holon model used for the 

implementation is described in this section. 
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[13] explain that individual holons have at least two basic parts: a functional 

component and a communication and cooperation component. The functional 

component can be represented purely by a software entity or it could be a hardware 

interface represented by a software entity. The communication and cooperation 

component of a holon is implemented by software. [14] share a similar view of the 

internal architecture of a resource holon, as is illustrated in Figure 13 (a). 

The communication component is responsible for the inter-holon interaction – i.e. 

the information exchange with other holons in the system. The decision-making 

component is responsible for the manufacturing control functions, and so regulates 

the behaviour and activities of the holon. The interfacing component provides 

mechanisms to access the manufacturing resources, monitor resource data and 

execute commands in the resource. 

4.1.3. Case Study 

The case study chosen for the presented Erlang-based holonic control 

implementation, as shown in Figure 12, entails the testing of circuit breakers. The 

station utilizes a pick-‘n-place robot to move circuit breakers from an incoming 

fixture to specified tester slots, in a specified sequence. Upon completion of the 

testing, the robot removes the circuit breakers and places them in the outgoing 

fixture. Breakers on the same fixture may require testing in different tester slots, 

which differ in testing parameters and times. 

The robot utilized in the case study is a Kuka KR16 robot, fitted with two pneumatic 

grippers at the end effector (only one of the grippers is used in this implementation). 

A mock testing rack with four tester slots is used – the slots are fitted with a spring-

loaded clamp to hold the breakers in place during testing. 

 

Figure 12: Circuit breaker test station. 
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4.1.4. Erlang-based Control Implementation 

4.1.4.1. Product, Order and Staff Holon Implementation 

Though not the focus of this paper, Product, Order and Staff holons are included in 

the holonic control implementation. A Product holon for each type of circuit breaker 

is included – this holon contains the information for testing parameters and 

sequence. For each breaker on the incoming fixture an Order holon is launched to 

drive production. These holons acquire the resource services necessary to complete 

the testing process. A Staff holon is included to facilitate the allocation of resource 

services to requesting Order holons. 

4.1.4.2. Resource Holon Implementation 

For the presented implementation a Resource holon was created for the robot and 

each of the tester slots. While the implementation of the Robot holon is complete, 

the service of the tester slot holons are simulated by replacing their hardware 

components with timer processes. 

For the Robot holon, the software components are implemented on a separate PC 

which interfaces with the hardware via the robot’s dedicated controller. The internal 

holon architecture, inter- and intra-holon communication and the holon functional 

components are briefly discussed in this section (a detailed discussion is presented 

in [15]). 

  

      (a)                        (b) 

Figure 13: (a) A generic (adapted from [14]) and (b) the adapted Resource 

holon model. 
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4.1.4.2.1. Internal Architecture and Communication.  

For the Erlang/OTP implementation, the internal architecture of a Resource holon 

(Figure 13 (a)) is adapted to that shown in Figure 13 (b). Though the 

Communication and Interfacing components are present in both models, the 

Decision-making component in Figure 13 (a) is split into two components, namely 

the Agenda Manager and Execution components. 

The communication within the Erlang implementation can be classified as either 

inter- or intra-holon communication. Inter-holon communication is the exchange of 

messages between the different holons in the system, while intra-holon 

communication refers to the messages sent between the holon’s software and 

hardware components. 

Messages follow the tuple format {Sender, Message}. Sender holds the 

address of the process sending the message and Message holds the payload of the 

message. The payload, for messages received by a resource holon, is in the form of 

a record. 

 In addition to the inter-holon communication, Figure 13 (b) also shows intra-holon 

communication in terms of requests, results and execution information. As the 

Communication component receives messages from other holons requesting a 

service, request messages are formulated and forwarded to the Agenda Manager 

component. The Agenda Manager processes the request and responds to the 

Communication component, which in turn formulates and sends a reply to the 

requesting holon. The Agenda Manager can also send a message to the Execution 

component to activate execution. The Execution component parses the message to 

extract the execution information which is passed on to the hardware. The hardware, 

and subsequently the Execution component, gives feedback in the form of result 

messages. 

4.1.4.2.2. Holon Functional Components. 

 The Resource holon model of Figure 13 (b) has four components: Communication, 

Agenda Manager, Execution and Interfacing. 

The Communication component of the Resource holon is responsible for 

maintaining the inter-holon communication interface. It receives request messages 

from other holons in the system, evaluates the message type and content and 

forwards the message to the appropriate holon component. The holon component 

then returns a result message, which the Communication component then sends to 

the requesting holon. 

The component is implemented as a single Erlang process running a receive-

evaluate loop. This recursive process receives messages from other holons and, by 

means of pattern matching, identifies relevant messages and then forwards the 

necessary information to the appropriate holon component. The Communication 

component's process also receives intra-holon messages – by the same means the 

messages are forwarded to the corresponding holon. 
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The Agenda Manager component manages the service of the Resource holon. The 

component manages a list of service bookings by order holons and triggers the 

Execution component, with the necessary execution information, according to the 

agenda. 

The Agenda Manager component is implemented through two processes - a 

receive-evaluate loop, for receiving messages, and a generic finite state machine 

(FSM) behaviour (using the OTP gen_fsm library). Through pattern-matching, 

received messages are related to events which cause state transitions in the FSM.  

The Execution component of the holon drives the hardware actions which constitute 

the service(s) of the resource holon. It activates the sequential execution of 

hardware functions, with the necessary execution information. 

The Execution component is also implemented using a receive-evaluate loop, for 

receiving messages, and a generic FSM behaviour. The required sequence of 

hardware actions is formulated into this FSM. With each execution state, the 

necessary activation and information messages are sent to the hardware via the 

Interfacing component. The process receives feedback regarding the execution 

status from the hardware – these messages are then used as events to trigger the 

transitions between the states. When execution is completed, the execution result is 

forwarded to the Agenda Manager and Communication components and ultimately 

replied to the Order holon. 

Figure 14 (a) shows the execution state diagram for the Robot holon. This example 

shows three states: “ready”, “picking” and “placing” – each representing an 

execution state of the robot. The FSM switches between states in accordance with 

received messages from the Agenda Manager and the hardware. 

The Interfacing component maintains the communication interface between the 

Erlang control processes and the program on the robot controller. This component 

isolates the hardware-specific communication structures from the Execution logic. 

This component is implemented using a receive-evaluate loop for receiving 

messages and a process for TCP communication. For TCP communication, the 

process utilizes communication functions from the OTP gen_tcp and XML 

functions from the XMErL libraries [16]. 

In addition to the OTP functionality used in the holon implementation described 

above, more tools offered by Erlang/OTP are available for enhancing the 

implementation. Two tools which can be very useful are the Supervisor and 

Logging modules. For this implementation, a Supervisor process for all the 

discussed components is included. The Supervisor process launches and shuts down 

the processes in a specified order and restarts the components if they fail. 

Erlang/OTP includes an error_logger module [17] which is used to output error, 

warning and information reports to the terminal or to file. The format of these 

reports can be customized according to the needs of the application. 
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4.1.5. Reconfiguration Experiment 

A reconfiguration experiment was performed on the case study implementation to 

demonstrate the reconfigurability of the Erlang-based Resource holon. The 

experiment entailed a change to the service that is provided by the Robot holon – 

more specifically, the service was adjusted to include a scanning operation. The 

pick-‘n-place robot must then, prior to placing, bring the circuit breaker to the 

vicinity of a scanner. 

The added scanning function is only intended for diagnostic purposes and does not 

entail a change to the product information. The addition then only affects the Robot 

holon, and not the Order or Product holons. 

The scanning function must be included in the Execution component of the Robot 

holon. This means that an additional state must be added to the FSM. The state 

diagrams of the FSM before and after the addition of the scanning function are 

shown in Figure 14. 

INIT

READY

PICKING

PLACING

Received 
“ready” from 

hardware

Received “placing 
done” from 
hardware

Received “start” 
from Agenda 

Manager

Received 
“picking done” 
from hardware

          

INIT

READY

PICKING

PLACING

Received 
“ready” from 

hardware

Received “placing 
done” from 
hardware

Transition with 
event

Received “start” 
from Agenda 

Manager

Received 
“picking done” 
from hardware

Event

STATEState

SCANNING

Received 
“scanning 

done” from 
hardware  

(a)      (b) 

Figure 14: Execution state diagrams (a) before and (b) after adding the 

scanning function. 

The following code snippet shows the code for the FSM prior to the addition of the 

scanning operation: 

1) init(_) -> {ok,ready,[]}. 
2) %STATE: ready 
3) ready(Msg=#service{message_type=start,info=#coords{}},_) 

-> 
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4)   robot_pi ! {robot_exec, 
#service{message_type=start, 
info=Msg#coords.pick_coords}}, 

5)   {next_state,picking,[Msg#service.info]}. 
6) %STATE: picking 
7) picking(Msg=#service{message_type=done,result=true}, 
8) Coords) -> 
9)   robot_pi ! {robot_exec, 

#service{message_type=start, 
info=Coords#coords.place_coords}}, 

10)   {next_state,placing,[]}. 
11) %STATE: placing 
12) placing(Msg=#service{message_type=done,result=true}, _) 

->  
13)   robot_am ! {robot_exec, 

Msg#service{message_type=done,result=true}}, 
14)   {next_state,ready,[]}. 

The states are defined as function heads (e.g. lines 3, 7 and 12) – the functions take 

two input arguments: a transition event and the state data. When the transition event 

occurs (e.g. a message is received), actions are performed and the new state is 

specified. Here the actions involve sending messages to other processes using the 

“!” operator (e.g. lines 4, 9 and 13). The new state to transition to is specified by 

{next_state, StateName, StateData}, as is shown in lines 5, 10 and 

14. The following code snippet shows the inserted code for the additional scanning 

operation: 

6) %STATE: picking 
7) picking(Msg=#service{message_type=done,result=true}, 

Coords) -> 

8)   robot_pi ! {robot_exec, 
#service{message_type=start, info=?ScanCoords}}, 

9)   {next_state,scanning,[Coords]}.  
10) %STATE: scanning 
11) scanning(Msg=#service{message_type=done,result=true 

},   Coords) -> 

12)   robot_pi ! 
{robot_exec,#service{message_type=start, 

info=Coords#coords.place_coords}, 

13) {next_state,placing,Coords}. 
14) %STATE: placing 
15) placing(Msg=#service{message_type=done,result=true}

, _) -> … 

The inserted code shows the definition of the new scanning state and, in lines 9 and 

13, updates the transitions from and to the picking and placing states. The fixed 

coordinates of the scanner are defined in the module as the macro ?ScanCoords. 
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The code shown above is added to the Execution FSM module and can, through hot 

code-loading, replace the old FSM code while the holon is operating. 

4.1.6. Conclusion 

RMSs commonly employ holonic control architectures to enable the rapid 

reconfiguration of hardware and control resources to adjust production capacity and 

functionality. This paper shows that Erlang/OTP is an attractive solution for 

implementing holonic control and presents an implementation of a Resource holon 

as example.  

The implementation example uses a pick-‘n-place robot as Resource holon.  The 

robot picks up circuit breakers from a fixture, places them in testers and ultimately 

removes them again. The paper describes the implementation of the functional 

holon components as Erlang processes, with specific use of the OTP generic finite 

state machine library. The reconfigurability of the holon is demonstrated through 

an experiment where an additional operation is added to the pick-‘n-place process. 

The experiment shows that reconfiguration is easy, as the FSM code offers good 

encapsulation of functionality and state transitions are clearly defined and easily 

changed. The reconfiguration could also have been done during holon operation. 

Future work will entail the expansion of the Erlang/OTP implementation to the 

execution control system for an entire manufacturing cell, in which all of the 

PROSA holons will be incorporated.  
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Abstract 

Holonic control is generally used in reconfigurable manufacturing systems since 

the modularity of holonic control holds the promise of easier reconfiguration, 

reduction in complexity and cost, along with increased maintainability and 

reliability. As an alternative to the commonly used agent-based approach, this paper 

presents an Erlang-based holon internal architecture and implementation 

methodology that exploits Erlang’s capabilities. The paper shows that Erlang is well 

suited to the requirements of holonic and reconfigurable systems - due to strong 

modularity, scalability, customizability, maintainability and robustness 

characteristics. 

Keywords: Erlang/OTP; Holonic manufacturing system (HMS); Reconfigurable 

manufacturing system (RMS) 

4.2.1. Introduction 

The concept of Reconfigurable Manufacturing Systems (RMSs) is aimed at 

addressing the needs of modern manufacturing, as have been shaped by aggressive 

global competition and uncertainty resulting from dynamic changes in economical, 

technological and customer trends (Leitao and Restivo, 2006). The critical 

requirements for modern manufacturing systems include (Bi et al., 2008) short lead 

times for the introduction of new products into the system, the ability to produce a 

larger number of product variants and the ability to handle fluctuating production 

volumes.  

RMSs aim to switch between members of a particular family of products, by adding 

or removing functional elements (hardware or software), with minimal delay and 

effort (Martinsen et al., 2007; Vyatkin, 2007). RMSs are also designed to be able 

to rapidly adjust the production capacity and functionality in response to sudden 

changes, by reconfiguring hardware and control resources (Bi et al., 2008; Bi, 

Wang, and Lang, 2007). RMSs therefore should be characterised by (Mehrabi, 

Ulsoy, and Koren, 2000; ElMaraghy, 2006): modularity of system components, 

integratability with other technologies, convertibility to other products, 

diagnosibility of system errors, customizability for specific applications and 

scalability of system capacity.. 

A popular approach for enabling control reconfiguration in RMSs is holonic control 

architectures. The term holon (first introduced by Koestler in 1967) comes from the 

Greek words “holos” (meaning “the whole”) and “on” (meaning “the particle”). 

Holons are then “any component of a complex system that, even when contributing 

to the function of the system as a whole, demonstrates autonomous, stable and self-
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contained behaviour or function” (Paolucci and Sacile, 2005). When this concept is 

applied to manufacturing or assembly systems, a holon is an autonomous and 

cooperative building block for transforming, transporting, storing or validating 

information of physical objects. A Holonic Manufacturing System (HMS) is then 

“a holarchy (a system of holons which can cooperate to achieve a common goal) 

which integrates the entire range of manufacturing activities” (Paolucci and 

Sacile, 2005). 

The application of the holonic concept to manufacturing control systems has been 

a popular field of research since the early 1990’s. Even though several experimental 

implementations have been reported, predominantly based on agent based 

programming (such as Leitao and Restivo (2006)), we believe there is room for 

improvement in terms of reduced complexity, greater potential for industry 

acceptance, better robustness/fault-tolerance and better inherent scalability. 

This paper evaluates a new alternative to agent-based approaches: the 

implementation of holonic control using the Erlang programming language. Erlang 

is a concurrent, functional programming language which was developed for 

programming concurrent, scalable and distributed systems. In Erlang, many 

lightweight processes can be employed to work concurrently while distributed over 

many devices. Processes are strongly isolated, having no shared memory, and can 

only interact through the asynchronous sending and receiving of messages 

(Armstrong 2003). The Erlang programming environment is supplemented by the 

Open Telecommunications Platform (OTP) - a set of robust Erlang libraries and 

design principles providing middle-ware to develop Erlang systems (Anonymous, 

s.a. (a); Logan, Merrit, and Carlsson, 2011). 

The objective of this paper is to present an Erlang-based internal architecture for 

holons and an implementation methodology, targeting a reconfigurable 

manufacturing system. A resource holon in the PROSA holonic control architecture 

(discussed in section 4.2.2.2) is used as a prototype since it contains all the 

architectural elements required for the other holon types, as well as hardware 

interfacing. 

4.2.2. Holonic Control 

This section motivates the use of the holonic control approach and gives some 

background regarding reference architectures. The generic resource holon model, 

used for the Erlang implementation, is also discussed. 

4.2.2.1. Advantages of Holonic Control 

The use of holonic control for RMSs holds many advantages: Holonic systems are 

resilient to disturbances and adaptable in response to faults (Vyatkin 2007); have 

the ability to organise production activities in a way that they meet the requirements 

of scalability, robustness and fault-tolerance (Kotak et al., 2003); and lead to 

reduced system complexity, reduced software development costs and improved 

maintainability and reliability (Scholz-Reiter and Freitag, 2007). 
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4.2.2.2. Holonic Architecture 

The full utilization of the above-mentioned advantages relies on the holonic 

system's architecture. Several reference architectures, which specify the mapping 

of manufacturing resources to holons and to structure the holarchy, have been 

proposed (e.g. Chirn and McFarlane (2000); Leitao and Restivo (2006)), but the 

most prominent is PROSA (Product-Resource-Order-Staff Architecture) (Van 

Brussel et al., 1998). 

PROSA defines four holon classes: product, resource, order and staff. The first three 

classes of holons can be classified as basic holons, because, respectively, they 

represent three independent manufacturing concerns: product-related technological 

aspects (product holons), resource aspects (resource holons) and logistical aspects 

(order holons). 

The basic holons can interact with each other by means of knowledge exchange, as 

is shown in Figure 15. The process knowledge, which is exchanged between the 

product and resource holons, is the information and methods describing how a 

certain process can be achieved through a certain resource. The production 

knowledge is the information concerning the production of a certain product by 

using certain resources – this knowledge is exchanged between the order and 

product holons. The order and resource holons exchange process execution 

knowledge, which is the information regarding the progress of executing processes 

on resources.  

 

Figure 15: Knowledge exchange between the PROSA holons. 

Staff holons are considered to be special holons as they are added to the holarchy 

to operate in an advisory role to basic holons. The addition of staff holons aim to 

reduce work load and decision complexity for basic holons, by providing them with 

expert knowledge. 
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The holonic characteristics of PROSA contribute to the different aspects of 

reconfigurability mentioned in section 4.2.1. The ability to decouple the control 

algorithm from the system structure, and the logistical aspects from the technical 

aspects, aids integrability and modularity. Modularity is also provided by the 

similarity that is shared by holons of the same type. 

4.2.2.3. Resource Holon Model 

The paper uses the resource holon as case study because of the range of capabilities 

that is required, such as communication, execution control and hardware 

interfacing. The resource holon model used as starting point is described in this 

section – an adapted model for implementation with Erlang follows in section 

4.2.4.1. 

The internal architecture of a resource holon is illustrated in Figure 16. Individual 

holons have at least two basic parts (Kotak et al., 2003; Leitao and Restivo, 2002): 

a functional component and a communication and cooperation component. The 

functional component can be represented by a purely software entity or, as in 

resource holons, it could be a hardware interface represented by a software entity. 

The communication and cooperation component of a holon is implemented by 

software.  

The communication component is responsible for the inter-holon information 

exchange. The decision-making component is responsible for the manufacturing 

control functions, regulating the behaviour and activities of the holon. The 

interfacing component handles the intra-holon interaction, providing mechanisms 

to access the manufacturing resources, monitor resource data and execute 

commands in the resource. 

 

Figure 16: Internal architecture of a resource holon (adapted from Leitao 

and Restivo (2002)). 
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4.2.3. Advantages of using Erlang for Holonic Control Implementation 

There are several inherent characteristics of Erlang which prove to be advantageous 

for the implementation of holonic control. The most prominent advantages relate to 

fault-tolerance, service availability and scalability. 

The Erlang process model – whereby system functionality is distributed across a 

number of cooperating and communicating processes – ensures that Erlang is built 

on an inherently fault-isolating architecture. The processes act as abstraction 

boundaries, limiting the propagation of error through the system (Armstrong, 2003). 

This strong fault-tolerant nature of Erlang is further supplemented by the OTP 

libraries for supervisory structures, which can be utilized to detect and trap system 

errors and implement strategies to rectify the system behaviour (Armstrong, 2003). 

Erlang allows for the updating of code without having to disturb the operation of a 

running program since it has primitives which allow code to be replaced in a 

running system (Däcker, 2000). Bug fixes and upgrades can be uploaded to a 

running system without disturbing the current operation. This capability, along with 

the previously mentioned fault-tolerance, enables Erlang systems to offer excellent 

service availability (Armstrong, 2007). 

Finally, Erlang provides the infrastructure for massive scalability and concurrency. 

The lightweight nature of Erlang processes means that millions of processes can be 

supported on a single processor (Armstrong, 2007). Furthermore, since Erlang 

processes share no memory and all interaction is done through message passing, 

processes can easily be distributed over a network of processors (Armstrong, 2003). 

A comprehensive comparison of Erlang with other implementation options is 

beyond the scope of this paper. However, from the authors' experience, the 

following comments are offered: 

Multi-agent systems (MASs) have been often been used to implement holonic 

control architectures for manufacturing systems and cells. Interestingly, the 

advantageous characteristics of Erlang can be directly related to what has been 

identified as the shortcomings of commonly used agent based implementations. 

Almeida et al. (2010) identified that two of the main issues regarding agent-based 

implementations are that of scalability and fault-tolerance. Due to the high resource 

requirements of MAS threads (when implemented in Java or C (Vinoski, 2007)), 

the number of threads that can run on a processor limits scalability – this limitation 

is emphasized when the implementation is to be done on resource-constrained 

industrial controllers. In terms of fault-tolerance, there is still work to be done on 

the implementation of supervisory structures which can identify, diagnose and 

recover from disturbances or errors. 

When considering the Java Agent DEvelopment (JADE) framework specifically, 

which is often used for holonic control implementations, JADE agent threads suffer 

drawbacks concerning scalability, as mentioned above, since they Java based. 

Furthermore, JADE is aimed at providing infrastructure for a wider range of 

implementations (i.e. beyond that of control applications for manufacturing 
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systems), but this infrastructure is mostly underutilized in the type of 

implementations presented in this paper. In some cases, this additional functionality 

adds complexity and coding overhead – a scenario where the sense of “scalable 

complexity” (the idea that a system can be constructed through the inclusion of only 

the functions and interfaces for the necessary functionality, and thus complexity, of 

the system) of Erlang implementations could be beneficial. Lastly, it has been found 

that programming MASs, even with Java programming experience, involves a 

significant learning curve. 

IEC 61131-3 languages are commonly used for control implementation in 

manufacturing. While they work well for low level control, attempts to use these 

languages for implementations of higher level control have achieved limited 

success. The reason for this, in the experience of the authors, is that the features of 

these languages that contribute to their reliability on the other hand restrict the 

flexibility and extensibility of the code that are valuable for the implementation of 

the high level control of holonic systems. Examples of these restrictions are that the 

programmes nominally operate in a single thread and that dynamic instantiation of 

objects, variables or data containers is not possible. 

Object orientated programming (OOP) languages offer features between MASs and 

IEC 61131-3 languages, and can therefore also be considered for developing 

holonic control systems (Graefe and Basson, 2013). C# and Java appears to have a 

wide user base in the software world, but their popularity in manufacturing control 

is uncertain. The authors' research group have found C# to be a productive tool to 

develop holonic control systems, utilising the classical OOP features. C# has the 

advantage above Java that drivers for I/O devices are more readily available for C#. 

However, the resource implications of multiple threads in C# are similar to that for 

Java.  Also, neither of these languages include the "built-in" fault-tolerance and 

fault-management of Erlang. 

4.2.4. Erlang-based Resource Holon 

The internal holon architecture, inter- and intra-holon communication and the holon 

functional components are discussed in this section. Furthermore, a general 

implementation methodology is described and an implementation case study for the 

Erlang-based resource holon is presented. 

4.2.4.1. Internal Architecture 

For the Erlang/OTP implementation, the internal architecture described in section 

4.2.2.3 has been adapted to that shown in Figure 17. Though the Communication 

and Interfacing components are present in both models, the Decision-making 

component in Figure 2 is split into two components, namely the Agenda Manager 

and Execution components. 

The division of the Decision-making component into the Agenda Manager and 

Execution components (discussed in section 4.2.4.2.2) is motivated by two factors: 

Firstly, for a separation of functionality. By separating the functionality of handling 

service bookings and that directly concerning execution, reconfigurability is 

improved – the way in which bookings are handled and how a process must be 
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executed can be changed independently and with minimal effect on the other 

component. Secondly, for software reusability: while the execution control may 

differ from holon to holon, the way in which their services are managed is similar. 

The Agenda Manager component can thus be used as a generic inclusion for every 

service-rendering holon in the system. 

 

Figure 17: Resource holon model for the Erlang/OTP implementation. 

4.2.4.2. Implementation Methodology 

This section presents a general implementation methodology for a holonic control 

system with Erlang/OTP processes. A generic approach to facilitating 

communication and implementing the holon functional components is described. 

4.2.4.2.1. Facilitating Communication 

Inter- and Intra-Holon Communication 

In holonic systems, communication between system entities can be classified as 

either inter- or intra-holon communication. Inter-holon communication refers to 

communication between different holons in the system, while intra-holon 

communication occurs between the internal components of a holon. 

A typical example of inter-holon communication is the request of a resource holon 

service by an order holon – the order holon sends a request to the resource holon to 

which the resource holon replies with a request result. These request and result 

messages are shown in Figure 3 as interchanged by the Holarchy and the resource 

holon’s Communication component. In addition to the inter-holon communication, 

Figure 17 also shows intra-holon communication - indicated as the exchange of 

requests, results and execution information between the functional components of 

the resource holon. 
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Messaging in Erlang 

The Erlang process model dictates that information can only be shared amongst 

processes through messages. Messages are sent using the message operator “!” in 

the following format: Receiver ! Message. Receiver is a variable4 that stores 

the process ID or registered name of the receiving process and the received message 

is stored in the Message variable. Messages can be received by using the receive 

statement with pattern matching, usually implemented in a loop (shown in section 

4.2.4.3.1). 

For increased traceability, the format by which messages are sent can be 

implemented as Receiver ! {Sender,Message}. In this case, the message 

payload is placed within a tuple together with the process ID or registered name of 

the process sending the message. This format offers more options on the receiving 

side, as pattern matching can then be performed on both the type and content of the 

message, and from where the message originated. 

To further facilitate communication, an ontology can be incorporated in the 

implementation. The ontology definition can be done in one or many separate 

header files, and included in the necessary modules. Using records, an Erlang data 

type similar to structs in C, sets of information can be defined and used in creating 

messages and matching messages to patterns. Records allow for data fields to be 

accessed by name instead of order, and multiple records can be nested to 

accommodate complex sets of information. An example of a record used to define 

service messages is shown in section 4.2.4.3.1. 

Communication in Functional Components 

Taking advantage of the lightweight nature of processes, leading to cheap and 

easily-managed concurrency, each functional component of the resource holon will 

be implemented as one or more Erlang processes. For the components to cooperate, 

information must be exchanged by means of messages. For this reason, each 

functional component must employ a process which handles this communication. 

A simple way to facilitate the communication is to spawn a concurrent process 

running a receive-evaluate loop. The process calls a recursive function which 

implements a receive statement, followed by a set of patterns which will be 

matched against incoming messages. Upon successfully matching to a pattern, 

some action can be taken (usually the sending of another message). After each 

matching case, the function calls itself, resulting in a continuous loop. 

The communication process described above separates the communication 

functionality, within a functional component, from the execution logic.  This 

separation increases the reconfigurability and maintainability of the 

implementation, as changes can be made to one process without influencing the 

functionality of the other. 

                                                 
4 Variables in Erlang start with a capital letter. 
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4.2.4.2.2. Implementing the Holon Functional Components 

Communication Component 

The Communication component of the resource holon is responsible for 

maintaining the communication interface with the rest of the holarchy – i.e. all 

messages to and from other holons are handled by this component. 

This component can be implemented using only the communication process 

discussed in section 4.2.4.2.1. This process then allows for concurrency in the 

communication and execution functionality of the holon – i.e. the Communication 

component can operate uninterrupted and independent of the other functional 

components. 

Agenda Manager Component 

The agenda, in the context of this paper, refers to a list of service commitments 

(bookings) made by a resource holon to requesting order holons. The construction 

and management of such a list provides opportunity for the implementation of 

strategies to improve the performance of holonic systems by planning ahead 

through forecasting and tentatively committing future availability of resources. 

Two possible strategies that can be implemented are delegate multi-agent systems 

(D-MAS) (Holvoet and Valckenaers, 2006) and a facilitating supervisor as found 

in ADACOR (Leitao and Restivo, 2006). With D-MAS, holons delegate the 

responsibility of populating and consulting the agendas of resource holons to a 

swarm of lightweight agents. In ADACOR, a supervisor holon facilitates the 

booking of resource services by task holons, according to forecasts and optimized 

plans based on the inspection of agendas. Since the implementation of the 

mentioned strategies predominantly influence the order (or task) holons, the 

presented Agenda Manager component for resource holons will function similarly 

for both strategies. 

The Agenda Manager component is responsible for managing the service provided 

by the resource holon. The component manages a list of service bookings by order 

holons and triggers the Execution component, with the necessary execution 

information, according to the agenda.  

The Agenda Manager component requires two functions – one to receive and 

evaluate messages from the other holon components, and one to manage the 

resource’s service bookings and execution. For handling the messages, a process 

running a receive-evaluate loop, similar to that of the Communication component, 

can be used. The messages are passed on to the process which manages the service. 

The logic for the service management could be implemented in different ways. The 

logic can be implemented in a normal Erlang process or OTP behaviours can be 

used. OTP provides two useful behaviours – a generic server (gen_server) and a 

generic finite state machine (gen_fsm). The logic can thus be implemented in any 

of the mentioned ways, with the selection based on the approach which best matches 

the requirements of the service management model. A general summary of the 

gen_fsm behaviour library is provided in section 4.2.7. 
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Execution Component 

The Execution component of the holon is responsible for driving the hardware 

actions related to the service of the resource holon. This component activates the 

execution of hardware functions, with the necessary execution information and in 

a specified sequence, to perform the service of the holon. 

The Execution component is implemented similarly to the Agenda Manager 

component, i.e. a receive-evaluate loop process, for receiving messages, and a 

process for managing the service execution. The service execution can again be 

done in different ways, but using the finite state machine (FSM) behaviour is an 

attractive solution as the execution of resource holon services can usually be easily 

modelled as FSMs. 

