
Development and Evaluation of an Erlang

Control System for Reconfigurable

Manufacturing Systems

by

Karel Kruger

March 2018

Dissertation presented for the degree of Doctor of Engineering in the

Faculty of Engineering at

Stellenbosch University

Supervisor: Prof Anton Herman Basson

i

Plagiarism Declaration

By submitting this dissertation electronically, I declare that the entirety of the work

contained therein is my own, original work, that I am the sole author thereof (save

to the extent explicitly otherwise stated), that reproduction and publication thereof

by Stellenbosch University will not infringe any third party rights and that I have

not previously in its entirety or in part submitted it for obtaining any qualification.

This dissertation includes four original papers published in peer-reviewed journals

or books and three unpublished publications. The development and writing of the

papers (published and unpublished) were the principal responsibility of myself and,

for each of the cases where this is not the case, a declaration is included in the

dissertation indicating the nature and extent of the contributions of co-authors.

Date: March 2018

Copyright © 2018 Stellenbosch University

All rights reserved

Stellenbosch University https://scholar.sun.ac.za

Plagiaatverklaring / Plagiarism Declaration

1 Plagiaat is die oorneem en gebruik van die idees, materiaal en ander intellektuele

eiendom van ander persone asof dit jou eie werk is.

Plagiarism is the use of ideas, material and other intellectual property of another’s work

and to present is as my own.

2 Ek erken dat die pleeg van plagiaat 'n strafbare oortreding is aangesien dit ‘n vorm van

diefstal is.

I agree that plagiarism is a punishable offence because it constitutes theft.

3 Ek verstaan ook dat direkte vertalings plagiaat is.

I also understand that direct translations are plagiarism.

4 Dienooreenkomstig is alle aanhalings en bydraes vanuit enige bron (ingesluit die

internet) volledig verwys (erken). Ek erken dat die woordelikse aanhaal van teks

sonder aanhalingstekens (selfs al word die bron volledig erken) plagiaat is.

Accordingly all quotations and contributions from any source whatsoever (including the

internet) have been cited fully. I understand that the reproduction of text without

quotation marks (even when the source is cited) is plagiarism.

5 Ek verklaar dat die werk in hierdie skryfstuk vervat, behalwe waar anders aangedui, my

eie oorspronklike werk is en dat ek dit nie vantevore in die geheel of gedeeltelik

ingehandig het vir bepunting in hierdie module/werkstuk of ‘n ander module/werkstuk

nie.

I declare that the work contained in this assignment, except where otherwise stated, is

my original work and that I have not previously (in its entirety or in part) submitted it for

grading in this module/assignment or another module/assignment.

Studentenommer / Student number Handtekening / Signature

Voorletters en van / Initials and surname

15127303

K. Kruger 29 January 2018

Datum / Date

ii

Stellenbosch University https://scholar.sun.ac.za

iii

Abstract

Development and Evaluation of an Erlang Control System for

Reconfigurable Manufacturing Systems

K. Kruger

Department of Mechanical and Mechatronic Engineering

Stellenbosch University

Private Bag X1, 7602 Matieland, South Africa

Dissertation: Ph.D. (Mechatronic Engineering)

March 2018

The dynamic and highly competitive nature of the modern manufacturing

environment has introduced a new set of challenges, urging researchers and

industry to formulate new and innovative solutions. The concepts of holonic and

reconfigurable manufacturing systems showed great promise to address the

challenges. While these concepts could not achieve significant industry adoption,

they will play an important role in the latest emerging paradigm in manufacturing

– the fourth industrial revolution, or Industry 4.0.

Industry 4.0, can potentially have a significant impact on all aspects of the

manufacturing industry, aiming to enhance individualization of products through

highly flexible production, extensively integrate customers and businesses in value-

added processes and link production and high-quality services to deliver hybrid

products. To achieve these goals, Industry 4.0 relies on Cyber-Physical Production

Systems (CPPSs) to enhance the connectedness throughout all levels of the

manufacturing enterprise. CPPSs aim to enhance the intelligence, connectedness

and responsiveness of manufacturing systems. These goals closely resemble those

of holonic and reconfigurable manufacturing systems, indicating the relevance of

research on these topics to the development and implementation of CPPSs.

The objective of this dissertation is to evaluate the suitability of the Erlang

programming language as an alternative for the implementation of holonic control

in manufacturing systems. The dissertation presents an Erlang-based holonic

control implementation for a manufacturing cell. The Erlang implementation is

evaluated through a comparison with an equivalent implementation using Multi-

Agent Systems (MASs), which is considered as the status quo for holonic control

implementation in manufacturing systems research.

To accomplish the evaluation of the holonic control implementations, evaluation

criteria is formulated. The evaluation criteria focusses on both the development of

control implementations and the adoption of the implementations by industry. The

criteria identifies a set of quantitative and qualitative performance measures that are

indicative of seven critical requirements for holonic control implementations. The

Erlang and MAS implementations are evaluated and compared according to these

performance measures and requirements.

Stellenbosch University https://scholar.sun.ac.za

iv

The comparison shows that the Erlang implementation matches the functionality of

the MAS implementation and even offers some advantages for the desired

characteristics for the holonic control of manufacturing systems. The advantages in

availability and supportability can be attributed to the enhanced modularity and

fault tolerance of the Erlang implementation. The Erlang implementation also

allows for increased development productivity through a reduction in software

complexity and simplification of software verification.

The findings of the evaluation confirms the inherent suitability of the Erlang

programming language for the implementation of holonic control. It is

recommended that further research be conducted on the refinement of the

architecture and the development of a framework for holonic control

implementations in Erlang.

Stellenbosch University https://scholar.sun.ac.za

v

Uittreksel

Ontwikkeling en Evaluering van ‘n Erlang Beheerstelsel vir

Herkonfigureerbare Vervaardigingstelsels

K. Kruger

Departement van Meganiese and Megatroniese Ingenieurswese

Universiteit Stellenbosch

Privaatsak X1, 7602 Matieland, Suid-Afrika

Proefskrif: Ph.D. (Megatroniese Ingenieurswese)

Maart 2018

‘n Nuwe stel uitdagings, wat na vore gebring is deur die dinamiese en hoogs-

kompeterende aard van die moderne vervaardiging omgewing, spoor navorsers en

die bedryf aan om nuwe en innoverende oplossings te formuleer. Die konsepte van

holoniese en herkonfigureerbare stelsels het beloof om hierdie uitdagings aan te

spreek. Alhoewel hierdie konsepte nie beduidende bedryfsaanneming kon behaal

nie, het dit ‘n belangrike rol om te speel in die nuutste ontluikende paradigma in

vervaardiging – die vierde industriële revolusie, of Industry 4.0.

Industry 4.0 het die potensiaal om ‘n beduidende impak te hê op alle aspekte van

die vervaardigingsbedryf, deur die individualisering van produkte te verbeter met

hoogs-buigsame produksie, breedvoerig kliënte en besighede in waarde-

toevoegingsprosesse te integreer en produksie met hoë-kwaliteit dienste te verbind

om hibriede produkte af te lewer. Om hierdie doelwitte te bereik maak Industry 4.0

staat op Kuber-Fisiese Produksiestelsels (KFPs) om verbondenheid tussen al die

vlakke van ‘n vervaardigingsonderneming te verbeter. KFPs beoog om die

intelligensie, verbondenheid en responsiwiteit van vervaardigingstelsels te

verbeter. Die doelwitte van KFPs stem ooreen met die van holoniese en

herkonfigureerbare vervaardigingstelsels, wat die relevansie van die benaderings

op die ontwikkeling en implementering van KFPs aandui.

Die doelwit van hierdie proefskrif is om die geskiktheid van die Erlang

programmeringstaal, as ‘n alternatief vir die implementering van holoniese beheer

in vervaardigingstelsels, te evalueer. Die proefskrif beskryf ‘n Erlang-gebaseerde

beheerimplementering vir ‘n vervaardigingsel. Die Erlang implementering is

evalueer deur middel van ‘n vergelyking met ‘n ekwivalente implementering wat

gebruik maak van ‘n Multi-Agent Stelsel (MAS), wat beskou word as die status

quo vir holoniese beheerimplementering in vervaardigingstelsel navorsing.

‘n Evalueringkriteria vir holoniese beheerimplementering is geformuleer om die

evaluering te vervul. Die evalueringkriteria fokus op beide die ontwikkeling van

beheerimplementerings en die aanneming daarvan deur die bedryf. Die kriteria

identifiseer ‘n stel kwantitatiewe en kwalitatiewe prestasiemaatreëls wat

aanduiding gee vir sewe kritiese vereistes vir holoniese beheerimplementerings.

Stellenbosch University https://scholar.sun.ac.za

vi

Die Erlang en MAS implementerings is ge-evalueer en vergelyk volgens die

prestasiemaatreëls en vereistes.

Die vergelyking wys dat die funksionaliteit van die Erlang implementering

ooreenstem met die van die MAS implementering, en selfs voordele inhou vir die

gewenste eienskappe vir holoniese vervaardigingstelsels. Die voordele van Erlang,

ten opsigte van beskikbaarheid en ondersteunbaarheid, kan toegeskryf word aan

verbeterde modulariteit en fout-verdraagsaamheid. Die Erlang implementering

maak ook voorsiening vir verhoogde ontwikkelingsproduktiwiteit, deur die

kompleksiteit van die sagteware te verminder en die verifikasie daarvan te

vereenvoudig.

Die bevindinge van die evaluering bevestig die Erlang programmeringstaal se

inherente geskiktheid vir die implementering van holoniese beheer. Dit word

voorgestel dat verdere navorsing gedoen word op die verfyning van die argitektuur

en die ontwikkeling van ‘n raamwerk vir holoniese beheerimplementering in

Erlang.

Stellenbosch University https://scholar.sun.ac.za

vii

Aan Jolise, Riejed, my familie en vriende –

vir al jul liefde, ondersteuning en inspirasie.

“en op die dag sien ek die nag

daar anderkant gaan oop

met ’n bars wat van my beitel af

dwarsdeur die sterre loop.”

– N.P. van Wyk Louw

Stellenbosch University https://scholar.sun.ac.za

viii

Acknowledgements

I would like to thank everyone who contributed, in any way, to the realization of

this dissertation – the following people deserve special recognition for their

contributions:

Prof. Anton Basson, for your continuous support, guidance and mentorship over the

years. I have learned so much from you – not just from your advice, but also your

example. I am truly grateful for the part that you played in the completion of this

dissertation, and I hope that we can continue to do interesting work together in the

years to come.

I am grateful for the support of the management of the Department of Mechanical

and Mechatronic Engineering – for granting me the opportunity and funding to

pursue a Ph.D. degree and for creating a stimulating working environment for me

and many other students and staff members.

I am thankful for the love and support of my family and friends. My wife, for her

love, patience and unwavering belief in me. My parents, for the passion and

perseverance that they instilled in me and for continuing to be an example and

inspiration. For everyone else, for all your positivity and encouragement.

Above all, I thank our heavenly Father for the infinite blessings that I am grateful

for every day – none more so than the blessing of our daughter, Riejed.