When using the FSM approach, the required sequence of execution actions is 

formulated into the gen_fsm behaviour. With each execution state, the necessary 

activation and information messages are sent to the hardware via the Interfacing 

component. The process receives feedback regarding the execution status from the 

hardware, which trigger the transitions between the states. When execution is 

completed, the execution result is replied to the Agenda Manager component, from 

where it is forwarded to the Communication component and ultimately replied to 

the order holon. 

Interfacing Component 

The Interfacing component maintains the communication interface between the 

Erlang control programs and the hardware. This component isolates the hardware 

specific communication structures from the execution logic. 

The Interfacing component can be done in two ways, i.e. using OTP functions or 

using ports (or linked-in port drivers). When using the first approach, the 

component is implemented by a receive-evaluate loop process and a process 

implementing the OTP libraries for interfacing, such as gen_tcp or gen_udp (for 

TCP/IP or UDP communication). With the linked-in port driver approach, a 

program can be developed in another language (C, Java, etc.) and be wrapped with 

Erlang. The program can then be used as if it is just a pure Erlang module. This 

allows for the creation of communication structures which are not incorporated in 

OTP (such as Profibus or CANbus) or the use of a device specific driver or 

application programming interface (API). The use of ports and other Erlang/OTP 

integration tools is discussed in detail by Logan, Merrit, and Carlsson (2011). 

Erlang also supports the use of eXtensible Markup Language (XML), which is 

frequently used with TCP/IP communication. Two popular libraries for XML 

functionality are XMErL (Anonymous s.a. (b)) and ErlSom (De Jong, 2007). These 

libraries can be used, in conjunction with gen_tcp, to build and parse XML strings 

and files for use in socket communication. 

4.2.4.2.3. Applicability to other PROSA holons 

The presented methodology can be extended to the other PROSA holons. As all 

holons (and holon functional components) communicate through an exchange of 
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messages, the communication process presented in section 4.2.4.2.1 can be applied. 

The process can be adapted for each specific holon component, according to the 

messages that may be received. 

The gen_server and gen_fsm OTP behaviours are equally useful in representing the 

logic of the other holon types. These behaviours are especially applicable to the 

functionality of the order holon where service bookings must be managed along 

with task executions. 

4.2.4.3. Case Study 

As a case study, a resource holon for a pick-‘n-place robot was implemented using 

Erlang/OTP. This section describes the implementation of the functional 

components. 

4.2.4.3.1. Communication Component 

The Communication component is implemented as a single receive-evaluate loop 

process. Messages are received and forwarded according to a successful pattern 

match. To facilitate the communication, a record was created for service-related 

messages. This record is constructed as follows: 

#service{message_type, service_type, reply_to, 
conversation_ID, requester_pid, provider_pid, result, info} 

 message_type - specification of service message, e.g. request, cancel, 

start. 

 service_type - service specification, e.g. pick-‘n-place, inspect, 

transport. 

 reply_to – holon process ID to which reply must be sent (for inter-holon 

communication) 

 conversation_ID - unique reference to the sequence of messages 

 requester_pid – process ID of the requesting process linked to the 

service message 

 provider_pid – process ID of the providing process linked to the service 

message 

 result - Boolean result of action linked to service message 

 info - information linked to the service message 

The following code snippet shows the working of the receive-evaluate process of 

the Communication component (in this example named robot_comm), as pattern 

matching is used to distinguish between an intra-holon message (from the Agenda 

Manager component) and an inter-holon message (from another holon): 
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rec_messages() ->  
receive 

%message from agenda_manager in reply to service request 
  {agenda_manager_fsm, Message=#service{}} ->  

%extract the corresponding process ID 
Pid = Message#service.reply_to, 

         %send response to holon 
Pid ! {robot_comm, Message}, 
%loop again 

   rec_messages(); 
 
  %SERVICE message from other holon requesting a service 
  {From, Message=#service{}} ->  
   %forward message to agenda_manager 

agenda_manager_fsm ! {robot_comm, Message}, 
%loop again 

   rec_messages() 
 end. 

4.2.4.3.2. Agenda Manager Component 

Two processes are used to implement the Agenda Manager component – one for 

handling communication and one for managing the holon service. The 

communication is handled by a process similar to that described for the 

Communication component. To manage the service, a process using the OTP 

behaviour for a generic finite state machine was chosen. 

The state diagram used in the Agenda Manager FSM is shown in Figure 18. The 

states of the FSM each constitute two elements: execution status and a list of 

bookings (combined as a tuple in Figure 18). The execution status reflects whether 

the holon hardware is currently in operation (“busy”) or idle (“free”), while the 

booking list keeps record of commitments made to requesting holons. The state 

transitions are driven by messages received from either the Execution or 

Communication components. 

Code snippets from the Agenda Manager FSM are shown below. The code shows 

how events (which in these cases are the arrival of messages) are handled according 

to the specific state and how state transitions are specified. The presented code 

implements the states, events and transitions highlighted in Figure 18. The handling 

of two different messages is shown when the Agenda Manager FSM is in the “free” 

state – the messages are of types “booking request” and “start”, received from order 

holons. The code also shows the handling of a “done” message from the Execution 

component of the robot holon, in the “busy” state. 

%STATE: free_booked --> resource is idle, but is booked 
free_booked(Message=#service{message_type=booking_req},[Job_list]) ->  
 %add request to bookings list 
 NewJob_list=lists:append(Job_list, 
[Message#service.requester_pid]), 
 %reply request result to Order holon via robot_comm 
 robot_comm ! {agenda_manager_fsm,Message#service{result=true}}, 
 %specify the next state and state information 
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{next_state, free_booked, [NewJob_list]}; 
 
%STATE: free_booked --> resource is idle, but is booked 
free_booked(Message=#service{message_type=start},[Job_list]) ->  
 %forward "start" message to resource_exec 
 robot_exec ! {agenda_manager_fsm,Message}, 
 %specify the next state and state information 
 {next_state,busy_booked,[Message#service.requester_pid, 

lists:delete(Message#service.requester_pid, Job_list)]}. 
 
 
%STATE: busy_booked --> resource is busy and is booked 
busy_booked(Message=#service{message_type=done},[CurrJob,Job_list]) ->  
 %forward result message to Order holon via robot_comm 

robot_comm ! {agenda_manager_fsm,Message},   
%specify the next state and state information 
{next_state,free_booked,[Job_list]}. 

 
 
 

INIT

{FREE,[n = 0]}

{FREE,[n > 0]}

{BUSY,[n = 0]}

{BUSY,[n > 0]}

Received 
“ready” from 

Exec FSM

Received 
“booking 
request”

Received “start” 
from last 

booked client

Received 
“start” from 

booked client

Received “done” 
from Exec FSM

Received 
“booking 
request”

Received 
“booking cancel” 
from last booked 

client

Received 
“booking cancel” 
from last booked 

client

Received 
“done” from 

Exec FSM

Event

{EXEC STATUS,[BOOKING LIST]}

Transition with event

State

Received 
“booking 

request/cancel”

Received 
“booking 
request/
cancel”

 

Figure 18: State diagram of the Agenda Manager FSM. 
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4.2.4.3.3. Execution Component 

The Execution component is implemented similar to the Agenda Manager 

component – one process for handling communication and a gen_fsm process for 

managing the execution. 

Figure 19 shows a simple example of an execution state diagram for the pick-‘n-

place robot holon. This example shows three states: “ready”, “picking” and 

“placing” – each representing an execution state of the robot. The FSM switches 

between states in accordance with received messages from the Agenda Manager 

and the hardware. 

INIT

READY

PICKING

PLACING

Received 
“ready” from 

hardware

Received “placing 
done” from 
hardware

Event

STATE

Transition 
with event

Received “start” 
from Agenda 

Manager

State

Received 
“picking done” 
from hardware

 

Figure 19: Example state diagram of the Execution FSM. 

The implementation of the state diagram of Figure 19 using the gen_fsm OTP 

behaviour is shown by the following code snippet: 

%STATE: ready --> ready to perform operation 
ready(Message=#service{message_type=start},_) ->  

%send picking coordinates to interfacing component 
 robot_pi ! {robot_exec, Message#service.info.coords.pick_coords}, 
 %specify the next state and state information 
 {next_state, picking, Message}. 
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%STATE: picking --> executing picking operation 
picking(picking_done, Message) ->  
 %send placing coordinates to interfacing component 

robot_pi ! {robot_exec, Message#service.info.coords.place_coords 
},  
 %specify the next state and state information 

{next_state, placing, {CurrJob, Message}}. 
 
%STATE: placing --> executing placing operation 
placing(placing_done, Message) ->  
 %send result to agenda manager component 
 agenda_manager ! {robot_exec, Message=#service{result=true}}, 
 %specify the next state and state information 
 {next_state, ready, []}. 

4.2.4.3.4. Interfacing Component 

For the case study implementation, the control software of the resource holon 

interfaced with the controller of the robot through TCP/IP communication. The 

XMErL library is used to build and parse XML strings. The following code snippet 

shows how the gen_tcp OTP library (briefly summarized in section 4.2.7) is used 

to communicate to the robot controller: 

socket_client(Info) ->  
 %connect to TCP server 

{ok,Socket} = socket_connect(), 
%build XML string 

 XML_string = build_XML(Info), 
%send string 

 ok = gen_tcp:send(Socket, XML_string), 
 %receive result of operation 
 {ok,XML_data} = do_receive(Socket,[]), 
 %close socket connection 
 ok = gen_tcp:close(Socket), 
 %extract result from string 
 {XML_doc,_} = xmerl_scan:string(XML_data,[{encoding,latin1}]), 
 Msg = extract_content('RESULT',[XML_doc]), 
 Message=list_to_atom(Msg), 
 Message. 
 
socket_connect() ->  
 %connect to socket 

case gen_tcp:connect(?address, ?port, 
[list,{packet,0},{active,false}]) of 

 %success – return socket reference 
  {ok, Socket} -> {ok, Socket}; 
  %failure – try again  

_ -> timer:sleep(1000),      
       socket_connect() 
end. 
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4.2.4.3.5. Typical operation scenario 

To illustrate the sequence of functionality of the presented Erlang based robot 

holon, the operations involved in a typical scenario will be explained. The scenario 

entails the receiving of a start message from some order holon, i.e. a request from 

an order holon for the robot holon to start a previously booked service. This scenario 

was selected as it involves functions from all of the robot holon components. 

For the explanation of the of the scenario it is necessary to describe the state of the 

holon FSM components. Assume that the Agenda Manager FSM is in the 

“free_booked” state – i.e. the robot holon is currently idle, but its service has been 

booked for use in the near future by order holons. The Execution FSM is in the 

initial “ready” state, awaiting a start message from the Agenda Manager to execute 

a pick-‘n-place service. 

When the physical part associated with the order holon is in the position for the 

pick-‘n-place service (which was previously booked by the order holon) to be 

executed, the order holon will request the execution to be started by sending a start 

message to the Communication component of the robot holon. As is presented in 

section 4.2.4.3.1, the Communication component continuously awaits the arrival of 

a message through the receive function. When the order holon sends the start 

message, the message is received by the Communication components and is 

compared against the defined message patterns. The start message will match the 

following pattern: 

%SERVICE message from other holon requesting a service 
{From, Message=#service{}} ->  
 %forward message to agenda_manager 

agenda_manager_fsm ! {robot_comm, Message}, 
%loop again 

 rec_messages() 

Upon matching the pattern, the Communication component will forward the 

message to the Agenda Manager FSM component. The Agenda Manager FSM is 

in the “free_booked” state, thus the start message forwarded from the 

Communication component will be compared to the defined state transition 

patterns. The message will match the event specified by the following transition 

pattern: 

%STATE: free_booked --> resource is idle, but is booked 
free_booked(Message=#service{message_type=start},[Job_list]) ->  
 %forward "start" message to resource_exec 
 robot_exec ! {agenda_manager_fsm,Message}, 
 %specify the next state and state information 
 {next_state,busy_booked,[Message#service.requester_pid, 

lists:delete(Message#service.requester_pid, Job_list)]}. 

The Agenda Manager FSM will trigger execution of the service by forwarding the 

message to the Execution component, then transition to the next state 

“busy_booked”. The internal state data of the FSM is also changed – the process ID 
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of the order holon is removed from the list of received bookings and rather stored 

as an additional variable CurrJob (indicating the PID of the order holon involved 

in the current service execution) in the state data tuple. 

The Execution component receives the start message as an event in the “ready” 

state (as shown in the code snippet of section 4.2.4.3.3) and proceeds to execute the 

pickup action of the pick-‘n-place service by sending a message – containing the 

pickup coordinates as stored in the info field of the message from the order holon 

– to the Interface component. The Execution FSM then transitions to the “placing” 

state. 

The Interface component extracts the coordinate information from the message 

received from the Execution component, builds an XML string and sends it to the 

physical robot controller using the gen_tcp library functions. As the robot 

completes the pickup action, an XML message is sent to the Interface component 

where the message is parsed and sent to the Execution component as the Erlang 

atom picking_done.  

The interaction between the Execution and Interfacing components continue as 

described above until all the actions of the service have been completed – in this 

scenario, when the Interfacing component sends the atom placing_done to the 

Execution component. Before the Execution component then transitions back to the 

“ready” state (awaiting a start message for the next service execution), it sends a 

done message to the Agenda Manager FSM. 

The Agenda Manager FSM will receive the done message from the Execution 

component in the “busy_booked” state. With the done message event, the done 

message is forwarded to the Communication component (which will use the 

associated PID field of the message to forward the message to the correct Order 

holon), before transitioning to the “free_booked” state.    
        

4.2.4.4. Additional Erlang/OTP functionality 

In addition to the OTP functionality used in the holon implementation described 

above, two further tools offered by Erlang/OTP can be very useful, i.e. the 

Supervisor and Logging modules. 

Through the Supervisor module, Erlang allows the implementation of supervision 

trees, in the form of a process structuring model in terms of workers and 

supervisors. Worker processes do the computational work, while supervisor 

processes monitor worker processes. This hierarchical structure allows for the 

development of fault-tolerant programs, since supervisor processes can start and 

stop worker processes, and restart them if they should fail (Anonymous, s.a. (a)). 

As fault-tolerance is an important requirement for the modern manufacturing 

environment, supervision trees can be very advantageous. For the implementation 

of a resource holon, all the components discussed in the previous sections will be 

worker processes and can be supervised by a supervisor process. Upon starting, the 
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supervisor process launches the processes in a specified order. The order to which 

they are terminated during shut down is also specified. A restart strategy can be 

specified for the supervisor process, i.e. the way in which processes are restarted in 

event of a process failing. Three options are available (Anonymous, s.a. (a)): 

 “one-for-one” – only the process that fails is restarted. 

 “one-for-all” – if a worker process fails, all of the supervised processes are 

terminated and restarted. 

 “rest-for-one” – if a worker process fails, it and the subsequent processes 

(in the start order) are terminated and restarted. 

A supervisor process can thus be a very useful addition to the holon 

implementation. At the very least, it provides a neat and simple way to start and 

stop all the holon processes. With the selection of an appropriate restart strategy, a 

supervisor process can add great robustness to the holon implementation. 

Logging modules offer useful functionality related to diagnosibility, an important 

requirement for reconfigurable systems. In terms of software diagnosibility, 

logging is an important tool. Erlang/OTP includes an error_logger module 

(Anonymous, s.a. (c)) which can be used to output error, warning and information 

reports to the terminal or to file. The format of these reports can be customized 

according to the needs of the application. The error_logger module can be used by 

all holon processes to log events, errors and general process information to file, e.g. 

received and sent message information, state transitions and process failures. This 

information can be helpful for debugging or problem identification, or just for 

monitoring. 

4.2.5. Conclusion 

Reconfigurable manufacturing systems (RMSs) are intended for situations 

characterised by short product life cycles, large product variety and fluctuating 

product demand, since RMSs have the ability to reconfigure hardware and control 

resources to rapidly adjust the production capacity and functionality. RMSs 

commonly employ holonic control architectures, because they share many 

characteristics. 

This paper motivates why the functional programming language Erlang and the 

Erlang-based OTP (Open Telecom Platform) present an attractive solution for 

implementing holonic control. It is shown that the requirements for which Erlang 

was developed are highly relevant to holonic and reconfigurable control. The paper 

then presents an implementation methodology and case study using Erlang/OTP. 

The presented case study for the Erlang/OTP implementation focusses on the 

resource holon, as defined by PROSA (Product-Resource-Order-Staff 

Architecture). A generic model for a resource holon to suit an Erlang 

implementation is presented, with four functional holon components, i.e. 

communication, agenda manager, execution and interfacing. The implementation 

of these components, using Erlang/OTP processes, is described. 
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Future work will entail the expansion of the Erlang/OTP implementation to the 

control system for an entire manufacturing cell, in which all of the PROSA holons 

will be incorporated. The Erlang/OTP manufacturing cell will then be subjected to 

a series of experiments – the results of which will be used to perform a quantitative 

and qualitative comparison with an equivalent MAS implementation. 
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4.2.7. Appendix: OTP Libraries 

This appendix provides a summary of the functionality and programmatic 

implementation of the OTP libraries mentioned in this paper. The presented work 

made use of two OTP libraries, namely the generic finite state machine (gen_fsm) 

behaviour and generic Transmission Control Protocol (gen_tcp) libraries. The 

description of the gen_fsm library is adapted from Anonymous (s.a. (d)) and, for 

the gen_tcp library, from Anonymous (s.a. (c)) and Hebert (2014). 

4.2.7.1. Generic finite state machine behaviour library 

A finite state machine can be described as a set of relations between states, events 

and actions. These relations can be expressed in the following form: 

State x Event → Action(s), NextState 

This expression states that when the FSM is in some State and some Event occurs, 

some Action(s) will be performed and the FSM will transition to NextState. 

Using the Erlang gen_fsm behaviour, these state transitions can be implemented by: 

StateName(Event, StateData) -> 
%code for actions here 
{next_state, NextStateName, NewStateData}. 

The name of the state the FSM is in when Event occurs is programmed as 

StateName. StateData represents internal information regarding the current state. 

When Event occurs, specific actions that must be performed can be programmed. 

After all the required actions are completed, the statement ends with a description 

of the state transition that follows. The transition description is represented as a 

tuple with three elements: the first element is the atom next_state, designating 

the transition description; the second element specifies the name of the state to 

which the FSM will transition to and the last element specifies the internal 

information associated with the next state. 

The following code starts a gen_fsm behaviour in a new process: 

gen_fsm:start_link({local, FsmName}, ModuleName, InitData, 
Options) 

 FsmName – the name by which the FSM process will be registered. 

 ModuleName – the name of the module where the callback functions of the 

FSM (i.e. the functions defining the state transitions) are located. 

 InitData – information passed to the FSM during initialization. 

 Options – a list of possible options for the gen_fsm process – e.g. timeouts, 

debugging functions, etc. 
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When the gen_fsm behaviour is started, it enters the initialization function of the 

FSM, programmed as: 

init(InitData) -> 
%code for initialization actions here 
{ok, InitialStateName, StateData}. 

The function performs the necessary initialization functions and concludes with the 

definition of the initial state of the FSM. The FSM will consequently transition to 

InitialStateName with the accompanying StateData. 

With the FSM now occupying a specific state, it can receive notifications regarding 

the occurrence of events. Processes can notify a specific gen_fsm process of an 

event using the following function: 

gen_fsm:send_event(FsmName, Event) 

This function constructs a message of the Event and sends it to the gen_fsm 

process. The event is handled in the current state of the FSM and will result in some 

corresponding state transition, as was discussed earlier in this section. 

4.2.7.2. Generic Transmission Control Protocol library 

The gen_tcp library included in OTP provides functions to communicate with 

sockets using Transmission Control protocol (TCP). Functions are included for both 

server and client implementations – the simplest forms of which are briefly 

presented in this section.  

An Erlang process can act as a server for a designated TCP port, using: 

{ok, Socket} = gen_tcp:listen(Port, Options) 

 Port – the port number for the socket. 

 Options – a list of socket configuration options. 

 Socket – data type representing the TCP socket. 

As the function name suggests, the server process will listen for incoming 

connection requests at the specified port. When such a request is received, the 

connection can be accepted: 

gen_tcp:accept(Socket) 

Also, a process can connect to a TCP socket as a client – this functionality is 

provided through the function: 

gen_tcp:connect(Address, Port, Options) 

 Address – the IP address or host name for the socket. 
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When the connection is accepted by the corresponding server process, TCP 

communication over the connected socket can be achieved. Both the server and 

client processes use the same functions for the sending and receiving of messages 

over the socket: 

gen_tcp:send(Socket, DataPacket) 

 DataPacket – information to be sent over socket. 

 

gen_tcp:recv(Socket, Length) 

 Length – the number of bytes to read from the socket. 
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Abstract 

Holonic systems have been a popular approach to face the challenges of the modern 

manufacturing environment and should continue to play a vital role in the fourth 

industrial revolution. Holonic control implementations have predominantly made 

use of the Java Agent Development (JADE) framework – this paper presents, as an 

alternative, a case study implementation based on Erlang. Erlang is a functional 

programming language with strong scalability, concurrency and fault-tolerance 

characteristics, which prove to be beneficial when applied to the manufacturing 

control context. The case study used in this paper is the holonic control of a modular 

conveyor system – this implementation was chosen to demonstrate the advantages 

that Erlang can offer as implementation language for holonic systems. 

Keywords: Erlang/OTP; Holonic Manufacturing Systems; Reconfigurable 

Manufacturing Systems; Manufacturing Execution Systems; Automation 

4.3.1. Introduction 

The modern manufacturing environment is governed by a new set of requirements, 

driven by unpredictability in market and technology trends. Modern manufacturing 

systems must adhere to short lead times and enhanced adaptability for the 

individualization of products and services, all while remaining competitive in a 

global market. To address these challenges, recent movements towards the fourth 

industrial revolution (often referred to as Industry 4.0) aim to enhance the 

connectedness of the real and virtual worlds. 

In [1], Monostori et al. consider Industry 4.0 to be characterized by the 

individualization of products and services, new organization and control of the 

entire value chain and the formulation of new business models. These 

characteristics can be facilitated through the connection of humans, objects and 

systems, and the generation and use of information in real-time.  

CPS are systems of communicating computational entities, which are connected to 

the physical world, that simultaneously use and provide data and services using the 

Internet. These entities can monitor, control, coordinate and integrate the operations 

of physical or engineered systems. Cyber-Physical Systems (CPS) will play a key 

role in the connection of people, components/systems, information and services. 

Cyber-Physical Production Systems (CPPS) can facilitate these enhancements in 

manufacturing environments. 

CPPS build on and utilize several developments in the field of manufacturing 

science and technology, including that of Holonic Manufacturing Systems (HMSs). 
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Holonic systems – which is based on the theories of Koestler [2] – have often been 

used in the design and control of manufacturing systems to reduce complexity and 

cost, and improve scalability, maintainability and robustness [3][4]. Holonic 

systems are based on the idea of dividing a complex system into smaller functional 

entities – autonomous components that, through cooperation, constitute the system 

functionality [4].  

Holonic control architectures have predominantly been implemented in 

manufacturing systems using multi-agent systems. Of the platforms that are 

available for developing multi-agent systems, the Java Agent Development (JADE) 

framework (see [5]) has been the most popular. This paper proposes an alternative 

implementation, using Erlang/OTP. 

Erlang is a functional programming language that was developed for programming 

large-scale, distributed control applications [6]. Erlang was developed specifically 

for the control of telecommunications switching systems [7], but the inherent 

characteristics of Erlang – namely concurrency, scalability and fault-tolerance – 

could prove greatly beneficial for the implementation of holonic control in modern 

manufacturing systems. The Erlang programming environment is supplemented by 

the Open Telecommunications Platform (OTP) [8][9] - a set of robust Erlang 

libraries and design principles providing middle-ware to develop Erlang systems. 

This paper presents an implementation of Erlang-based holonic control for a 

modular conveyor system. The case study was selected for two reasons:  

 The control of conveyor systems involve some of the key challenges that 

the holonic systems approach aims to address. To reduce the complexity 

of the system, the control implementation must exhibit good modularity 

characteristics and perform numerous concurrent, distributed actions – 

requirements that will clearly illustrate the advantages that Erlang has to 

offer. 

 The frequent use of conveyor systems in manufacturing systems has 

inspired several research studies on the implementation of control. This 

allows for qualitative and quantitative comparisons to be performed in 

future work, which may be helpful in the formulation of benchmarks for 

the performance of holonic control implementations. 

This paper starts by providing details of the case study (section 4.3.2) and a short 

overview of the important aspects of Erlang/OTP (section 4.3.3). Thereafter, 

section 4.3.4 presents a discussion of the holonic control architecture and the 

Erlang-based holonic control implementation is described in section 4.3.5. The 

paper concludes with a discussion of the presented research and future work in 

section 4.3.6. 

4.3.2. Modular Conveyor Case Study 

Modular palletized conveyor systems, as the system shown in Figure 20, are 

frequently used for material handling in manufacturing systems. These conveyor 

systems typically use motor-driven belts, along with stop gates and 

lifting/transverse mechanisms, to move pallets (from here on referred to as carriers) 
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between the workstations of manufacturing systems. These conveyor systems are 

often also equipped with RFID read/write modules (installed on several locations 

on the conveyor), while the carriers are fitted with RFID tags. The RFID readers 

provide feedback when a specific carrier arrives at a RFID reader location. The 

RFID readers can be installed at the various stop gate locations. 

 

 

Figure 20: Conveyor system at the Automation Lab of Stellenbosch 

University. 

This paper uses a modular conveyor system as case study. The conveyor system 

that is installed in the Automation laboratory at Stellenbosch University (shown in 

Figure 20) is too small to sufficiently illustrate the complexity of the control that is 

encountered in industrial systems. Therefore, this research considered the control 

implementation for an up-scaled, simulated conveyor system.  A discussion of the 

development of the simulation model can be found in [10]. 

The simulated model is based on the conveyor system that is used in an assembly 

and quality assurance cell for electrical circuit breakers – the system layout is 

illustrated in Figure 21. The conveyor moves carriers, which carry circuit breakers, 

between the workstations of the system. The circuit breakers are placed onto the 

carriers at the manual assembly station, from where they are moved to each of the 

workstations (sequentially and in a clockwise direction) and finally removed at the 

removal station.  
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Figure 21: Layout of the simulated conveyor system. 

As an extension to the modularity of the conveyor hardware, several small PLCs 

are used as opposed to using one centralized PLC – this is also incorporated in the 

simulated conveyor system model. Segments of the conveyor are allocated to a 

dedicated PLC, with all the interfacing between segments being handled at the 

higher level of control implementation – this modular architecture is presented in 

[11]. 

4.3.3. Erlang/OTP 

While it would be over-ambitious to attempt a complete overview of Erlang/OTP, 

this section aims to explain the architectural provisions and language mechanisms 

that enable the suitability of Erlang/OTP for the implementation of holonic control 

architectures. 

4.3.3.1. Erlang Process Model 

Erlang owes its concurrency to the process model on which it is built. These 

processes, as the basic unit of abstraction, are extremely lightweight with memory 

requirements that can vary dynamically. Not only can many processes work 

concurrently, but they can be distributed across many devices (referred to as nodes). 

Process are strongly isolated, having no shared memory, and can only interact 

through the asynchronous sending and receiving of messages [7], as is discussed in 

the next section. 

4.3.3.2. Process Communication 

Since Erlang processes do not share any memory, all the data exchange occurs 

through message passing. Each process maintains its own mailbox to receive and 

handle messages, and Erlang provides a message operator “!” to simplify the 

sending of messages. A message can be sent from one process to another with the 

following code: 

Receiver ! {Sender, Message} 

The Receiver variable is used to specify the process to receive the message – the 

registered name or unique process identifier can be used. It is good practice for the 
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message to be constructed as a tuple, containing both sender and message content 

information. The inclusion of the details of the sender process enables the receiver 

process to reply to the message if needed. Message, the variable containing the 

message content, can be of different data types (e.g. constant, tuple, list, etc.). The 

record data type (which is similar to structs in C) is used in the presented 

implementation to structure the content of messages. With records, sets of 

information can be defined and used in creating messages and matching messages 

to patterns. Records allow for data fields to be accessed by name instead of order, 

and multiple records can be nested to accommodate complex sets of information. 

An example of a record is shown below: 

#service{message_type, conversation_ID, requester_pid, 
provider_pid, result, info} 

4.3.3.3. OTP Behaviours 

OTP supplements Erlang development through the provision of robust libraries for 

commonly used functionality (referred to as behaviours). Behaviours are provided 

for the implementation of logic (as with the generic server and finite state machine 

behaviours) and for facilitating communication (behaviours are provided for serial, 

UDP and TCP communication). The generic finite state machine and TCP 

communication behaviours are used in the presented implementation and therefore 

a brief overview of the behaviours is given. 

A Finite State Machine (FSM) can be described as a relation of states, events and 

actions. When a FSM is in a state and an event occurs, some action(s) will be 

performed and the FSM will transition to the next state. Using the Erlang gen_fsm 

behaviour, these state transitions can be implemented by: 

StateName(Event, StateData) -> 

%code for actions to be performed 

{next_state, NextStateName, NewStateData}. 

The name of the state the FSM is in when Event occurs is programmed as the 

function header StateName. StateData represents internal information 

regarding the current state. When Event occurs (which in this implementation is 

usually the arrival of a specific message in the process mailbox), specific actions 

that must be performed can be programmed. After all the required actions are 

completed, the statement ends with a description of the state transition that follows. 

The transition description is represented as a tuple with three elements: the first 

element is the atom next_state, designating the transition description; the second 

element specifies the name of the state to which the FSM will transition to and the 

last element specifies the internal information associated with the next state.  
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The gen_tcp behaviour included in OTP provides functions to communicate 

through network sockets using the Transmission Control protocol (TCP). Functions 

are included for both server and client implementations.  

An Erlang process can act as a server for a designated TCP port, using: 

{ok, Socket} = gen_tcp:listen(Port, Options) 

The Port and Options variables specify the socket and configuration details, and the 

Socket variable stores the instance of the created TCP network socket. As the 

function name suggests, the server process will listen for incoming connection 

requests at the specified port. When such a request is received, the connection can 

be accepted with the function gen_tcp:accept(Socket). 

Also, a process can connect to a TCP socket as a client – this functionality is 

provided through the function: 

gen_tcp:connect(Address, Port, Options) 

The function requires the IP address or host name of the device where the socket 

resides, as well as the port and configuration details as input parameters.When the 

connection is accepted by the corresponding server process, TCP communication 

over the connected socket can be achieved. Both the server and client processes use 

the same functions for the sending and receiving of messages over the socket: 

gen_tcp:send(Socket, DataPacket) 

gen_tcp:recv(Socket, Length) 

DataPacket contains the information to be sent, and Length specifies the number 

of bytes that must be read from the socket. 

4.3.4. Holonic Control Architecture 

The Conveyor holon presented in this paper forms part of a holonic cell control 

implementation. The cell control architecture is based on PROSA [12] – a 

simplified schematic representation of the architecture is presented in Figure 22. 

Detailed discussions of similar implementations are given in [13] and [14]. 

The architecture of the cell control implementation consists of three levels: High 

Level Control (HLC), Low Level (station) Control (LLC) and hardware control. 

The communication and coordination of the system holons occur within the HLC. 

The HLC purely exists in the virtual environment, as the Product, Order and Staff 

holons are all software entities. Resource holons, which consist of both hardware 

and software entities, must also be represented in the HLC – it is therefore necessary 

that these resource holons incorporate a component to handle the HLC functions. 
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Figure 22: Schematic of the holonic control architecture for the 

manufacturing cell. 

Where Resource holons consist of physical hardware entities, the station and 

hardware levels of control are encountered. Station LLC enables the coordination 

of the hardware functions for a station, to perform the service that the Resource 

holon advertises in the HLC. Hardware control refers to the control of actuators and 

sensors to successfully perform the various tasks included in the Resource holon’s 

service. 

4.3.5. Erlang-based Conveyor Holon 

4.3.5.1. Conveyor Holon Architecture 

As mentioned in section 4.3.4, the Conveyor holon forms part of the 

implementation of the holonic control for a cell. The Conveyor holon is itself 

implemented using a holonic architecture, i.e. the functions of the holon are mapped 

to several autonomous and cooperating entities which work together to perform 

complex transportation tasks. This holonic implementation then constitutes the 

HLC component of the Conveyor holon (as can be seen from Figure 22) – the LLC 

implementation is distributed over the number of PLCs that control dedicated 

segments of the conveyor hardware. 

The holons which comprise the Conveyor holon are shown in Figure 23 and the 

respective roles and functions are discussed the following sections. The Conveyor 

holon entails three main functions: inter-holon communication within the HLC and 

intra-holon coordination within the Conveyor holon, execution of transportation 

tasks and the interaction with and virtual representation of the conveyor hardware. 
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Figure 23: Intra-holon communication within the Conveyor holon. 

4.3.5.2. Communication 

4.3.5.2.1. Inter-holon Communication 

The Carrier Manager holon is responsible for handling all communication with the 

other holons in the cell controller. The Conveyor holon interacts with three types of 

holons in the cell controller: the staff holon handling the service directory (a list of 

service-providing Resource holons), other Resource holons which have a physical 

interaction with the Conveyor holon, and Order holons. 

As is usually encountered in the implementation of holonic systems, this presented 

implementation tries to mirror the physical system as far as possible. An example 

of this is when Resource holons must physically remove products from the 

conveyor or place products on it. This interaction is mirrored in the virtual 

environment - before removing or placing a product on the conveyor, Resource 

holons must first send a release request or binding request message to the Conveyor 

holon. This allows the Conveyor holon to ensure that a suitable carrier is present at 

the location of placing, or that the intended product is available to be removed by 

the resource holon. After the Conveyor holon replies to the request, the Resource 

holon can continue with the physical operation.  

The approach of mirroring the physical interactions in the virtual system means that 

when an Order holon requires a transport service to the next booked service-

providing station, the physical product instance for which it is responsible will 

already be present on a carrier on the conveyor. The Order holon can then proceed 

to send the Conveyor holon a service start message to perform the transportation 

service. 

The Carrier Manager receives requests from Order holons to perform a transport 

service from some start position to a specified destination. The Carrier Manager 

then checks if a suitable Carrier holon is available at the requested starting position. 

If a Carrier is available, the Carrier manager sends a start message to the selected 

Stellenbosch University  https://scholar.sun.ac.za



 

85 

 

Carrier – if no Carrier is currently available, the Carrier Manager will search for a 

compatible, idle Carrier holon and direct it to the designated starting location. 

4.3.5.2.2. Intra-holon Communication  

Three types of communication occur between the holons of the Conveyor holon: 

transportation service execution, route planning and status update communication 

– these interactions are shown in Figure 23. 

Transportation service execution communication requires interaction between 

holons in order to coordinate and execute the transportation tasks that the Conveyor 

holon must perform for Order holons. As the Carrier Manager receives requests 

from Order holon, the requests are allocated to suitable Carrier holons. The Carrier 

Manager sends service start messages to the relevant Carrier holons - these 

messages specify the end destination to where the Carrier holons must navigate. To 

execute the movement between conveyor nodes along the selected route, the Carrier 

holons request actuation from the specific PLCs by sending request messages to the 

LLC Interface holon. The LLC Interface holon then in turn replies with a 

confirmation that the requested actuation has been performed by the conveyor 

hardware. When a Carrier holon has completed its assigned transport task, it sends 

this confirmation to the Carrier Manager and awaits a new task. 

Route planning communication entails the gathering of information by holons to 

aid the route finding process. Predominantly, this communication is performed by 

Carrier holons – when Carrier holons are assigned a transportation task, they are 

responsible for planning their own route. The Carrier holons request information of 

the physical conveyor configuration from the Configuration Map holon and status 

information of the conveyor nodes and transitions from the Status Table holon – 

this process is discussed in more detail in section 4.3.5.6. The Carrier Manager 

holon will also occasionally initiate route planning communication – this occurs 

when the Carrier Manager must control Carrier holon movement for coordination 

purposes. 

Finally, the status updating communication involves the LLC Interface holon 

passing status information, received from the PLCs, to the Status Table holon. 

4.3.5.3. Virtual Conveyor Representation 

The physical configuration and run-time status of the conveyor nodes and 

transitions are represented in the virtual environment by two holons: the 

Configuration Map holon and the Status Table Holon. 

The Configuration Map holon contains the functions to read the configuration 

information, from an operator-defined description, into an accessible data structure 

(in this case, an Erlang Term Storage (ETS) table). The ETS table entries follow 

the format: 

{Node_name, LLC_port_number, [Transition1, Transition2,…]} 
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The name of the node, the port number for communication to the controlling PLC 

and the transitions that are available from the node are specified. The transitions are 

described by the following information: 

{Connected_node, Transition_time, Transition_capacity} 

 Connected_node – name of the node which constitutes the end point of 

the transition. 
 Transition_time – the time it takes for a carrier to travel the transition 

(based on the speed of the conveyor). 
 Transition_capacity – the number of carriers that can travel along 

the transition at any given time. 

The Status Table holon maintains an ETS table of the conveyor node and transition 

status based on messages received from the LLC Interface holon – i.e. the status 

information is dynamically updated as carriers move along the conveyor. The 

format of the ETS table entries is as follows: 

{{Node,Connected_node},{Status, Queue_list, Capacity}} 

 {Node,Connected_node} – the two nodes that constitute the start and 

end nodes of the transition. 

 Status – indicates whether the transition can take another carrier or not, 

based on its capacity and current queue. 

 Queue_list – a list of all the carriers currently travelling along the 

transition. 

 Capacity – the number of carriers that can travel along the transition at 

any given time. 

The Configuration Map and Status Table holons handle all request messages from 

other holons, searches for and replies with the desired configuration and status 

information. 

4.3.5.4. Carrier Manager 

The Carrier Manager holon maintains the interface for inter-holon communication 

with the other PROSA holons (as discussed in section 4.3.5.2). The Carrier 

Manager also handles intra-holon communication – i.e. messages from Carrier 

holons or the LLC Interface holon. The Carrier Manager thus functions as a server 

– messages are received and, according to message type and content, the 

appropriate functions are executed. Examples of such functions are 

handleStartRequest() or handleCarrierDone(). 

An important function of the Carrier Manager is to allocate transportation tasks 

received from Order holons to the most suitable Carrier holon. A start message is 

then sent to the selected Carrier holon, upon which the transport service will be 

performed. Once the service is completed, the Carrier holon notifies the Carrier 

Manager, which in turn notifies the relevant Order holon. 
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Usually, the Carrier holons perform movements according to the Order holon 

request allocated to them by the Carrier Manager. However, the Carrier Manager 

also has the functionality to make decisions regarding the movement of carriers 

directly. This functionality is needed to ensure flow on the conveyor (i.e. not having 

carriers block certain segments) and to store carriers when they are no longer 

required. 

4.3.5.5. Conveyor Low Level Control Interface 

The LLC Interface holon is responsible for maintaining the interface between the 

Erlang control programs and the low level control PLCs – this is depicted in Figure 

24. 
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Figure 24: LLC interface of the Conveyor holon. 

The communication to the PLCs is done over Ethernet, with messages encoded as 

XML strings. The PLCs can parse the XML strings to extract the necessary 

information pertaining to the actuation that must be performed. The LLC Interface 

holon employs a concurrent Erlang process for every TCP socket connection that 

must be maintained – i.e. a connection to each of the PLCs is maintained by a 

dedicated process. 

The LLC Interface holon receives messages from both Carrier holons and the 

Carrier Manager holon. As the Carrier holons execute their delegated transport 

services, they must send request messages to the relevant PLCs via the LLC 

Interface. This occurs every time a Carrier holon arrives at a node – the message 

will request the actuation at the given node to direct the carrier towards the next 
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desired node (according to the planned route). The LLC Interface interprets this 

message to determine which PLC the message is intended for (according to the 

segment of the conveyor where the node is located). The message is then compiled 

into an XML string and is send over the correct TCP socket to the PLC. Messages 

from the Carrier Manager holon are handled in the same way. 

To maintain a representation of the conveyor status during operation, the LLC 

Interface holon sends messages to the Status Table holon when it receives 

notifications from or sends actuation commands to the PLCs. 

4.3.5.6. Carrier Holon 

Each carrier that is unloaded onto the conveyor is represented in the holonic system 

by a Carrier holon. Every time a carrier is unloaded, the Carrier Manager spawns a 

new instance of the Carrier holon Erlang process. The Carrier holon encapsulates 

the functionality to perform transportation services by controlling the movement of 

the physical carrier on the conveyor system. Although the physical carrier has no 

actuators or sensors, control of the movement is performed through communication 

between the Carrier holons and the controlling PLCs, via the LLC Interface holon. 

4.3.5.6.1. Behaviour  

The control logic of the Carrier holon is implemented using the standard OTP finite 

state machine behaviour. The Carrier holon transitions between states based on the 

occurrence of events (in this case, the arrival of messages). 

The Carrier holon behaviour is described by two states: stopped and moving. The 

stopped state is entered when the holon awaits its next transportation task and when 

it reaches a node while travelling towards its destination. The behaviour enters the 

moving state once the LLC Interface holon confirms that the carrier has been 

physically routed towards the next node on the route. Once the LLC Interface holon 

notifies the Carrier holon of arrival at the next node, the state transitions to stopped.  

4.3.5.6.2. Communication  

As is shown in Figure 23, the Carrier holon engages in communication with other 

holons during transport service execution and route planning. In the transport 

execution activity, Carrier holons receive messages from the Carrier Manager holon 

to initiate a new transport service that must be performed by the carrier. The Carrier 

holons then send a notification message back to the Carrier Manager when the 

service is done and awaits the next service to be awarded. When the Carrier holons 

travel along their route, they send requests to the LLC Interface - which interprets 

the messages and forwards it to the correct PLC – to perform the necessary 

actuations to direct the carrier along its desired route. The Carrier holons also 

receive notification messages from the LLC Interface when the carriers arrive at 

conveyor nodes.  

For route planning, Carrier holons must exchange messages with the Configuration 

Map and Status Table holons. When a Carrier holon is awarded a transportation 

task, it first determines which route to follow from its current location to its desired 

location. The Carrier holon can obtain the conveyor configuration and status 
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information, which allows for the implementation of route finding algorithms and 

strategies. 

4.3.6. Conclusion and Future Work 

The paper presents an Erlang-based holonic control implementation for a modular 

conveyor system. The controller is successfully implemented for a simulated, 

medium-sized manufacturing cell (incorporating ten different workstations). The 

conveyor is incorporated as a Resource holon in the PROSA holonic architecture, 

upon which the control of the manufacturing cell is based.  

The Conveyor holon is responsible for the movement of carriers (which transport 

products or work pieces around the cell) by controlling the actions of the conveyor 

hardware via low level control PLCs. The holon performs several functions – 

communication with other cell level holons, route planning and route execution 

through hardware coordination. The Conveyor holon is itself implemented as a 

holarchy, with the involved functions performed through the cooperation of the 

collection of holons. 

The described implementation aims to exploit the advantages that are offered by 

Erlang, namely modularity, scalability and concurrency. From the presented 

research, the following remarks can be offered: 

 The inherent modularity and concurrency of Erlang programming provides 

a natural facilitation for the implementation of holonic principles.  

 The holonic controller exhibits good scalability and reconfigurability with 

very little effort. 

 The compact, readable code, along with the modularity of Erlang programs, 

allow for a reduction in programming complexity. 

 The standard libraries offered by OTP contribute greatly to the simplicity 

and robustness of the control implementation, with potential for further 

improvement. 

 In future work, the research will focus on establishing benchmarks for a 

formal evaluation of this implementation and an equivalent multi-agent 

system for comparison. 
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5. Multi-Agent System Holonic Control Implementation 
To evaluate the Erlang holonic control implementation, a comparison will be 

performed with the status quo in holonic control implementation – multi-agent 

systems. This section provides an overview of the MAS holonic control 

implementation for the testbed system described in section 3.2. 

The MAS implementation is presented in the form of a paper, titled “JADE Multi-

Agent System Holonic Control Implementation for a Manufacturing Cell”. The 

paper presents the implementation of the PROSA holonic reference architecture 

using the JADE platform for MAS development. The use of JADE behaviours to 

implement agent functionality and facilitate agent communication is described.  
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Abstract 

Multi-Agents Systems (MASs) is a popular approach for the implementation of 

holonic control architectures in manufacturing systems. Software agents and holons 

share several similarities, allowing for the exploitation of the advantages that are 

offered by holonic systems. The Java Agent Development (JADE) framework is 

the tool most often used in implementations of holonic control. This paper describes 

a JADE MAS implementation of the Product-Resource-Order-Staff Architecture 

(PROSA) for holonic control of a manufacturing cell. The mapping of the holonic 

and MAS architectures is explained and the communication and functionality of the 

individual agents in the MAS is detailed. 

Keywords: Multi-Agent System (MAS); Java Agent Development framework 

(JADE); Holonic manufacturing system (HMS); Reconfigurable manufacturing 

system (RMS) 

5.1. Introduction 
Modern manufacturing systems require short lead times for the introduction of new 

products into the system, the ability to produce a larger number of product variants 

and the ability to handle fluctuating production volumes (Bi et al., 2008). The 

concept of Reconfigurable Manufacturing Systems (RMSs) is aimed at addressing 

these requirements. 

RMSs aim to switch between members of a family of products, through the addition 

or removal of functional elements (hardware or software), with minimal delay and 

effort (Martinsen et al., 2007; Vyatkin, 2007). RMSs can rapidly adjust the 

production capacity and functionality in response to sudden changes, by 

reconfiguring hardware and control resources (Bi et al., 2008; Bi, Wang, and Lang, 

2007). RMSs are characterised by (Mehrabi, Ulsoy, and Koren, 2000; 

ElMaraghy, 2006): modularity of system components, integrability with other 

technologies, convertibility to other products, diagnosability of system errors, 

customizability for specific applications and scalability of system capacity. 

Holonic control architectures is a popular approach for enabling control 

reconfiguration in RMSs. The term holon (first introduced by Koestler in 1967) 

comes from the Greek words “holos” (meaning “the whole”) and “on” (meaning 

“the particle”). Holons are “any component of a complex system that, even when 

contributing to the function of the system as a whole, demonstrates autonomous, 

stable and self-contained behaviour or function” (Paolucci and Sacile, 2005). When 

this concept is applied to manufacturing systems, holons are autonomous and 

cooperative building blocks for transforming, transporting, storing or validating the 
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information of physical objects. A Holonic Manufacturing System (HMS) is a 

system of holons that can cooperate to integrate the entire range of manufacturing 

activities (Paolucci and Sacile, 2005). 

The use of holonic control for RMSs holds many advantages: holonic systems are 

resilient to disturbances and adaptable in response to faults (Vyatkin, 2007); have 

the ability to organise production activities in a way that they meet the requirements 

of scalability, robustness and fault tolerance (Kotak et al., 2003); and lead to 

reduced system complexity, reduced software development costs and improved 

maintainability and reliability (Scholz-Reiter and Freitag, 2007). 

The application of the holonic concept to manufacturing control systems has been 

a popular field of research since the early 1990’s. The most popular approach to 

implementing holonic control architectures has been Multi-Agent Systems (MASs). 

The main motivation for this approach is the similarities between holons and 

software agents – both must exhibit autonomy and provide interfaces to facilitate 

cooperation. Several experimental implementations have been reported, such as 

Leitao and Restivo (2006) and Giret and Botti (2009). 

Several tools exist for the development of MASs – of these tools, the Java Agent 

Development (JADE) framework is most commonly used in the control of 

manufacturing systems. JADE was developed by Telecom Italia and has been 

distributed under an open source license since 2000. The JADE framework provides 

the middleware to facilitate distributed applications that exploit the software agent 

abstraction (Bellifemine et al., 2007). JADE provides tools that simplify the 

development, testing and operation of MASs, such as the Agent Management 

System (AMS) and the Directory Facilitator (DF). The AMS includes all the 

functionality to manage the agents in the MAS, from the creation of agents, to the 

migration and termination of agents. The DF provides a mechanism for the 

registration and discovery of resources by agents in the MAS. JADE also provides 

special Java classes, called behaviours, for implementing common functionality of 

agents – this includes behaviours for communication protocols that comply with the 

Foundation for Intelligent, Physical Agents (FIPA) specifications for agent 

communication. 

This paper presents a JADE MAS implementation of a holonic reference 

architecture for a manufacturing cell. The implemented PROSA holonic 

architecture is discussed in section 5.2 and the case study, on which the 

implementation is based, is presented in section 5.3. The MAS holonic control 

implementation is described in section 5.4 and the paper concludes with a 

discussion of related and future work. 

5.2. Holonic Reference Architecture 
The exploitation of the advantages of holonic control, as mentioned in section 5.1, 

relies on the holonic system's architecture. Several reference architectures, which 

specify the mapping of manufacturing resources and information to holons and to 

structure the holarchy, have been proposed (e.g. Chirn and McFarlane (2000) and 
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Leitao and Restivo (2006)), but the most prominent is the Product-Resource-Order-

Staff Architecture (PROSA), as developed by Van Brussel et al. (1998). 

PROSA defines four holon classes: Product, Resource, Order and Staff. The first 

three classes of holons can be classified as basic holons, because, respectively, they 

represent three independent manufacturing concerns: product-related technological 

aspects (Product holons), resource aspects (Resource holons) and logistical aspects 

(Order holons). 

The basic holons can interact with each other by means of knowledge exchange, as 

is shown in Figure 25. The process knowledge, which is exchanged between the 

Product and Resource holons, is the information and methods describing how a 

certain process can be achieved through a certain resource. The production 

knowledge is the information concerning the production of a certain product by 

using certain resources – this knowledge is exchanged between the Order and 

Product holons. The Order and Resource holons exchange process execution 

knowledge, which is the information regarding the progress of executing processes 

on resources.  

 

Figure 25: Knowledge exchange between the PROSA holons. 

Staff holons are considered to be special holons as they are added to the holarchy 

to operate in an advisory role to basic holons. The addition of Staff holons aim to 

reduce work load and decision complexity for basic holons, by providing them with 

expert knowledge. 

The holonic characteristics of PROSA contribute to the different aspects of 

reconfigurability mentioned in section 5.1. The ability to decouple the control 

algorithm from the system structure, and the logistical aspects from the technical 

aspects, aids integrability and modularity. Modularity is also provided by the 

similarity that is shared by holons of the same type. 
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5.3. Case Study 
The case study used for the presented implementation is a manufacturing cell for 

the assembly and quality assurance of electrical circuit breakers. The layout of the 

cell is shown in Figure 26. The cell consists of the following workstations: 

 Manual assembly station – the sub-components of circuit breakers are 

assembled and placed on empty carriers on the conveyor. 

 Inspection station – a machine vision inspection is performed on the circuit 

breakers as the carriers are moved by the conveyor. 

 Electrical test station – circuit breakers are picked up by a robot and placed 

into testing machines. The testing machines perform the necessary 

performance and safety tests on every breaker. When the testing is 

completed for a breaker, it is removed from the testing machine by the robot 

and placed on an empty carrier on the conveyor. 

 Stacking station – multiple circuit breakers are stacked to produce multi-

pole circuit breakers. The breakers are removed, stacked and placed on 

empty carriers by a robot. 

 Riveting station – the casings of the circuit breakers are manually riveted 

shut. 

 Removal station – the completed circuit breakers are removed from carriers. 

The breakers are then moved to the next cell for packaging. 

The conveyor moves product carriers between the various workstations. The 

conveyor is equipped with stop gates and lifting stations at every workstation. The 

carriers are fitted with Radio Frequency Identification (RFID) tags and RFID 

readers are placed at multiple positions along the conveyor, to provide feedback of 

carrier location. 

 

Figure 26: Layout of the electrical circuit breaker assembly and quality 

assurance cell. 

5.4. Holonic Control Implementation 
This section presents the JADE MAS implementation of holonic control, based on 

PROSA, for a manufacturing cell. The embodiment of the holonic architecture 

through a MAS is explained and the communication between system agents is 

discussed. Finally, the functionality and implementation of the individual agent 

types are described. 
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5.4.1. Holonic Architecture 

In accordance with PROSA, the various functional components of the 

manufacturing cell are embodied as Product, Resource, Order or Staff holons. All 

of the holons are represented in the high level control implementation by software 

agents. The cooperation of the agents within the MAS implementation provide all 

the necessary functionality to drive the production of the manufacturing cell. 

The information that pertains to the production of every product that is to be 

manufactured by the cell is contained within Product holons. Since these holons 

exist purely as information within the control implementation, the holons are 

wholly represented as Product agents within the MAS. 

The Order holons should exhibit the functionality to utilize the product information 

to produce a product of a specific type. Order holons encapsulate the logic and 

information needed for production, and thus only exist within the high level control 

implementation, where Order holons are represented as Order agents. 

In the presented architecture, it is only the Resource holons that include both 

physical and software functional components. A Resource holon contains the 

resource hardware (as present on the factory floor), the low level control component 

(that control the actuators of the hardware and receives feedback from sensors) and 

the high level control component. The high level control components is 

implemented as a Resource agent in the MAS control implementation. Resource 

agents must provide the functionality to communicate with the other agents in the 

MAS, manage the agenda of the resource (i.e. the schedule of the execution of the 

resource’s services), control the service execution tasks and sequences and maintain 

a communication interface with the low level control components of the Resource 

holon. The internal architecture of the Resource agent is presented in Figure 27. 

The implementation includes one special Resource agent – the Transport agent. The 

Transport agent is responsible for the high level control of the conveyor system, 

which moves the product carriers between the different workstations. The 

implementation makes use of conveyor controller that was previously developed 

using Erlang (see Kruger and Basson (2016) for details). The Transport agent 

included in this implementation acts as a wrapper, i.e. to provide an agent interface 

to the Erlang controller. This interface allows the agents in the MAS to 

communicate with the Erlang controller as if it was just another Resource agent. 

The Staff holons for the manufacturing cell are implemented as different agents in 

the MAS. Some of the Staff holons functionality are provided by JADE, such as the 

AMS and DF. Two other Staff agents are included: the Order Manager agent (to 

manage the creation and monitoring of Order agents within the MAS) and the 

Performance Logger agent (to record the performance of Resource and Order agents 

for diagnostic purposes). 
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Figure 27: Internal architecture for the Resource agent. 

5.4.2. Agent Communication 

The cooperation of agents within the MAS is achieved through communication – 

information is passed as messages between agents. The implementation aimed to 

make use of the communication protocols and accompanying functionality 

provided by JADE – specifically, the FIPA Rational-Effect protocol and the 

contract net protocol. To supplement the communication a messaging ontology is 

defined and is applied to the construction of the content information that is added 

to the various message instances. This ontology and the formation of customized 

communication protocols using the JADE protocols are described in the following 

sections. 

5.4.2.1. Messaging ontology 

The implementation makes use of eXtensible Markup Language (XML) ontology 

for structuring the information exchanged during communication. The XML 

ontology specifies the information that must accompany a specific message type, 

as is determined by the elements that comprise the XML document.  

The templates of the XML documents for the various message types are included 

in every agent. When a message is composed, the template is used and the required 

information is added to the elements. The constructed XML document is then 

converted to a string data type, so that the data can be added to the content slot of a 

normal JADE ACL message. On the receiver side, the template is used to determine 

the elements of the received message from where data must be extracted. The string 

obtained from the content slot is converted back to an XML document, from which 

point it can be parsed and the required information can be extracted. An example 
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of the content of a start request message, as would be sent from an Order agent to 

a Resource agent, is shown below: 

<?xml version="1.0" encoding="UTF-8"?> 
<message> 
 <initiator>OrderAgent_O24</initiator> 
 <responder>ResourceAgent_R06</responder> 
 <msg> 
  <message_type>start</message_type> 
  <service_type>test</service_type> 
  <conversation_ID>C021</conversation_ID> 
  <result>undefined</result> 
  <info> 
   <product_ID>P02</product_ID> 

</info> 
 </msg> 
</message> 

5.4.2.2. Service booking, confirmation and execution 

Order agents, as embodiments of Order holons, are responsible for driving 

production – each Order holon exhibits the functionality coordinate the resources 

necessary to produce their specific product. The Order agents then follow a protocol 

for the booking of resource services, according to the tasks specified by the product 

information. When the part is ready for the next service to be performed on it, the 

Order agent must first confirm the service booking and then start the execution of 

the service. This interaction is illustrated in Figure 28. 

 

Figure 28: Communication between an Order agent and a Resource agent. 
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The booking of services is accomplished through a contract net protocol between 

the Order agent and the Resource agents. After the Order agent obtains the agent 

identifiers of all the Resource agents capable of performing a specific service, it 

initiates the communication protocol with each Resource agent. The protocol 

commences with the sending of Call For Proposal (CFP) messages to each 

Resource agent. The Resource agents reply to this CFP message with a proposal. 

The received proposals are compared and the Resource agent that sent the best 

proposal is sent an Accept Proposal message. Once the selected Resource agent 

replies with an inform message, the booking is completed. 

When the product that is controlled by the Order agent is ready for the next booked 

service to be performed on it, the Order agent must first confirm that the service 

booking is still valid – this is done by using the simple FIPA Rational-Effect (RE) 

protocol. The Order agent initiates the protocol by sending a request message to the 

booked Resource agent. This request message contains a XML string in its content 

slot, which contains the “confirm” string in the element holding data for the 

message type. The Resource agent parses the XML string content of the request 

message and identifies it as a confirmation message. If the details of the Order agent 

are present in the bookings list of the resource agent, it replies with an inform 

message (if not, a failure message is sent – this is an indication of a fault in the 

execution of the Order agent). The confirmation step is included in the 

communication protocol as an additional check. 

Upon receiving confirmation, the Order agent again initiates a simple RE protocol 

– in this case, the content slot of the request message is similar to the string version 

of the XML document presented in section 5.4.2.1. The Resource agent identifies 

the request as a start message and immediately replies to the Order agent with an 

Agree message and start the execution of the service. The agree message provides 

an indication to the Order agent that execution of the service has started on the 

product – this indication can be used to start a timer, which can indicate when an 

error has occurred in the Resource agent. Upon completion of the service, the 

Resource agent sends an inform message to the Order agent. 

5.4.2.3. Interaction with the Transport Agent 

Most of the services performed at the workstations involves physical interaction 

with the carriers of the conveyor – e.g. at the input of the Electrical Test Station 

(ETS) products are removed from carriers for testing and, upon completion, are 

placed back on empty carriers available at the output of the station. This physical 

interaction between resources and the conveyor at the workstations is replicated in 

the virtual interaction, i.e. in the communication between the various Resource 

agents and the Transport agent. 

The MAS architecture dictates that the coordination of services is done by Order 

agents – e.g. an Order agent will trigger the execution of a transportation service 

and, once completed, will thereafter trigger the execution of a testing service. The 

Order agent is blind to the interaction between the ETS and Transport agent 
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necessary for the testing service to be executed – this interaction is completed 

through Resource-to-Resource communication. 

From the physical system, two types of interaction between resources and the 

conveyor are identified: the placing of products on empty carriers and the removal 

of products from carriers. These physical interactions are represented by two 

AchieveRE protocols – one performing a binding_request and the other a 

release_request. The binding_request is used to initiate the placement of a product 

on a carrier, i.e. the binding of a product to a carrier. Alternatively, the 

release_request initiates the removal of a product from a carrier, so that a previously 

bound product is released from a carrier. The sequence of communication between 

an Order, ETS and Transport agent for the execution of a testing service is 

illustrated in Figure 29. 

 

Figure 29: Communication sequence between the Order, ETS Resource and 

Transport agents. 

Each type of request is accompanied by the exchange of important information. 