Stellenbosch University https://scholar.sun.ac.za

ix

Table of contents
List of Tables ... xiii

List of Figures ... xiv

List of Acronyms ... xv

1. Introduction .. 1

1.1. Background ... 1

1.2. Objectives and Contributions.. 2

1.3. Motivation ... 3

1.4. Methodology ... 5

1.5. Dissertation Structure ... 6

2. Literature Review .. 8

2.1. Manufacturing System Paradigms .. 8

2.1.1. Classic and Flexible Manufacturing Systems .. 8

2.1.2. Holonic Manufacturing Systems ... 9

2.1.3. Reconfigurable Manufacturing Systems .. 10

2.1.4. Industry 4.0 and Cyber-Physical Production Systems 12

2.2. Control of Manufacturing Systems ... 14

2.2.1. Types of Control Architectures .. 14

2.2.2. Conventional Control ... 15

2.2.3. Holonic Control ... 15

2.3. Holonic Control Implementation .. 19

2.3.1. Multi-Agent Systems ... 19

2.3.2. IEC 61499 Function Blocks ... 23

2.4. Erlang .. 25

2.4.1. Erlang Programming Language ... 25

2.4.2. OTP .. 28

2.4.3. Advantages of Erlang/OTP .. 28

2.4.4. Erlang Implementations ... 29

3. Case Study and Testbed System .. 31

3.1. Case Study Description ... 31

3.2. Testbed System ... 32

3.3. Validation of a Holonic Controller for a Modular Conveyor System using an

Object-Oriented Simulation Framework ... 34

3.3.1. Introduction .. 34

Stellenbosch University https://scholar.sun.ac.za

x

3.3.2. Simio Modelling Framework ... 35

3.3.3. Holonic Cell Control .. 35

3.3.4. Conveyor Holon ... 36

3.3.5. Conveyor Model .. 38

3.3.6. Control Validation ... 40

3.3.7. Conclusion and Future Work ... 41

3.3.8. References .. 41

4. Erlang Holonic Control Implementation ... 43

4.1. Implementation of an Erlang-based Resource Holon for a Holonic

Manufacturing Cell .. 44

4.1.1. Introduction .. 44

4.1.2. Holonic Control ... 45

4.1.3. Case Study ... 46

4.1.4. Erlang-based Control Implementation ... 47

4.1.5. Reconfiguration Experiment .. 50

4.1.6. Conclusion ... 52

4.1.7. References .. 52

4.2. Erlang-based Control Implementation for a Holonic Manufacturing Cell . 54

4.2.1. Introduction .. 54

4.2.2. Holonic Control ... 55

4.2.3. Advantages of using Erlang for Holonic Control Implementation 58

4.2.4. Erlang-based Resource Holon ... 59

4.2.5. Conclusion ... 71

4.2.6. References .. 72

4.2.7. Appendix: OTP Libraries ... 74

4.3. Erlang-based Holonic Controller for a Modular Conveyor System 77

4.3.1. Introduction .. 77

4.3.2. Modular Conveyor Case Study .. 78

4.3.3. Erlang/OTP .. 80

4.3.4. Holonic Control Architecture .. 82

4.3.5. Erlang-based Conveyor Holon ... 83

4.3.6. Conclusion and Future Work ... 89

4.3.7. References .. 89

5. Multi-Agent System Holonic Control Implementation 91

Stellenbosch University https://scholar.sun.ac.za

xi

5.1. Introduction ... 92

5.2. Holonic Reference Architecture ... 93

5.3. Case Study .. 95

5.4. Holonic Control Implementation .. 95

5.4.1. Holonic Architecture .. 96

5.4.2. Agent Communication ... 97

5.4.3. Agents .. 102

5.5. Conclusion .. 108

5.6. References ... 109

6. Evaluation .. 111

6.1. Evaluation Criteria for Holonic Control Implementations in Manufacturing

Systems .. 112

6.1.1. Introduction .. 112

6.1.2. Characteristics and Requirements for Holonic Control Implementation

 ... 114

6.1.3. Relationships between Requirements and Performance Measures 116

6.1.4. Performance Measures ... 117

6.1.5. Conclusion ... 125

6.1.6. References .. 125

6.2. Comparison of Multi-Agent System and Erlang Holonic Control

Implementations for a Manufacturing Cell .. 129

6.2.1. Introduction .. 129

6.2.2. Methodology .. 131

6.2.3. Holonic Control Implementations ... 132

6.2.4. Case Study ... 134

6.2.5. Evaluation Overview ... 135

6.2.6. Quantitative Performance Measures .. 138

6.2.7. Qualitative Performance Measures .. 142

6.2.8. Comparison .. 151

6.2.9. Findings, Considerations and Future Work 154

6.2.10. References .. 155

7. Conclusion ... 159

8. References .. 162

Appendix A: Erlang and JADE Source Code .. 171

A.1. Erlang Resource Holon .. 172

Stellenbosch University https://scholar.sun.ac.za

xii

A.1.1. Communication Component ... 172

A.1.2. Agenda Manager Component ... 174

A.1.3. Execution Component ... 178

A.2. JADE Resource Agent ... 182

A.2.1. Resource Agent ... 182

A.2.2. Execution Behaviour FSM .. 187

A.2.3. Execution Behaviour ... 188

Stellenbosch University https://scholar.sun.ac.za

xiii

List of Tables
Table 1: Matching the requirements of TSSs to the characteristics of Erlang

(adapted from Däcker (2000)). .. 26
Table 2: Erlang syntactical conventions. ... 27
Table 3: Relationships between requirements and performance measures. 117
Table 4: Results of verification experiments. .. 136

Table 5: Relationships between requirements and performance measures. 138
Table 6: Reconfiguration and development time measurements 139
Table 7: Code complexity measurements. ... 140
Table 8: Code extension rate measurements. ... 140
Table 9: Code reuse rate measurements. ... 141

Table 10: Thread count, memory usage and CPU time consumption measurements.

 ... 142

Stellenbosch University https://scholar.sun.ac.za

xiv

List of Figures
Figure 1: Internal architecture for a Resource holon (adapted from Leitao and

Restivo (2002)). ... 10
Figure 2: CPS maturity model (adapted from Monostori et al. (2016)). 13
Figure 3: Types of control architectures (adapted from Meng et al. (2006)). 14
Figure 4: Structure of PROSA architecture (adapted from van Brussel et al.

(1998)). .. 17
Figure 5: Structure of ADACOR architecture (adapted from Leitao and Restivo

(2006)). .. 18
Figure 6: Layout of the assembly and quality assurance cell. 32
Figure 7: Manufacturing cell control architecture. .. 36

Figure 8: Conveyor holon architecture for (a) real and (b) simulated operation. .. 37

Figure 9: Conveyor emulation model. ... 38
Figure 10: Schematic of the conveyor with all nodes indicated 39

Figure 11: Simio processes for conveyor node objects. .. 40
Figure 12: Circuit breaker test station. ... 46
Figure 13: (a) A generic (adapted from [14]) and (b) the adapted resource holon

model. .. 47

Figure 14: Execution state diagrams (a) before and (b) after adding the scanning

function. ... 50

Figure 15: Knowledge exchange between the PROSA holons. 56
Figure 16: Internal architecture of a resource holon (adapted from Leitao and

Restivo (2002)). ... 57

Figure 17: Resource holon model for the Erlang/OTP implementation. 60

Figure 18: State diagram of the Agenda Manager FSM. 66
Figure 19: Example state diagram of the Execution FSM. 67
Figure 20: Conveyor system at the Automation Lab of Stellenbosch University. 79

Figure 21: Layout of the simulated conveyor system. ... 80
Figure 22: Schematic of the holonic control architecture for the manufacturing cell.

 ... 83
Figure 23: Intra-holon communication within the Conveyor holon. 84

Figure 24: LLC interface of the Conveyor holon. ... 87
Figure 25: Knowledge exchange between the PROSA holons. 94
Figure 26: Layout of the electrical circuit breaker assembly and testing cell. 95

Figure 27: Internal architecture for the Resource agent. 97

Figure 28: Communication between an Order agent and a Resource agent. 98
Figure 29: Communication sequence between the Order, ETS Resource and

Transport agents. .. 100

Figure 30: State diagram for the Agenda Management component of the Resource

agent. .. 104
Figure 31: State diagram for the behaviour of an Order agent. 106
Figure 32: Illustration for the calculation of code extension and reuse rates. 120
Figure 33: Knowledge exchange between the PROSA holons 133

Figure 34: Layout of the electrical circuit breaker assembly and quality assurance

cell. ... 135

Stellenbosch University https://scholar.sun.ac.za

file:///C:/Users/kkruger/OneDrive%20-%20Stellenbosch%20University/PhD/Deliverables/Thesis/PhD_Thesis_20171118.docx%23_Toc499655032

xv

List of Acronyms

ACL - Agent Communication Language

ADACOR - Adaptive Holonic Control Architecture

AMS - Agent Management System

CIM - Computer Integrated Manufacturing

CFP - Call For Proposal

CNP - Contract Net Protocol

CPS - Cyber-Physical System

CPPS - Cyber-Physical Production System

DF - Directory Facilitator

FBDK - Function Block Development Kit

FIPA - Foundation for Intelligent Physical Agents

FMS - Flexible Manufacturing System

FSM - Finite State Machine

HLC - High Level Control

HMS - Holonic Manufacturing System

IDE - Integrated Development Environment

IOT - Internet Of Things

JADE - Java Agent Development framework

LLC - Low Level Control

MAS - Multi-Agent System

OS - Operating System

OTP - Open Telecom Platform

PC - Personal Computer

PLC - Programmable Logic Controller

PROSA - Product-Resource-Order-Staff Architecture

Stellenbosch University https://scholar.sun.ac.za

xvi

RE - Rational Effect

RMS - Reconfigurable Manufacturing System

SLOC - Source Lines Of Code

TSS - Telecommunications Switching System

XML - Extensible Markup Language

WCF - Windows Communication Foundation

Stellenbosch University https://scholar.sun.ac.za

1

1. Introduction
This section provides the background and context for the presented research. The

objectives of the research and the contributions of the dissertation are outlined, the

importance of this endeavour is motivated and the methodology that was followed

is described. Finally, the section presents an overview of the dissertation structure.

1.1. Background
The modern manufacturing environment is characterized by dynamic change and

aggressive global competition. This dynamic environment is subject to rapid change

in economical, technological and customer trends (Leitao and Restivo, 2006). A

new set of requirements is thus applied to the modern manufacturing paradigm.

Bi et al. (2008) describe some critical requirements for modern manufacturing

systems:

 Short lead times for the introduction of new products into the system. This

involves the rapid adjustment of existing functions and processes, as well as

the integration of new functionality and technology.

 The ability to produce more product variants. This involves the

enhancement of production versatility and customization to satisfy customer

demands.

 The ability to handle low and fluctuating production volumes in order to be

competitive in unpredictable markets.

 Low product prices to compete in global markets.

The concepts of Reconfigurable Manufacturing Systems (RMSs) and Holonic

Manufacturing Systems (HMSs) presented promising solutions to the modern

challenges. Recently, ideas like Industry 4.0, Cyber-Physical Production Systems

(CPPSs) and the Industrial Internet of Things (IIOT) promise to address the

challenges of future manufacturing.

The application of the holonic systems architecture has been a popular approach to

organize and implement the control of modern manufacturing systems. The

implementation of holonic control is fundamental to HMSs, but also proved to be

effective in enabling control reconfigurability in RMSs. Holonic control

architectures offer several advantages – increased modularity, scalability and

robustness, while reducing overall system complexity and cost.

Holonic control architectures have been most often implemented using Multi-Agent

Systems (MASs) – to the extent where MASs implementations (specifically using

the Java Agent Development (JADE) framework) have become the status quo in

academic studies. MASs originated from the agent-oriented programming

paradigm, which brought the theories and concepts of artificial intelligence into the

realm of distributed systems (Bellifemine et al., 2007). The similarity between a

holon and a software agent was the initial driving factor for the use of MASs to

implement holonic control architectures.

Stellenbosch University https://scholar.sun.ac.za

2

The Mechatronic, Automation and Design (MAD) Research Group, at the

Department of Mechanical and Mechatronic Engineering of Stellenbosch

University, has conducted research into modern manufacturing systems since 2006.

Initial studies focussed on the conceptualization, design and control of RMSs, while

further studies placed emphasis on the control and coordination of the subsystems

in HMSs and RMSs. The studies formed part of two research projects on the design

and control of a reconfigurable manufacturing system for electrical circuit breaker

production. The first project (2006-2012) focussed on the development of an

automated assembly and welding cell, while the subsequent project (2013-2015)

considered an assembly and quality assurance cell.

This dissertation builds on the knowledge and experience obtained through the

above-mentioned studies and contributed to the second research project, with the

assembly and quality assurance cell being used as the case study for the presented

research. However, it is the first study within the research group to focus on the use

of the Erlang programming language for implementing holonic control in

manufacturing systems.

1.2. Objectives and Contributions
The objective of the dissertation is to evaluate the suitability of the Erlang

programming language for the implementation of holonic control in manufacturing

systems. To this end, an Erlang-based holonic control implementation is performed

for a manufacturing case study. The Erlang implementation is evaluated through a

comparison with an equivalent MAS implementation, which is the academic

standard for holonic control implementation in manufacturing systems research.

Holonic control can be implemented at several levels within a manufacturing

enterprise – from high-level logistics and scheduling, to low-level machine control.

The presented research focusses on the control implementation at the

manufacturing cell level, where specified production orders are executed through

the coordination of individual workstations. This dissertation considers the

following definitions:

 A workstation is a collection of actuators and devices which work together

to perform a specific task – e.g. feeding or welding. The control at this level

involves the coordination of the various hardware actions to perform the

desired task.

 A cell is a collection of workstations responsible for performing a specific

set of production tasks. Control at cell-level involves the coordination of the

various workstations, and the flow of material and information between

them, to accomplish the production tasks.

A manufacturing cell resembles – and in some cases can be equivalent to – a

manufacturing system. The manufacturing execution system entails the

coordination of different manufacturing cells, and the flow of material and

information between them, to produce complete product. Due to this similarity, the

results and findings obtained from the manufacturing cell implementation can be

extended to manufacturing execution systems. As a case study, the research

Stellenbosch University https://scholar.sun.ac.za

3

considers an assembly and quality assurance cell for the production of electrical

circuit breakers.

The development of an Erlang holonic control implementation requires a well-

defined architecture. The implementation is thus based on the well-established

Product-Resource-Order-Staff Architecture (PROSA). For the implementation of

the PROSA holons, an internal architecture, that is specifically suited to

implementation with Erlang, is developed. The internal architecture is based on the

generic internal holon architectures presented in literature, but incorporates and

exploits the inherent features of Erlang.

To evaluate the suitability of the Erlang holonic control implementation, a

comparison is performed with an equivalent implementation based on a MAS. The

MAS approach is regarded as the academic status quo for the implementation of

holonic control in manufacturing systems. To ensure that the implementations

exhibit equivalent functionality, which is required for a fair comparison, both

implementations are based on the PROSA holonic reference architecture. The

control implementations are evaluated and compared by means of evaluation

criteria specifically formulated for the implementation of holonic control in

manufacturing systems.

In order to achieve the above-mentioned objective, this dissertation offers the

following original contributions:

 The formulation of an internal architecture for the implementation of a

holon using Erlang.

 The implementation of holonic control for a manufacturing cell, using

Erlang.

 The formulation of criteria to facilitate the evaluation of holonic control

implementations in manufacturing systems.

 The evaluation and comparison of two equivalent holonic control

implementations, using Erlang and a MAS, respectively.

1.3. Motivation
HMSs and RMSs have received wide academic attention for over two decades, with

research performed in many aspects – from hardware design and configuration, to

control and optimization. Several aspects of HMSs and RMSs have become well

established within academic research, especially the implementation of control

architectures using MASs. Even though MAS control implementation promise to

realise the advantages of HMSs and RMSs, there exists very few industrial

implementations to support its great academic acclaim. Almeida et al. (2010)

identify several barriers to the industry adoption of MASs, of which the most

relevant to this dissertation are:

 The complexity involved in the design and implementation of such systems.

 A shortage of quality measures to aid the design, validation and evaluation

of such systems.

 The lack of support for MAS implementation in industrial controllers.

Stellenbosch University https://scholar.sun.ac.za

4

 Concerns regarding the scalability of MASs for large-scale

implementations.

 The lack of standards and commercial products for the development of

MASs for manufacturing system control.

Considering the above-mentioned issues, along with the emergence of Industry 4.0,

it is a good time to reconsider the status quo and investigate alternatives. The

manufacturing environment is currently undergoing another paradigm shift – the

new paradigm promises to address modern manufacturing requirements (as

mentioned in section 1.1) through enhanced system intelligence, connectedness and

responsiveness (Monostori et al., 2016). It is thus essential that the suitability of

established and alternative approaches and technologies be evaluated for use in

Industry 4.0.