With a binding_request message the Resource agent must include information 

regarding the type of product that it wants to place on a carrier – since carriers might 

be fitted with fixtures that are specifically designed for certain product types, this 

information is used by the Transport agent to determine if a suitable carrier is 

available at the workstation. The message content is structured as follows: 

<?xml version="1.0" encoding="UTF-8"?> 
<message> 
 <initiator>ResourceAgent_R06</initiator> 
 <responder>TransportAgent</responder> 
 <msg> 
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  <message_type>binding_request</message_type> 
  <conversation_ID>C021</conversation_ID> 
  <result>undefined</result> 
  <info> 
   <order_ID>OA43</order_ID> 
   <product_ID>P02</product_ID> 

</info> 
 </msg> 
</message> 

The Transport agent will reply with the result of the request – either an inform or 

failure. If the result is true, the specific position on the carrier may be specified, as 

carriers can be fitted with multiple fixtures and are thus capable of carrying more 

than one product at a time. The message content has the following structure: 

<?xml version="1.0" encoding="UTF-8"?> 
<message> 
 <initiator>ResourceAgent_R06</initiator> 
 <responder>TransportAgent</responder> 
 <msg> 
  <message_type>binding_request</message_type> 
  <conversation_ID>C021</conversation_ID> 
  <result>true</result> 
  <info> 
   <place_coords> 
    <x>0.0</x> 
    <y>200.0</y> 
    <z>10.0</z> 
    <ang>0.0</ang> 
   </place_coords> 

</info> 
 </msg> 
</message> 

For a release_request, the Resource agent must specify the product to be released, 

based on the Order agent that governs it. For a release_request message, the content 

slot of the FIPA RE Request message will contain the following XML string: 

<?xml version="1.0" encoding="UTF-8"?> 
<message> 
 <initiator>ResourceAgent_R06</initiator> 
 <responder>TransportAgent</responder> 
 <msg> 
  <message_type>release_request</message_type> 
  <conversation_ID>C027</conversation_ID> 
  <result>undefined</result> 
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  <info> 
   <order_ID>OA43</order_ID> 

</info> 
 </msg> 
</message> 

Should the requested product be available on the carrier at the workstation, the 

Transport agent will reply with an inform message. If multiple products are present 

on the carrier, the Transport agent must also specify the position of the product on 

the carrier – the information is structured as follows: 

<?xml version="1.0" encoding="UTF-8"?> 
<message> 
 <initiator>ResourceAgent_R06</initiator> 
 <responder>TransportAgent</responder> 
 <msg> 
  <message_type>release_request</message_type> 
  <conversation_ID>C027</conversation_ID> 
  <result>true</result> 
  <info> 
   <pick_coords> 
    <x>0.0</x> 
    <y>200.0</y> 
    <z>10.0</z> 
    <ang>0.0</ang> 
   </pick_coords> 

</info> 
 </msg> 
</message> 

5.4.3. Agents 

The MAS implementation contains agents of four types, as prescribed by PROSA, 

namely Product, Resource, Order and Staff agents. The functionality of each agent 

type is described in this section. 

5.4.3.1. Product Agent 

The Product agent exhibits the behaviour of a simple server, only replying to 

received messages requesting the information for a specified product. The agent 

employs an AchieveREResponder behaviour to receive and handle request 

messages from Order agents. These request messages specify the product type in 

the content of the request message. The product information is then retrieved from 

the product information XML file and is converted to an XML string. The product 

information string is then added to the content slot of the inform ACL message that 

is replied to the requesting agent.  
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An extract from the product information XML file is shown below: 

<?xml version="1.0" encoding="UTF-8"?> 
<product_information> 
 <product id="p01"> 
  <task_info> 
   <task type="feed"> 
     <place_coords> 
      <x>0.0</x> 
      <y>0.0</y> 
      <z>0.0</z> 
      <ang>0.0</ang> 
     </place_coords> 
   </task> 
   <task type="transport"> 
    <origin>"undefined"</origin> 
    <destination>"undefined"</destination> 
   </task> 
    

 
 

  </task_info> 
 </product> 

5.4.3.2. Resource Agent 

The Resource agents employ behaviours to negotiate service bookings via the 

contract net protocol, handle confirmation and start requests and the execution of 

the resource’s service. 

To negotiate service bookings, Resource agents employ the 

ContractNetResponder behaviour. In the handleCFP() method, the agent 

creates a proposal – this proposal contains a value that indicates the length of the 

resource’s booking list. If a proposal is successful and an accept_proposal message 

is received, the information of the booking Order agent is added to the bookings 

list. 

The confirmation of service bookings by an Order agent, as discussed in section 

5.4.2.2, is handled with an AchieveREResponder behaviour added to the 

execution of Resource agents. The behaviour matches every incoming message to 

a message template – the message template uses a regular expression to evaluate 

the XML string content of the received message. 
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INIT

{FREE,[n = 0]}

{FREE,[n > 0]}

{BUSY,[n = 0]}

{BUSY,[n > 0]}

Received 
“ready” from 

Exec FSM

Received 
“booking 
request”

Received “start” 
from last 

booked client

Received 
“start” from 

booked client

Received “done” 
from Exec FSM

Received 
“booking 
request”

Received 
“booking cancel” 
from last booked 

client

Received 
“booking cancel” 
from last booked 

client

Received 
“done” from 

Exec FSM

Event

{EXEC STATUS,[BOOKING LIST]}

Transition with event

State

Received 
“booking 

request/cancel”

Received 
“booking 
request/
cancel”

 

Figure 30: State diagram for the Agenda Management component of the 

Resource agent. 

The agent behaviour, as described by the state diagram in Figure 30, is constructed 

through three concurrently active JADE behaviours. Concurrency within the 

execution of the agent is needed to ensure that the Resource agent remains available 

for communication even when it is performing its designated service. One 

behaviour is responsible for handle service booking requests using the contract net 

protocol and another behaviour handles the confirmation protocol for service 

bookings. The third behaviour is responsible for the execution of the service as 

initiated by an Order agent that previously booked the Resource agent’s service. 

To handle service bookings from Order agents a ContractNetResponder 

behaviour is added to the execution of the Resource agent. The 

ContractNetResponder behaviour is built on the JADE finite state machine 

behaviour – the behaviour is constructed with the necessary states to participate in 

a CNP negotiation. The states provide the necessary methods to handle the 

communication with the CNP initiator agent. 
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An AchieveREResponder is added to the agent execution to handle the 

confirmation of service bookings by Order agents. Similar to the 

ContractNetResponder behaviour described above, the 

AchieveREResponder behaviour embodies a finite state machine that is 

configured to handle the communication of the FIPA RE protocol. The behaviour 

compares a received message with a defined message template – in this case, the 

content of the message is matched to a template specifying a confirmation message. 

To handle the communication intended to start the execution of a booked service, a 

SSResponderDispatcher behaviour is added. The SSResponderDispatcher 

behaviour launches a behaviour that is dedicated to handle the communication with 

one specific agent, for a single communication session only. The 

createResponder() method of this behaviour allows the developer to specify 

which behaviour to handle the session. Here, a 

SSIteratedAchieveREResponder is utilised to handle the communication 

involved with the execution of the Resource’s service. The 

SSIteratedAchieveREResponder is similar to the AchieveREResponder 

behaviour discussed earlier, but is different in the sense that the behaviour 

terminates after a single communication session. 

For the SSIteratedAchieveREResponder behaviour that is launched to handle 

the start message, the standard handleRequest() method is overwritten. Instead, 

by using the registerHandleRequest() method, the actions that occur when a 

start request is received can be specified by the developer. This method is then used 

to add an FSMBehaviour that describes the execution of the Resource’s service.  

The behaviours described above, up to the service execution FSMBehviour, are 

generic for all Resource agents. Each Resource agent adds a FSMBehaviour that 

is specific to the service(s) that it can perform. The behaviour executes all the 

actions that are necessary to perform the booked service. Upon completion, the 

FSMBehaviour returns the result of the execution to the 

SSIteratedAchieveREResponder behaviour, which in turn replies to the Order 

agent with an inform or failure message. 

5.4.3.3. Order Agent 

Order agents must book and trigger the execution of the services, provided by 

Resource agents, to complete all the tasks specified in the product information of a 

certain product type. The finite state machine behaviour to implement this 

functionality and facilitate the necessary communication (as explained in section 

5.4.2.2) is described in this section. 

The Order agent firstly adds a behaviour to request and receive the product 

information from the Product agent – this is done by an AchieveREInitiator 

behaviour. Thereafter, the Order agent executes a FSMBehaviour until the product 

that it is responsible for is completed. The FSMBehaviour embodies the state 

diagram shown in Figure 31. 
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Figure 31: State diagram for the behaviour of an Order agent. 

The execution in the “free-booking” ({FREE, [n < Bbuf]}) state is 

implemented using a TickerBehaviour. The function of this behaviour is to 

perform service bookings sequentially for the services specified in the product task 

list. This behaviour is executed periodically, adding a new 

ContractNetInitiator behaviour for service booking every time. The number 

of service bookings to be made in advance is determined by the user-defined 

booking buffer variable (Bbuf in Figure 31) – when the number of bookings made 

(n in Figure 31) is equal to the booking buffer, the FSMBehaviour transitions to 

the next state. 

In the “free-booked” ({FREE, [n == Bbuf]}) state a OneShotBehaviour is 

added that triggers the execution of the first booked service in the bookings list of 

the Order agent. The execution, which includes the confirmation and starting of the 

service via communication with the booked Resource agent, is performed by a 

SequentialBehaviour (discussed at the end of this section). The 

SequentialBehaviour is started in a separate thread to simplify concurrency of 

the Order agent behaviours. The service that is being executed is removed from the 

bookings list, meaning that the number of entries is less than the specified booking 

buffer – the FSMBehaviour now transitions to the “busy-booking” state. 
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The behaviour of the “busy-booking” ({BUSY, [n < Bbuf]}) state is similar to 

the “free-booking” state. A TickerBehaviour adds ContractNetInitiator 

behaviours until the booking buffer is reached. When all required bookings have 

been made, a state transition to the “busy-booked” state occurs. 

The “busy-booked” ({BUSY, [n == Bbuf]}) state also implements a 

TickerBehaviour, but here the behaviour just periodically checks the status of 

the booking list and service execution.  During the first execution of the 

TickerBehaviour an AchieveREResponder behaviour is added. This 

behaviour will receive any booking cancellations from booked Resource agents 

(which can occur when the Resource agent either fails or is manually shut down) – 

in which case the cancelled booking is removed from the bookings list and a state 

transition is triggered back to the “busy-booking” state. Also, at every execution, 

the variable indicating the status of service completion is checked. If the service is 

completed, the state transitions to the “free-booked” state again so that the 

execution of the next booked service can be started. If the service is completed and 

it was the last service required for the product, the FSMBehaviour transitions to a 

“done” state to terminate execution of the Order agent. 

When an Order agent has made enough service bookings to fill the booking buffer, 

the first service in the bookings list (which corresponds to the next service to be 

performed according to the product information) can be started. The confirmation 

of the service bookings and the starting of the service execution, through the 

protocols discussed in section 5.4.2.2, are done in a separate behaviour to the 

FSMBehaviour described above, and in a dedicated thread. The use of a dedicated 

thread, instead of adding concurrency through behaviours, was selected due to the 

simplicity of implementation. The thread is again terminated once the service is 

completed by the Resource agent. 

The thread implements a JADE SequentialBehaviour to sequentially execute 

two AchieveREInitaitor behaviours – one for confirming the service booking 

and the other to start the execution. Once the Resource agent indicates the 

successful completion of the service execution through an inform message, the 

necessary updates are made to the agent variables and the behaviour, and thereafter 

the thread, terminates. 

5.4.3.4. Staff Agents 

Staff agents are included in the MAS implementation to provide the functionality 

that is not exhibited by the Product, Order and Resource agents. Apart from the 

Staff agents included in JADE (such as the Directory Facilitator), two Staff agents 

were added to the implementation: an Order Management agent and a Performance 

Logger agent. 

5.4.3.4.1. Order Management Agent 

As the name suggests, the Order Manager (OM) agent is responsible for the 

management of the Order agents within the MAS. The OM agent maintains a 

Graphical User Interface (GUI) to receive input from the user concerning the 
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creation of Order agents. The user can specify the number of Order agents and the 

type of products they must produce – this information can be entered manually in 

the GUI fields, or a XML production schedule filename can be specified. 

From the input information, the OM agent launches Order agents by sending 

requests to the Agent Management System. The OM agent displays the number of 

active Order agent in the MAS in the GUI – this number is incremented with each 

launched agent. Once Order agents have completed all required tasks, a done 

message is sent to the OM agent before the agent terminates – the number of Order 

agents is decremented when a done message is received. 

5.4.3.4.2. Performance Logger Agent 

To gather diagnostic information on the performance of Resource and Order agents, 

a Performance Logger (PL) agent is added to the MAS. The PL agent records the 

number of times a Resource agent performs its service, the duration of each service 

execution and the total time that the Resource agent spends in service execution – 

all data required to calculate the utilization of the resource during a period of 

production. The agent also records the start and end times of the execution of Order 

agent, in order to provide data for the calculation of the time-in-system of each 

product and the overall production throughput. 

Resource agents send a start message to the PL agent every time a service execution 

is started and a done message when the execution is completed. The PL agent starts 

a timer for every start message received from a Resource agent and stops the timer 

when the done message is received. The information is stored in an ArrayList 

data structure – the entries of the ArrayList are of a custom class type, with fields 

for the Resource agent’s name, its activity status, the total number of services 

performed and the total time that the Resource has been active. Similarly, Order 

agents send corresponding messages upon their instantiation and termination. 

5.5. Conclusion 
Holonic control architectures have been frequently used in manufacturing systems 

to reduce the complexity of the control system, simplify reconfiguration and 

improve robustness. Multi-Agent Systems (MASs) have often been used to 

facilitate the implementation of holonic control due to the similarities between 

holons and software agents. Of the MAS development tools used to implement 

holonic control in manufacturing systems, the Java Agent Development (JADE) 

framework is the most popular choice. 

This paper presented a JADE MAS implementation of a reference holonic control 

architecture for a manufacturing cell. The implementation used an electric circuit 

breaker assembly and testing cell as case study, of which the various functional 

components were mapped to the holon types as prescribed by the PROSA reference 

architecture. The high level control components of the holons are implemented as 

agents in the MAS. The communication between the agents is described and the 

implementation of the functionality for each agent type is discussed. 
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The implementation of holonic control using JADE MASs has become the status 

quo within the field of holonic and reconfigurable manufacturing systems. For this 

reason, the presented MAS implementation is used as a baseline for a comparison 

with an equivalent holonic control implementation that is based on the Erlang 

programming language (details on this implementation can be found in Kruger and 

Basson (2015; 2017 (a)). The evaluation criteria and the comparison are presented 

in Kruger and Basson (2017 (b); 2017 (c)). 
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6. Evaluation 
This section describes the evaluation of the Erlang holonic control implementation. 

The evaluation is aimed at determining the suitability of the Erlang programming 

language, supplemented by OTP, for the implementation of holonic control in 

manufacturing systems. As is discussed in section 1.4, the evaluation uses a 

comparison with an equivalent control implementation using a JADE MAS.  

The section is comprised of two papers. In section 6.1, the first paper, “Evaluation 

Criteria for Holonic Control Implementations for Manufacturing Systems”, 

presents the evaluation criteria that is used for the proposed evaluation. The paper 

formulates a set of requirements for holonic control implementations and relates 

these requirements to quantitative and qualitative performance measures. The 

second paper, which performs an evaluation and comparison of the Erlang and 

MAS holonic control implementations, is presented in section 6.2 and is titled 

“Comparison of Multi-Agent System and Erlang Holonic Control Implementations 

for a Manufacturing Cell”. The comparison is performed according to the 

evaluation criteria presented in the first paper. 

The two papers presented in this section have not been published, but have been 

submitted to an appropriate international journal for review.  
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Abstract 

Holonic control architectures have often been implemented in research on modern 

manufacturing systems. Although many holonic control systems were implemented 

using agent-based programming platforms, other platforms hold potential 

advantages. A comparison of alternative implementations of holonic control 

requires a set of evaluation criteria that can be used to compare the alternative. This 

paper presents such a set of evaluation criteria that are focussed on the 

implementation of holonic control in manufacturing systems. The evaluation 

criteria are formulated from a review of literature, combined with experience in 

developing holonic control implementations. The most important characteristics, 

requirements and performance measures are identified and discussed. 

Keywords: Holonic Manufacturing System (HMS); Reconfigurable Manufacturing 

System (RMS); evaluation criteria 

6.1.1. Introduction 

Modern manufacturing has been shaped by aggressive global competition and 

uncertainty, characterised by dynamic changes in economical, technological and 

customer trends (Leitao and Restivo, 2006). Bi et al. (2008) identifies the critical 

requirements for modern manufacturing systems to be the shortening of lead times 

for the introduction of new products into the system, the ability to produce a larger 

number of product variants and the ability to handle fluctuating production 

volumes.  

The requirements for modern manufacturing necessitate paradigm shifts, such as 

Reconfigurable Manufacturing Systems (RMSs) and, more recently, Cyber-

Physical Production Systems (CPPSs) and Industry 4.0. RMSs are designed to 

facilitate fast and easy switching between members of a particular family of 

products, by adding or removing functional elements (hardware or software) 

(Martinsen, 2007; Vyatkin, 2007). Bi et al. (2007; 2008) argue that RMSs should 

also be able to rapidly adjust the production capacity and functionality in response 

to sudden changes, by reconfiguring hardware and control resources. Sharing some 

of RMSs' properties, CPPSs have recently become a major focus. The three main 

characteristics of CPPSs are (Monostori et al., 2016):  

 Intelligence – the elements are able to acquire information from their 

surroundings and act autonomously;  

 Connectedness – the ability to set up and use connections to the other 

elements of the system – including human beings – for cooperation and 
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collaboration, and to the knowledge and services available on the Internet; 

and  

 Responsiveness towards internal and external changes. 

Holonic control architectures are well suited to enable control reconfiguration in 

RMSs and CPPSs. Koestler (1967) first introduced the term holon – a combination 

of the Greek words “holos” (meaning “the whole”) and “on” (meaning “the 

particle”). Holons are then “any component of a complex system that, even when 

contributing to the function of the system as a whole, demonstrates autonomous, 

stable and self-contained behaviour or function” (Paolucci and Sacile, 2005). In 

manufacturing systems, a holon can be generally defined as an autonomous and 

cooperative building block for transforming, transporting, storing or validating 

information of physical objects. A Holonic Manufacturing System (HMS) is then 

“a holarchy (a system of holons which can cooperate to achieve a common goal) 

which integrates the entire range of manufacturing activities” (Paolucci and Sacile, 

2005).  

In HMSs, holons can comprise software alone or a combination of software and 

hardware. In this paper, the focus is on the software parts of HMSs and the computer 

hardware on which the software runs, which usually correspond to the control parts 

of the HMS. For brevity, the term HMS will further be used in this paper, but 

readers should keep in mind that it only refers to the software and associated 

computers. However, low level controllers tightly coupled with specific hardware, 

such as variable speed drives, are also excluded from consideration in this paper. 

There have been several implementations of HMSs. The most common approach is 

Multi-Agent Systems (MASs). The two most prominent examples of this approach 

can be found in the implementation of the PROSA (Van Brussel et al., 1998) and 

ADACOR (Leitao and Restivo, 2006). MASs are also commonly applied in CPPS 

(Monostori et al., 2016).  

It is important here to distinguish between the holonic architecture and its 

implementation. Often, in manufacturing systems context, the terms MAS and 

HMS are used nearly interchangeably, presumably since they share so many 

characteristics. However, a HMS need not be a MAS and can be implemented using 

other approaches. For example, the IEC 61499 standard has been used to implement 

holonic control on industrial PLCs (Vyatkin, 2007). Other implementations are the 

Holonic Component Based Architecture (Chirn and McFarlane, 2000) and an 

Erlang/OTP implementation (Kruger and Basson, 2017 (a)). Reasons for 

considering alternatives to an MAS when implementing a HMS include that MASs 

have found little acceptance in manufacturing industries and that MAS place high 

demands on the computer systems when systems become complex.  

The evaluation of alternative HMS implementations has proven to be a challenging 

task. Several studies have included evaluation criteria, with the formulations 

varying in focus and perspective. These variations inhibit the comparison of 

different researchers' work. The HMS Consortium initially identified a set of critical 

factors for holonic systems to facilitate agile manufacturing systems for the 21st 
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century (Christensen, 1994). As HMSs have often been closely linked with research 

on RMSs, the six key characteristics for reconfigurable systems (as defined by 

Koren and Shpitalni (2010)) have frequently been used as a starting point for the 

formulation of evaluation criteria – naturally, these formulations are focussed on 

reconfigurability. In the validation of ADACOR, the evaluation was focussed on 

agility in the event of unexpected disturbances (Leitao and Restivo, 2008). 

This paper presents evaluation criteria that are focussed on providing a base for 

comparing the implementation of holonic control in manufacturing systems. It must 

be emphasised that the focus here is not on the evaluation of a holonic architecture, 

but on alternative implementations of a given architecture. The formulation of the 

evaluation criteria is based on considerations from literature and from the authors’ 

experience in researching alternative implementations of holonic control in 

manufacturing systems.  

The paper starts with identifying the desired characteristics for holonic control 

implementations, from which a set of requirements are derived. The requirements 

are then used to formulate a set of quantitative and qualitative performance 

measures that can be used to evaluate and compare holonic control 

implementations.  

6.1.2. Characteristics and Requirements for Holonic Control Implementation 

There have been many attempts to formulate a set of desired characteristics and 

resulting requirements for modern manufacturing systems – several have focussed 

specifically on HMSs. The formulations presented in Christensen (1994), Bussman 

(1998) and Bussman and McFarlane (1999) during early holonic systems research 

are still relevant. These formulations are used here as the basis for the formulation 

of the characteristics and requirements that are used as base for the proposed 

evaluation criteria. 

The set of desired characteristics to be exhibited by holonic control 

implementations is derived from the following objective: developing holonic 

control systems that are tailored to satisfy the needs of industry, in order to achieve 

greater industry adoption. 

Despite a great deal of research and laboratory implementations of holonic systems 

– predominantly using MASs – there are only few cases of effective adoption by 

industry (Almeida et al., 2010). Considering the needs of industry, two over-arching 

characteristics that hold great value for industry, are identified – availability and 

supportability. To meet these needs, a third characteristic, development 

productivity, focusses on the development of reliable, customized holonic control 

implementations with short lead times. Elaborations on the proposed 

characteristics, and the requirements necessary to achieve them, are presented in 

the following sections. 

6.1.2.1. Availability and Supportability 

The HMS Consortium identified availability as a critical factor for a successful 

modern enterprise (Christensen, 1994). In the manufacturing industry, the 
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importance of availability is seen in the conservative approach used when selecting 

controllers, with a strong preference for well-established brands of automation 

controllers, in spite of the availability of lower cost alternatives. In this paper, the 

availability of the system is defined as the percentage of time that a system is 

capable of production, even in some sub-optimal capacity. To achieve high 

availability, a manufacturing system must meet three important requirements: 

reconfigurability, robustness and maintainability.  

For industry adoption, it is then also important for systems to be easily supported. 

Supportability, in this context, refers to the presence of infrastructure and 

mechanisms to facilitate the adoption, customization and maintenance of a HMS. 

The supportability of an implementation is dependent on maintainability, 

portability and controller requirements. 

The importance of reconfigurability have been emphasised in the literature on 

RMSs (e.g. Koren (2010)), but has also found renewed interest in research on 

CPPSs and Industry 4.0 (Monostori et al., 2016). Reconfiguration refers to the 

process wherein functional entities (hardware or software) are added, removed or 

rearranged in a manufacturing system. Reconfiguration activities may involve 

changes to the products, machinery, production capacity or control system. All of 

these changes can halt production, but a system with good reconfigurability can 

achieve short down- and ramp-up times – thus improving system availability. 

However, to reduce the complexity and level of effort associated with such changes, 

the system must inherently support reconfigurability. 

The availability and supportability of a system can be adversely affected by the 

occurrence of faults, e.g. machine breakdowns or communication failures. The 

ability of the system to remain available for production (be it in some sub-optimal 

state) amidst the occurrence of such events is characterised as robustness. A fault is 

defined here, as in Leitao (2004), as a disturbance that causes an unexpected 

disruption to production. The HMS Consortium (Christensen, 1994) identified fault 

tolerance as a critical factor for holonic system architectures and it has been an area 

of focus in studies on HMSs (see Leitao (2004), Leitao et al. (2006) and Leitao and 

Restivo (2008)). 

All systems require periodic maintenance to ensure continued production over an 

extended period. The maintenance of software involves the modification of the 

system or its components to correct faults, improve performance or adapt to the 

changes in the environment (Coleman et al., 1994). Maintainability then refers to 

the complexity and effort involved in maintenance activities. Maintenance is 

generally considered to incur a significant fraction of the life cycle costs of 

software. In a manufacturing control context, good maintainability characteristics 

reduce the production downtime and costs due to maintenance and thus improve 

the availability and supportability of the system. 

The requirements for the controllers to be used for the holonic control 

implementation are an important consideration for availability and supportability. 

Two types of controller requirements are considered: the computational capacity of 
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controllers and the ability to use controllers in distributed networks. The 

computational requirements focus specifically on processing power and memory 

usage, as improvements in microprocessor technology have opened the way for 

highly distributed control networks in the manufacturing industry – as driven by the 

CPPS and Industry 4.0 movements. These distributed networks of connected 

controllers are essential for the implementation of decentralized control 

architectures. Controllers might be obtained from different vendors, varying in 

software and hardware platforms and interfaces. It is thus vital for holonic control 

implementations to utilize a variety of limited-resource controllers effectively in 

distributed networks, with minimal changes to architecture and execution. 

6.1.2.2. Development Productivity 

From the perspective of the developers of HMSs, productivity is an important 

consideration. Trendowicz and Münch (2009) agree with Kennedy et al. (2004) that 

development productivity is highly dependent on the attributes of the selected 

programming language. Productivity can be dependent on numerous attributes, but 

the following are selected as the most relevant to this evaluation: the complexity of 

the software, the reusability of software artefacts and the verification of the 

developed software.  

Trendowicz and Münch (2009) report that software complexity is commonly used 

as a productivity factor in different domains of software development. This is not 

surprising, since complexity can be indicative of the difficulty in implementing, 

understanding, modifying and maintaining software programs (Weyuker, 1988). 

The reuse of software involves using existing software artefacts in the construction 

of a new software system (Krueger, 1992). The reusability that is offered by a 

programming language can reduce the amount of code generation and thus increase 

productivity (Prieto-Diaz and Freeman, 1987). 

Finally, every piece of software that is developed must be tested to verify that the 

desired functionality and reliability is exhibited. The programs constituting a 

holonic control implementation will typically be subjected to dynamic software 

testing (Vaos and Miller, 1995) to ensure probable correctness. It is important that 

the chosen programming language offer mechanisms to facilitate the efficient 

verification of code. 

6.1.3. Relationships between Requirements and Performance Measures 

The characteristics and requirements identified in the previous section can be 

related to a set of quantitative and qualitative performance measures. The 

performance measures are indicative of one or more of the requirements for holonic 

control implementations – this relationship is shown in Table 3. The performance 

measures are discussed in the following sections. 
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Table 3: Relationships between requirements and performance measures. 

 

Characteristics 

Availability 
Supportability 

Development Productivity 

Requirements 

R
e

co
n

fi
gu

ra
b

ili
ty

 

R
o

b
u

st
n

e
ss

 

M
ai

n
ta

in
ab

ili
ty

 

C
o

n
tr

o
lle

r 

re
q

u
ir

e
m

e
n

ts
 

C
o

m
p

le
xi

ty
 

V
e

ri
fi

ca
ti

o
n

 

R
e

u
sa

b
ili

ty
 

P
e

rf
o

rm
an

ce
 m

e
as

u
re

s 

Q
u

an
ti

ta
ti

ve
 

Reconfiguration time *    * * * 

Development time     * * * 

Code complexity   *  *   

Code extension rate *  *  *   

Code re-use rate *  *  *  * 

Computational 
resource requirements 

   *    
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Modularity *  *   * * 

Integrability *      * 

Diagnosability * * *   *  

Convertibility *  *     

Fault tolerance  *      

Distributability    *    

Developer training 
requirements 

  *  * *  

 

6.1.4. Performance Measures 

6.1.4.1. Quantitative Measures 

This section introduces each of the quantitative performance measures that form 

part of the evaluation criteria. For each measure, the relevance concerning holonic 

control implementations is discussed, the underlying concept or philosophy is 

described and the method of measurement is explained. 

6.1.4.1.1. Reconfiguration Time 

Section 6.1.2.1 explains the importance of reconfigurability in improving system 

availability and supportability. Reconfigurability is determined by the complexity 

and amount of work involved in performing a reconfiguration. A time measurement 
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is used to indicate the ease and required effort by which reconfiguration of a holonic 

control implementation can be performed. The time it takes to perform a 

reconfiguration activity is referred to as the reconfiguration time. 

Reconfiguration time can be measured by conducting a reconfiguration experiment, 

e.g. by introducing a new holon into an existing HMS, where the new holon differs 

from the types of holons already in the HMS. Reconfiguration time would then be 

measured as the time required by the developer to adapt the system to effectively 

utilize the new holon, including the time needed to implement the required changes 

to the code of the holons and the verification that the system performs as required. 

The development time for the new holon itself is excluded from this measurement, 

since it is considered in the next performance measure. 

6.1.4.1.2. Development Time 

As mentioned in section 6.1.1, short lead times is a key requirement for holonic 

manufacturing systems. The lead time for the introduction of new production 

capability or system functionality is strongly influenced by the development 

process. Development time here therefore refers to the time required to develop new 

control software. The development may include the reuse of code or be based on 

existing functional software components, but the end product exhibits functionality 

different to that of any existing component. 

As with reconfiguration time, development time can be measured through a 

reconfiguration experiment. In such an experiment, a new type of holon can be 

developed and added to an existing holonic system. The source code of the holon 

software can consist of both new and reused code and software artefacts. The 

verification of the developed software is included in the development time 

measurement. 

Development time is then measured in terms of developer work hours. To ensure 

that the focus remains purely on the part of the implementation process affected by 

the implementation platform, the measurement excludes an initial planning period, 

i.e. the time required for the developer to fully understand the problem at hand and 

orientate himself within the source code library of the holonic control 

implementation. 

6.1.4.1.3. Code Complexity 

In section 6.1.2.2 it is argued that software complexity has a significant influence 

on development productivity. Moreover, the complexity of implementing 

reconfigurable manufacturing and control systems is considered as a barrier to 

industry adoption (Almeida, 2010). It is thus necessary to include a performance 

measure with focus on the perceived complexity of the source code in the control 

implementation. 

Many studies have focussed on the development and use of measures to quantify 

the complexity of program source code. Some commonly used measures are aimed 

at the complexity of the algorithm that is implemented, such as the cyclomatic 

number (McCabe, 1976). However, many holonic control implementations follow 
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similar reference architectures and algorithms – the complexity measure used here 

is thus aimed at the complexity of the resulting source code. 

Any evaluation based on complexity measures should be approached with care. It 

is a challenging task to formulate objective metrics. The proposed evaluation is 

similar to that shown in Cesarini et al. (2008), using a code complexity measure 

that is based on a simple "source lines of code" (SLOC) measurement. This measure 

is based on a simple philosophy: more lines of code mean more work, and more 

errors. Hubbard (1999) argues that a SLOC measurement is dependent on at least 

three factors: 

 Program functionality 

 Programmer skill 

 Programming language 

Assuming that similar architectures are used for holonic control implementations, 

which allow for similar functionality and performance (which can be explicitly 

verified), a bias in SLOC due to differences in program functionality is avoided. It 

is inevitable that a bias would exist due to programmer skill, but the impact thereof 

can be diminished by considering multiple programmers with varied programming 

experience. Finally, the influence of programming language on SLOC is in line with 

the aim of this evaluation.  

The SLOC measure is intuitive to understand and attractive due to the ease by which 

the counting of SLOC can be automated. The SLOC count includes lines of code 

that: 

 Are non-blank  

 Are not comments 

 Are not delimiters for code elements 

 Are not declarations for the inclusion of software artefacts to the inspected 

module or class (import in Java and include in Erlang) 

 Have been produced by the developer (i.e. not automatically generated). 

In the event of software reconfiguration, the SLOC measure is also used as the basis 

for two other quantitative measures – code extension rate and code reuse rate – as 

described in the following sections. 

6.1.4.1.4. Code Extension Rate 

Any HMS reconfiguration usually involves the reconfiguration of the controller 

source code for one or more holons. The time and effort of such a reconfiguration 

is dependent on the ease by which the source code can be adapted. Code extension 

rate is an index that represents the growth rate of the scale, and thus complexity, as 

an existing implementation is reconfigured to meet new functional requirements 

(Chirn and McFarlane, 2005). 

 

 

Stellenbosch University  https://scholar.sun.ac.za



 

120 

 

Code extension rate (𝐸𝑖+1) is calculated as the ratio of the code complexity measure 

in SLOC in the final configuration (𝑆𝐿𝑂𝐶)𝑖+1 to that of the initial configuration 

(𝑆𝐿𝑂𝐶)𝑖 – a visual explanation is illustrated in Figure 32. Code extension rate is 

calculated as follows: 

𝐸𝑖+1 =  
(𝑆𝐿𝑂𝐶)𝑖+1

(𝑆𝐿𝑂𝐶)𝑖
 

 

Figure 32: Illustration for the calculation of code extension and reuse rates. 

6.1.4.1.5. Code Reuse Rate 

The importance of software reusability in achieving high productivity is explained 

in section 6.1.2.2. Similar to the code extension rate, code reuse rate can be 

calculated in the event of reconfiguration. Code reuse rate provides a measure of 

the percentage of source code in a new configuration that is reused from an initial 

configuration. 

Again considering Figure 32, code reuse rate (𝑅𝑖+1) is calculated as the ratio of 

SLOC in the new configuration that was reused from the initial configuration 

(𝑆𝐿𝑂𝐶)𝑖
′, to the total SLOC of the final configuration (𝑆𝐿𝑂𝐶)𝑖+1: 

𝑅𝑖+1 =  
(𝑆𝐿𝑂𝐶)𝑖

′

(𝑆𝐿𝑂𝐶)𝑖+1

 

6.1.4.1.6. Computational Resource Requirements 

Advances in microprocessor technology in recent years have led to enhanced 

functionality at lower cost. This evolution of controllers holds advantages for 

HMSs, where control implementations are often distributed over multiple 

communicating controllers. These controllers are, however, still limited in their 

computational and memory capacity. It is then important that the programming 

language used for holonic control implementations allow for the exploitation of 

these controllers, within their limits of use. 

Considering holonic control architectures, it might be desired that a significant 

portion of the control processes be distributed to dedicated, resource-limited 

controllers. The measure of the computational resource requirements of the holonic 

control implementation is an important indicator of the extent to which the 

functionality can be supported by resource-limited controllers.  
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To assess the computational resource requirements, two measures are used: 

 CPU time – as an indicator of CPU usage, CPU time is the measurement of 

the combined time, over all available cores, that the CPU executes 

instructions for the holonic control implementation (Microsoft TechNet, 

s.a.). CPU time is measured by the operating system and in Windows is 

available in the processes window of the task manager application. The CPU 

time is recorded at the start of production (thus the CPU time involved with 

system startup is excluded) and again when production of the last product is 

completed. 

 Memory usage – the Random Access Memory (RAM) consumed by each 

implementation is monitored during production. Windows includes the 

Performance Monitor application, which allows the user to record many of 

the counters exposed by the operating system. There exist counters for every 

active process on the PC. The Private Working Set counter measures the 

RAM (in bytes) that is consumed by a single process (Microsoft TechNet, 

s.a.) – this counter is recorded for the duration of a production run. 

6.1.4.2. Qualitative Measures 

The qualitative performance measures included in this set of evaluation criteria are 

discussed in this section. The relevance and importance of each measure is 

discussed and the specific qualities that are compared are identified. 

6.1.4.2.1. Modularity 

Modularity is considered a critical characteristic in most aspects of modern 

manufacturing. Wiendahl et al. (2007) list modularity as a key enabler for 

changeable manufacturing, affecting both physical and software elements. Koren 

(2006) includes modularity as a key characteristic for RMSs, classifying it as a 

supporting characteristic that reduces reconfiguration time and effort. Baldwin and 

Clark (2006) argue that modularity, in general, has three purposes: 

 Managing complexity, as it provides an effective division of cognitive 

labour; 

 Enabling parallel work, as it allows work on modules to be performed 

simultaneously and independently; and 

 Accommodating future uncertainty, as it facilitates changes or 

improvements to the system without affecting the system as a whole. 

In computer science and industry, modularity has been considered and implemented 

since as early as the 1950s. Software modularity refers to the architectural 

provisions of a software framework to facilitate the encapsulation and 

compartmentalization of functionality.  Baldwin and Clark (2006) indicate that 

software modularity depends on three specifications:  

 Architecture – identifying the modules; 

 Interfaces – defining how modules interact; and 

 Tests – verifying the performance of individual and interacting modules. 
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The proposed criteria, based on the above-mentioned specifications, in this context 

are: 

1. The architectural considerations in the platform that enable the modular 

implementation of a holonic reference architecture. 

2. The provisions in the programming language to facilitate the interaction of 

software modules. 

3. The mechanisms for verifying the performance of individual and interacting 

modules provided in the programming platform/language. 

6.1.4.2.2. Integrability 

Koren (2006) also lists integrability as a key, supporting characteristic for RMSs. 

The connectedness expected in CPPSs also relies on integrability (Monostori et al., 

2016).  Integrability refers to the ability to quickly and effectively integrate 

mechanical, informational and control components with an existing system. In a 

dynamic manufacturing environment where new technologies are rapidly 

developed, the extent to which such technologies can be integrated and effectively 

exploited is critically important. Considering the adoption of holonic control 

systems by industry, it is also crucial that legacy systems can be integrated with 

new control implementations. 

In the context of control implementation, integrability depends on the interfaces 

provided by the programming language to facilitate integration with software and 

communication technologies. The integrability of the implementations is thus 

evaluated in terms of the following aspects: 

 The interfaces that each programming language provides to integrate with 

foreign code, i.e. software components developed in different programming 

languages. Common examples are the integration of Dynamic Linked 

Libraries (DLLs) (to incorporate specific functionality) or a device driver to 

utilize hardware (e.g. network cards and cameras). New holonic control 

implementations might be required to utilize legacy software systems 

written in a different programming language. The use of these systems 

might be desired as they could already be optimized for performance, were 

specifically developed for some context or it would be too time consuming 

to rewrite the code. 

 The provision of libraries or functions to implement communication 

protocols. This is important for the interface between the high level and low 

level control, where the communication protocol may be prescribed by the 

low level controller or machine specifications. 

6.1.4.2.3. Diagnosability 

Diagnosability is the last of the supporting characteristics for RMSs, as identified 

by Koren (2006), and is also a key characteristic of CPPSs and Industry 4.0 

(Monostori et al., 2016). Diagnosability here refers to the ease and speed by which 

the source of quality and reliability problems can be identified in a system. The 

diagnosability of a system also affects the amount of time required to determine 

whether a system is performing correctly and reliably. It is then intuitive that good 
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system diagnosability reduces ramp-up time after reconfiguration and downtime 

during maintenance. 

Diagnosability is also important in the context of software systems. Le Traon et al. 

(2003) reason that an important part of the software validation effort is spent on 

testing and diagnosis. While testing is concerned with uncovering and detecting 

errors, diagnosis aims to locate the components of the system where the error 

originated. Diagnosability then refers to the effort and speed by which the source 

of errors can be precisely located in a software system. The diagnosis of errors, and 

hence diagnosability of a system, is dependent on the capacity of the testing strategy 

to isolate components in the system. 

The modular nature of holonic control implementations allow for the classification 

of two types of errors: errors that occur within the execution of a holon, or errors 

arising from the interaction between holons or holon components. The following 

provisions of the implementations influence the diagnosis of these errors: 

 The functionality for constructing tests to identify the cause and location of 

errors. 

 The built-in functionality or mechanisms for monitoring communication 

and execution.  

6.1.4.2.4. Convertibility 

Koren (2006) lists convertibility as a key, critical characteristic for reconfigurable 

systems, enabling a reduction of reconfiguration time and system life-cycle cost and 

increasing system productivity. At the control level, convertibility refers to the 

transformation of the functionality of the existing system to meet new production 

requirements. 

It is often necessary for the operator (or some external process) to make changes to 

the manufacturing system during operation. Examples of such changes include 

alterations to the production schedule (e.g. rush orders) or the manual shut down 

and restarting of workstations (e.g. for unscheduled maintenance). The provisions 

in the implementation to facilitate such changes, with minimal disruption, are 

therefore evaluated. 

6.1.4.2.5. Fault Tolerance 

It is inevitable that faults will occur within a manufacturing system. These faults 

might be the result of programming errors, machine or controller breakdowns, or 

communication failures. Fault tolerance refers to the ability to remain operational 

with a useful degree of system stability, and is a critical indicator of system 

robustness. The evaluation criteria for fault tolerance is based on the following:  

 Fault isolation – it is critical for control implementations to limit the 

propagation of errors, i.e. to minimize the effects of an error on other 

components of the system. The isolation of the fault minimizes the impact 

of the disturbance on the system. 
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 Fault detection – for a system to be tolerant of faults, it is essential that faults 

are identified when they occur. Only when a fault is detected is it possible 

for the system to react. 

 Fault handling – it is desired for the system to react in the event of a detected 

fault in order to ensure system stability and reduce the effect on the overall 

performance. 

6.1.4.2.6. Distributability 

An attractive characteristic of the holonic systems approach is that it inherently 

enables distributed control. Different definitions exist for distributed control in 

manufacturing systems (see Bousbia and Trentesaux (2002) for a summary) – in 

this paper, it refers to the implementation of a decentralized control architecture of 

which the control components run on multiple independent controllers, connected 

on a network.  

The distribution of control promise advantages in robustness and portability. 

Having the control implemented on multiple controllers ensures a greater tolerance 

for faults and simplifies the application of unplanned changes in the system.  The 

capacity for distribution allows the control implementation to be extended to utilize 

additional controllers (possibly added to the cell/system during a reconfiguration) 

and support the physical distribution of manufacturing. The evaluation criteria are 

thus based on the following: 

 The architectural provisions to facilitate distribution. 

 The facilitation of communication between distributed control components. 

 The availability of tools for developing, testing and commissioning 

distributed systems. 

 The portability properties – i.e. the provisions for the implementation to be 

installed on different platforms. 

6.1.4.2.7. Developer Training Requirements 

It is natural to expect the developers of holonic control implementations to be 

trained in holonic systems theory and in the development of software. However, 

since the holonic systems community is still relatively small, developers are scarce 

– new developers, regardless of their prior background in software development, 

usually require training in the specifics of holonic control principles and 

implementation practices. This training regimen can be costly and time consuming.  

It is considered here that a developer must understand the holonic architecture, be 

able to implement the execution and communication functionality in a specified 

programming language and verify the functionality of the system. With these 

capabilities, the developer is able to commission the system and perform 

reconfiguration and maintenance activities as facilitated by the implementation. 

 

From these actions it is clear that the developer training requirements are indicative 

of the reconfigurability and maintainability of the control implementation, and also 

the complexity and verification effort involved in the software development. The 
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evaluation criteria examine the expertise and experience required of the developer 

to perform the following tasks: 

 Implement holon behaviour. 

 Implement concurrency in the holonic control implementation. 

 Implement mechanisms for inter-holon communication. 

 Implement mechanisms for external communication. 

 Verify the functionality of the control implementation. 

6.1.5. Conclusion 

This paper presents a set of evaluation criteria for comparing alternative 

implementations of the software of HMSs. The criteria build on criteria used in 

literature, such as the key requirements for RMSs and the critical factors for HMSs, 

but is specifically formulated to emphasise the implementation of holonic control 

in manufacturing systems. 

Three characteristics of the control implementation that will promote the 

development of holonic systems tailored to the needs of industry were identified: 

availability, supportability and development productivity. From these 

characteristics, several requirements for control implementations are derived. To 

enable an evaluation and comparison based on the requirements, the paper proposes 

a set of quantitative and qualitative performance measures. 

It should be noted that a comparison of alternative implementations would only be 

possible on a case study basis for the quantitative performance measures, since the 

values attributed to the performance measures are case-dependent. To achieve a 

more generic comparison of implementation alternatives, further research is 

required to identify a standardised set of test cases. 
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Abstract 

This paper presents a comparison between two holonic control implementations, 

using the Erlang programming language and Java Agent Development (JADE) 

framework multi-agent system, respectively. Erlang exhibits several characteristics 

that make it suitable – and even potentially beneficial – for holonic control, while 

JADE multi-agent systems have become the status quo in holonic systems research. 

The comparison is done using both quantitative and qualitative performance 

measures, which are specifically formulated to focus on the implementation of 

holonic control. The results show that the Erlang implementation is inherently 

capable of most of the functionality offered by the JADE implementation, while 

even exhibiting some advantages over its counterpart. The comparison indicates 

that Erlang is very well suited for implementing holonic control and warrants 

further exploration and development. 

Keywords: Erlang/OTP; Multi-agent systems; Holonic manufacturing system 

(HMS); Reconfigurable manufacturing system (RMS) 

6.2.1. Introduction 

Holonic systems have become a popular approach for addressing the challenges of 

modern manufacturing systems: short lead times for the introduction of new 

products into the system; producing a larger number of product variants and 

handling fluctuating production volumes (Bi et al., 2008). The term holon comes 

from the Greek words “holos” (meaning “the whole”) and “on” (meaning “the 

particle”) (Koestler, 1967). Holons are “any component of a complex system that, 

even when contributing to the function of the system as a whole, demonstrates 

autonomous, stable and self-contained behaviour or function” (Paolucci and Sacile, 

2005). When this concept is applied to manufacturing systems, holons are 

autonomous and cooperative building blocks for transforming, transporting, storing 

or validating the information of physical objects. A Holonic Manufacturing System 

(HMS) is a system of holons that can cooperate to integrate the entire range of 

manufacturing activities (Paolucci and Sacile, 2005).  

The holonic systems approach to manufacturing holds many advantages: holonic 

systems are resilient to disturbances and adaptable in response to faults (Vyatkin, 

2007); have the ability to organise production activities in a way that they meet the 

requirements of scalability, robustness and fault tolerance (Kotak et al., 2003); and 

lead to reduced system complexity, reduced software development costs and 

improved maintainability and reliability (Scholz-Reiter and Freitag, 2007). 
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The application of the holonic concept to manufacturing control systems has been 

a popular field of research since the early 1990’s – often utilised to enable control 

reconfiguration in Reconfigurable Manufacturing Systems (RMSs). The RMS 

concept aims to produce manufacturing systems that can switch between members 

of a family of products, through the addition or removal of functional elements 

(hardware or software), with minimal delay and effort (Martinsen, 2007; Vyatkin, 

2007). RMSs can rapidly adjust the production capacity and functionality in 

response to sudden changes, by reconfiguring hardware and control resources (Bi 

et al., 2008; Bi et al., 2007). Koren and Shpitalni (2010) characterise RMSs by: 

modularity of system components, integrability with other technologies, 

convertibility to other products, diagnosability of system errors, customizability for 

specific applications and scalability of system capacity. 

Sharing some of RMSs' properties, Cyber-Physical Production Systems (CPPSs) 

have recently become a major focus. The three main characteristics of CPPSs are 

(Monostori et al., 2016): "Intelligence (smartness), i.e. the elements are able to 

acquiring information from their surroundings and act autonomously; 

Connectedness, i.e. the ability to set up and use connections to the other elements 

of the system – including human beings – for cooperation and collaboration, and to 

the knowledge and services available on the Internet; and Responsiveness towards 

internal and external changes. Holonic systems share many of these characteristics 

with CPSSs. 

Several experimental implementations of holonic control have been reported, such 

as Leitao and Restivo (2006) and Giret and Botti (2009). The most popular 

approach has been Multi-Agent Systems (MASs), which has become the status quo 

in holonic control implementation. The main motivation for this approach is the 

similarities between holons and software agents – both must exhibit autonomy and 

provide interfaces to facilitate cooperation. 

This paper aims to evaluate, through a comparison, an alternative to MASs. The 

implementation is based on the Erlang programming language – a concurrent, 

functional programming language that was developed for programming concurrent, 

scalable and distributed systems. Erlang employs many lightweight processes to 

work concurrently, while distributed over many devices. The process model of 

Erlang facilitates processes that are strongly isolated, do not share memory and only 

interact through the exchange of messages (Armstrong, 2003). The Erlang 

programming environment is supplemented by the Open Telecommunications 

Platform (OTP) - a set of robust Erlang libraries and design principles providing 

middle-ware to develop Erlang systems (Anonymous, s.a. (a); Logan et al., 2011). 

The evaluation of holonic systems, including holonic control of RMSs, has proven 

to be a challenging task. Several studies and developments have generated 

evaluation criteria, with the formulations varying in focus and perspective (e.g. 

Christensen (1994), Koren and Shpitalni (2010) and Leitao and Restivo (2008)). In 

alignment with the objective of the presented research, this paper will make use of 

Stellenbosch University  https://scholar.sun.ac.za



 

131 

 

the evaluation criteria formulated by Kruger and Basson (2017 (c)), which is 

focussed on the implementation phase of holonic control. 

This paper presents the methodology that was followed for the proposed 

comparison (section 6.2.2), briefly describes the implementations (section 6.2.3) 

and introduces the case study that is used as context (section 6.2.4). Section 6.2.5 

provides an overview of the evaluation criteria and sections 6.2.6 and 6.2.7 perform 

the comparison according to the set of performance measures. Finally, the results 

of the comparison are discussed and the findings are presented in section 6.2.8. 

6.2.2. Methodology 

This paper presents a comparison of two different holonic control implementations 

based on the same reference architecture. One implementation is done using 

Erlang/OTP and the other is done using a MAS. The MAS is developed using the 

Java Agent Development (JADE) framework, which is middleware that facilitates 

the development of agent-based systems (Bellifemine et al., 2007). From here on, 

the programming language of the implementations will refer either to Erlang with 

OTP, or MAS developed with JADE. 

To perform a comparison of the two implementations is a challenging task – the 

implementations are different in not just the programming language, but also in 

programming paradigm (imperative and functional). While several studies have 

attempted such comparisons (e.g. Harrison et al. (1996), Prechelt (2000) and 

Cesarini et al. (2008)), assessments based on generic, objective and quantitative 

measures are hard to come by. Aiming to avoid this treacherous terrain, the 

comparison presented in this paper has a specific focus: the suitability of the Erlang 

programming language as a tool for implementing holonic control. The comparison 

thus pays less attention to the philosophical and semantic differences between the 

programming languages, and rather compares the provisions of each programming 

language to facilitate the implementation of holonic control. This methodology is 

similar to that adopted by Chirn and McFarlane (2005) in evaluating the 

effectiveness of a holonic system design. 

The implementation of the same architecture in the two programming languages 

forms the basis for the comparison. The PROSA reference architecture (described 

in section 6.2.3.1) was used as the foundation for the development of both the 

Erlang and MAS holonic control implementations (described in section 6.2.3.2 and 

section 6.2.3.3 respectively). The use of a common reference architecture allowed 

for comparable functionality in the two implementations – the similarity was 

verified through a series of verification experiments, as presented in section 6.2.5.1.  

For the implementations, the software was developed according to common 

practices – i.e. libraries provided with the software were used as far as possible, and 

the development followed the principles outlined in literature (Logan et al. (2011), 

Armstrong (2007) and Anonymous (s.a. (b)) for Erlang and Bellifemine et al. 

(2007) for JADE).  
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To improve the reliability and validity of the proposed comparison, the same 

developer performed the two implementations. The premise of implementing a 

common reference architecture relies on consistency in the developer’s 

understanding and interpretation of the architecture. Additionally, even though the 

code is significantly different, the developer follows a similar approach in each 

implementation. The developer possesses the following relevant expertise and 

experience: 

 Undergraduate degree in mechatronic engineering. 

 Master’s degree in mechatronic engineering, of which the thesis focussed 

on the development and evaluation of two holonic control implementations 

– one being a MAS developed in JADE and the other a IEC61499 

application using Function Block Development Kit (Vyatkin, 2007) – 

further details can be found in Kruger and Basson (2013). 

 Online course on Erlang programming (prior to which the developer was 

unfamiliar with Erlang programming). 

In line with the objective of this research, the evaluation criteria is set up from the 

perspective of the developers and consumers of holonic control implementations, 

as opposed to that of computer scientists. The performance measures are thus 

derived from the requirements for holonic manufacturing systems and the 

evaluation aims to emphasise the extent to which each implementation satisfy these 

requirements. The evaluation criteria are discussed in section 6.2.5.3. 

Several aspects of the comparison involve impressions, experiences and 

philosophies, which are not suited to quantification, leading to criteria comprised 

of both quantitative and qualitative performance measures (sections 6.2.6 and 

6.2.7). Even though the evaluation is inherently subjective, the comparison strives 

to provide an unbiased reflection of the suitability of Erlang for holonic control 

implementation – this is enforced through reference to experimental data, examples 

from code and findings from literature, as far as possible. 

6.2.3. Holonic Control Implementations 

6.2.3.1. Holonic Architecture 

The advantages of holonic control are largely provided by the holonic system's 

architecture. Several reference architectures, which specify the mapping of 

manufacturing resources and information to holons and to structure the holarchy, 

have been proposed (e.g. Chirn and McFarlane (2000) and Leitao and Restivo 

(2006)), but the most prominent is the Product-Resource-Order-Staff Architecture 

(PROSA) – developed by Van Brussel et al. (1998). 

PROSA defines four holon classes: Product, Resource, Order and Staff. The first 

three classes of holons can be classified as basic holons, because, respectively, they 

represent three independent manufacturing concerns: product-related technological 

aspects (Product holons), resource aspects (Resource holons) and logistical aspects 

(Order holons). 
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The basic holons interact with each other by means of knowledge exchange, as is 

shown in Figure 33. Resource holons query the Product holons for the process 

requirements, of a given product type, pertaining to the specific tasks that the 

Resource holons can perform. The Order and Product holons exchange production 

knowledge related to the Resource holon services that are required for producing a 

product. The Order and Resource holons exchange process execution knowledge, 

which is the information regarding the progress of executing processes on 

resources.  

 

Figure 33: Knowledge exchange between the PROSA holons 

Staff holons are considered to be special holons as they are added to the holarchy 

to operate in an advisory role to basic holons. The addition of staff holons aim to 

reduce work load and decision complexity for basic holons, by providing them with 

expert knowledge. 

The holonic characteristics of PROSA contribute to the different aspects of 

reconfigurability mentioned in section 6.2.1. The ability to decouple the control 

algorithm from the system structure, and the logistical aspects from the technical 

aspects, aids integrability and modularity. Modularity is also provided by the 

similarity that is shared by holons of the same type. 

6.2.3.2. Erlang Implementation 

Details of the Erlang-based holonic control implementation are given by Kruger 

and Basson (2017 (a)). Each PROSA holon comprises a number of Erlang processes 

in the control implementation. The implementation makes use of the generic OTP 

behaviours – notably those for supervision, finite state machines and Transmission 

Control Protocol (TCP) communication. The process model of Erlang is used to 

incorporate a high degree of concurrency in the control implementation, with 

message passing between processes to share data. The record data type in Erlang 

was used to develop a custom communication ontology and protocol for the 

implementation. 
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6.2.3.3. MAS Implementation 

The MAS control implementation is described in Kruger and Basson (2017 (b)). 

The holons of PROSA are represented as software agents in the control level of the 

manufacturing system. The implementation is constructed using JADE, with 

standard behaviours for functionality and communication being used as far as 

possible. A combination of standard communication protocols are used, along with 

an eXtensible Markup Language (XML) ontology, to achieve the desired 

interaction between the agents of the MAS. 

6.2.4. Case Study 

The case study used for the comparison of the implementations is a manufacturing 

cell for the assembly and quality assurance of electrical circuit breakers. The layout 

of the cell is shown in Figure 34. The cell consists of the following workstations: 

 Manual assembly station – the sub-components of circuit breakers are 

assembled and placed on empty carriers on the conveyor. 

 Inspection station – a machine vision inspection is performed on the circuit 

breakers as the carriers are moved by the conveyor. 

 Electrical test station – circuit breakers are picked up by a robot and placed 

into testing machines. The testing machines perform the necessary 

performance and safety tests on every breaker. When the testing is 

completed for a breaker, it is removed from the testing machine by the robot 

and placed on an empty carrier on the conveyor. 

 Riveting station – the casings of the circuit breakers are manually riveted 

shut. 

 Removal station – the completed circuit breakers are removed from carriers. 

The breakers are then moved to the next cell for packaging. 

As part of a reconfiguration experiment (presented in section 6.2.5.2), an additional 

workstation is added to the manufacturing cell – the stacking station. At this station, 

multiple circuit breakers are stacked to produce multi-pole circuit breakers. The 

breakers are removed, stacked and placed on empty carriers by a robot. 

The conveyor moves product carriers between the various workstations. The 

conveyor is equipped with stop gates and lifting stations at every workstation. The 

carriers are fitted with Radio Frequency Identification (RFID) tags and RFID 

readers are placed at multiple positions along the conveyor, to provide feedback of 

carrier location. 
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Figure 34: Layout of the electrical circuit breaker assembly and quality 

assurance cell. 

6.2.5. Evaluation Overview 

An overview of the evaluation of Erlang for the implementation of holonic control 

is presented in this section. As discussed in section 6.2.2, the suitability of Erlang 

for the implementation of holonic control is evaluated in comparison with a MAS 

implementation. Firstly, this section presents the verification that both 

implementations exhibit similar functionality and performance. Thereafter, the 

design of a reconfiguration experiment is described and an overview of the 

evaluation criteria is presented. 

6.2.5.1. Verification Experiments 

The verification experiments aimed to prove that the implementations, as 

embodiments of the same reference architecture, exhibit similar functionality and 

performance. This verification was done through experiments that emphasise the 

functionality of the holonic architecture, negating the influence of the respective 

programming languages. Performance measures, as computed from the results of 

the experiments, are compared to verify the intended similarity. 

The experiments were performed using simulations of the manufacturing cell 

described in section 6.2.4. The experiments involved the simulation of two 

production scenarios for each implementation - the simulated production of ten 

orders (of the same product type) with a cell configuration that: 

1. does not include redundant workstations (i.e. only one workstation was 

active for the electrical testing, riveting and removal tasks, respectively).  

2. includes active redundant workstations for the electrical testing, riveting and 

removal tasks. 

The first experiment aimed to exhibit the basic functionality as defined by the 

implemented holonic architecture – for each order, the required service-providing 

resource holons must be identified and booked, and the execution of each service 

must be triggered. With no redundant resources, the production sequence is fixed. 
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The second experiment required the additional functionality of selecting the best 

service-providing resource holon according to received proposals. The additional 

redundant resources introduce emergent behaviour in the holonic implementations 

and thus unpredictability in the production sequence. 

The most obvious method of verifying the similarity in functionality was to simply 

observe each control implementation during the experimental production scenarios. 

While it can be confirmed that the implementations performed similar functions 

and successfully executed the simulated production, quantitative measures are more 

convincing. Therefore, two quantitative performance measures were extracted from 

the simulated production scenarios: 

 Production throughput refers to the rate by which orders are completed, 

calculated as total number of completed orders over the total production 

time. 

 Resource utilization is measured as the percentage of the total production 

time that a resource is active (i.e. performing a specific task/operation on an 

order). 

Both production throughput and resource utilization have been used as quantitative 

performance measures in previous studies on manufacturing system control (e.g. 

Leitao (2004) and Bussman and Sieverding (2001)). Production throughput gives 

an indication of the performance of the overall basic functionality, while resource 

utilization provides an indication of the performance of scheduling and executing 

services. It is expected that two implementations of the same reference architecture 

should achieve similar results for the two performance measures. 

Table 4 summarizes the results obtained from the verification experiments. For both 

experiments, the results show a close correlation in the performance of the two 

implementations. The results serve as proof that the Erlang and MAS control 

implementations exhibit similar functionality, allowing for a fair comparison. 