This dissertation embraces this opportunity to evaluate an alternative to MASs for

the implementation of holonic control in manufacturing systems. The use of Erlang,

a highly concurrent, functional programming language, is presented as a possible

alternative. Implementation using Erlang has the potential to satisfy the

requirements of both the previous and emerging manufacturing paradigms, and can

narrow the gap between academic research and industrial implementation. This is

due to several advantages offered by the Erlang language (which are described in

detail in section 2.4.3):

 Industrial acceptance – Erlang was developed by the research laboratory

at Ericsson, and was subsequently implemented in some of Ericsson’s

products. Erlang is currently used in many leading software and

telecommunication applications.

 High productivity – there are reports in literature that indicate that software

development can be achieved much faster, and with fewer errors, with

Erlang than other well-known languages (such as Java, C or C++).

 High reliability – the initial requirements for which Erlang was developed

specified very high reliability and robustness, leading to the inclusion of

important mechanisms at the architectural level of Erlang.

 High maintainability – Erlang allows for the updating of code without

having to disturb the operation of a running program, allowing for bug fixes,

updates and code changes to be performed without any system downtime.

 High adaptability – Erlang is characterised by advanced modularity and

distribution, which are two enabling factors in achieving adaptability in

system control.

These advantages can take academic research towards industrial implementation in

different ways. Industrial system integrators will feel more confident to implement

a technology that was developed, tested and used by a large, respected corporation

such as Ericsson. Their confidence will be boosted even more by Erlang’s renown

for reliability. The increased development productivity will allow for faster

software development – which, together with the maintainability, will decrease the

lead times involved with the implementation and reconfiguration of control

systems. Furthermore, the potential of Erlang to fulfil the reconfigurability

Stellenbosch University https://scholar.sun.ac.za

5

requirements will improve the perception of HMSs and RMSs as feasible solutions

for industry and as enabling technologies for Industry 4.0.

1.4. Methodology
To evaluate the suitability of Erlang for implementing holonic control, the

dissertation performs a comparison of the Erlang implementation with a MAS

implementation. Specifically, the Erlang implementation is done using standard

Erlang that is supplemented with the Open Telecom Platform (OTP) – the software

development is done using the Eclipse Integrated Development Environment (IDE),

with the ErlIDE plugin for Erlang. The MAS implementation is performed using

Java, with the inclusion of the Java Agent Development (JADE) framework –

Eclipse is also used as the IDE. From here on, the programming language of the

implementations will refer either to Erlang with OTP, or MAS developed with

JADE.

To perform a comparison of the two implementations is a challenging task – the

implementations are different in not just the programming language, but also in

programming paradigm (imperative and functional). While several studies have

attempted comparisons of different programming languages (e.g.

Harrison et al. (1996), Prechelt (2000) and Cesarini et al. (2008)), assessments

based on generic, objective and quantitative measures are hard to come by. Aiming

to avoid this treacherous terrain, the comparison presented in this dissertation has a

specific focus: the suitability of the Erlang programming language as a tool for

implementing holonic control. The comparison thus pays less attention to the

philosophical and semantic differences between the programming languages, and

rather compares the provisions of each programming language to facilitate the

implementation of holonic control. This methodology is similar to that adopted by

Chirn and McFarlane (2005) in evaluating the effectiveness of a holonic system

design.

The implementation of the same architecture in the two programming languages

forms the basis for the comparison. The Product-Resource-Order-Staff Architecture

(PROSA) (described in section 2.2.3) is used as the foundation for the development

of both the Erlang and MAS holonic control implementations. The use of a common

reference architecture allows for comparable functionality in the two

implementations – the equivalence is verified through a series of verification

experiments, as presented in section 6.2.

As a case study, the implementations are performed for an assembly and quality

assurance cell for electrical circuit breakers (discussed in chapter 3). While a case

study implementation limits the extent to which the results can be generalised, it

does facilitate an evaluation and comparison based on quantitative and qualitative

performance measures.

For the implementations, the software was developed according to common

practices for each programming language – i.e. provided libraries were used as far

as possible, and the development followed the principles outlined in literature

Stellenbosch University https://scholar.sun.ac.za

6

(Logan et al. (2011), Armstrong (2007) and Anonymous (s.a. (b)) for Erlang and

Bellifemine et al. (2007) for JADE).

To improve the reliability and validity of the proposed comparison, both

implementations were developed by the author. The premise of using a common

reference architecture relies on consistency in the developer’s understanding and

interpretation of the architecture. Additionally, even though the code is significantly

different, the developer follows a similar approach in both implementations. The

author possesses the following relevant expertise and experience:

 Undergraduate degree in mechatronic engineering.

 Master’s degree in mechatronic engineering, of which the thesis focussed

on the development and evaluation of two holonic control implementations

– one being a MAS developed in JADE and the other an IEC61499

application using the Function Block Development Kit (see Vyatkin (2007))

– further details can be found in Kruger and Basson (2013).

 Completed an online course on Erlang programming (prior to which the

developer was unfamiliar with Erlang programming).

In line with the objective of this research, the evaluation criteria is set up from the

perspective of the developers and consumers of holonic control implementations,

as opposed to that of computer scientists. The performance measures are thus

derived from the requirements for holonic manufacturing systems and the

evaluation aims to emphasise the extent to which each implementation satisfy these

requirements.

Several aspects of the comparison involve impressions, experiences and

philosophies, which are not suited to quantification, leading to criteria comprised

of both quantitative and qualitative performance measures. Even though the

evaluation is inherently subjective, the comparison strives to provide an unbiased

reflection of the suitability of Erlang for holonic control implementation – this is

enforced through reference to experimental data, examples from code and findings

from literature, as far as possible.

1.5. Dissertation Structure
The dissertation is presented as a collection of papers and is organized into seven

chapters. Each chapter provides an overview of the context, content and objective

for the included paper(s). The dissertation structure is as follows:

A review of the relevant literature is presented in chapter 2. The review describes

the relevant manufacturing system paradigms and, specifically, the research that

has been performed on the control of manufacturing systems. The chapter also

provides the necessary background for MASs and the Erlang programming

language. Beyond chapter 2, a short review of relevant literature is provided in each

of the papers included in the later chapters.

Chapter 3 describes the case study and testbed system that was used for the research.

Using the case study as starting point, the development of the testbed system, which

Stellenbosch University https://scholar.sun.ac.za

7

was used for performing experiments with the control implementations, is

discussed.

The development of the Erlang and MAS holonic control implementations are

described in chapters 4 and 5, respectively. Chapter 4 comprises two papers that

describe the architecture and implementation of holonic control using Erlang, and

a third that presents an additional case study implementation. A paper discussing

the MAS implementation is presented in chapter 5. Appendix A presents source

code for both implementations.

Two papers describing the evaluation of the Erlang control implementation is

presented in chapter 6. The first paper describes the formulation of the evaluation

criteria, and the second paper presents the comparison of the two implementations.

The dissertation concludes with chapter 7, wherein the important contributions and

findings are summarised and some recommendations for future research are given.

The reference list provided in chapter 8 contains all the references used in this

dissertation, including those used in each of the papers.

The papers that are included in this dissertation are presented as they were

submitted for publication – changes were only made to heading and paragraph

numbering and formatting, to improve consistency throughout the dissertation.

Each paper includes an abstract, an introduction of the context and relevant

literature and a reference list, and there will therefore be considerable overlap

between these parts of the papers.

All of the presented papers are co-authored by the academic supervisor of this

research. However, the author is the main contributor in every paper, with the

supervisor’s contribution limited to advice on the structuring of arguments and

reviewing the manuscripts.

Stellenbosch University https://scholar.sun.ac.za

8

2. Literature Review
This section starts with an overview of manufacturing system paradigms, including

holonic and reconfigurable manufacturing systems and Industry 4.0. The review

then focusses on the control of manufacturing systems – specifically the use of

holonic systems concepts. The architectures and most prominent tools for the

implementation of holonic control in manufacturing systems are discussed. Finally,

an introduction and overview of the Erlang programming language is presented.

2.1. Manufacturing System Paradigms

2.1.1. Classic and Flexible Manufacturing Systems

The manufacturing and assembly environment is evolving continuously. This

evolution is driven by changes in technology and economic trends. The major

paradigms in manufacturing and assembly, as presented by Mehrabi et al. (2000),

are discussed in the following paragraphs.

The Machining System paradigm entailed the installation of one or more metal

removing machine tools. These machine tools were accompanied by auxiliary

equipment for material handling, control and communications. The operation of the

machines was then coordinated to produce a fixed amount of parts. This paradigm

pursued mass production as a strategy to reduce product cost.

The need for higher part quality and reduction in production costs brought about

the Dedicated Machining System (DMS) paradigm. With DMSs, machining

systems with fixed tooling and functions were designed for specific parts. The DMS

paradigm was driven by the lean production ideology, where production costs were

reduced by eliminating production waste.

A market demand for increased product variety led to the Flexible Manufacturing

System (FMS) paradigm. FMSs were based on automation configurations of fixed

hardware with programmable software. Flexibility refers to the ability of the system

to switch to new families of components by changing the manufacturing or

assembly processes and functions (Martinsen et al., 2007). These systems were thus

capable of handling changes in work orders and production schedules, and

producing several types of parts with short changeover times. ElMaraghy (2006)

identified several types of flexibility:

 Machine flexibility – the execution of various operations without changing

the machine set-up.

 Material handling flexibility – the existence of various paths for the transfer

of materials between machines.

 Operation flexibility – the availability of different operation plans for part

processing.

 Process flexibility – the ability to produce different sets of part types without

major set-up changes.

 Product flexibility – the agility to handle the introduction of new products.

 Routing flexibility – the existence of several feasible routes for the various

product types.

Stellenbosch University https://scholar.sun.ac.za

9

 Volume flexibility – the ability to vary production volumes profitably within

the current system capacity.

 Expansion flexibility – the ease in which system capability and capacity can

be added to the system through physical changes.

 Control program flexibility – the ability of the control system to run

virtually uninterrupted during production or system changes.

 Production flexibility – the ability to produce a number of product types

without adding major capital equipment.

There have been several investigations into the shortcomings of FMSs with regard

to implementation in industry. Raj et al. (2007) identified high costs, the difficulty

of design and the lack of inherent product flexibility (relative to volume flexibility)

in FMSs as barriers to industrial implementation. Mehrabi et al. (2002) adds to this

list a lack of software reliability, the need for highly skilled personnel, high support

costs and a lack of support from machine tool manufacturers. They also mention

that FMSs tend to be designed with excess features and capacity, which remain

unutilized in many cases.

2.1.2. Holonic Manufacturing Systems

The concept of Holonic Manufacturing Systems (HMSs) came into being in the

early to mid 1990s, aiming to address the requirements of the modern

manufacturing environment (as listed in section 1.1). Early research into HMSs was

driven by the HMS Consortium (Christensen, 1994), but numerous studies followed

in the subsequent decades. The basic concepts and development of HMSs are

summarized in this section.

The concept of holonic systems was developed by Koestler (1967) as an

explanation of the self-organizing tendencies observed in social and biological

systems. The term holon comes from the Greek words “holos” (meaning “the

whole”) and “on” (meaning “the particle”). Holons are then “any component of a

complex system that, even when contributing to the function of the system as a

whole, demonstrates autonomous, stable and self-contained behaviour or function”

(Paolucci and Sacile, 2005).

Holonic Manufacturing Systems (HMSs) result from the application of the holonic

systems concept in manufacturing systems. In a manufacturing system context, a

holon is an autonomous and cooperative building block for transforming,

transporting, storing or validating information of physical objects. A HMS is then

“a holarchy (a system of holons which can cooperate to achieve a goal or objective)

which integrates the entire range of manufacturing activities” (Paolucci and Sacile,

2005).

Figure 1 shows the internal architecture for a holon in a HMS, as formulated by

Leitao and Restivo (2002). The internal architecture makes provision for the two

essential holon characteristics: cooperation and autonomy. The communication

component enables cooperation with the other holons in the system through

maintaining a communication interface and constructing, parsing and exchanging

Stellenbosch University https://scholar.sun.ac.za

10

information. The decision-making component of the holon internal architecture

facilitates the implementation of autonomy, where the logic can be added to control

the behaviour of the holon.

The internal architecture in Figure 1 also includes an interfacing component. This

component provides a mechanism to connect the software and hardware parts of

the holon, so that process execution information can be exchanged. Even though it

can be expected that holons in a HMS include a hardware resource on the shop

floor, these systems also include holons that purely exist in software. Such holons

implement a similar internal architecture, but without the need for an interfacing

component.

Figure 1: Internal architecture for a Resource holon (adapted from Leitao

and Restivo (2002)).

It is clear that HMSs inherently consider the software aspects of manufacturing

systems, along with the physical hardware. Extensive research has been done on

the application of the holonic concept to organise the control of manufacturing

systems, within and beyond the HMS paradigm – this is reviewed in detail in

section 2.2.3.

2.1.3. Reconfigurable Manufacturing Systems

The concept of Reconfigurable Manufacturing Systems (RMSs) is another solution

to the requirements of modern systems. The development of RMSs occurred in

parallel with HMSs, mainly driven by the research of Koren (Koren and Ulsoy,

1997; Koren et al., 1999). This section defines reconfigurability in the

manufacturing context and presents an overview of the key aspects of RMSs.

Stellenbosch University https://scholar.sun.ac.za

11

It is important to discuss the exact meaning of reconfigurability in this context.

Martinsen et al. (2007) describe reconfigurability as the ability of a manufacturing

system to switch, with minimal delay and effort, between a particular family of

parts by adding or removing functional elements. These functional elements can

form part of the system hardware or software (Vyatkin, 2007).

Rooker et al. (2007) explain two different types of reconfiguration that can occur

in RMSs: basic and dynamic reconfiguration. Basic reconfiguration requires the

system to be stopped. The system is then restarted after the necessary software and

hardware changes have been implemented. With dynamic reconfiguration, the

changes can be made while the system is still in operation.

RMSs and FMSs are often confused because of their similarity – each system can

be adapted and is capable of handling production variety. It is important to consider

the differences between the abilities of RMSs and FMSs. Mehrabi et al. (2000)

mention that the key difference between RMSs and FMSs is that the capacity and

functionality of RMSs are not fixed – RMSs are designed for rapid adjustment,

through rearrangement or change of their components, in response to production

demands. Wiendahl (2007) identified two more differences:

1. The diversity of the workpieces that can be handled by the system. RMSs

can be switched to accommodate different families of products, while FMS

can only handle similar products.

2. The extent to which the system is changed. With RMSs, the changes can be

made through the addition or removal of components. FMSs are only

designed to allow for changes in the production processes and the flow of

material.

Koren and Ulsoy (2002) identified six key characteristics that must be exhibited by

the mechanical, control and communication components of RMSs. The

characteristics are as follows:

1. Modularity of the hardware and software system components, so that

components can be replaced or rearranged to meet new requirements.

2. Integrability of the system and the system components for both integration

of existing technology and the introduction of new technology in the future.

3. Convertibility of the system to allow for fast changeover between existing

products and fast adaptability of the system for future products.

4. Diagnosability for fast identification of the sources of quality and reliability

errors in the system.

5. Customization of the system capability and flexibility to match specific

products or production requirements.

6. Scalability of the system capacity through the addition of resources.

RMSs satisfy all the requirements of modern manufacturing mentioned in section 1.

Mehrabi et al. (2000) explain that RMSs permit reduction in lead times and quick

integration of new technology and/or functionality. Bi et al. (2008) recognised that

RMSs have the ability to reconfigure hardware and control resources, at all

functional levels, to rapidly adjust the production capacity and functionality in

Stellenbosch University https://scholar.sun.ac.za

12

response to sudden changes. Bi et al. (2007) is in agreement with this statement,

identifying that in RMSs “the system and its components have adjustable structure

that enables system scalability in response to market demands and system

adaptability to new products”.

Several issues have hampered the development and implementation of RMSs. Bi et

al. (2007) explain the key issues regarding RMS development:

 The separation of RMS design from product design. Most RMSs are

developed separate from the product design, which complicates the

optimization of the system.

 RMSs are perceived as a premature technology. Developers are still dealing

with unresolved issues, which prohibit full automation through RMSs.

 Indifferent attitudes toward RMSs. Many companies are uncertain of the

advantages that reconfigurable automation holds for their production.

 The use of RMSs as a wrong solution. RMSs should be implemented in

production scenarios where the necessary production requirements exist and

a sufficient level of technical competence is available. The RMS concept is

not a suitable solution for all production scenarios.

2.1.4. Industry 4.0 and Cyber-Physical Production Systems

Industry has experienced three revolutions: the first was brought about by the

invention of the mechanical loom for use in the textile industry in 1764; the second

was driven by Henry Ford’s mass production assembly line for the T1 model in

1913; and the third was due to the introduction of the first Programmable Logic

Controller (PLC) in 1968. It would seem that industry is currently on the brink of

the fourth industrial revolution – often referred to as Industry 4.0.

Industry 4.0 is driven by an increased connectedness of the real and virtual worlds,

forming the Internet of Things (IOT). The effect of IOT on production will be an

enhanced individualization of products through highly flexible production, the

extensive integration of customers and businesses in value-added processes and the

linking of production and high-quality services to deliver hybrid products.

Industry 4.0 will be characterized by the individualization of products and services,

new organization and control of the entire value chain and the formulation of new

business models. These characteristics can be facilitated through the connection of

humans, objects and systems, and the generation and use of information in real-

time. Cyber-Physical Systems (CPSs) will play a key role in the connection of

people, components/systems, information and services.

CPSs are systems of communicating computational entities, which are connected

to the physical world, that simultaneously use and provide data and services, using

the Internet. These entities can monitor, control, coordinate and integrate the

operations of physical or engineered systems. The maturity model for CPS

functionality is shown in Figure 2.

Stellenbosch University https://scholar.sun.ac.za

13

Figure 2: CPS maturity model (adapted from Monostori et al. (2016)).

When the concept is applied to manufacturing, it is referred to as Cyber-Physical

Production Systems (CPPSs). CPPSs then entail the convergence of the virtual and

physical worlds of manufacturing – the first driven by developments in computer

science and information and communication technologies, and the second by

manufacturing science and technology.

CPPSs consist of autonomous and cooperative elements and subsystems that can be

connected within and across all levels of production – from high-level enterprise

resource planning and plant management, to the lower levels of process and

hardware control. The 5C architecture, proposed by Lee et al. (2015), explains the

role of CPPS implementation in different levels of automation:

 Smart Connection level – the acquisition of accurate and reliable data from

machines. The data is obtained directly from sensors or via controller or

manufacturing execution systems.

 Data Conversion level – meaningful information is inferred from the

acquired data using smart analytics.

 Cyber level – information is gathered from all connected system

components. The centralization of information allows for analysis based on

historical data or through comparison between similar cases.

 Cognition level – knowledge is generated from the comparative

information, which provides support for expert users in making decisions

on corrective and predictive actions.

 Configuration level – corrective or predictive decisions are applied to the

physical system, resulting in the adaption of machine/system configuration.

Stellenbosch University https://scholar.sun.ac.za

14

Through the approach and architecture described above, CPPSs aim to exhibit the

following characteristics:

 Intelligence – system elements are capable of acquiring information and

acting autonomously.

 Connectedness – connections exist between the system elements (including

humans) and knowledge and service depositories (such as the Internet) to

facilitate cooperation.

 Responsiveness – the system is capable of responding to internal and

external changes.

The approach, architecture and characteristics described above closely resemble

some of the aspects introduced in sections 2.1.2 and 2.1.3. In fact, Monostori et al.

(2016) acknowledge that CPPS is not a novel, stand-alone concept, but rather a

culmination of several preceding developments in manufacturing science and

technology – including that of holonic and reconfigurable manufacturing systems.

Furthermore, Wang and Haghighi (2016) believe that control implementation

platforms, like multi-agent systems and function blocks, will play in important role

in CPPSs.

2.2. Control of Manufacturing Systems
This section describes some of the commonly used classifications and approaches

for the control of manufacturing systems.

2.2.1. Types of Control Architectures

Three different types of control architectures are discussed by Meng et al. (2006):

centralized, hierarchical and heterarchical. The organizational structures of the

control architectures are depicted in Figure 3. The architectures are described in the

following paragraphs.

Centralized Hierarchical Heterarchical

Controller Machine component

Figure 3: Types of control architectures (adapted from Meng et al. (2006)).

The centralized control architecture achieves system control by means of one

central controller. This controller is then responsible for the execution of all the

automated processes in the system. The architecture is typically implemented in

conventional control systems (discussed in section 2.2.2).

Stellenbosch University https://scholar.sun.ac.za

15

The hierarchical control architecture implements the hierarchical arrangement of

multiple controllers in a system. Different levels of control exist within the system.

This implementation sees the passing of instructions in a downward direction and

feedback in an upward direction. The hierarchical architecture is typically

implemented in conventional control systems, while mixed architectures

(combinations of hierarchical and heterarchical architectures) are often

implemented in distributed control systems like holonic control (discussed in

section 2.2.3).

Heterarchical control architectures apply no hierarchical levels of control. The

control of the system is achieved by several independent controllers. These

controllers each have their own goals and specific functionality. Communication

and coordination between these independent controllers enable complex system

functionalities and the pursuing of the system goals. Mixed or strict heterarchical

control architectures are typically implemented in holonic control systems.

2.2.2. Conventional Control

Conventional manufacturing control systems are typically large, centralized

applications that are developed and adapted on a case-by-case basis (Leitao and

Restivo, 2008). These control systems implement centralized or strict hierarchical

architectures (as was described in section 2.2.1). These control systems exist within

the concept of Computer Integrated Manufacturing (CIM), which utilises large

central databases to support the system information (Scholz-Reiter and Freitag,

2007). Conventional control hardware and programming techniques greatly rely on

Programmable Logic Controllers (PLCs) (Black and Vyatkin, 2009).

Leitao and Restivo (2008) explain that conventional control systems do not

efficiently satisfy the requirements of modern manufacturing and assembly (such

as those specified in section 1.1). These control systems require expensive and time-

consuming efforts to implement, maintain or reconfigure the control application.

Scholz-Reiter and Freitag (2007) noticed that “the complexity of the control system

grows rapidly with the size of the underlying manufacturing system”. Meng et al.

(2006) explains that conventional control is not reconfigurable-friendly due to

shortcomings such as structural rigidity, lack of flexibility and convertibility and

inability to tolerate faults or disturbances. The monolithic nature of general PLC

software increases the difficulty of system modification and maintenance, and

reduces the scalability of the system. This centralized approach also cannot be

appropriately applied to applications of wide physical dispersion of hardware

(Black and Vyatkin, 2009).

2.2.3. Holonic Control

The distributed holonic model represents an alternative to the traditional

centralization of functions (Paolucci and Sacile, 2005). Holonic control usually

combines the best features from both hierarchical and heterarchical control

architectures (Kotak et al., 2003). Kotak et al. (2003) explain that individual holons

have at least two basic parts: a functional component and a communication and

cooperation component. The functional component can be represented purely by a

Stellenbosch University https://scholar.sun.ac.za

16

software entity or it could be a hardware interface represented by a software entity.

The communication and cooperation component of a holon is implemented by

software.

The implementation of holonic control in assembly systems holds many

advantages. Holonic systems are attractive because they are resilient to disturbances

and adaptable in response to faults (Black and Vyatkin, 2009). Holonic systems

have the ability to organise production activities in a way that they meet the

requirements of scalability, robustness and fault tolerance (Kotak et al., 2003).

Scholz-Reiter and Freitag (2007) describe advantages of holonic control systems

due to the incorporation of heterarchical control. These advantages are:

 Reduced system complexity due to the localization of information and

control.

 Reduced software development costs by the elimination of supervisory

control levels.

 Higher maintainability and modifiability due to system self-configurability

abilities and system modularity.

 Improved reliability due to a fault-tolerant approach as opposed to a fault-

free approach.

The two reference architectures for holonic control that are most often encountered

in the literature are PROSA and ADACOR. These two architectures are discussed

in the remainder of the section.

The first proposed holonic control architecture is PROSA (Product-Resource-

Order-Staff Architecture), which is comprehensively described by van Brussel et

al. (1998). PROSA defines four classes of holons: Product, Resource, Order and

Staff.

The first three classes of holons can be classified as basic holons. This is because

their existence is based on that of three independent manufacturing concerns:

i. Product related technological aspects, such as the management of process

sequence and the product life cycle. Product holons hold the product and

process information required for the production of system products. These

holons contain the various “product models” and can provide the other

holons in the system with product information.

ii. Resource aspects, such as optimizing the performance of machines and the

maximizing of machine capacity. Resource holons contain the physical

hardware, accompanied by the control software, for production line

components. These holons then offer their functionality and capacity to the

other holons in the system.

iii. Logistical aspects, such as those concerning customer demands and

production deadlines. The Order holons can be represented as tasks within

the manufacturing system. These holons manage the logistical information

related to the product being produced. Order holons contain the “product

state model” and can thus provide production information to the other

holons in the system.

Stellenbosch University https://scholar.sun.ac.za

17

The basic holons can interact with each other by means of knowledge exchange, as

is shown in Figure 4. The process knowledge, which is exchanged between the

Product and Resource holons, is the information and methods describing how a

certain process can be achieved through a certain resource. The production

knowledge is the information concerning the production of a certain product by

using certain resources – this knowledge is exchanged between the Order and

Product holons. The Order and Resource holons exchange process execution

knowledge, which is the information regarding the progress of executing processes

on resources.

Staff holons are considered to be special holons, operating in an advisory role to

basic holons. The addition of Staff holons aim to reduce work load and decision

complexity for basic holons, by providing them with expert knowledge. The Staff

holons consider some aspects of the problems faced by the basic holons, and

provide sufficient information such that the correct decision can be made to solve

the problem.

The holonic characteristics of PROSA contribute to the different aspects of

reconfigurability. The ability to decouple the control algorithm from the system

structure and the logistical aspects from the technical aspects adds integrability and

modularity. Modularity is also added by the similarity that is shared by holons of

the same type, since this allows holons to be interchanged easily.

Figure 4: Structure of PROSA architecture (adapted from van Brussel et al.

(1998)).

Stellenbosch University https://scholar.sun.ac.za

18

Another proposed control architecture for holonic systems is that of ADACOR

(ADAptive holonic COntrol aRchitecture for distributed manufacturing systems).

Within ADACOR, each holon represents a physical resource or logic entity.

ADACOR defines four holon classes according to their roles and functionalities:

Product holons (PH), Task holons (TH), Operational holons (OH) and Supervisor

holons (SH). The structure of the ADACOR architecture is shown in Figure 5.

The Product, Task and Operational holons are similar to the Product, Order and

Resource holons of the PROSA architecture. The Product holons represent the

products available for production – these holons have access to all the relevant

product information. The Task holons represent the processes, along with the

necessary resources, required to satisfy the production orders. The Operational

holons represent the physical shop floor resources. The Supervisor holon is quite

different to the Staff holon. Supervisor holons are capable coordinating groups of

holons and optimizing their collective actions. The Supervisor holons can thus

introduce some hierarchy into the decentralized system.

The ADACOR holons comprise a Logical Control Device (LCD) and a physical

resource (if it exists for the specific holon), as is shown in Figure 1. The LCD has

three functional components: a communication component for inter-holon

communication, a decision component for regulating holon behaviour and an

interface component for integrating with the physical resources.