Table 4: Results of verification experiments. 

 Experiment 1 Experiment 2 

 Resource utilization (%) Resource utilization (%) 

Resources Erlang MAS Erlang MAS 

Feeder station 19.3 20.1 24.6 23.8 

Inspection station 11.6 12.0 14.7 14.2 

Electrical test station 59.8 60.9 38.7 36.7 

Electrical test station (#2) n/a  n/a  36.7 35.7 

Riveting station 38.5 40.1 25.4 24.9 

Riveting station (#2) n/a n/a 26.2 24.9 

Removal station 15.4 16.1 9.8 10.6 

Removal station (#2)  n/a n/a  9.8 9.5 

 Throughput (parts/min) Throughput (parts/min) 

 2.3 2.4 2.9 2.8 
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6.2.5.2. Reconfiguration Experiment 

A reconfiguration experiment was performed to obtain a number of the quantitative 

performance parameters for the reconfiguration and development of the two 

implementations. The experiment involved the addition of a new Resource holon, 

capable of stacking multiple circuit breakers, to the system described in section 

6.2.4. 

The reconfiguration experiment required changes to the Product and Order holons 

to incorporate the newly added Stacking holon. Two Product holons were added – 

one for producing single-pole circuit breakers that can be stacked to form multiple-

pole breakers, and one for the production of stacked three-pole breakers. The 

general messaging functionality for Order holons needed to be updated to 

incorporate the exchange of task-specific information with the Stacking holon. 

After the required alterations, the performances of the implementations were 

verified. 

6.2.5.3. Evaluation Criteria 

The comparison makes use of the evaluation criteria formulated by Kruger and 

Basson (2017 (c)) as shown in Table 5.  

The criteria are based on the desirable characteristics of manufacturing systems.  

Availability, as a measure of reliability, is widely considered to be an important 

characteristic in manufacturing contexts.  Since alternative implementations of the 

same holonic architecture is considered here, development productivity is also 

included as a desirable characteristic. Supportability is related to both availability 

and development productivity, but is listed explicitly because the choice of 

implementation for the controller can have a significant influence in the 

supportability. 

Seven requirements were derived from the desirable characteristics, as shown in 

Table 5. The requirements often affect more than one characteristic and therefore 

no explicit linkages are attempted in Table 5. A set of quantitative and qualitative 

performance measures are also presented in Table 5. The performance measures are 

indicative of one or more of the requirements for holonic control implementations.  
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Table 5: Relationships between requirements and performance measures. 
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Reconfiguration time *    * * * 

Development time     * * * 

Code complexity   *  *   

Code extension rate *  *  *   

Code re-use rate *  *  *  * 

Computational 
resource requirements 

   *    

Q
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Modularity *  *   * * 

Integrability *      * 

Diagnosability * * *   *  

Convertibility *  *     

Fault tolerance  *      

Distributability    *    

Developer training 
requirements 

  *  * *  

 

6.2.6. Quantitative Performance Measures 

This section presents the results of a comparison of MAS and Erlang 

implementations in terms of the quantitative performance measures given in Table 

5. The discussion of the implications of the results of each comparison is deferred 

to section 6.2.8 since the performance measures should be considered together to 

draw sensible conclusions. 

6.2.6.1. Reconfiguration Time 

The reconfiguration times measured in the reconfiguration experiment described in 

section 6.2.5.2 are presented in Table 6. The reconfiguration time measurements do 

not include the development time for the Stacking holon, which is compared in 

section 6.2.6.2. 
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The results show that to complete the reconfiguration Erlang required 67% of the 

time required by the MAS implementation. The difference in reconfiguration time 

occurred during the verification activity. This can attributed to the ease by which 

functions can be tested individually and reliably, since Erlang functions are not 

affected by program state. For the MAS implementation, it is difficult to test 

functionality at a functional granularity finer than that of the agent encapsulation. 

Even in that case, the functionality is still subject to the state of the program. 

Table 6: Reconfiguration and development time measurements 

 MAS Erlang 

Reconfiguration time (hours) 2.7 1.8 

Development time (hours) 3 2.5 

 

6.2.6.2. Development Time 

During the reconfiguration experiment (section 6.2.5.2), the time was measured for 

the development of a new Stacking holon. In both implementations, the generic 

components (in this case, the encapsulations for holon communication and agenda 

management) could be used as is, with development only required for the execution 

components. The Stacking holon performs two services: 

1. Remove_to_stack – single-pole circuit breakers are removed from the 

conveyor and placed in a buffer, from where they will be used to produce 

stacked three-pole breakers. This service resembles that of the Removal 

Resource holon – the code of the execution component of this holon could 

be reused and modified to perform the remove_to_stack service. 

2. Stacking – three-pole breakers are assembled through the stacking of single-

pole breakers that are stored in the buffer. With this service, the code from 

the execution component of the Feeding holon could be reused and modified 

to constitute the stacking service. 

The time required to develop the Stacking holon in both implementations was 

measured – the measurements are shown in Table 6. The measurements indicate 

that the Erlang implementation required 83% of the development time required for 

the MAS implementation. As in the reconfiguration time evaluation, the difference 

in development time can be attributed to different mechanisms available for 

software verification in the two implementations. 

6.2.6.3. Code Complexity 

As motivated by Kruger and Basson (2017 (c)), source lines of code (SLOC) is used 

as measure of code complexity. Table 7 presents the SLOC count for the Order 

holon and Resource holon associated with the electrical test station (ETS Resource 

holon) in each control implementation. The Order holon was chosen since it is 

typical of a holon that requires considerable interaction with a variety of other 

holons, while the ETS Resource holon was chosen since a holonic controller will 

typically contain several Resource holons. 
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Table 7: Code complexity measurements. 

 MAS Erlang 

Order holon 441 318 

ETS Resource holon 352 175 

The data shows that implementation in Erlang resulted in a SLOC reduction of 28% 

for the Order holon and 50% for the ETS resource holon. Considering the results 

reported in Nyström et al. (2007), where SLOC comparisons are made between 

Erlang and C++ implementations, this reduction in code is expected. 

6.2.6.4. Code Extension Rate 

Code extension rate is an index that represents the growth rate of the scale, and thus 

complexity, as an existing implementation is reconfigured to meet new functional 

requirements (Chirn and McFarlane, 2005). The development of the Stacking holon 

(as described for the reconfiguration experiment in section 6.2.5.2) was used for the 

measurement of code extension rates for the two implementations. The initial 

configuration was based on the execution components from the Feeding and 

Removal Resource holons (since these components were combined and modified 

to construct the execution behaviour of the Stacking holon), as well as the generic 

Resource holon communication and agenda management components.  

Table 8 shows the calculated code extension rates for the implementations. The 

closer the code extension rate is to unity, the less growth in complexity occurred in 

converting from the initial to the final configuration – this indicates better system 

reconfigurability. The extension rates for the languages are similar, but the MAS 

implementation produced a marginally better result.  

Table 8: Code extension rate measurements. 

 MAS Erlang 

Initial configuration 

SLOC 

429 228 

Final configuration 

SLOC 

480 275 

Code extension rate 1.1 1.2 

 

6.2.6.5. Code Reuse Rate 

Software reusability is important for achieving high productivity (Kruger and 

Basson, 2017 (c)). Code reuse rate can be calculated in the event of reconfiguration 

and provides a measure of the percentage of source code in a new configuration that 

is reused from an initial configuration. 

The development of the Stacking holon in the reconfiguration experiment (section 

6.2.5.2) was based on the reuse and modification of existing software artefacts. 

Code was reused from the generic communication and agenda management 

components of Resource holons, and the execution components of the Feeding and 
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Removal Resource holons. Table 9 presents, for each implementation, the SLOC 

count for the final configuration, the count of SLOC that have been reused from the 

initial configuration and the calculated reuse rates. 

The data shows that for the MAS implementation, 88% of the final configuration 

source code was reused (i.e. code from the previous configuration retained without 

modification). The Erlang implementation also showed good reusability, but 

achieved 11% lower reuse of code in the reconfiguration process. 

Table 9: Code reuse rate measurements. 

 MAS Erlang 

Final configuration SLOC 480 275 

Final configuration SLOC 

(reused) 

424 211 

Code reuse rate 0.88 0.77 

 

6.2.6.6. Computational Resource Requirements 

Manufacturing automation controllers are usually limited in their computational 

and memory capacity. It is therefore important that the implementation allows for 

the efficient exploitation of these controllers, within their limits of use. 

The data for the computational resource requirements was obtained by performing 

a simulated production experiment. For both control implementations, the 

production of ten orders was simulated. The measurements were started as the 

production was triggered, thus excluding the start-up processes of the 

implementations from the measurement. The data was obtained during the 

experiment by using the Performance Monitor and Task Manager applications of 

the Windows operating system. 

Table 10 presents the data obtained from the Performance Monitor application – 

the total operating system (OS) thread count for each implementation and the RAM 

used in each case. The results show that the Erlang implementation consumes far 

less memory resources than the MAS. On average, the Erlang implementation 

utilizes almost three times fewer OS threads and consumes about five times less 

memory than the MAS implementation. It should be noted that in Erlang, the use 

of OS threads are not typically controlled by the developer and the scheduling of 

Erlang processes to OS threads is done automatically by the Erlang virtual machine 

(Logan et al., 2011). The number of concurrent Erlang processes far exceed the 

number of OS threads utilized. 
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Table 10: Thread count, memory usage and CPU time consumption 

measurements. 

  MAS Erlang 

Thread count 

Min 56 28 

Max 90 28 

Avg 77 28 

RAM usage (MB) 

Min 29.4 24 

Max 152.9 24.3 

Avg 123.3 24.1 

CPU time 

consumption 

Total (s) 7 16 

% of total 

CPU time 
3.3 7.8 

The Task Manager application was used to measure the CPU time used by each 

implementation. The results in Table 10 show that the MAS implementation used 

7 seconds of CPU time (3.3% of the total CPU time) for the duration of the 

experiment, while 16 seconds (7.8% of the total CPU time) were used by the Erlang 

implementation. The better performance by the MAS implementation is because 

the implementation has fewer concurrent processes than the Erlang implementation. 

Moreover, the use of behaviours with execution blocking means that agent threads 

operate in an idle state for a large fraction of the time. 

6.2.7. Qualitative Performance Measures 

This section uses the qualitative performance measures given in Table 5 to compare 

MAS and Erlang implementations. As with the qualitative measures, the discussion 

of the implications of the results of each comparison is deferred to section 6.2.8, to 

allow the performance measures to be considered together. 

6.2.7.1. Modularity 

Following from Kruger and Basson (2017 (c)), the modularity of software is 

determined through three specifications – that of architecture, module interaction 

and testing. These three specifications form the basis for comparison of the Erlang 

and MAS implementations.  

Architecture 

The JADE MAS is built using the Java programming language. Java incorporates 

the JADE framework as a Java archive (JAR) file. Java program code is contained 

in classes that may contain definitions and methods, and collections of classes can 

be encapsulated in packages. JADE provides the Agent class, which encapsulates 

all the basic functionality needed to construct the MAS. The Agent class utilizes 

another special class – behaviours – to encapsulate functionality that can be 

combined to constitute the behaviour of agents. 

In Erlang, modules are used as the containers of program code. All program code 

in Erlang is structured as functions. Erlang provides standard libraries that include 

many modules containing useful functions. Similarly, OTP is a set of robust 
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libraries that can be used in the structuring and execution of processes. Erlang also 

provides a mechanism for encapsulating definitions and functions to be utilized by 

several modules – header files. 

Module Interaction 

Java classes and methods can be used by other classes in the system – this exposure 

is defined by access modifiers. In Erlang, the functions that are contained in 

modules can be exported – this allows for the use of these functions in other 

modules. As mentioned above, the definitions and functions contained in header 

files can be included in modules. 

Testing 

Individual Java methods can be tested using unit tests. JADE offers several tools 

for verifying the behaviour of the MAS or individual agents, such as the Sniffer, 

Introspector and Dummy agents (details are presented in Bellifemine et al. (2007)). 

Every function in Erlang that is exported from a module (i.e. the function can be 

called from other modules) can be individually tested. The function can be called, 

with a set of input arguments, from a testing process (often a shell process, where 

the developer gives the inputs). Erlang also provides a mechanism for verifying the 

behaviour of processes – the observer application can, among other things 

(Anonymous, s.a. (c)), trace messages received and sent by processes, and provide 

information on the function that is executed by a process at any given time. The 

functionality and use of the Observer application will be highlighted in following 

sections. 

The functional programming of Erlang means that processes have no state or side 

effects – this ensures that the output of the function, to a set of input arguments, is 

reliable and repeatable. This is, however, not true for Java programming, where the 

output returned by methods can be affected by the state of the class exposing the 

method. 

6.2.7.2. Integrability 

The first point of comparison focusses on the interfaces provided by the 

implementations to incorporate software components developed in other 

programming languages. Thereafter the support for communication protocols is 

compared. 

Integration of foreign code 

With JADE, Java provides the Java Native Interface (JNI) (Anonymous, s.a. (d)) – 

a native programming interface that allows Java code to interoperate with 

applications written in other programming languages, such as C, C++ and 

Assembler. This interface is useful for integrating legacy systems, supplementing 

the functionality offered by Java or improving performance. 

Logan et al. (2011) explain how the Erlang message-passing paradigm is extended 

to interface with code written in other languages. Foreign code can be represented 

in an Erlang application as a process-like object, called a port. The Erlang processes 
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can then pass messages to the foreign code via the port. For plain ports, the foreign 

code (of any programming language) runs in a separate OS process and 

communicates to the port using the standard inputs/outputs, with all data passed as 

a byte stream. Alternatively, with linked-in port drivers, the foreign code runs in 

the same OS process space as the Erlang virtual machine. When working with 

distributed Erlang nodes, C and Java programs can be made to masquerade as 

Erlang nodes. This functionality is contained in two libraries – Erl_Interface for C 

and Jinterface for Java. 

The above-mentioned mechanisms to integrate foreign in each application code can 

also be used to access industrial communication protocols, e.g. through industrial 

Ethernet. The support in each implementation for common PC based 

communication is discussed in the following section. 

Support for communication protocols 

The Java platform includes the net package, which provides classes for 

implementing networking applications. The classes provide the functionality to 

facilitate socket communication over networks and supports both TCP/IP and UDP 

(Anonymous, s.a. (e)). Libraries are available for TCP/IP and UDP (Anonymous, 

s.a. (f)) network communication in Erlang. 

For basic text interface implementations, it is often appealing to use XML for 

structuring the text information. XMErL (Anonymous, s.a. (g)) is an Erlang library 

for XML functions. Several libraries for building and parsing XML are available 

for Java. 

For serial communication, Java provides the JavaComm serial communication API 

– however, it is not available for all Java platforms and support has been withdrawn 

for use with Windows OS (Anonymous, s.a. (h)). Alternatively, the free-software 

libraries RXTX (Anonymous, s.a. (i)) and jSerialComm (Anonymous, s.a. (j)) can 

be used. For serial communication in Erlang the gen_serial library (Anonymous, 

s.a. (k)) allows for the use of standard serial ports, on both Windows and UNIX 

platforms. 

6.2.7.3. Diagnosability 

Errors in a holonic control implementation can occur within the execution of a 

holon, or in the interaction between holons or holon components. The time and 

effort required to diagnose an error depends on the availability of information. It is 

therefore necessary for the developer to have access to information regarding the 

execution of each holon and the interaction between holons. The provisions in the 

Erlang and MAS implementations for diagnosing such errors are considered in this 

section. 

Both implementations provide mechanisms to gather information from and test the 

interaction of holons – JADE includes the Sniffer agent and Erlang provides the 

Observer application. These tools provide the functionality to trace the 

communication between holons. The trace can provide information on the senders 

and receivers of messages, the message type and message content. To test the 
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interactions, JADE includes the Dummy agent tool and in Erlang, shell processes 

can be used to this effect. Dummy agents can be used to construct messages to be 

sent to other agents and to receive messages, as these agents react to the dummy 

messages. Dummy agents provide a graphical user interface for easy construction 

of messages to be sent and viewing of received messages. Shell processes in Erlang 

are “interactive” processes that allow the developer to input expressions. The 

developer can construct messages in the shell process and send them to any other 

active process. Every process in Erlang has a mailbox – the shell process can thus 

also receive messages that can be viewed by the developer. 

To diagnose errors occurring within a holon's execution, both implementations also 

provide tools to obtain information on the execution of a holon. JADE provides the 

Introspector agent, which can be used to debug the behaviour of a single agent. The 

Introspector agent allows the developer to monitor the queue of scheduled 

behaviours and control their execution (e.g. a behaviour can be executed step by 

step) (Bellifemine et al., 2007). Similarly, the Observer application in Erlang can 

be used to monitor Erlang processes by tracing the execution of functions by a 

process. 

The Sniffer tool in JADE is good for verifying the interaction between agents. 

However, the verification of holon execution is not as simple. The Introspector 

agent provides some detail of the execution of an agent, but often that is not enough 

to identify the reasons for or sources of detected bugs. Occasionally an agent 

receives a message, but does not react as expected (or does not react at all). In such 

cases, it might be required to use a tool such as the Java debugger, which is powerful 

but less user friendly. 

Erlang’s Observer tool is not as user friendly as the JADE Sniffer, but includes the 

additional functionality to trace the execution of processes at different levels. Along 

with this tracing, the easy construction of test code to verify the behaviour of a 

process affords the developer freedom in the verification process. The increased 

modularity of the Erlang implementation further simplifies the verification process. 

Finally, it is important to consider the capacity for error isolation – or, alternatively, 

the minimization of error propagation – in each implementation. Errors in software 

systems can propagate, resulting in failures in components other than where the 

error originated. This propagation can complicate the process of locating the source 

of errors and has a detrimental effect on the diagnosability of the system. It is in 

this respect that the process model of Erlang offers significant advantages, as is 

further discussed in section 6.2.7.5. 

6.2.7.4. Convertibility 

At the control level, convertibility refers to the transformation of the functionality 

of the existing system to meet new production requirements. The mechanisms 

provided in each application to make changes to the controller functionality are 

discussed in this section. 
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Making changes to the MAS implementation is simplified by a set of effective tools. 

JADE includes the Remote Monitoring Agent (RMA) – a graphical tool for the 

monitoring and manipulation of the running agent platform. The RMA facilitates 

interaction with the Agent Management System (AMS), which allows for control 

over the execution of agents. Among other functions, this allows the developer to 

stop a running agent and remove it from the system – the agent can then be launched 

again or a different agent can then be launched in its place (possibly with the same 

name).  

Erlang modules can be constructed to allow for similar control over the execution 

of processes. Functions can be exported from modules to allow the developer 

(through a shell process) or a supervisor process to stop and start an executing 

process. As Erlang does not readily include a tool like the RMA of JADE, so this 

functionality must be implemented by the developer.  

An interesting capability of Erlang is that it allows for hot code loading – i.e. the 

code to be executed can be changed while the system is running. A second, newer 

version of a module can be loaded and the transition to the new code will be made 

automatically (Armstrong, 2007). This functionality means that bug fixes, updates 

and upgrades to code can be introduced with no system downtime. 

6.2.7.5. Fault Tolerance 

The isolation, detection and handling of faults are critical for achieving fault 

tolerance in control implementations. The evaluation here concentrates on the 

functionality provided in the two implementations for each of these aspects. 

Armstrong (2003) identifies the inability to isolate components as the main 

limitation of developing fault tolerant systems in many popular programming 

languages. Specifically considering Java, Czajkowski and Daynés (2001) argue that 

to run multiple Java applications safely on the same computer, each application 

should be run in its own Java Virtual Machine and in its own OS process – a 

scenario detrimental to efficiency, performance and scalability. In contrast, the 

provisions for error isolation in Erlang are present at the architectural level. The 

process model allows for the isolation of errors - processes, as the basic unit of 

abstraction, act as abstraction boundaries that limit the propagation of errors 

(Armstrong, 2003).  

In the MAS implementation, exceptions are thrown when errors are detected. The 

onus lies on the developer to catch exceptions where necessary and handle them 

accordingly. Erlang provides similar functionality for the detection of errors. The 

problem with this method of detecting errors, and subsequently handling them, is 

that it provides only one opportunity for reaction – should the exception not be 

handled correctly, the process will fail.  

Erlang thus provides additional functionality to improve fault tolerance, employing 

supervision hierarchies to detect and handle faults. The supervision behaviour is an 

important provision of OTP. Where worker processes execute specific tasks as 

required by the application, supervisor processes can be used to monitor the 
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execution of workers. Supervisor processes can also monitor other supervisors, thus 

constructing supervision trees. Supervisor processes act as an error trapping 

“layer”, which can monitor applications and restore it to a safe state in the event of 

an error (Armstrong, 2010). The supervisor behaviour allows for the 

implementation of strategies to handle the occurrence of errors in processes (details 

are presented in Logan et al. (2011)). This functionality is not readily available in 

JADE and would require implementation by the developer. 

6.2.7.6. Distributability 

Distributability is important for implementing decentralized control architectures. 

Some important provisions in the implementations for distributability are 

considered in this section. 

Distributable architecture 

A JADE platform is composed of agent containers. Containers are Java processes 

that maintain the execution space in which agents can exist - providing the JADE 

run-time and all the services needed for hosting and executing agents. Containers 

can be distributed over a network of controllers. JADE provides the infrastructure 

for communication between agents residing in different containers and also for 

agent mobility, allowing agents to move between containers. 

In Erlang, nodes are the architectural provision for distribution. Nodes are instances 

of the Erlang VM that are configured for networking and a set of connected nodes 

are referred to as a cluster. Similar to the agents in JADE, the processes in Erlang 

can communicate and migrate between nodes in a cluster. 

Communication in distribution 

Achieving communication in distributed systems firstly involves the discovery of 

components that are distributed on a network. In order for control components to 

communicate, they must identify and locate the other components in the distributed 

system. Thereafter, the communication between these distributed components must 

be facilitated. 

Every JADE platform has a main container, which acts as the bootstrap point for 

the platform. The main container provides functions to allow for the dynamic 

discovery of control components in a distributed MAS: 

 Managing the container table, which holds the object references and 

addresses of all the containers in the platform. 

 Managing the global agent descriptor table, which is the registry of all 

agents in the platform. 

 Hosting the Agent Management System (AMS) and Directory Facilitator 

(DF) providing services to the entire platform. 

In Erlang, the discovery of distributed nodes is done by the Erlang Port Mapper 

Daemon (EPMD) process. An EPMD process is automatically started on the 

machine when a node is started. When a local node wants to communicate with a 

remote node, the EPMD process on the local machine queries the EPMD process 

on the remote machine for the specified communication port. Erlang does not come 
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with a standard service for dynamic resource discovery over a cluster, but the basic 

functionality can be easily developed or, for more advanced functions, an OTP 

application (see Logan (2010)) is available as an add-on. 

In both implementations, the communication mechanism is unaffected by the 

distribution of the control components. The JADE platform provides a unique 

location-independent interface that abstracts the underlying communication 

infrastructure, allowing for transparent communication between agents that exist on 

different remote machines. Similar location transparency exists in Erlang. The 

processes on connected nodes can exchange messages by using the Process 

Identifiers (PIDs) – the node on which a process resides is embedded in its PID. 

The registered names of processes can also be used to address messages – these 

names are only registered on the residing node, thus messages must be sent as: 

{RegisteredName, Node} ! Message. 

Tools for distribution 

For both MAS and Erlang, the tools provided for debugging and monitoring are 

equally useful for non-distributed and distributed implementations. The location 

transparency of the distributed control components mean that the functionality of 

the tools remains unaffected. In JADE, the Dummy and Sniffer agents can be used 

to test and monitor distributed control components communicating over connected 

machines – the same applies to the Observer application in Erlang. The AMS in 

JADE allows for the easy migration of agents between containers – a useful tool 

that is not included in the standard Erlang tools. Erlang, on the other hand, allows 

for the creation of remote shells on the local machine. These shell processes can 

provide an interface to the processes of remote nodes, simplifying and adding 

functionality to the testing of distributed implementations. 

Portability 

Both Java and Erlang run on virtual machines, which makes applications in these 

languages platform independent. The MAS and Erlang implementations are 

supported on the most prominent PC operating systems – Windows, Unix/Linux, 

and Mac OS X. There have also been efforts in both languages for enabling 

embedded applications on resource-limited microcontrollers (Brouwers et al. 

(2008) and Anderson and Bergström (2011)). 

Standardization and guidelines 

In both implementations, the development of code is guided by behaviours. The 

behaviours provided by JADE and OTP define a broad structure for implementing 

the functionality that holons must exhibit. This structure promotes uniformity in the 

software. 

For communication, JADE adheres to the standards of FIPA. While adherence to 

these standards might limit the freedom of the developer, it allows for 

interoperability between MASs created by different developers. In standard Erlang, 

there is no guidelines concerning communication – developers have total freedom 

to implement the communication to fit their application. The lack of uniformity 
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decreases the capacity for interoperability, but allow for increased customization to 

meet a given set of requirements. 

6.2.7.7. Developer Training Requirements 

The comparison between the MAS and Erlang implementations is here based on 

five tasks that must be performed by the developer: implement holon behaviour; 

implement inter-holon communication; implement external communication; 

implement concurrency and verify the functionality of the developed system. 

Holon behaviour 

Both implementations provide structures for constructing complex functionality. 

The JADE behaviour class provides several options for construction, like finite 

state machines, sequential or parallel execution or timer-based behaviours. 

Erlang/OTP provides two generic behaviours, i.e. servers and finite state machines, 

which can be customized to exhibit a desired functionality.  

JADE behaviours are not pre-emptive and the control of their execution is left to 

the developer. Implementing complex functionality using behaviours can thus be 

difficult – especially when multiple behaviours are concurrently active in an agent. 

Developers often need to consult the source code of the JADE classes to understand 

the intended use of behaviours. 

In Erlang/OTP, the behaviour classes are executed sequentially by processes – the 

logical flow of implemented behaviours is easier to predict and control. As with all 

Erlang functions, the functions within the OTP behaviours only have access to the 

data received as inputs. Considering a finite state machine implementation, the 

information describing the state of the behaviour must be passed from one function 

to another – this can become complicated and tedious when implementing complex 

behaviour. 

It is natural to encounter challenges in both implementations, but the implications 

of such challenges must be compared. It is the experience of the authors that, due 

to the complexity of using behaviours, the construction of complex functionality is 

more challenging in the MAS implementation and requires more training and 

experience from the developer. 

Inter-holon communication 

The facilitation of inter-holon communication involves four main tasks: message 

construction; message sending; receiving messages and implementing 

communication protocols. Achieving these tasks in the two implementations is 

compared here. 

Message construction. Messages in the MAS implementation are based on the 

Agent Content Language (ACL) and JADE provides the ACLMessage class with 

methods for message construction. The construction is done by assigning data to 

the defined data fields for a specific message instance. In the presented Erlang 

implementation, messages are constructed as records. Records have defined data 

fields to which values can be assigned. 
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Message sending. Both implementations provide a simple mechanism for sending 

messages. A constructed message can be sent to a recipient by using the 

send(ACLMessage message) method in JADE (the ACLMessage class requires 

that the receiver information be added to the recipient field). In Erlang, the message 

operator ( ! ) provides this functionality – e.g. process_id ! {sender, 
message}. 

Receiving messages. Both implementations use a receive() method/function to 

receive a message in a running agent/process. JADE requires the construction of 

message templates to handle messages, i.e. received messages are compared to 

predefined templates. Erlang uses pattern matching – a received message is 

compared to predefined patterns describing message structure and content. 

Implementing communication protocols. JADE provides behaviour classes to 

facilitate communication protocols as defined by the FIPA standards. These 

behaviours are based on the finite state machine behaviour, with the state transitions 

determined by the exchange of messages. In the Erlang implementation, such 

protocols were implemented through customized OTP finite state machine 

behaviours. 

From the above, and considering that both implementations are based on the 

exchange of messages, it is evident that Erlang and JADE strive to simplify the 

construction, exchange and handling of messages. The communication is easier to 

facilitate in the Erlang implementation – this is expected, since message passing is 

a critical aspect of the Erlang language. The formalization of communication is 

simplified by using the FIPA standards in the MAS implementation. It is the 

responsibility of the developer to construct such formalizations in the Erlang 

implementation – for this reason the developer of the Erlang implementation 

requires more experience and a clear definition of communication protocols. 

External communication 

The implementations used TCP communication to interact with the lower level 

controllers in the case study. In both cases, the utilized libraries provided functions 

for server and client functionality, maintaining socket connections and exchanging 

data over connected sockets. This communication was achieved with similar ease 

in the Erlang and MAS implementations. 

Concurrency 

Holonic control implementations assume concurrency at the holonic system level, 

but often some concurrency is desired within a holon. A common example, from 

the implementations presented in this paper, is for a holon to participate in 

synchronous network socket communication with a lower level controller, while 

remaining available to handle booking requests from other holons. A comparison 

shows significant differences in achieving concurrency in the Erlang and MAS 

implementations.  

For the MAS, concurrency at system level is facilitated by the JADE AMS. The 

AMS ensures that every agent starts in a dedicated OS thread. To achieve 
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concurrency within the execution of an agent, JADE provides the 

ThreadedBehaviourFactory class. This class provides a method to wrap a 

normal JADE behaviour into a threaded behaviour, allowing the behaviour to be 

executed in its own thread (Bellifemine et al., 2007). Threaded behaviours should 

be used with care, as possible issues may arise concerning agent termination and 

synchronization when accessing resources. 

As mentioned in section 6.2.3.2, each holon comprises a number of Erlang 

processes. In Erlang, all processes run concurrently and can be created either using 

the OTP Supervisor behaviour (wherein concurrent child processes are 

automatically created) or explicitly using the spawn(Module, Function, 
Arguments) function. Since processes have no shared memory and information 

can only be shared through message passing, synchronization issues are negated. 