PH PH PH

TH TH TH

SH

OH

OH

OH

Figure 5: Structure of ADACOR architecture (adapted from Leitao and

Restivo (2006)).

Stellenbosch University https://scholar.sun.ac.za

19

According to Leitao and Restivo (2008), ADACOR addresses the improvement of

flexibility and response to change of manufacturing control systems operating in

volatile environments. ADACOR is suited to dealing with control problems in a

distributed manner by being “as centralized as possible and as decentralized as

necessary”. An ADACOR control system can be formally specified and modelled

using Petri nets. ADACOR is “built upon a community of autonomous and

cooperative entities, designated by holons, to support the distribution of skills and

knowledge, and to improve the capability of adaption to changing environments”.

2.3. Holonic Control Implementation
Two platforms have been regularly used to implement the holonic control

architectures presented in section 2.2.3 – multi-agent systems and IEC 61499

function blocks. The basic concepts, advantages, standards and platforms for

development and existing implementations are discussed for each platform.

2.3.1. Multi-Agent Systems

The use of agent-based software to control manufacturing systems has received

much attention in the research community. MASs have become a popular choice

for the implementation of holonic control architectures in both holonic and

reconfigurable manufacturing systems.

2.3.1.1. Definition of Agents and Agent Systems

An agent can be defined as a computational system with goals, sensors and

effectors, which can autonomously decide which actions to take, in a given

situation, to maximize its progress towards its goals (Paolucci and Sacile, 2005).

With reference to a multi-agent system, Xie et al. (2007) define an agent as “a

software system that communicates and cooperates with other software systems to

solve a complex problem beyond their individual capabilities”.

Paolucci and Sacile (2005) explain that an agent is different to a holon in the sense

that a holon can consist of other holons, while an agent cannot include other agents.

With this said, agents can practically be equivalent to holons in some cases. This is

usually the case with agents which directly control a physical device. Here the agent

then represents the software component of the holon introduced to decentralize the

control system at the lowest level.

According to Paolucci and Sacile (2005) three different classes of agents can be

identified:

 Agents that execute tasks based on predetermined rules and assumptions.

 Agents that execute well-defined tasks at the request of a user.

 Agents that volunteer information or services to a user whenever it is

deemed appropriate.

The main characteristics of these agents are then as follows:

 Autonomy – agents should be able to perform most of their tasks without

user intervention.

 Social ability – agents should be able to interact with other agents and users.

Stellenbosch University https://scholar.sun.ac.za

20

 Responsiveness – agents should be able to respond to changes in their

environment.

 Proactiveness – agents should exhibit opportunistic and goal-orientated

behaviour.

 Adaptability – agents should be able to modify their behaviour in response

to changes in their environment.

 Mobility – agents should possess the ability to change physical location to

improve their performance.

 Veracity – agents should communicate reliable information.

 Rationality – agents should act in a manner as to achieve their goals.

Agents of different classes, performing different roles and functions, can cooperate

and communicate within a Multi-Agent System (MAS) to achieve their individual

goals and the goals of the system. MASs can be understood as societies of

autonomous entities that, by their own convenient interaction and coordination,

attempt to achieve local and global goals. MASs can then be summarized as

“flexible networks of problem solvers that tackle problems that cannot be solved

using the capabilities and knowledge of the individual solver” (Paolucci and Sacile,

2005).

2.3.1.2. Design Methodologies for MASs

Paolucci and Sacile (2005) discuss three design methodologies for the design of

MASs: problem-oriented, architecture-oriented and process-oriented MAS design.

The problem-oriented MAS design process is guided by the identification of the

reasons for which the MAS is needed. This usually involves obtaining an MAS

solution to an existing problem or enhancing certain aspects of a system. The types

of problems are then identified and transformed into tasks, which can be performed

by agents. Two promising approaches to problem-oriented MAS design are the

GAIA approach and the Multi-agent Systems Engineering (MaSE) approach.

The architecture-oriented MAS design process is oriented by the requirements and

implications of the design on the system architecture. The architecture determines

the capabilities of the agent system. The Synthetic-Ecosystems approach is

proposed for architecture-oriented MAS design.

Process-oriented MAS design is guided by the definition of time constraints

imposed by the different processes in the manufacturing system. The real-time

behaviour is an important aspect of MASs, as they have to deal with internal and

external asynchronous signals, along with the necessary time constraints. A

proposed approach to process-oriented MAS design involves a four-layer, real-time

holonic control architecture.

2.3.1.3. Standards and Platforms for MASs

The establishment of methodologies and techniques for MAS design and operation

are required to increase the amount of practical applications of MASs in industry.

“The Foundation for Intelligent Physical Agents (FIPA) is an IEEE Computer

Stellenbosch University https://scholar.sun.ac.za

21

Society standards organization that promotes agent-based technology and the

interoperability of its standards with other technologies” (FIPA, 2010). FIPA was

founded in 1996 and became an official IEEE standards organization in 2005. FIPA

has thus begun to establish standards for the development and communication of

agent-based systems. The most significant of the FIPA standards is the agent

communication standard (FIPA, 2010). Paolucci and Sacile (2005) explain that the

standard formalizes the conversations between agents with two concepts: the

communicative act and the Agent Interaction Protocol (AIP). The communicative

act associates a predefined semantic to the content of messages to allow messages

to be univocally understood by all agents. The AIP defines which communicative

acts must be used in a conversation and the sequence of messages to allow

meaningful communication between agents. Other FIPA standards deal with issues

surrounding the specification of the agent communication language and the

mandatory components for agent platform architectures.

The FIPA standards mainly focus on specifications regarding agent interoperability.

FIPA thus only describes an abstract architecture with little detail regarding aspects

of the implementation platforms (Paolucci and Sacile, 2005). Despite the lack of

detailed standards, several agent implementation platforms have been developed.

The most widely used platforms are JADE, FIPA-OS and ZEUS. JADE (Java Agent

DEvelopment framework) was developed by Telecom Italia Lab, in collaboration

with the University of Parma, Italy. JADE was fully developed in Java language

and runs in the Java run-time environment. JADE is also fully FIPA compliant.

Several platforms have also been developed for the simulation of MASs, of which

the most renowned are Swarm, RePAST and MAST. The Swarm project was

started to create a standard support tool for the management of swarms of objects –

a concept necessary for handling MASs. Swarm is based on an object-oriented

framework for the definition of agent behaviour and interaction. RePAST

(Recursive Porous Agent Simulation Toolkit) was initially viewed as a set of

libraries intended to simplify the use of Swarm, but was later redesigned as a

completely new framework. RePAST provides a library of classes to create,

perform, view and collect data from agent simulations (Paolucci and Sacile, 2005).

Research by Vrba (2003) brought about a simulation tool for agent-based systems

in the form of MAST (Manufacturing Agent Simulation Tool). MAST is entirely

devoted to the simulation of manufacturing processes. It has been implemented to

simulate the material-handling activities of a manufacturing system. MAST is also

based on the JADE platform and is fully FIPA compliant.

2.3.1.4. Advantages of MASs

MASs hold several advantages for implementation in RMSs. MASs have high

modularity and reconfigurability. The addition or modification of resources can be

achieved by simply inserting a new agent into the system or modifying the

behaviour of an existing agent (Paolucci and Sacile, 2005). Vrba et al. (2009)

recognised that due to its modular and decentralized characteristics, MASs are a

way to reduce complexity and increase flexibility in a system. MASs can allow the

simultaneous production of different products and improve the integration of legacy

Stellenbosch University https://scholar.sun.ac.za

22

equipment (Candido and Barata, 2007). Xie et al. (2007) also recognised that MASs

can respond quickly to dynamic changes in the manufacturing or assembly

environment. Furthermore, agent-based technologies are capable of dealing with

autonomy, distribution, scalability and disturbance (Bi et al., 2008). The distributed

and redundant nature of agent-based control systems minimizes the effect of local

failure on the overall functionality of the system (Vrba and Marik, 2009). This is

also confirmed by simulations performed by Lepuschitz et al. (2009), showing that

agent-based control is “extremely robust against disturbances of machines, as well

as failure of control units”.

2.3.1.5. Implementations of MASs

There have been several practical implementations of agent-based control. The

ADACOR architecture (described in section 2.2.3) was implemented on a test

production system, using multi-agent technology, by Leitao and Restivo (2008).

The production system consisted of a manufacturing cell, an assembly cell, a

storage and transportation cell and a maintenance and setup cell. The control system

was then integrated with PLCs and PCs (running different software platforms),

various robots and vision sensors and an Automatic Guided Vehicle (AGV).

Candido and Barata (2007) implemented a multi-agent control system for the

NovaFlex shop floor assembly case study. The NovaFlex system is composed of

two assembly robots, an automatic warehouse and a transport system connecting all

the modules. DaimlerChrysler’s Production 2000+ project implemented an agent-

based control system for a flexible cylinder head production system. This

production system is composed of modules, each consisting of a CNC machine,

three conveyors, two switches and a shifting table (Marik et al., 2010). Marik et al.

(2010) also reported an agent-based control solution which added flexibility to a

steel rod bar mill for BHP Billiton. A multi-agent control system was also

implemented in the holonic packing cell of the Centre for Distributed Automation

and Control (CDAC) at the University of Cambridge. Recently, MASs were

implemented as a key technology in four European innovation projects focussed on

the development of CPPSs (Leitao et al., 2016).

Even though there have been several test cases and some industrial

implementations, the manufacturing and assembly industry is still hesitant to apply

agent-based technologies. Candido and Barata (2007) give four reasons for this

hesitation and a fifth is mentioned by Marik et al. (2010):

 A paradigm misunderstanding still exists due to a lack of practical test cases.

 Members of the industry are still unaware about the changes in modern

manufacturing and assembly requirements.

 There is a lack of experience in agent-based technology by actual system

integrators.

 There is a pioneering risk involved in investing in an unproven technology.

 The unpredictability of emergent behaviour in agent-based systems

complicates the quantitative comparison to other technologies.

Stellenbosch University https://scholar.sun.ac.za

23

2.3.2. IEC 61499 Function Blocks

The IEC 61499 standard specifies a framework for distributed and embedded

control using function blocks. The ability to control distributed systems has made

this approach a candidate for use in holonic and reconfigurable manufacturing

systems.

2.3.2.1. IEC 61499 Standard

The IEC 61499 standard is a successor to the IEC 1131 standard, which later

became IEC 61131. The IEC 1131 standard is aimed at control applications in

PLCs. The standard provides specifications ranging from PLC programming to the

fieldbus communication of applications in PLCs. The standard is divided into

several parts dealing with the various aspects concerning PLCs. The IEC 61131-3

part of the standard deals with the programming of PLCs. According to

Lewis (1998), this part of the standard aims to improve the following aspects of

PLC programming:

 Capability of a system to perform its intended design functions.

 Availability of a system during its life cycle when it is available for its

intended design functions.

 Usability, which indicates the ease with which a specified set of users can

acquire and exercise the ability to interact with the system in order to

perform its intended design functions.

 Adaptability, which refers to the ease with which a system may be changed

in various ways from its initial intended design functions.

The IEC 61131 standard has had implied limitations when dealing with complex

computations, knowledge processing, advanced network messaging and service

orientation (Vrba and Marik, 2009). The IEC 61499 standard addresses these

limitations and extends the IEC 61131 standard by adding event-driven execution.

The IEC 61499 standard was also developed, according to Rooker et al. (2007), to

address the following shortcomings of its IEC 61131 predecessor:

 Non-deterministic switching points – this is due to the cyclic execution

policy which is implemented by the IEC 61131 standard.

 Lack of task level granularity1 complicates communication and re-

initialization.

 Jittering effects – a change in one system task influences the other tasks in

the system.

 The possibility of entering inconsistent states during system

reconfiguration, which may lead to deadlocks.

The IEC 61499 standard is then a developed set of specifications for distributed

processes and control systems (Wang et al., 2007). Black and Vyatkin (2009)

mention that the IEC 61499 standard “provides an architectural framework for the

design of distributed and embedded control systems” and has “undoubted

advantages concerning distributed automation” (Vrba et al., 2009). The IEC 61499

standard defines a component-based modelling approach using function blocks.

1 Presumably the extent to which control programs can be subdivided into smaller modules.

Stellenbosch University https://scholar.sun.ac.za

24

The standard enables the development of new technologies that aim to reduce

design efforts and enhance reconfiguration. The goal of the IEC 61499 standard is

“to offer an encapsulation concept that allows the efficient combination of legacy

representation forms (such as ladder logic) with the new object and component-

orientation realities” (Vyatkin, 2007). The IEC 61499 standard uses a bottom-up

approach in implementing decentralized control. This approach then starts at the

shop floor level, where it effectively prepares for the distributed placement of

holons (Paolucci and Sacile, 2005). The requirements for holonic control are thus

inherent in the IEC 61499 specification (Black and Vyatkin, 2009).

The function block of the IEC 61499 standard can be understood as an abstraction

that represents a component. This component can be implemented and controlled

by the function block software (Vyatkin, 2007). The function block concept is

applicable to the data encapsulation and adaptive process plan execution involved

in the assembly or manufacturing processes. The event-driven model of the function

blocks then adds intelligence and autonomy to the resources of the system,

increasing its decision-making ability (Wang et al., 2007).

2.3.2.2. Platforms for Function Block Control

There exists a few platforms and tools for the design of function block control

systems. The Function Block Development Kit (FBDK) is the most widely used

design platform (Black and Vyatkin, 2009). The model-view-control design pattern

for function blocks is also applied in FBDK. This platform also includes the

Function Block Run-Time (FBRT) environment. The entire platform is based on

Java programming structures. Another commercial support tool is that of the

ISaGRAF industrial control design software, which can also support the IEC 61499

function blocks (Black and Vyatkin, 2009).

2.3.2.3. Advantages of Function Block Control

Function blocks provide an advance from established ladder logic and structured

text programming languages, but its application extends past the simple

replacement of these systems. This is due to the inherent support for distributed

applications and the ability to provide a modelling and simulation platform with

well-defined interfaces (Black and Vyatkin, 2009).