Erlang was designed with concurrency as a key requirement – it is thus much easier 

and safer to achieve concurrency in Erlang than in a JADE MAS. Of course, this 

may tempt developers to overuse concurrency in the software design, but the 

lightweight processes of Erlang negate the potential pitfalls (especially concerning 

performance and computational requirements). 

Verification of functionality 

A comparison of the strategies and tools for verification of the two implementations 

is presented in sections 6.2.7.1 and 6.2.7.3. The comparison here will consider the 

previous discussions, focussing on the required capabilities of the developer to 

verify the execution and interaction of holons in the control implementations. 

The verification of holon interaction is simplified for the developer by the Sniffer 

tool, available for the MAS implementation. For verification of the holon execution, 

the freedom to adjust the level of detail and easily creating test code (or supplying 

specific inputs) aid the developer in the Erlang implementation. Furthermore, the 

functional nature of Erlang allows the developer to perform verification with a 

higher level of granularity – i.e. smaller components of the software can be verified, 

and with much greater ease, than in the MAS implementation.  

6.2.8. Comparison 

This section discusses of the implications of the performance measures, as 

presented in sections 6.2.6 and 6.2.7, on the requirements for holonic manufacturing 

systems as presented in Table 5.  Thereafter the discussion is extended to the desired 

characteristics to be exhibited by holonic manufacturing systems. 

6.2.8.1. Reconfigurability 

The performance of a reconfiguration experiment (section 6.2.5.2) provided data 

for reconfiguration time, code extension rate and code reuse rate performance 

measures. The experiment produced interesting results – while the Erlang 

implementation required less time to perform the reconfiguration, it showed a 

greater growth in complexity with less reuse.  
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Two reasons for these contrasting results are: 

 The impact of the difficulty and effort involved in verifying the reconfigured 

code is ignored in the code extension and reuse rate measures. As mentioned 

in section 6.2.7.3, the verification of code was experienced to be more 

challenging for the MAS implementation than its Erlang counterpart. 

 The difference in the number of SLOC in each implementation prior to the 

reconfiguration should also be taken into account. It is shown in section 

6.2.6.3 that the Erlang implementation initially had significantly fewer 

SLOC – additional SLOC added during the experiment will thus have a 

greater impact on the calculation of the code extension and reuse rates. 

Koren and Shpitalni (2010) lists modularity, integrability, convertibility and 

diagnosability as key characteristics for reconfigurability. Evaluating and 

comparing these qualitative performance measures shows that the Erlang 

implementation provides similar integration and conversion mechanisms to the 

MAS implementation. The Erlang process model, however, affords some 

advantages over the MAS implementation concerning modularity and 

diagnosability. 

The comparison shows that the Erlang implementation has very good 

reconfigurability properties – arguably even more so than the MAS implementation. 

6.2.8.2. Robustness 

The evaluation of diagnosability and fault tolerance – two qualitative performance 

measures – are used to illustrate the robustness of the control implementations. 

Sections 6.2.7.3 and 6.2.7.5 indicate that the implementations provide similar tools 

for obtaining execution and communication information and supplying test inputs 

to the system, but the shell process in the Erlang implementation provides extra 

freedom and flexibility to the developer.  

Where the Erlang implementation poses the greatest advantage is with its inherent 

fault tolerance. The process model of Erlang decreases the propagation of errors 

through the system. As Erlang was designed with robustness as a key requirement, 

it is not surprising that it out performs a standard MAS implementation. 

6.2.8.3. Maintainability 

Code complexity, code extension and reuse rates are considered to be indicative of 

the maintainability property of the control implementations. The effect of the code 

extension and reuse rate results, as obtained from the reconfiguration experiment, 

have been discussed earlier in this section. The measure for code complexity, 

however, is obtained from the initial configuration of the implementation source 

code. The results indicate that the Erlang implementation is less complex than the 

MAS implementation. 

Considering qualitative measures, Table 5 indicates that modularity, convertibility, 

diagnosability and the developer requirements have a significant influence on the 

maintainability of a control implementation. Modularity allows for maintenance to 

specific system components without having to consider the remainder of the 
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system, while convertibility facilitates the adaption of the functionality of the 

control implementation to meet new requirements. Diagnosability makes it easier 

to identify and locate components in need of maintenance. The maintenance must 

be performed by staff – the expertise and experience required by these staff 

members are indicated by the developer requirements for the implementation. The 

convertibility of the implementations are similar. The modularity and 

diagnosability advantages of the Erlang implementation have been highlighted 

earlier in the discussion. The comparison of developer requirements also showed 

the benefits of the Erlang implementation, specifically to the verification process 

that usually accompanies any maintenance activity. 

The comparisons therefore show that an Erlang implementation holds significant 

advantages above a MAS implementation regarding maintainability. 

6.2.8.4. Controller requirements 

The controller requirements, as imposed by the needs of holonic control 

implementations, are evaluated through two performance measures: computational 

resource requirements and distributability. The results obtained for memory usage 

and processor time for each implementation are presented in section 6.2.6.6. The 

results indicated that the Erlang implementation required significantly less memory, 

but was more processor intensive. The increased processor time can be attributed 

to the nature of the Erlang implementation, where a focus on concurrency leads to 

a high number of active processes consuming processor time. The qualitative 

evaluation of the distributability of each implementation (in section 6.2.7.6) showed 

similar functionality. 

6.2.8.5. Complexity 

The complexity of the control implementations is reflected by several quantitative 

performance measures: development time, reconfiguration time, code complexity, 

code extension rate and code reuse rate. The additional time required for 

development and reconfiguration of the MAS implementation is indicative of an 

increased perceived complexity – especially concerning the verification of the 

software functionality. Along with the time measurements, this complexity is also 

reflected in the higher code complexity calculated for the MAS implementation. 

The code extension and reuse rates are in favour of the MAS implementation, but 

the reasons for this have already been highlighted in the discussion above about 

reconfigurability. Considering the requirements for the developer, the use of 

behaviours for specifying holon functionality, using threaded behaviours for 

achieving concurrency and verifying the behaviour of the system requires a higher 

level of expertise and experience in development of MAS implementations than 

with Erlang. However, the functionality of the AMS and DF of JADE makes it 

easier to implement and manage distribution in the MAS implementation. 

6.2.8.6. Verification 

As mentioned, the measurements for development and reconfiguration time 

indicate the advantages offered by the Erlang implementation. In Erlang, greater 

freedom is afforded to the developer for the construction of specific tests and the 
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testing of individual functions allows for high granularity in the verification 

process. The process model also provides high modularity, simplifying the testing 

strategy.  

The complexity and effort involved in the verification of the functionality exhibited 

by a control implementation can be deduced from three qualitative performance 

measures: modularity, diagnosability and developer requirements. Modularity 

allows for the verification of smaller, individual system components that together 

constitute complex functionality. Diagnosability points the developer to the source 

of errors.  The requirements of the developer, concerning expertise and experience, 

indicate the difficulty and amount of work required to verify the system 

functionality. The advantages of the Erlang implementation regarding modularity 

and diagnosability have been referred to in earlier discussion. The advantages of 

using Erlang, concerning the verification of developed software, are discussed in 

the comparison of developer requirements (section 6.2.7.7). 

The opinion of the authors is that the Erlang implementation inherently provides 

better support for the developer in the verification process, but that the ease of use 

can be improved through the inclusion of tools resembling those offered by the 

MAS implementation. 

6.2.8.7. Reusability 

The development time, reconfiguration time and code reuse rate measurements are 

used to evaluate the software artefact reusability in each control implementation. 

The reconfiguration experiment showed that the main differences in the 

development and reconfiguration times are due to the verification process – it was 

observed that the implementations allowed for similar levels of code reuse. The 

MAS implementation showed better code reuse rate results, but further testing (on 

a larger scale) is required for confirmation. 

Modularity and integrability properties are considered to be indicative of the 

reusability in each implementation. The comparison shows that the Erlang 

implementation exhibits better modularity and provides integration mechanisms 

that are similar to the MAS implementation. 

6.2.9. Findings, Considerations and Future Work 

The comparison of the MAS and Erlang holonic control implementations yielded 

interesting results. The evaluation indicates that Erlang matches the functionality 

of the MAS implementation, and even offers advantages regarding the desired 

characteristics for the holonic control of manufacturing systems.  

The Erlang process model exhibits enhanced modularity and robustness properties, 

leading to improved system availability. It is easier to support Erlang 

implementations, due to good maintainability and distributability properties. The 

development productivity that can be achieved using Erlang is also a significant 

benefit, due to the resulting reduction in software complexity and simplification of 

the verification process. 
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The premise of the comparison makes this result even more significant. The MAS 

was developed using JADE – a framework specific for the development of agents, 

which has been considered as a very suitable medium for implementing the 

software components of a holonic system. This specific tool is then compared to an 

implementation using standard Erlang with generic OTP libraries – perhaps a fairer 

comparison would have been between implementations in standard Java and 

Erlang. Still, the comparison with a JADE MAS confirms the inherent suitability 

and potential of the Erlang programming language for the implementation of 

holonic control. 

However, some challenges were identified with the Erlang implementation. The 

first is a lack of standardization – the JADE compliance with FIPA standards, along 

with the suggested use of standard behaviours, offer advantages pertaining to 

uniformity and interoperability. Erlang also lacks some tools to simplify the 

verification and distribution of holonic systems – e.g. a graphical tool for tracing 

communication (like the JADE Sniffer) and a service for discovering resources 

within a distributed system (such as the Directory Facilitator of JADE). 

Furthermore, while the Erlang implementation used notably less memory than its 

MAS counterpart did, it required more processor time – this could have a 

detrimental effect on the performance of large, highly concurrent software systems. 

Further testing and evaluation of Erlang holonic control implementations are 

required to address this issue. 

The following topics have been identified for future work: 

 An Erlang framework for holonic control – the creation of functions, 

modules, libraries and tools to provide a framework for the development of 

holonic control implementations in Erlang. 

 MAS in Erlang – to introduce standardization in Erlang applications, it 

would be useful to integrate the existing FIPA standards. An 

implementation and evaluation of an Erlang-based MAS for holonic control 

should be investigated. The Erlang experimental agent tool, eXAT (Di 

Stefano and Santoro, 2003), is an existing framework that can be used for 

such an implementation. 
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7. Conclusion 
The dynamic and highly competitive nature of the modern manufacturing 

environment has introduced a new set of challenges, urging researchers and 

industry to formulate new and innovative solutions. The concepts of holonic and 

reconfigurable manufacturing systems showed great promise to address the 

challenges. Unfortunately, these concepts could not achieve significant adoption by 

industry and hence were predominantly restricted to academic, experimental 

implementations.  

The latest emerging paradigm in manufacturing science and technology, Industry 

4.0, can potentially have a significant impact on the manufacturing industry. The 

difference in impact can be attributed to the support from the German government 

and several big players in the manufacturing automation industry. Industry 4.0 

considers all aspects of the manufacturing industry, aiming to enhance 

individualization of products through highly flexible production, extensively 

integrate customers and businesses in value-added processes and link production 

and high-quality services to deliver hybrid products. To achieve these goals, 

Industry 4.0 relies on Cyber-Physical Production Systems (CPPs) to enhance the 

connectedness throughout all levels of the manufacturing enterprise. 

CPPSs aim to enhance the intelligence, connectedness and responsiveness of 

manufacturing systems. These goals closely resemble those of holonic and 

reconfigurable manufacturing systems, indicating the relevance of research on these 

topics to the development and implementation of CPPSs. 

The objective of the presented research is to evaluate the suitability of the Erlang 

programming language as an alternative for the implementation of holonic control 

in manufacturing systems. The dissertation presents an Erlang-based holonic 

control implementation for a manufacturing cell. The Erlang implementation is 

evaluated through a comparison with an equivalent implementation using Multi-

Agent Systems (MASs), which is considered as the status quo for holonic control 

implementation in manufacturing systems research. 

To accomplish the evaluation of the holonic control implementations, a case study 

was selected and evaluation criteria were formulated. The case study involves the 

execution control of an assembly and quality assurance cell for electrical circuit 

breakers. The evaluation criteria focusses on both the development of control 

implementations and the adoption of the implementations by industry. The criteria 

are related to a set of quantitative and qualitative performance measures that are 

indicative of seven critical requirements for holonic control implementations. The 

Erlang and MAS implementations are evaluated and compared according to these 

performance measures and requirements. 

The comparison of the MAS and Erlang holonic control implementations yielded 

interesting results. The evaluation indicated that the Erlang implementation 

matches the functionality of the MAS implementation and even offers some 

advantages for the desired characteristics for the holonic control of manufacturing 
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systems. The advantages in availability and supportability can be attributed to the 

enhanced modularity and fault tolerance of the Erlang implementation. The Erlang 

implementation is also found to allow for increased development productivity 

through a reduction in software complexity and simplification of software 

verification. 

The premise of the comparison makes this result even more significant. The MAS 

was developed using JADE – a framework specific for the development of agents, 

which is well established as a suitable medium for implementing the software 

components of holonic systems. This implementation is then compared to an 

implementation using standard Erlang, with generic OTP libraries – perhaps a fairer 

comparison would have been between implementations in standard Java and 

Erlang. Still, the comparison with a JADE MAS confirms the inherent suitability of 

the Erlang programming language for the implementation of holonic control, which 

warrants further research on the topic. 

However, some challenges were identified with the Erlang implementation that 

requires further investigation and development: 

 Standardization – the JADE compliance with FIPA standards, along with 

the suggested use of standard behaviours, offer advantages pertaining to 

uniformity and interoperability.  

 Tools – Erlang lacks some important tools to simplify the verification and 

distribution of holonic systems – e.g. a graphical tool for tracing 

communication (like the JADE Sniffer) and a service for discovering 

resources within a distributed system (such as the Directory Facilitator of 

JADE).  

 Computational resource requirements – the evaluation showed that Erlang 

implementation used significantly less memory than its MAS counterpart 

did, but that it consumed more processor time. While not necessarily a 

problem in all applications, high processor usage could have a detrimental 

effect on the performance of large, highly concurrent software systems. 

Further testing and evaluation of the architecture for Erlang holonic control 

implementations are required to address this issue. 

Furthermore, there is great potential for further research on the use of Erlang for 

control implementation in manufacturing systems. The following topics have been 

identified for future work: 

 Further refinement of the architecture for Erlang holonic control 

implementations – the architecture presented in this dissertation should 

serve as a starting point for the development of more complete and advanced 

architectures. These architectures should consider the inclusion and 

exploitation of the other interesting features of Erlang – specifically, the use 

of supervision trees to increase fault tolerance and the increased availability, 

supportability and maintainability that can be achieved through hot code 

loading. 
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 An Erlang framework for holonic control – the creation of functions, 

modules, libraries and tools to provide a framework specifically for the 

development of holonic control implementations. 

 MAS in Erlang – to introduce standardization in Erlang applications, it 

would be useful to integrate the existing FIPA standards. An 

implementation and evaluation of an Erlang-based MAS for holonic control 

should be investigated. The Erlang experimental agent tool, eXAT (Di 

Stefano and Santoro, 2003), is an existing framework that can be used for 

such an implementation. 

 Standardized test cases and benchmarks for the evaluation of holonic 

control implementations – the dissertation presents criteria and a 

methodology for the evaluation of holonic control implementations. The 

applicability of this framework to other cases must be evaluated and it is 

recommended that further research be conducted into the formulation of 

standardized test cases and benchmarks. 
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Appendix A: Erlang and JADE Source Code 
This appendix presents the source code for the Electrical Test Station Resource 

holon, as implemented in Erlang and JADE. The source code for the 

communication, agenda management and execution components of the internal 

Resource holon architecture, as presented in Figure 27, is shown. The line numbers 

added to the code indicate the SLOC measurement, as used in section 6.2. 
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A.1. Erlang Resource Holon 

A.1.1. Communication Component  
-module(resource_comm). 

 
-include("messaging.hrl"). 

 
%macro for function that adds the reference to the registered name 

 
-define(MAKE_NAME(Name,Ref),list_to_atom(atom_to_list(Name)++Ref)). 

 
-define(MAKE_NETWORK_NAME(Name,Ref),{list_to_atom(atom_to_list(Name)++Ref),'main@meg461398.stb.sun.ac.za'}). 

 
%% ==================================================================== 

 
%% API functions 

 
%% ==================================================================== 

 
-export([rec_messages/1,start/1]). 

1 start(Ref) -> Pid = spawn_link(resource_comm,rec_messages,[Ref]), 

2 
 

register(?MAKE_NAME(resource_comm,Ref), Pid), 

3 
 

{ok,Pid}. 
 

%% ==================================================================== 
 

%% Internal functions 
 

%% ==================================================================== 
 

%function maintaining the inter-holon communication interface 

4 rec_messages(Ref) ->  

5 
 

Resource_comm = ?MAKE_NAME(resource_comm,Ref), 

6 
 

Resource_am = ?MAKE_NAME(resource_am,Ref), 

7 
 

Resource_exec = ?MAKE_NAME(resource_exec,Ref), 

8 
 

receive 
   

%SERVICE message from resource_am process, in reply to some service request 

9 
  

{Resource_am,Message=#service{message_type=register}} ->  

10 
  

> 

error_logger:info_report([{reporter, {self(), erlang:process_info(self(), registered_name)}},{event, 
message_received}, {content, {Resource_am,Message}}]), 

11 
   

service_directory ! {?MAKE_NAME(resource_comm,Ref),Message}, 

12 
   

rec_messages(Ref); 
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13 
  

{Resource_am,Message=#service{}} ->  

14 
   

error_logger:info_report([{reporter, {self(), erlang:process_info(self(), registered_name)}},{event, 
message_received}, {content, {Resource_am,Message}}]), 

15 
   

Pid = Message#service.requester_pid, 

16 
   

Pid ! {?MAKE_NETWORK_NAME(resource_comm,Ref),Message}, 

17 
   

rec_messages(Ref); 

18 
  

{Resource_exec,Message=#service{}} ->  

19 
   

error_logger:info_report([{reporter, {self(), erlang:process_info(self(), registered_name)}},{event, 
message_received}, {content, {Resource_am,Message}}]), 

20 
   

Pid = Message#service.provider_pid, 

21 
   

Pid ! {?MAKE_NETWORK_NAME(resource_comm,Ref),Message}, 

22 
   

rec_messages(Ref); 
   

%SERVICE message from some holon providing a service 

23 
  

{From,Message=#service{requester_pid=Resource_exec}} ->  

24 
  

> 

error_logger:info_report([{reporter, {self(), erlang:process_info(self(), registered_name)}},{event, 
message_received}, {content, {From,Message}}]), 

25 
   

Resource_exec ! {Resource_comm,Message}, 

26 
   

rec_messages(Ref); 
   

%SERVICE message from some holon requesting a service 

27 
  

{From,Message=#service{}} ->  

28 
  

> 

error_logger:info_report([{reporter, {self(), erlang:process_info(self(), registered_name)}},{event, 
message_received}, {content, {From,Message}}]), 

29 
   

Resource_am ! {Resource_comm,Message}, 

30 
   

rec_messages(Ref); 

31 
  

{From,Message} ->  

32 
   

io:format("~p received unexpected message: {~p,~p}~n",[Resource_comm,From,Message]) 
  

end. 
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A.1.2. Agenda Manager Component  
-module(resource_am). 

 
-include("messaging.hrl"). 

 
-behaviour(gen_fsm). 

 
%macro for function that adds the reference to the registered name 

 
-define(MAKE_NAME(Name,Ref),list_to_atom(atom_to_list(Name)++Ref)). 

 
%% ==================================================================== 

 
%% API functions 

 
%% ==================================================================== 

 
-export([start/1,rec_messages/1]). 

 
-export([init/1,ready/2,free_free/2,free_alloc/2,busy_alloc/2]). 

 
%start gen_fsm process 

33 start(Ref) -> gen_fsm:start_link({local,?MAKE_NAME(resource_am_fsm,Ref)}, resource_am, [Ref], []), 
  

%start comm interface process 

34 
 

Pid = spawn_link(resource_am,rec_messages,[Ref]), 

35 
 

register(?MAKE_NAME(resource_am,Ref), Pid), 

36 
 

{ok,Pid}. 
 

%% ==================================================================== 
 

%% Internal functions 
 

%% ==================================================================== 
 

%process for handling communication to the FSM 

37 rec_messages(Ref) ->  

38 
 

Resource_comm = ?MAKE_NAME(resource_comm,Ref), 

39 
 

Resource_exec = ?MAKE_NAME(resource_exec,Ref), 

40 
 

Resource_am_fsm = ?MAKE_NAME(resource_am_fsm,Ref), 

41 
 

receive 

42 
  

{Resource_exec,Message} -> gen_fsm:send_event(Resource_am_fsm, Message), 

43 
  

> 

error_logger:info_report([{reporter, {self(), erlang:process_info(self(), registered_name)}},{event, 
message_received}, {content, {Resource_exec,Message}}]), 

44 
   

rec_messages(Ref); 
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45 
  

{Resource_comm,Message=#service{}} -> gen_fsm:send_event(Resource_am_fsm, Message), 

46 
  

> 

error_logger:info_report([{reporter, {self(), erlang:process_info(self(), registered_name)}},{event, 
message_received}, {content, {Resource_comm,Message}}]), 

47 
   

rec_messages(Ref) 
  

  end. 
 

%FSM initialization 

48 init([Ref]) -> {ok,ready,[Ref]}. 
 

%STATE: ready --> fsm is initialized and awaits "ready" message from resource_exec 

49 ready(Message=#service{message_type=status,info={ready,Service_type}},[Ref]) ->  

50 
> 

error_logger:info_report([{reporter, {self(), erlang:process_info(self(), registered_name)}},{event, 
state_transition}, {content, {ready,free_free}}]), 

51 
> 

?MAKE_NAME(resource_comm,Ref) ! 
{?MAKE_NAME(resource_am,Ref),#service{message_type=register,service_type=Service_type,requester_pid=resource_comm}, 

52 
 

{next_state,free_free,[Ref]}. 
 

%STATE: free_free --> the operational holon is idle, with no jobs allocated 

53 free_free(Message=#service{message_type=propose},[Ref]) -> 

54 
 

Proposal = create_proposal([]), 

55 
 

?MAKE_NAME(resource_comm,Ref) ! {?MAKE_NAME(resource_am,Ref),Message#service{result=true,info=Proposal}}, 

56 
 

{next_state, free_free,[Ref]}; 

57 free_free(Message=#service{message_type=allocate},[Ref])  ->  

58 
 

?MAKE_NAME(resource_comm,Ref) ! {?MAKE_NAME(resource_am,Ref),Message#service{result=true}}, 

59 
> 

error_logger:info_report([{reporter, {self(), erlang:process_info(self(), registered_name)}},{event, 
state_transition}, {content, {free_free,free_alloc}}]), 

60 
 

{next_state, free_alloc,[[Message#service.requester_pid],Ref]}. 
 

%STATE: free_alloc --> the operational holon is idle, but jobs have been allocated 

61 free_alloc(Message=#service{message_type=propose},[Job_list,Ref]) -> 

62 
 

Proposal = create_proposal(Job_list), 

63 
 

?MAKE_NAME(resource_comm,Ref) ! {?MAKE_NAME(resource_am,Ref),Message#service{result=true,info=Proposal}}, 

64 
 

{next_state, free_alloc,[Job_list,Ref]}; 

65 free_alloc(Message=#service{message_type=allocate},[Job_list,Ref]) ->  

66 
 

NewJob_list=lists:append(Job_list, [Message#service.requester_pid]), 
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67 
 

?MAKE_NAME(resource_comm,Ref) ! {?MAKE_NAME(resource_am,Ref),Message#service{result=true}}, 

68 
 

{next_state, free_alloc, [NewJob_list,Ref]}; 

69 free_alloc(Message=#service{message_type=deallocate},[Job_list,Ref]) ->  

70 
 

NewJob_list=lists:delete(Message#service.requester_pid, Job_list), 

71 
 

io:format("Upon deallocate in free_alloc - new job list is ~p~n",[NewJob_list]), 

72 
 

?MAKE_NAME(resource_comm,Ref) ! {?MAKE_NAME(resource_am,Ref),Message#service{result=true}}, 

73 
 

case NewJob_list of 

74 
  

[] ->    error_logger:info_report([{reporter, {self(), erlang:process_info(self(), registered_name)}},{event, 
state_transition}, {content, {free_alloc,free_free}}]),     

%go to free_free state if no more jobs are allocated 

75 
   

{next_state, free_free,[Ref]}; 

76 
  

NewJob_list -> {next_state, free_alloc,[NewJob_list,Ref]} 
  

end; 

77 free_alloc(Message=#service{message_type=confirm},[Job_list,Ref]) ->  
  

%{confirm, true} is sent when Pid is an element of the Job_list 

78 
> 

?MAKE_NAME(resource_comm,Ref) ! {?MAKE_NAME(resource_am,Ref),Message#service{result = 
lists:member(Message#service.requester_pid, Job_list)}}, 

79 
 

{next_state, free_alloc,[Job_list,Ref]}; 

80 free_alloc(Message=#service{message_type=start},[Job_list,Ref]) ->  
  

%send "start" message to resource_exec - the process must reply to resource_am process 

81 
 

?MAKE_NAME(resource_exec,Ref) ! {?MAKE_NAME(resource_am,Ref),Message}, 

82 
 

{next_state,busy_alloc,[Message#service.requester_pid,lists:delete(Message#service.requester_pid, Job_list),Ref]}. 
 

%STATE: busy_alloc --> the operational holon is busy performing a job and jobs are allocated 

83 busy_alloc(Message=#service{message_type=start,requester_pid=CurrJob,result=true},[CurrJob,Job_list,Ref]) ->  
  

%forward confirmation of the "action start" to resource_comm 

84 
 

?MAKE_NAME(resource_comm,Ref) ! {?MAKE_NAME(resource_am,Ref),Message}, 

85 
> 

error_logger:info_report([{reporter, {self(), erlang:process_info(self(), registered_name)}},{event, 
state_transition}, {content, {busy_alloc,busy_alloc}}]),   
%go to busy_alloc as next state 

86 
 

{next_state,busy_alloc,[CurrJob,Job_list,Ref]}; 

87 busy_alloc(Message=#service{message_type=start,requester_pid=CurrJob,result=false},[CurrJob,Job_list,Ref]) ->  
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%forward rejection of the "action start" to resource_comm 

88 
 

?MAKE_NAME(resource_comm,Ref) ! {?MAKE_NAME(resource_am,Ref),Message}, 

89 
 

error_logger:info_report([{reporter, {self(), erlang:process_info(self(), registered_name)}},{event, 
state_transition}, {content, {busy_alloc,free_alloc}}]),   
%go to free_alloc as next state 

90 
 

{next_state,free_alloc,[lists:append(Job_list,[CurrJob]),Ref]}; 

91 busy_alloc(Message=#service{message_type=start},[CurrJob,Job_list,Ref]) ->  
  

%already busy 

92 
 

?MAKE_NAME(resource_comm,Ref) ! {?MAKE_NAME(resource_am,Ref),Message#service{result=false}}, 

93 
> 

error_logger:info_report([{reporter, {self(), erlang:process_info(self(), registered_name)}},{event, 
state_transition}, {content, {busy_alloc,busy_alloc}}]),   
%go to busy_alloc as next state 

94 
 

{next_state,busy_alloc,[CurrJob,Job_list,Ref]}; 

95 busy_alloc(Message=#service{message_type=confirm},[CurrJob,Job_list,Ref]) ->  
  

%{confirm, true} is sent when Pid is an element of the Job_list 

96 
> 

?MAKE_NAME(resource_comm,Ref) ! {?MAKE_NAME(resource_am,Ref),Message#service{result = 
lists:member(Message#service.requester_pid, Job_list)}}, 

97 
 

{next_state, busy_alloc,[CurrJob,Job_list,Ref]}; 

98 busy_alloc(Message=#service{message_type=propose},[CurrJob,Job_list,Ref]) -> 

99 
 

Proposal = create_proposal(Job_list), 

100 
 

?MAKE_NAME(resource_comm,Ref) ! {?MAKE_NAME(resource_am,Ref),Message#service{result=true,info=Proposal}}, 

101 
 

{next_state, busy_alloc,[CurrJob,Job_list,Ref]}; 

102 busy_alloc(Message=#service{message_type=allocate},[CurrJob,Job_list,Ref]) ->  

103 
 

?MAKE_NAME(resource_comm,Ref) ! {?MAKE_NAME(resource_am,Ref),Message#service{result=true}}, 

104 
 

{next_state, busy_alloc,[CurrJob, lists:append(Job_list, [Message#service.requester_pid]),Ref]}; 

105 busy_alloc(Message=#service{message_type=deallocate},[CurrJob,Job_list,Ref]) ->  

106 
 

NewJob_list=lists:delete(Message#service.requester_pid, Job_list), 

107 
 

io:format("Upon deallocate in busy_alloc - new job list is ~p~n",[NewJob_list]), 

108 
 

?MAKE_NAME(resource_comm,Ref) ! {?MAKE_NAME(resource_am,Ref),Message#service{result=true}}, 

109 
 

{next_state, busy_alloc,[CurrJob,NewJob_list,Ref]}; 

110 busy_alloc(Message=#service{message_type=done},[CurrJob,Job_list,Ref]) ->  
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111 
  

case Message#service.requester_pid of  

112 
   

CurrJob ->?MAKE_NAME(resource_comm,Ref) ! {?MAKE_NAME(resource_am,Ref),Message}, 

113 
    

 case Job_list of 

114 
    

> 

[] -> error_logger:info_report([{reporter, {self(), erlang:process_info(self(), 
registered_name)}},{event, state_transition}, {content, {busy_alloc,free_free}}]),        

%go to free_free state if no more jobs are allocated 

115 
      

 {next_state,free_free,[Ref]}; 

116 
    

> 

Job_list -> error_logger:info_report([{reporter, {self(), erlang:process_info(self(), 
registered_name)}},{event, state_transition}, {content, {busy_alloc,free_alloc}}]), 

117 
      

 {next_state,free_alloc,[Job_list,Ref]} 
     

 end 
   

end. 
 

%================================================================================================================= 

118 create_proposal(Bookings_list) ->  

119 
 

 (length(Bookings_list) + 1). 