Rooker et al. (2007) mention that the distributive properties of IEC 61499 function

blocks hold several advantages. The programmed function block networks are

directly mapped to the real system controllers and devices, where the execution

takes place. This facilitates the movement of functionality amongst controllers and

devices. This support of distribution then also facilitates the implementation of

component-based information. Another benefit of using IEC 61499 function blocks

is that, as a modelling language, it is directly executable and is thus ready for

simulation. This allows the testing of the control system prior to deployment. This

simulation model can then be seamlessly substituted by a hardware interface to real

sensors and actuators. The use of function blocks also greatly increases the

modularity of the system and enables the reusability of software components in the

system (Black and Vyatkin, 2009). Function blocks also have a robust character

Stellenbosch University https://scholar.sun.ac.za

25

that makes it appropriate for implementation in the broader embedded systems

domain (Vyatkin, 2007).

2.3.2.4. Implementations of IEC 61499 Function Block Control

Due to the predominant presence of the IEC 1131-3 standard in industry and

relatively recent development of the IEC 61499, it has seen very few practical

implementations. IEC 61499 function block control was implemented in the

automation of a baggage handling system by Black and Vyatkin (2009). Vyatkin

(2007) describes the first factory installation of an IEC 61499 function block control

system by Tait Control Systems in New Zealand.

2.4. Erlang
Since its initial development for telecommunications switching systems (TSSs), the

Erlang programming language has been implemented in a wide field of

applications. This section provides a brief introduction of Erlang and OTP,

discusses the advantages that are offered and presents an overview of significant

implementations.

2.4.1. Erlang Programming Language

Erlang is a concurrent, functional programming language that was developed for

programming concurrent, scalable and distributed systems. The language was

developed at the Ericsson Computer Science Laboratory and implemented by

Ericsson from 1986 to 1998 (Armstrong, 2003). The development of Erlang was

inspired by an investigation into whether modern declarative programming

paradigms could be used for programming large industrial TSSs (Armstrong et al.,

1996). Table 1 summarises the design requirements of TSSs, matched with the

characteristics of Erlang.

Erlang owes its concurrency to the process model on which it is built. Processes, as

the basic unit of abstraction, are extremely lightweight with memory requirements

that can vary dynamically. Erlang processes are not operating system (OS) threads

– processes are implemented by the Erlang runtime system, which facilitates and

schedules the process execution within the OS (Logan et al., 2011).

Unlike OS threads, Erlang processes do not share a memory space. Process are

strongly isolated, having no shared memory, and can only interact through the

asynchronous sending and receiving of messages (Logan et al., 2011). These

characteristics not only allow many processes to work concurrently, but they can

also be distributed across many devices (referred to as nodes).

Erlang provides simple mechanisms for inter-process data exchange through

asynchronous message passing. To send a message, the “!” operator (called the

bang operator) is used. For example, to send a message to another process can

simply be done by:

ProcessID ! Message

Stellenbosch University https://scholar.sun.ac.za

26

Where ProcessID represents the unique process identifier or registered name of

the recipient process and Message is a variable storing the message content. To

receive and handle messages is equally simple. Every process has a mailbox that

stores incoming messages as they arrive. Messages can then be searched and

retrieved with the receive expression:

receive
 MessageTemplate1 -> Action1;
 MessageTemplate2 -> Action2
end.

The comparison of the received message to defined templates is called pattern

matching. The action that the process executes depends on the template that

matches to received message.

Table 1: Matching the requirements of TSSs to the characteristics of Erlang

(adapted from Däcker (2000)).

Requirements of programming technology

for TSSs
Erlang characteristics

Handling of a very large number of

concurrent activities.

Concurrency is provided through a lightweight

process concept which can be spread across

nodes.

Actions to be performed at a certain point in

time or within a certain time.

Erlang operates in soft real time (where

response times in the order of milliseconds are

required).

Systems distributed over several computers.

An Erlang system may contain nodes

distributed over many computers running

different operating systems, over a network.

Interaction with hardware.

Erlang can easily communicate with hardware

drivers and programs written in other

languages.

Very large software systems.

Erlang is based on the modularity concept,

which allows for the expansion of the control

program.

Complex functionality such as feature

interaction2.
Depends on the application.

Continuous operation for many years.

Erlang permits hot code loading, so that the

system does not have to be stopped for any

maintenance or reconfigurations.

Performing software maintenance,

reconfiguration, etc. without stopping the

system.

Erlang permits hot code loading, so that the

system does not have to be stopped for any

maintenance or reconfigurations.

Stringent quality and reliability requirements. Depends on the application.

Fault tolerance to both hardware failures and

software errors.

Erlang contains functions to catch and contain

run-time errors, and to design supervision

structures.

2 Feature interaction is a euphemism for the concept that complicated systems have complicated

behaviour, and that every time you add a feature to a system, it is likely to have unpredicted and

unwelcome effects on the behaviour of existing features.

Stellenbosch University https://scholar.sun.ac.za

27

The process model enables Erlang as a concurrent programming language, but the

language is also functional. Logan et al. (2011) summarise the main concepts of

functional programming as:

 functions are treated as data – just like strings or integers;

 algorithms are expressed in terms of function calls, instead of loop

constructs like for and while;

 and variables and values are not updated in place – a property termed

referential transparency3.

Erlang implements the above-mentioned concepts, but is not a “pure” functional

language as Erlang relies on side effects. However, the reliance on side effects is

limited to one operation – message passing. Each message represents an effect on

a component of the program or outside world. Apart from this effect, each Erlang

process essentially runs a functional program.

In order to aid the reader in understanding the Erlang code presented in this

dissertation, a brief overview of the syntax is presented in Table 2. Erlang was

initially implemented in the Prolog programming language and inherited many of

its syntactical conventions.

Table 2: Erlang syntactical conventions.

Data type/

construct
Description Syntactical convention Example(s)

Atom

A special kind of

string constant,

similar to enum

constants in C.

Starts with a lowercase letter

ok
error
undefined

Tuple

A fixed-length

ordered sequence

of other Erlang

terms.

Written within curly

brackets

{1, two, 3}
{nested, {structure}}

List

An collection of

Erlang terms with

variable length.

Written within square

brackets

[1, two, 3]
[list, {with, tuple}]
[nested,[list]]

Process

identifier

A unique

identifier for an

Erlang process.

Three integers enclosed in

angle brackets
<0.35.0>

Variable

Construct for

storing Erlang

terms.

Start with an uppercase letter

Name
SomeInfo
Some_info

Function

A collection of

related Erlang

expressions.

Function name starts with a

lowercase letter, followed by

input arguments within

round brackets

execute()
add(1,2,3)
get_message(Message)
do_something()

3 Logan et al (2011) explain reference transparency as follows: if a process obtains some value or

term, and assigns a name to it (i.e. assign the value to a variable), then it is guaranteed that the value

of the variable will not change, even if a reference thereof is passed to some other part of the

program.

Stellenbosch University https://scholar.sun.ac.za

28

2.4.2. OTP

The Erlang language is supplemented by the Open Telecom Platform (OTP). In

1995, Ericsson decided to restart a failed C++ project, using Erlang instead. The

project was a success, largely due to the work of the Erlang language support

department on the development of OTP (Logan et al., 2011).

OTP includes a set of Erlang libraries and design principles, providing middleware

to develop Erlang systems (Anonymous, s.a. (a)). OTP includes the following

components (Armstrong, 2003):

 Compilers and development tools for Erlang.

 Erlang run-time systems for a number of different target environments.

 Libraries for a wide range of common applications.

 A set of design patterns for implementing common behavioural patterns.

 Educational material for learning how to use the system.

 Extensive documentation.

From a design and implementation perspective, the primary aim of OTP is to

improve robustness and uniformity (Armstrong, 2003). The OTP behaviour

libraries were developed and tested by expert programmers over several years.

Furthermore, behaviours hide the complexity and exposes simple, generic

interfaces to the developer. Behaviours also enforce a regular structure, leading to

uniformity in the design and implementation of solutions. This uniformity allows

for increased productivity and fewer errors in multi-programmer environments.

2.4.3. Advantages of Erlang/OTP

Traditionally, concurrency in a programming language has been achieved with

threads. The execution of a program is split into concurrently running tasks,

operating on shared memory. This leads to problems that can be hard to debug, such

as the lost update problem. A solution to this is the use of locks, but this may lead

to a deadlock problem. The Erlang processes have no shared memory, which

eliminates the above-mentioned problems with threading. The Erlang processes are

also very lightweight, making process creation orders of magnitude faster than

thread creation in most programming languages (Armstrong, 2003).

Erlang holds a critical advantage over other programming languages when it comes

to robustness. Erlang has improved fault-tolerance due to its inherent fault-isolation

structure. Armstrong (2003) explains that processes act as abstraction boundaries,

limiting the propagation of errors through the software. OTP contributes

significantly to the robustness of Erlang applications in providing a reliable, stable

code base in behaviours (Logan et al., 2011). OTP also includes the supervisor

behaviour, which facilitates the implementation of supervision trees to monitor

processes and trap and handle errors.

The Erlang run-time environment is independent of the properties of the host

operating system (Armstrong, 2003). The Erlang processes, and their concurrent

operation, synchronization and interaction, are handled by the programming

language and not by the operating system. Erlang makes use of very little operating

Stellenbosch University https://scholar.sun.ac.za

29

system services, and can thus be ported to specialised environments (such as

embedded systems) with relative ease.

Erlang/OTP has primitives that allow code to be replaced in a running system,

enabling old and new versions of code to execute at the same time (Däcker, 2000).

When a new module is loaded, newly started process will run the new version, while

on-going processes will continue and finish undisturbed. This capability enables the

uploading of bug fixes and upgrades in a running system without disturbing the

current operation.

Since Erlang processes share no memory and interaction is only done through

message passing, programs can very easily be distributed (Armstrong, 2003).

Erlang programs that are designed for implementation as independent, concurrent

processes can be implemented on a multi-processor or run on a distributed network

of processors. This distributive characteristic is thus inherent in the Erlang design.

Wiger (2001) claims that comparisons, made between internal software

development projects at Ericsson, have shown that Erlang allows for much higher

productivity. When compared with C++, Erlang applications resulted in a ten-fold

reduction in the number of uncommented source code lines – other comparisons

have indicated a four-fold reduction. The same relationship tends to exist with code-

error density (errors per line(s) of source code). The reuse of generic OTP

behaviours further enhances productivity.

Erlang/OTP also allows for integration with software written in other programming

languages. Ports allow programs to be called and interfaced to the Erlang

application in such a way that they appear to the programmer as if they were written

in Erlang (Armstrong et al., 1996).

2.4.4. Erlang Implementations

Armstrong (2010) provides a short overview of the most significant implementation

areas for Erlang/OTP:

 Switches – The largest implementation with Erlang, to date, is Ericsson’s

AXD301 asynchronous transfer mode switch. The switch contains 1.6

million lines of Erlang code implementing a modular, distributed

architecture and achieving a scalable capacity between 10 Gbit/s to 160

Gbit/s.

 Instant messaging – Erlang’s usefulness for developing instant messaging

services for Internet applications is reflected in three projects: MochiWeb,

Ejabberd and RabbitMQ. MochiWeb is an Erlang library for building HTTP

servers with high-throughput, low-latency analytics and it used by Facebook

Chat to serve 70 million users. Ejabberd is an Erlang implementation of the

XMPP protocol and is amongst the most widely used open source XMPP

servers. RabbitMQ is an implementation of the Advanced Message Queuing

Protocol with Erlang, which provides reliable asynchronous message

passing.

Stellenbosch University https://scholar.sun.ac.za

30

 Schema-free databases – Erlang is well suited for the creation of databases

to store associative array or arbitrary tree-like data structures, as is reflected

by the CouchDB (open source) and Amazon SimpleDB (commercial)

implementations.

Stellenbosch University https://scholar.sun.ac.za

31

3. Case Study and Testbed System
This section describes the case study that is considered in the research, as well as

the testbed system that was developed to facilitate the evaluation of the holonic

control implementations. For the case study, the context and essential details are

provided. The need for a testbed system is motivated and the development thereof

is described – this description is followed by a paper that presents the use of an

object-oriented simulation framework to create an emulation model for the testbed

system.

3.1. Case Study Description
As case study, the research considers the proposed assembly and quality assurance

cell for electrical circuit breakers for the production of a South African

manufacturer, CBI Electric Ltd. The presented research formed part of larger

research project conducted by the MAD research group at Stellenbosch University,

which entailed the design and demonstration of a manufacturing cell to replace an

existing manual labour production line.

The assembly and quality assurance cell poses all the challenges faced by modern

manufacturing – the cell must be capable of handling product variation and

fluctuating production volumes, with minimal changeover time and effort. The cell

is thus considered suitable for design and implementation as a HMS.

The layout for the assembly and quality assurance cell is shown in Figure 6. A

modular, palletized conveyor system transports the circuit breakers between the

various automated and manual workstations, each performing a specified

production task. The cell consists of the following workstations:

 Manual assembly station – the sub-components of circuit breakers are

assembled and placed on empty carriers on the conveyor.

 Inspection station – a machine vision inspection is performed on the circuit

breakers as the carriers are moved by the conveyor.

 Electrical test station – circuit breakers are picked up by a robot and placed

into testing machines. The testing machines perform the necessary

performance and safety tests on every breaker. When the testing is

completed for a breaker, it is removed from the testing machine by the robot

and placed on an empty carrier on the conveyor.

 Stacking station – multiple circuit breakers are stacked to produce multi-

pole circuit breakers. The breakers are removed, stacked and placed on

empty carriers by a robot.

 Riveting station – the casings of the circuit breakers are manually riveted

shut.

 Removal station – the completed circuit breakers are removed from carriers.

The breakers are then moved to the next cell for packaging.