 

A.1.3. Execution Component  
-module(resource_exec_ets). 

 
-behaviour(gen_fsm). 

 
-include("messaging.hrl"). 

 
%macro for function that adds the reference to the registered name 

 
-define(MAKE_NAME(Name,Ref),list_to_atom(atom_to_list(Name)++Ref)). 

 
%% ==================================================================== 

 
%% API functions 

 
%% ==================================================================== 

 
-export([start/1]). 

 
-export([rec_messages/1]). 

 
-export([init/1,ready/2,ready_for_start/2,ready_to_test/2,testing_done/2]). 

 
%start gen_fsm process 

120 start(Ref) -> gen_fsm:start_link({local,?MAKE_NAME(resource_exec_fsm,Ref)}, resource_exec_ets, [Ref], []), 
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%start comm interface process 

121 
 

Pid = spawn_link(resource_exec_ets,rec_messages,[Ref]), 

122 
 

register(?MAKE_NAME(resource_exec,Ref), Pid), 

123 
 

{ok,Pid}. 
 

%% ==================================================================== 
 

%% Internal functions 
 

%% ==================================================================== 
 

%process for handling communication to the FSM 

124 rec_messages(Ref) ->  

125 
 

Resource_pi = ?MAKE_NAME(resource_pi,Ref), 

126 
 

Resource_exec_fsm = ?MAKE_NAME(resource_exec_fsm,Ref), 

127 
 

receive 

128 
  

{Resource_pi,Message} ->  

129 
  

> 
error_logger:info_report([{reporter, {self(), erlang:process_info(self(), registered_name)}},{event, 
message_received}, {content, {Resource_pi,Message}}]), 

130 
   

gen_fsm:send_event(Resource_exec_fsm, Message), 

131 
   

rec_messages(Ref); 

132 
  

{From,Message=#service{}} ->  

133 
  

> 
error_logger:info_report([{reporter, {self(), erlang:process_info(self(), registered_name)}},{event, 
message_received}, {content, {From,Message}}]), 

134 
   

gen_fsm:send_event(Resource_exec_fsm,Message), 

135 
   

rec_messages(Ref) 
  

end. 
 

%FSM initialization 

136 init([Ref]) -> {ok,ready,[Ref]}. 

137 ready(Message=#service{message_type=status,info=ready},[Ref]) ->  
  

%status received from resource_pi - status sent to resource_am 

138 
 

?MAKE_NAME(resource_am,Ref) ! {?MAKE_NAME(resource_exec,Ref),#service{message_type=status,info={ready,test}}}, 

139 
> 

error_logger:info_report([{reporter, {self(), erlang:process_info(self(), registered_name)}},{event, 
state_transition}, {content, {ready,ready_for_start}}]), 

140 
 

{next_state,ready_for_start,[Ref]}. 
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%STATE: ready_for_start --> the exec process is ready to start testing process 

141 ready_for_start(Message=#service{message_type=start},[Ref]) ->  
  

%notify event logger 

142 
 

event_logger ! {?MAKE_NAME(resource_exec,Ref),start}, 

143 
 

io:format("~p received start request from ~p~n",[?MAKE_NAME(resource_exec,Ref),Message#service.requester_pid]), 
  

%find name/pid of transport holon to which release_request must be sent 

144 
>
> 

?MAKE_NAME(resource_comm,Ref) ! 
{?MAKE_NAME(resource_exec,Ref),#service{message_type=request,service_type=transport,requester_pid=?MAKE_NAME(resource
_exec,Ref),provider_pid=service_directory}}, 

145 
 

{next_state,ready_for_start,[Message#service.requester_pid,Message,Ref]}; 

146 ready_for_start(Msg=#service{message_type=request, service_type=transport},[CurrJob,Message,Ref]) -> 

147 
 

[Transport_holon] = Msg#service.info, %assuming there will be only one transport holon 
  

%send release_request to transport holon 

148 
 

Task_ref = CurrJob, 

149 
>
> 

?MAKE_NAME(resource_comm,Ref) ! 
{?MAKE_NAME(resource_exec,Ref),#service{message_type=release_request,requester_pid=?MAKE_NAME(resource_exec,Ref),prov
ider_pid=Transport_holon,info=Task_ref}}, 

150 
 

{next_state,ready_to_test,[Message#service.requester_pid,Message,Ref]}. 
 

%STATE: ready_to_test --> the exec process is ready to execute testing process 

151 ready_to_test(Msg=#service{message_type=release_request,result=true},[CurrJob,Message,Ref]) ->  

152 
 

io:format("Release_request successful!~n"), 

153 
 

Pick_coords = Msg#service.info, %extract task info 

154 
 

?MAKE_NAME(resource_am,Ref) ! {?MAKE_NAME(resource_exec,Ref),Message#service{result=true}}, %send confirmation of 
service started   
%send placing coordinates to robot_pi 

155 
 

?MAKE_NAME(resource_pi,Ref) ! {?MAKE_NAME(resource_exec,Ref),Pick_coords}, 

156 
> 

error_logger:info_report([{reporter, {self(), erlang:process_info(self(), registered_name)}},{event, 
state_transition}, {content, {ready_to_test,testing_done}}]), 

157 
 

{next_state,testing_done,[CurrJob,Message,Ref]}. 
 

%STATE: done --> the testing process is complete 

158 testing_done(done,[CurrJob,Message,Ref]) ->  

159 
 

io:format("Testing done~n"), 
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160 
>
> 

?MAKE_NAME(resource_comm,Ref) ! 
{?MAKE_NAME(resource_exec,Ref),#service{message_type=request,service_type=transport,requester_pid=?MAKE_NAME(resource
_exec,Ref),provider_pid=service_directory}}, 

161 
 

{next_state,testing_done,[CurrJob,Message,Ref]}; 

162 testing_done(Msg=#service{message_type=request, service_type=transport},[CurrJob,Message,Ref]) -> 

163 
 

[Transport_holon] = Msg#service.info, %assuming there will be only one transport holon 
  

%send release_request to transport holon 

164 
 

Task_ref = CurrJob, 

165 
>
> 

?MAKE_NAME(resource_comm,Ref) ! 
{?MAKE_NAME(resource_exec,Ref),#service{message_type=binding_request,requester_pid=?MAKE_NAME(resource_exec,Ref),prov
ider_pid=Transport_holon,info={Task_ref,p01,?MAKE_NAME(?MAKE_NAME(resource_comm,Ref),"_output")}}}, 

166 
 

{next_state,testing_done,[CurrJob,Message,Ref]}; 

167 testing_done(Msg=#service{message_type=binding_request, result=true},[CurrJob,Message,Ref]) ->  
  

%notify event logger 

168 
 

event_logger ! {?MAKE_NAME(resource_exec,Ref),done}, 

169 
> 

io:format("~p placed task ~p on transport holon carrier at 
~p~n",[?MAKE_NAME(resource_exec,Ref),CurrJob,Msg#service.info]), 

170 
 

?MAKE_NAME(resource_am,Ref) ! {?MAKE_NAME(resource_exec,Ref),Message#service{message_type=done,result=true}}, 

171 
 

{next_state,ready_for_start,[Ref]}; 

172 testing_done(Msg=#service{message_type=binding_request, result=false},[CurrJob,Message,Ref]) ->  

173 
 

timer:sleep(1000), 

174 
>
> 

?MAKE_NAME(resource_comm,Ref) ! 
{?MAKE_NAME(resource_exec,Ref),Msg#service{result=undefined,info={CurrJob,p01,?MAKE_NAME(?MAKE_NAME(resource_comm,Ref
),"_output")}}}, 

175 
 

{next_state,testing_done,[CurrJob,Message,Ref]}. 
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A.2. JADE Resource Agent 

A.2.1. Resource Agent  
package agents; 

 
import java.io.StringReader; 

 ... 
 

import jade.util.leap.Set; 
  

1 public class ResourceAgent extends Agent{ 

2 
 

private ArrayList<AID> booking_list = new ArrayList<AID>(); 

3 
 

private int booking_buff = 10; 

4 
 

private AchieveREResponder started_task_responder; 

5 
 

private Boolean task_started = false; 

6 
 

private Boolean task_done = false; 

7 
 

private String[] service_type; 

8 
 

private String service_requested; 

9 
 

public HashMap<Integer,additional.BufferEntryData> stack_buffer = new HashMap<Integer,additional.BufferEntryData>(); 

10 
 

protected void setup(){ 

11 
  

Object[] args = getArguments(); 

12 
  

service_type = (String[]) args; 
   

// register agent services with the Directory Facilitator 

13 
  

DFAgentDescription dfd = new DFAgentDescription(); 

14 
  

dfd.setName(getAID()); 

15 
  

for(int index = 0; index < service_type.length; index++){ 

16 
   

ServiceDescription sd = new ServiceDescription(); 

17 
   

sd.setType(service_type[index]); 

18 
   

sd.setName(getLocalName()); 

19 
   

dfd.addServices(sd); 
   

} 

20 
  

try{ 
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21 
   

DFService.register(this, dfd); 
   

} 

22 
  

catch (FIPAException fe){ 

23 
   

fe.printStackTrace(); 
   

} 
   

//add behaviour to respond to booking requests using CNP 

24 
  

MessageTemplate mt = MessageTemplate.MatchPerformative(ACLMessage.CFP); 

25 
  

addBehaviour(new ContractNetResponder(this, mt){ 

26 
   

protected ACLMessage handleCfp(ACLMessage cfp){ 

27 
    

ACLMessage reply = cfp.createReply(); 
     

//check bookings list to see if available for booking 

28 
    

if(booking_list.size() < booking_buff){ 

29 
     

reply.setPerformative(ACLMessage.PROPOSE); 

30 
     

int proposal = booking_list.size() + 1; 

31 
     

reply.setContent(String.valueOf(proposal)); 
     

} 

32 
    

else{ 

33 
     

reply.setPerformative(ACLMessage.REFUSE); 
     

} 

34 
    

return reply; 
    

} 

35 
   

protected ACLMessage handleAcceptProposal(ACLMessage cfp, ACLMessage propose,ACLMessage accept){ 

36 
    

ACLMessage result = accept.createReply(); 
     

//update bookings list 

37 
    

booking_list.add(accept.getSender()); 

38 
    

result.setPerformative(ACLMessage.INFORM); 

39 
    

return result; 
    

} 
   

}); 
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//add behaviour to handle confirmation inquiries 

40 
 

>
> 

MessageTemplate confirm_req = 
MessageTemplate.and(MessageTemplate.MatchPerformative(ACLMessage.REQUEST),MessageTemplate.MatchContent("confirm"
)); 

41 
  

addBehaviour(new AchieveREResponder(this,confirm_req){ 

42 
   

protected ACLMessage prepareResultNotification(ACLMessage request,ACLMessage response){ 
     

//create reply to message 

43 
    

ACLMessage result = request.createReply(); 
     

//check if requesting agent has made a booking 

44 
    

if(booking_list.indexOf(request.getSender()) != -1){ 

45 
     

result.setPerformative(ACLMessage.INFORM); 

46 
     

result.setContent(request.getContent()); 
     

} 

47 
    

else{ 

48 
     

result.setPerformative(ACLMessage.FAILURE); 

49 
     

result.setContent(request.getContent()); 
     

} 

50 
    

return result; 
    

} 
   

}); 

51 
 

> 
MessageTemplate req_temp = MessageTemplate.and(MessageTemplate.MatchPerformative(ACLMessage.REQUEST),new 
MessageTemplate(new RegexMatchExpression("<message_type>start\\.*") {}));    
//add behaviour to launch a Responder behaviour for every incoming request 

52 
  

addBehaviour(new SSResponderDispatcher(this,req_temp){ 

53 
   

public Behaviour createResponder(ACLMessage req_msg) { 

54 
    

System.out.println(this.myAgent.getName() + " created a Responder for received request!"); 
     

//get XML content of request message 

55 
    

String req_msg_content = req_msg.getContent(); 

56 
    

System.out.println(myAgent.getName() + " request content: " + req_msg_content.toString()); 

57 
    

Document xml_content = XmlTools.buildXmlDoc(req_msg_content); 
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58 
   

> 
service_requested = 
xml_content.getDocumentElement().getElementsByTagName("service_type").item(0).getTextContent(); 

59 
    

System.out.println(myAgent.getName() + " request to perform service: Execute_" + service_requested); 

60 
    

SSIteratedAchieveREResponder responder = null; 

61 
    

ThreadedBehaviourFactory tbf = new ThreadedBehaviourFactory(); 

62 
    

Boolean resource_busy = (Boolean) this.getDataStore().get("resource_busy"); 

63 
    

if(resource_busy == null){ 

64 
     

resource_busy = false; 
     

} 

65 
    

if(resource_busy==false){ 

66 
     

System.out.println("Stack buffer at start: "); 

67 
     

for(int i: stack_buffer.keySet() ){ 

68 
      

String order_id = stack_buffer.get(i).getID(); 

69 
      

String prod_id = stack_buffer.get(i).getProdType(); 

70 
      

System.out.println(i + " -> " + order_id + " / " + prod_id); 
      

} 

71 
     

this.getDataStore().put("resource_busy", true); 

72 
     

responder = new SSIteratedAchieveREResponder(this.myAgent,req_msg); 
      

//get keys for DataStore entries 

73 
     

String req_key = responder.REQUEST_KEY; 

74 
     

String reply_key = responder.REPLY_KEY; 
      

//put received request message in DataStore 

75 
     

responder.getDataStore().put(responder.REQUEST_KEY, req_msg); 
      

//construct arguments object to pass to execute behaviour 

76 
     

Object[] args1 = new Object[5]; 

77 
     

args1[0] = responder.getDataStore(); 

78 
     

args1[1] = req_key; 

79 
     

args1[2] = reply_key; 

80 
     

args1[3] = this.getDataStore(); 

81 
     

args1[4] = stack_buffer; 
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//instantiate a new behaviour instance to handle the received request message; 

82 
     

responder.registerHandleRequest(setBehavName("Resource_execution.Execute_" + service_requested,args1)); 
      

//construct and send AGREE to requesting holon 

83 
     

ACLMessage agree = req_msg.createReply(); 

84 
     

responder.sendAgree(agree); 
     

} 

85 
    

else{ 
      

//resource is busy and FAILURE must be replied to START request 

86 
     

responder = new SSIteratedAchieveREResponder(this.myAgent,req_msg){ 

87 
      

protected ACLMessage handleRequest(ACLMessage req_msg){ 

88 
       

ACLMessage refuse = req_msg.createReply(); 

89 
       

refuse.setPerformative(ACLMessage.FAILURE); 

90 
       

return refuse; 
       

} 
      

}; 
     

} 
     

//close/terminate behaviour when the current session ends 

91 
    

responder.closeSessionOnNextReply(); 

92 
    

return tbf.wrap(responder); 
    

} 
   

}); 
  

} 

93 
 

public FSMBehaviour setBehavName(String className,Object args){ 

94 
  

FSMBehaviour b = new FSMBehaviour(); 

95 
  

try { 

96 
   

Class[] carg = new Class[1]; 

97 
   

carg[0] = Object[].class; 

98 
   

ExecuteBehaviourMethods instance = new ExecuteBehaviourMethods(); 

99 
   

Method meth = ExecuteBehaviourMethods.class.getDeclaredMethod("execute_" + service_requested, carg); 
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100 
   

b = (FSMBehaviour) meth.invoke(instance,args); 

101 
  

} catch (Throwable e) { 

102 
   

e.printStackTrace(); 
   

} 

103 
  

return b; 
  

} 
  

104 
 

protected void takeDown(){ 
   

//deregister from DF 

105 
  

try { DFService.deregister(this); } 

106 
  

catch (Exception e) {} 
   

//send cancellation messages to all booked agents 

107 
  

ACLMessage cancel = new ACLMessage(ACLMessage.REQUEST); 

108 
  

cancel.setContent("cancel"); 

109 
  

for(int i = 0; i < booking_list.size(); i++){ 

110 
   

cancel.addReceiver(booking_list.get(i)); 
   

} 

111 
  

send(cancel); 
  

} 
 

} 

A.2.2. Execution Behaviour FSM  
package Resource_execution; 

 
import jade.core.Agent; 

 
import jade.core.behaviours.*; 

 
import jade.lang.acl.ACLMessage; 

  

 
public class ExecuteBehaviourMethods extends Agent{ 

  
//private AchieveREResponder start_responder; 

  
private  DataStore ds; 
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private String req_key; 

  
private String result_key; 

  
private ACLMessage response; 

112 
 

public FSMBehaviour execute_test(Object[] args){ 

113 
  

ds = (DataStore) args[0]; 

114 
  

req_key = (String) args[1]; 

115 
  

result_key = (String) args[2]; 

116 
  

Execute_test exec = new Execute_test(); 

117 
  

exec.var_init(args); 

118 
  

FSMBehaviour b = new FSMBehaviour(); 

119 
  

b.setDataStore(ds); 

120 
  

b.registerFirstState(exec.new ReleaseRequestor(exec, response, new DataStore()), "ReleaseRequestor"); 

121 
  

b.registerState(exec.new Execute(), "Execute"); 

122 
  

b.registerState(exec.new BindingRequestor(exec, response, new DataStore()), "BindingRequestor"); 

123 
  

b.registerLastState(exec.new Done(exec, response, ds), "Done"); 

124 
  

b.registerTransition("ReleaseRequestor", "Execute",1); 

125 
  

b.registerTransition("Execute", "BindingRequestor",2); 

126 
  

b.registerDefaultTransition("BindingRequestor", "Done"); 

127 
  

return b; 
  

} 
 

} 

A.2.3. Execution Behaviour 

 package Resource_execution; 

 import java.util.ArrayList; 

 ... 

 import jade.util.leap.Set; 

 
 

128 public class Execute_test extends Agent{ 

129  private DataStore ds; 
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130  private DataStore disp_ds; 

131  private String req_key; 

132  private String result_key; 

133  public void var_init(Object[] args){ 

134   ds = (DataStore) args[0]; 

135   req_key = (String) args[1]; 

136   result_key = (String) args[2]; 

137   disp_ds = (DataStore) args[3]; 

  } 

138  public class ReleaseRequestor extends AchieveREInitiator{ 

139   public ReleaseRequestor(Agent a, ACLMessage req_msg, DataStore ds1) { 

140    super(a, req_msg, ds1); 

   } 

141   public Vector prepareRequests(ACLMessage msg){ 

    //indicate event with performance logger 

142    ACLMessage sm = new ACLMessage(ACLMessage.INFORM); 

143    sm.addReceiver(new AID("PerformanceLogger",AID.ISLOCALNAME)); 

144    sm.setContent("start"); 

145    myAgent.send(sm); 

146    printDS("prepReqs DS",parent.getDataStore()); 

147    printDS("prepReqs DS1",getDataStore()); 

148    AID[] service_providers = findServiceProviders("transport"); 

149    ACLMessage req_msg = new ACLMessage(ACLMessage.REQUEST); 

    //build XML message content 

150    XML message_type = XmlTools.buildXmlElement("message_type", "release_request"); 

151    ACLMessage start_req = (ACLMessage)parent.getDataStore().get(req_key); 

152    XML task_ref = XmlTools.buildXmlElement("task_ref", start_req.getSender().getLocalName()); 

153    ArrayList<XML> info_elements = new ArrayList<XML>(); 

154    info_elements.add(task_ref); 
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155    XML info = XmlTools.buildXmlElement("info", info_elements); 

156    ArrayList<XML> msg_elements = new ArrayList<XML>(); 

157    msg_elements.add(message_type); 

158    msg_elements.add(info); 

159    XML msg_info = XmlTools.buildXmlElement("msg", msg_elements); 

160    XML initiator = XmlTools.buildXmlElement("initiator", this.getAgent().getLocalName()); 

161    XML responder = XmlTools.buildXmlElement("responder", "TransportAgent"); 

162    ArrayList<XML> message_elements = new ArrayList<XML>();  

163    message_elements.add(initiator); 

164    message_elements.add(responder); 

165    message_elements.add(msg_info); 

166    XML message = XmlTools.buildXmlElement("message", message_elements); 

167    XMLDocument xmlDoc = XmlTools.buildXmlDoc(message); 

168    String xmlMsg = xmlDoc.toString(); 

169    req_msg.setContent(xmlMsg); 

170    req_msg.addReceiver(service_providers[0]); 

171    Vector messages = new Vector(); 

172    messages.add(req_msg); 

173    return messages; 

   } 

174   public void handleAgree(ACLMessage agree_msg){ 

175   > 
System.out.println(myAgent.getName() + " received AGREE from " + agree_msg.getSender().getName() + " during 
AchieveRE: " + agree_msg); 

   } 

176   public void handleFailure(ACLMessage fail_msg){ 

177   > 
System.out.println(myAgent.getName() + " received FAILURE from " + fail_msg.getSender().getName() + " during 
AchieveRE: " + fail_msg); 

178    try { 

179     Thread.sleep(1000); 

180    } catch (InterruptedException e) { 
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181     e.printStackTrace(); 

    } 

    //reset variables and AchieveREInitiator behaviour 

182    reset(); 

   } 

183   public void handleInform(ACLMessage inform_msg){ 

184    printDS("inform DS1",getDataStore()); 

185   > 
System.out.println(myAgent.getName() + " received Inform from " + inform_msg.getSender().getName() + " with 
content: " + inform_msg.getContent()); 

   } 

186   public int onEnd(){ 

187    return 1; 

   } 

188   public AID[] findServiceProviders(String service_type){ 

189    int i; 

190    AID[] service_providers = null; 

191    DFAgentDescription template = new DFAgentDescription(); 

192    ServiceDescription sd = new ServiceDescription(); 

193    sd.setType(service_type); 

194    template.addServices(sd); 

195    try { 

196     DFAgentDescription[] result = DFService.search(this.myAgent, template);  

197     service_providers = new AID[result.length]; 

198     if(service_providers.length != 0){ 

199      System.out.println("Found the Resource agents:"); 

200      for (i=0;i < result.length;i++) { 

201       service_providers[i] = result[i].getName(); 

202       System.out.println(result[i].getName()); 

      } 

     } 
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203     else{ 

204      System.out.println("Did not find any Resource agents providing the service: " + service_type); 

     } 

    } 

205    catch (FIPAException fe) { 

206     fe.printStackTrace(); 

    } 

207    return service_providers; 

   } 

208   public void printDS(String name, DataStore ds){ 

209    Set keys = ds.keySet(); 

210    Iterator it = keys.iterator(); 

211    while(it.hasNext()){ 

212     String key = it.next().toString(); 

213     try{ 

214      String value = ds.get(it.next()).toString(); 

     } 

215     catch(NoSuchElementException e){ 

216      System.out.println("No element found"); 

     } 

217     catch(NullPointerException e){ 

218      System.out.println(key + " = Element null"); 

     } 

    } 

   } 

  } 

219  public class Execute extends Behaviour{ 

220   Boolean started = false; 

221   Boolean done = false; 
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222   public void action() { 

223    do_test(); 

224    done = true; 

   } 

225   public void do_test(){ 

226    try { 

227     Thread.sleep(15000); 

228    } catch (InterruptedException e) { 

229     e.printStackTrace(); 

    } 

   } 

230   public boolean done() { 

231    if(!done){ 

232     return false; 

    } 

233    else{ 

234     return true; 

    } 

   } 

235   public int onEnd(){ 

236    return 2; 

   } 

  } 

237  public class BindingRequestor extends AchieveREInitiator{ 

238   public BindingRequestor(Agent a, ACLMessage req_msg, DataStore ds1) { 

239    super(a, req_msg, ds1); 

   } 

240   public Vector prepareRequests(ACLMessage msg){ 

241    printDS("prepReqs DS",parent.getDataStore()); 
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242    printDS("prepReqs DS1",getDataStore()); 

243    AID[] service_providers = findServiceProviders("transport"); 

244    ACLMessage req_msg = new ACLMessage(ACLMessage.REQUEST); 

    //build XML message content 

245    XML message_type = XmlTools.buildXmlElement("message_type", "binding_request"); 

    //get original start request message from task holon 

246    ACLMessage start_req = (ACLMessage)parent.getDataStore().get(req_key); 

247    XML task_ref = XmlTools.buildXmlElement("task_ref", start_req.getSender().getLocalName()); 

248    XML prod_id = XmlTools.buildXmlElement("prod_ID", "p01"); 

249    XML binding_location = XmlTools.buildXmlElement("binding_location", myAgent.getLocalName()+"_output"); 

250    ArrayList<XML> info_elements = new ArrayList<XML>(); 

251    info_elements.add(task_ref); 

252    info_elements.add(prod_id); 

253    info_elements.add(binding_location); 

254    XML info = XmlTools.buildXmlElement("info", info_elements); 

255    ArrayList<XML> msg_elements = new ArrayList<XML>(); 

256    msg_elements.add(message_type); 

257    msg_elements.add(info); 

258    XML msg_info = XmlTools.buildXmlElement("msg", msg_elements); 

259    XML initiator = XmlTools.buildXmlElement("initiator", this.getAgent().getLocalName()); 

260    XML responder = XmlTools.buildXmlElement("responder", "TransportAgent"); 

261    ArrayList<XML> message_elements = new ArrayList<XML>();  

262    message_elements.add(initiator); 

263    message_elements.add(responder); 

264    message_elements.add(msg_info); 

265    XML message = XmlTools.buildXmlElement("message", message_elements); 

266    XMLDocument xmlDoc = XmlTools.buildXmlDoc(message); 

267    String xmlMsg = xmlDoc.toString(); 

268    req_msg.setContent(xmlMsg); 
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269    req_msg.addReceiver(service_providers[0]); 

270    Vector messages = new Vector(); 

271    messages.add(req_msg); 

272    return messages; 

   } 

273   public void handleAgree(ACLMessage agree_msg){ 

274   > 
System.out.println(myAgent.getName() + " received AGREE from " + agree_msg.getSender().getName() + " during 
AchieveRE: " + agree_msg); 

   } 

275   public void handleFailure(ACLMessage fail_msg){ 

276   > 
System.out.println(myAgent.getName() + " received FAILURE from " + fail_msg.getSender().getName() + " during 
AchieveRE: " + fail_msg); 

277    try { 

278     Thread.sleep(1000); 

279    } catch (InterruptedException e) { 

280     e.printStackTrace(); 

    } 

    //reset variables and AchieveREInitiator behaviour 

281    reset(); 

   } 

282   public void handleInform(ACLMessage inform_msg){ 

283    printDS("inform DS1",getDataStore()); 

284   > 
System.out.println(myAgent.getName() + " received Inform from " + inform_msg.getSender().getName() + " with 
content: " + inform_msg.getContent()); 

   } 

285   public AID[] findServiceProviders(String service_type){ 

286    int i; 

287    AID[] service_providers = null; 

288    DFAgentDescription template = new DFAgentDescription(); 

289    ServiceDescription sd = new ServiceDescription(); 

290    sd.setType(service_type); 
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291    template.addServices(sd); 

292    try { 

293     DFAgentDescription[] result = DFService.search(this.myAgent, template);  

294     service_providers = new AID[result.length]; 

295     if(service_providers.length != 0){ 

296      System.out.println("Found the Resource agents:"); 

297      for (i=0;i < result.length;i++) { 

298       service_providers[i] = result[i].getName(); 

299       System.out.println(result[i].getName()); 

      } 

     } 

300     else{ 

301      System.out.println("Did not find any Resource agents providing the service: " + service_type); 

     } 

    } 

302    catch (FIPAException fe) { 

303     fe.printStackTrace(); 

    } 

304    return service_providers; 

   } 

305   public void printDS(String name, DataStore ds){ 

306    System.out.println(name + " info: "); 

307    Set keys = ds.keySet(); 

308    Iterator it = keys.iterator(); 

309    while(it.hasNext()){ 

310     String key = it.next().toString(); 

311     try{ 

312      String value = ds.get(it.next()).toString(); 

313      System.out.println(key + " = " + value); 
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     } 

314     catch(NoSuchElementException e){ 

315      System.out.println("No element found"); 

     } 

316     catch(NullPointerException e){ 

317      System.out.println(key + " = Element null"); 

     } 

    } 

   } 

  } 

318  public class Done extends OneShotBehaviour{ 

319   public ACLMessage result = null; 

320   public Done(Agent a, ACLMessage req_msg, DataStore ds) { 

321    super(); 

   } 

322   public void action(){ 

    //indicate event with performance logger 

323    ACLMessage sm = new ACLMessage(ACLMessage.INFORM); 

324    sm.addReceiver(new AID("PerformanceLogger",AID.ISLOCALNAME)); 

325    sm.setContent("done"); 

326    myAgent.send(sm); 

327    System.out.println("Execute_fsm done!"); 

    //printDS("Done DS", ds); 

328    printDS("Done DS1", parent.getDataStore()); 

    //obtain original "start" request message as received by AchieveREResponder behaviour 

329    ACLMessage start_req = (ACLMessage)parent.getDataStore().get(req_key); 

330   > 
System.out.println("Got original start request from " + start_req.getSender().getName() + " with content: " + 
start_req.getContent()); 

    //create reply to original request message 

331    ACLMessage result = start_req.createReply(); 
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332    result.setPerformative(ACLMessage.INFORM); 

333    result.setContent(start_req.getContent()); 

334    parent.getDataStore().put(result_key, result); 

335    disp_ds.put("resource_busy", false); 

   } 

336   public int onEnd(){ 

337    printDS("OnEnd DS1", parent.getDataStore()); 

338    return 0; 

   } 

339   public void printDS(String name, DataStore ds){ 

340    System.out.println(name + " info: "); 

341    Set keys = ds.keySet(); 

342    Iterator it = keys.iterator(); 

343    while(it.hasNext()){ 

344     String key = "no_key"; 

345     try{ 

346      key = it.next().toString(); 

347      String value = ds.get(it.next()).toString(); 

348      System.out.println(key + " = " + value); 

     }  

349     catch(NoSuchElementException e){ 

350      System.out.println("No element found"); 

     } 

351     catch(NullPointerException e){ 

352      System.out.println(key + " = Element null"); 

     } 

    } 

   } 

  } 
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