The conveyor moves product carriers between the various workstations. The

conveyor is equipped with stop gates and lifting stations at every workstation. The

carriers are fitted with Radio Frequency Identification (RFID) tags and RFID

Stellenbosch University https://scholar.sun.ac.za

32

readers are placed at multiple positions along the conveyor, to provide feedback of

carrier location.

3.2. Testbed System
In order to investigate the case study and facilitate the implementation of holonic

control, a testbed system was developed. The testbed system design followed the

layout of the assembly and quality assurance cell, as shown in Figure 6.

The assembly and quality assurance cell was only proposed as a design and thus the

hardware was not available to construct a real testbed system. Instead, the testbed

system was constructed as an emulation model, representative of the cell’s low level

control and hardware, using the Simio simulation framework.

The model was developed to provide a realistic emulation of the production

processes of the manufacturing cell. The emulation entailed the following:

 The provision of a mechanism for receiving inputs from the control

software.

 The execution of the manufacturing processes in reaction to received

inputs.

 The provision of feedback from the execution of manufacturing processes

to the control software.

 The visualization of the processes of the manufacturing cell.

The emulation was designed with a TCP/IP interface that replicated those that

would be used when using a real testbed system. In previous implementations, the

MAD research group used TCP/IP sockets as a generic communication interface

between the high and low level control programs.

Figure 6: Layout of the assembly and quality assurance cell.

Stellenbosch University https://scholar.sun.ac.za

33

The use of Simio to construct an emulation model for the testbed system is

presented as a paper in the next section – “Validation of a Holonic Controller for a

Modular Conveyor System using an Object-oriented Simulation Framework”

(Kruger and Basson, 2017 (c)). The paper describes the use of the Simio simulation

framework to emulate manufacturing processes by receiving execution commands

as inputs and providing output information on execution status and events. A

discussion of the Interpreter application, which provides a communication interface

between the holonic control software and the Simio emulation model, is also

included. The paper was presented at the sixth international workshop on Service

Orientation in Holonic and Multi-Agent Manufacturing (SOHOMA) in Lisbon,

Portugal, in 2016.

Stellenbosch University https://scholar.sun.ac.za

34

3.3. Validation of a Holonic Controller for a Modular Conveyor System

using an Object-Oriented Simulation Framework

Karel Kruger a,* and Anton Basson a
a Dept of Mechanical & Mechatronic Eng, Stellenbosch Univ, Stellenbosch 7600, South Africa

* Corresponding author. Tel: +27 21 808 4258; Fax: +27 21 866 155 206;

kkruger@sun.ac.za

Abstract

This paper presents the use of a commercial, object-oriented simulation framework

to facilitate the validation process of a holonic controller. The case study involves

a holonic controller for a modular conveyor system. The holonic control is

implemented using Erlang and thus exploits the scalability and concurrency

benefits it has to offer – the simulation model and necessary interfacing was then

customized to accommodate the nature of the implementation. The simulation

model interface, incorporating TCP communication and Windows Communication

Foundation services, was designed to mirror that of the conveyor hardware to allow

for the seamless changeover between emulated and real operation.

Keywords: Emulation; Holonic Manufacturing Systems; Reconfigurable

Manufacturing Systems; Manufacturing Execution Systems

3.3.1. Introduction

Modern markets have enforced a new set of requirements on the manufacturing

industry – increased adaptability to accommodate market trends and fluctuations,

shorter lead times, increased product variation and customizability [1], [2]. This

was already anticipated more than two decades ago [3] and, since then, research has

been done on many aspects concerning the transformation of modern

manufacturing systems.

A popular approach used in several studies and implementations, is that of holonic

systems. This idea, originally presented by Koestler [4], can be understood within

the manufacturing system environment as the division of a system into autonomous,

cooperating entities which work together to accomplish the system functions [5].

The holonic approach to manufacturing systems have provided many benefits –

enhanced system scalability, customizability and fault tolerance, which lead to

increased system reconfigurability and reliability, and reduced complexity [6]. As

can be expected, holonic systems have encountered some challenges – of which the

most relevant to this paper is that of system validation.

The validation of manufacturing systems can be understood as the means to test the

system and obtain assurance that the system functions as desired. The validation of

holonic systems can be difficult since the system functions are distributed over

several processes and/or controllers. Since holonic systems are based on holon

cooperation and is often distributed, it becomes harder to validate a control

application [7].

Stellenbosch University https://scholar.sun.ac.za

35

Regarding the validation of holonic systems, there has been some research done

into tools to aid in the endeavour. One example is that of the Multi-Agent

Simulation Tool (MAST) presented in [8]. MAST uses a multi-agent system to

control a graphical simulation. A discussion of the use of simulation in holonic

systems is presented in [9].

There are several simulation software packages available which have been used in

many different fields and applications. One such package is Simio, a modelling

framework based on object-oriented principles [10]. The inherent architecture of

Simio fits well with the idea of holonic systems and is discussed further in section

3.3.2.

This paper describes the use of the Simio simulation framework to validate a

holonic control implementation through hardware emulation. The hardware

emulation is configured to extend the holonic principles of the higher level control

architecture by facilitating control distribution and modularity within the simulation

framework.

For a case study implementation the control and emulation of a modular, palletized

conveyor system is used. Conveyor systems entail complex interactions and logic,

and require significant programming and testing efforts during commissioning and

reconfiguration activities. These challenges motivate the need for a simulation tool

to validate the routing and control logic – especially for systems large in size and

complexity – to decrease lead and ramp-up times.

This paper presents a discussion of the holonic architecture, with focus on the

inclusion and use of the Simio emulation model to facilitate the control validation.

The validation process and the useful tools provided by Simio are also discussed.

3.3.2. Simio Modelling Framework

[11] presents Simio as a graphical modelling framework which implements object-

oriented principles in both the simulation logic programming and the construction

of simulation models. Simio provides the developer with the infrastructure to build

up a simulation model with customizable objects. The behaviour of the Simio

objects can be customized by adding processes that define the execution logic.

Processes are sequences of steps that are executed in a thread of execution. Steps

perform some specified function, such as handling or triggering events that

influence the state of the object.

Furthermore, Simio is programmed in Microsoft Visual C# - this opens the

framework for incorporation with powerful tools like .NET and Windows

Communication Foundation (WCF). Simio also explicitly provides an API for C#,

which provides several useful functions for the construction and running of Simio

models.

3.3.3. Holonic Cell Control

At cell control level, a holonic architecture was implemented in accordance with

the PROSA [12] reference architecture. As is clear from Figure 7, the modular

Stellenbosch University https://scholar.sun.ac.za

36

conveyor system is represented as a Resource holon at cell control level. The

conveyor holon is comprised of three components – High Level Control (HLC),

Low Level Control (LLC) and the physical hardware. The HLC component

represents the holon in the virtual cell control environment. This component

handles all communication with the holons in the cell, such as service bookings,

service cancellations, etc. The HLC activates execution of a desired service through

communication with the LLC component. The LLC has interfaces with the physical

actuators and sensors of the hardware and can thus coordinate the sequence of

hardware actions required to perform a desired service.

Order Holons Staff HolonsProduct Holons

Conveyor HLC Station A HLC Station Z HLC

. . .
Conveyor LLC Station A LLC Station Z LLC

R
e

so
u

rc
e

 H
o

lo
n

s

Conveyor Holon Station A Holon Station Z Holon

Figure 7: Manufacturing cell control architecture.

3.3.4. Conveyor Holon

3.3.4.1. Holonic Controller

The Conveyor holon component which forms part of the PROSA cell control

application is implemented using Erlang. Erlang is a functional programming

language with inherently strong scalability, concurrency and fault-tolerance

characteristics.

The Conveyor holon HLC implementation was aimed at exploiting the modularity

and scalability advantages that Erlang offers. The HLC component is itself

implemented as a collection of holons which encapsulate, and through cooperation,

constitute the Conveyor holon functionality. A detailed description is given in [13].

3.3.4.2. Interpreter

The Interpreter program provides a link between the holonic controller and the

emulation model. The Interpreter maintains an interface to the holonic controller

Stellenbosch University https://scholar.sun.ac.za

37

that is similar to that of the low level PLCs of the conveyor (shown in Figure 8) –

this interface facilitates TCP communication over multiple ports (the same number

as the number of PLCs used in real operation). The Interpreter program creates a

link to the emulation model by making use of the Windows Communication

Foundation (WCF) services. The two mentioned interfaces are discussed in the

following sections.

Conveyor HLC

Conveyor LLC

Conveyor Holon

Conveyor HLC

Interpreter

Conveyor Holon

(a) (b)

Figure 8: Conveyor holon architecture for (a) real and (b) simulated

operation.

3.3.4.2.1. TCP Communication with HLC

As mentioned, the Interpreter program facilitates TCP communication which

emulates the communication to the PLCs that control the conveyor hardware. To

the Erlang-based holonic controller programs, there is no difference in the

communication whether real operation or emulation is performed.

The Interpreter program maintains a port for every PLC that is installed on the

conveyor. To communicate the information received from the holonic controller to

the emulation model, the Interpreter program parses XML encoded strings received

over the TCP ports. The parsing extracts the critical information that must be

communicated to the emulation model. In the same way the PLCs will provide

notifications based on the feedback of their connected sensors, the emulation model

provides feedback based on events in the emulation model. This feedback

information is then encoded into an XML string and is sent via the TCP port to the

holonic controller.

3.3.4.2.2. WCF Interface with Emulation Objects

In order to interface the Interpreter C# program with the Simio objects during

runtime, WCF was chosen to provide the infrastructure for communication. WCF

is a software development kit for implementing services on the Windows operating

Stellenbosch University https://scholar.sun.ac.za

38

system. Services, in this case, refer to units of functionality and coincide with that

used in service-orientation principles. [14]

In the Interpreter program, WCF is used to host a service that exposes both events

and event handlers. The service can be accessed by clients through bindings, which

are configured in a service contract. The service contract allows the various

EventInterface step object instances in Simio (discussed in section 3.3.5), which

form part of the model processes, to trigger an event that will be handled by the

Interpreter program. The contract also allows for the Interpreter program to trigger

an event which is handled by the EventInterface objects.

Using the WCF service, the process step of each transfer node in the Simio model

triggers a “notification” event that is handled by the Interpreter. This event is

triggered whenever a carrier arrives at a transfer node and the carrier name is

supplied as an event data parameter. This notification is forwarded as an XML

string to the HLC.

With the notification received, the HLC must determine to which transfer node the

carrier in the model must be directed next. This information is then sent to the

Interpreter program, where an event is triggered (the name of the next transfer node

is specified in the event information). This event is then handled by the process step

of the relevant transfer node and the extracted information is used to direct the

carrier in the desired direction.

3.3.5. Conveyor Model

The Simio emulation model for the conveyor is shown in Figure 9. As will be

explained in the following sections, the model is constructed using standard Simio

objects and the logic is implemented through Simio processes with customized

process steps.

Figure 9: Conveyor emulation model.

Stellenbosch University https://scholar.sun.ac.za

39

3.3.5.1.1. Simio Model

The conveyor system is modelled as a network of nodes linked by transitions (also

referred to as paths or links). Nodes are points on the conveyor where two or more

transitions meet – on the physical system, nodes are implemented by stop gates

(usually in combination with lifting stations or transverse conveyors, and are

equipped with RFID readers), as is shown in Figure 10. These physical entities can

be modelled in Simio by transfer node objects for node entities and either conveyor

objects (for one-directional transitions) or path objects (for bi-directional

transitions).

The model of the conveyor also includes means of carrier storage (i.e. a mechanism

to unload or store carriers). For the conveyor used in this case study, this function

is performed by an automated carrier magazine. The same functionality can be

achieved in the emulation model by using the source and sink standard Simio

objects. The source object unloads carriers for the conveyor and the sink model

stores carriers.

Figure 10: Schematic of the conveyor with all nodes indicated

3.3.5.1.2. Simio Processes

The behaviour of the standard Simio transfer node objects can be customized by

adding processes to the object instance. Processes are constructed through a

specified sequential execution of functional steps. The processes are executed when

specific events occur – in the transfer node case, when an entity (carrier) enters the

transfer node and the “entered” event is triggered. The process executed when the

“entered” event is triggered is shown in Figure 11.

Figure 11 shows the process which is executed by transfer node objects when they

are entered by an entity object. When an entity enters a transfer node, the first step

executed in the process is NotifyReady. During this step, the notification event is

triggered which is handled by the Interpreter. The step then also subscribes to the

event that the Interpreter will trigger when it receives a message from the HLC

specifying the next transfer node. When the event is triggered and handled by the

NotifyReady step, the process next enters an Execute step – this Execute step then

calls the SetNode process, which uses the obtained event information to specify the

node to where the entity must be directed.

Source &
sink nodes

Stellenbosch University https://scholar.sun.ac.za

40

3.3.5.1.3. Conveyor Emulation

During operation, the first task for the conveyor will be to unload a carrier from

storage onto the conveyor – this unload task will be initiated from the controller.

This unloaded carrier will be moved to some location, as controlled by a

corresponding process in the holonic controller. After unloading, the carrier will

arrive at the first transfer node and a notification will be sent to the Interpreter

program, where it will be encoded into an XML string and be forwarded to the

holonic controller. The controlling process can then react to this notification and

send an XML string to the Interpreter which specifies the next transfer node to

where the carrier must be moved. The transfer node currently occupied waits for

this command to be received from the Interpreter and subsequently directs the

carrier on the desired path towards the desired next transfer node.

3.3.6. Control Validation

Validation, in this context, refers to the assurance that the holonic control

application is performing the system functions as desired. The emulation of the

conveyor system using a Simio model offers several advantages for the validation

of the control logic.

An important advantage is the ability to perform long-running emulations in short

times, as the execution speed of the emulation model can be controlled. Also, the

use of Simio emulation allows for testing of specific production scenarios – this is

especially useful in the event of reconfiguration. The initial conditions of the

emulation environment can be customized to adhere to some HLC scenario – i.e.

the conveyor emulation can begin with a “clean” startup, or with carriers in

predefined locations. The combination of Erlang and Simio simplifies this process

– the stateless nature of Erlang programs allow for the various system holons to be

launched with specific state data, while the “open” nature of Simio, together with

the C# API functions, provide the infrastructure to create custom scenarios.

Even though the research community is still striving toward standardized

benchmarks for the performance of holonic systems, the collection of performance

data is critical for the validation process. Simio incorporates the functionality to

record and process diagnostic data from a performed emulation – this can include

Figure 11: Simio processes for conveyor node objects.

Stellenbosch University https://scholar.sun.ac.za

41

information on travelled carrier paths and times, collision detection and time-out

errors.

Two quantitative measurements that are easy to obtain through this presented

Erlang-Simio application, are throughput and resource utilization. For the

conveyor, Simio reports data on each conveyor segment – e.g. the throughput,

maximum and minimum carriers present at a given time and average time spent by

carriers in that segment. When the other Resource holons are also integrated in the

Simio emulation, Simio can report the time a specific resource was used during the

total emulation time.

3.3.7. Conclusion and Future Work

This paper presented the use of simulation software in the validation of a holonic

control implementation. The case study focused on the validation of an Erlang

based holonic controller for a modular conveyor system, where Simio is used to

provide a hardware emulation model.

To create an interface between the holonic controller and the emulation model, an

Interpreter program was developed. The Interpreter program maintains an interface

that emulates that of the physical conveyor system by handling TCP communication

on multiple network sockets. The Interpreter also provides the means for

communication with the emulation model using several instances of WCF services.

With further enhancement, the use of the Simio emulation model could prove to be

valuable in the control validation process. The emulation of customized production

scenarios is a great advantage in the context of reconfigurable manufacturing

systems. The object-oriented nature of Simio also strongly resembles the principles

of holonic systems and it thus interfaces well with higher level holonic control

implementations.

Future work will entail the enhancement of the Simio emulation, with particular

focus on enriched information flow between the control and emulation levels, and

also the incorporation of measurement tools within Simio to capture and interpret

diagnostic information from emulation experiments. Further work will be done on

the construction of Simio models to accurately represent the real system

components.

3.3.8. References

1. Z.M. Bi, S.Y.T. Lang, W. Shen, and L. Wang., “Reconfigurable

Manufacturing Systems: The State of the Art”, International Journal of

Production Research, Vol. 46, No. 4: 967 – 992, 2008.

2. Y. Koren and M.Shpitalni, “Design of Reconfigurable Manufacturing

Systems”, Journal of Manufacturing Systems, Vol. 29, pp. 130-141, 2010.

3. Y. Koren, U. Heisel, F. Jovane, T. Moriwaki, G. Pritschow, G. Ulsoy and

H. Van Brussel, “Reconfigurable Manufacturing Systems”, Annals of CIRP,

Vol. 48, No. 2:527-540, 1999.

Stellenbosch University https://scholar.sun.ac.za

42

4. A. Koestler, The Ghost in the Machine, London: Arkana Books, 1967.

5. M. Paolucci and R. Sacile, Agent-Based Manufacturing and Control

Systems, London: CRC Press, 2005.

6. D. Kotak, S. Wu, M. Fleetwood and H. Tamoto, “Agent-Based Holonic

Design and Operations Environment for Distributed Manufacturing”,

Computers in Industry, Vol. 52: 95–108, 2003.

7. P. Leitao and F.J. Restivo, “ADACOR: A Holonic Architecture for Agile

and Adaptive Manufacturing Control”, Computers for Industry, Vol. 57,

No. 2: 121–130, 2006.

8. P. Vrba, “MAST: Manufacturing Agent Simulation Tool”, Proceedings of

the IEEE Conference on Emergent Technology for Factory Automation,

Vol. 1, 2003.

9. P. Valckenaers and H. van Brussel, Design for the Unexpected, 1st edition,

Butterworth-Heinemann, ISBN: 9780128036624, 2015.

10. C.D. Pegden, “Simio: A New Simulation System Based on Intelligent

Objects”, Proceedings of the 2007 Winter Simulation Conference, pp. 2294-

2300, 2007.

11. C.D. Pegden, “Introduction to Simio”, Proceedings of the 2008 Winter

Simulation Conference, pp. 229-235, 2008.

12. H. Van Brussel, J. Wyns, P. Valckenaers, L. Bongaerts and P. Peeters,

“Reference Architecture for Holonic Manufacturing Systems: PROSA”,

Computers in Industry, Vol. 37: 255 – 274, 1998.

13. K. Kruger and A.H. Basson, “Erlang-based Holonic Controller for a

Modular Conveyor System”, SOHOMA’16 Workshop on Service

Orientation in Holonic and Multi-Agent Manufacturing, submitted for

publication.

14. J. Lowy and M. Montgomery, Programming WCF Services, 4th edition,

O’Reilly Media, 2015.

Stellenbosch University https://scholar.sun.ac.za

43

4. Erlang Holonic Control Implementation
This section describes the development of a holonic control implementation using

Erlang. The development is documented in three papers, each presented in a

dedicated subsection.

The first paper, “Implementation of an Erlang-based Resource Holon for a Holonic

Manufacturing Cell” (Kruger and Basson, 2015), is presented in section 4.1 and

describes the implementation of a Resource holon using Erlang. The holon internal

architecture is described in terms of the functional components and inter- and intra-

holon communication. The paper also presents the case study implementation of

the Erlang-based Resource holon for a pick-‘n-place robot. The paper was presented

at the fourth international workshop on Service Orientation in Holonic and Multi-

Agent Manufacturing (SOHOMA) in Nancy, France, in 2014.

In section 4.2, the second paper presents a methodology for implementing holons

using Erlang and is titled “Erlang-based Control Implementation for a Holonic

Manufacturing Cell” (Kruger and Basson, 2017 (a)). The methodology provides

guidelines for the implementation of holon functionality and the facilitation of

communication in holonic control implementations. An implementation of the

presented methodology is illustrated through the extension of the case study

introduced in section 4.1. This paper was published in the International Journal of

Computer-Integrated Manufacturing in March of 2017.

The third paper, “Erlang-based Holonic Controller for a Modular Conveyor

System” (Kruger and Basson, 2017 (c)), is included in section 4.3 and describes the

holonic control implementation for a conveyor system. The development of a

holonic controller was required for the conveyor system that forms part of the

testbed system, as discussed in section 3.2. The controller for the conveyor system

was implemented using Erlang, providing an additional case study example. The

Erlang holonic controller is also used by the MAS implementation (discussed in

chapter 5) and is not included in the evaluation and comparison presented in

chapter 6. The paper was presented at the sixth international workshop on Service

Orientation in Holonic and Multi-Agent Manufacturing (SOHOMA) in Lisbon,

Portugal, in 2016.

Stellenbosch University https://scholar.sun.ac.za

44

4.1. Implementation of an Erlang-based Resource Holon for a Holonic

Manufacturing Cell

Karel Kruger a and Anton Basson a,*
a Dept of Mechanical & Mechatronic Eng, Stellenbosch Univ, Stellenbosch 7600, South Africa

* Corresponding author. Tel: +27 21 808 4250; Fax: +27 21 866 155 206;

ahb@sun.ac.za

Abstract

The use of holonic control in reconfigurable manufacturing systems holds great

advantages, such as reduction in complexity and cost, along with increased

maintainability and reliability. This paper presents an implementation of holonic

control using Erlang, a functional programming language. The paper shows how

the functional components of a PROSA Resource holon can be implemented

through Erlang processes. The subjection of a case study implementation to a

reconfigurability experiment is also discussed.

Keywords: Erlang/OTP; Holonic Manufacturing Systems; Reconfigurable

Manufacturing Systems; Manufacturing Execution Systems; Automation

4.1.1. Introduction

Reconfigurable Manufacturing Systems (RMSs) are aimed at addressing the needs

of modern manufacturing, which include [1]: short lead times for the introduction

of new products into the system, the ability to produce a larger number of product

variants, and the ability to handle fluctuating production volumes and low product

prices.

RMSs then aim to switch between members of a particular family of products, by

adding or removing functional elements, with minimal delay and effort [2, 3]. For

achieving this goal, RMSs should be characterized by [4, 5]: modularity of system

components; integrability with other technologies; convertibility to other products;

diagnosability of system errors; customizability for specific applications; and

scalability of system capacity. RMSs thus have the ability to reconfigure hardware

and control resources to rapidly adjust the production capacity and functionality in

response to sudden changes [1, 6].

A popular approach for enabling control reconfiguration in RMSs is the idea of

holonic control. Holons are “any component of a complex system that, even when

contributing to the function of the system as a whole, demonstrates autonomous,

stable and self-contained behaviour or function” [7]. Applied to manufacturing

systems, a holon is an autonomous and cooperative building block for transforming,

transporting, storing or validating information of physical objects.

Several experimental implementations of holonic control have been done using

agent-based programming (such as in [8]), often using JADE as development tool.

From our experiences with JADE, we believe there is room for improvement

concerning complexity, industry acceptance, robustness and scalability.

Stellenbosch University https://scholar.sun.ac.za

45

This paper describes the implementation of holonic control using Erlang. Erlang is

a functional programming language developed for programming concurrent,

scalable and distributed systems [9]. The Erlang programming environment is

supplemented by the Open Telecommunications Platform (OTP) - a set of robust

Erlang libraries and design principles providing middleware to develop Erlang

systems [10].

Erlang has the potential to narrow the gap between academic research and industrial

implementation. This is due to several advantages offered by the Erlang language,

such as increased productivity, reliability, maintainability and adaptability.

This paper describes an Erlang-based implementation of the control component for

a PROSA Resource holon in a reconfigurable manufacturing cell, focusing on:

 The functional components of a Resource holon which must be incorporated

by the Erlang implementation (section 4.1.2)

 A case study which demonstrates the Erlang-based holonic control

(section 4.1.3)

 The implementation of the functional components of Resource holon

control through Erlang/OTP processes (section 4.1.4)

 The reconfigurability of the Resource holon in reaction to changes in the

holon’s service specification (section 4.1.5).

4.1.2. Holonic Control

4.1.2.1. Holonic Architecture

There are several existing reference architectures which specify the mapping of

manufacturing resources to holons and to structure the holarchy (e.g. [11], [8]). Of

these reference architectures, the most prominent is that of PROSA [12].

PROSA (Product-Resource-Order-Staff Architecture) defines four holon classes:

Product, Resource, Order and Staff. The first three classes of holons are basic

holons, which interact by means of knowledge exchange. The process knowledge,

which is exchanged between the Product and Resource holons, is the information

describing how a certain process can be achieved through a certain resource. The

production knowledge is the information concerning the production of a certain

product by using certain resources – this knowledge is exchanged between the

Order and Product holons. The Order and Resource holons exchange process

execution knowledge, which is the information regarding the progress of executing

processes on resources.

Staff holons are considered to be special holons which aid the basic holons by

providing them with expert knowledge to reduce work load and decision

complexity.

4.1.2.2. Resource Holon Internal Architecture

A Resource holon requires several capabilities, such as communication, execution

control and hardware interfacing. The Resource holon model used for the

implementation is described in this section.

Stellenbosch University https://scholar.sun.ac.za

46

[13] explain that individual holons have at least two basic parts: a functional

component and a communication and cooperation component. The functional

component can be represented purely by a software entity or it could be a hardware

interface represented by a software entity. The communication and cooperation

component of a holon is implemented by software. [14] share a similar view of the

internal architecture of a resource holon, as is illustrated in Figure 13 (a).

The communication component is responsible for the inter-holon interaction – i.e.

the information exchange with other holons in the system. The decision-making

component is responsible for the manufacturing control functions, and so regulates

the behaviour and activities of the holon. The interfacing component provides

mechanisms to access the manufacturing resources, monitor resource data and

execute commands in the resource.

4.1.3. Case Study

The case study chosen for the presented Erlang-based holonic control

implementation, as shown in Figure 12, entails the testing of circuit breakers. The

station utilizes a pick-‘n-place robot to move circuit breakers from an incoming

fixture to specified tester slots, in a specified sequence. Upon completion of the

testing, the robot removes the circuit breakers and places them in the outgoing

fixture. Breakers on the same fixture may require testing in different tester slots,

which differ in testing parameters and times.

The robot utilized in the case study is a Kuka KR16 robot, fitted with two pneumatic

grippers at the end effector (only one of the grippers is used in this implementation).

A mock testing rack with four tester slots is used – the slots are fitted with a spring-

loaded clamp to hold the breakers in place during testing.

Figure 12: Circuit breaker test station.

Stellenbosch University https://scholar.sun.ac.za

47

4.1.4. Erlang-based Control Implementation

4.1.4.1. Product, Order and Staff Holon Implementation

Though not the focus of this paper, Product, Order and Staff holons are included in

the holonic control implementation. A Product holon for each type of circuit breaker

is included – this holon contains the information for testing parameters and

sequence. For each breaker on the incoming fixture an Order holon is launched to

drive production. These holons acquire the resource services necessary to complete

the testing process. A Staff holon is included to facilitate the allocation of resource

services to requesting Order holons.

4.1.4.2. Resource Holon Implementation

For the presented implementation a Resource holon was created for the robot and

each of the tester slots. While the implementation of the Robot holon is complete,

the service of the tester slot holons are simulated by replacing their hardware

components with timer processes.

For the Robot holon, the software components are implemented on a separate PC

which interfaces with the hardware via the robot’s dedicated controller. The internal

holon architecture, inter- and intra-holon communication and the holon functional

components are briefly discussed in this section (a detailed discussion is presented

in [15]).

 (a) (b)

Figure 13: (a) A generic (adapted from [14]) and (b) the adapted Resource

holon model.

Stellenbosch University https://scholar.sun.ac.za

48

4.1.4.2.1. Internal Architecture and Communication.

For the Erlang/OTP implementation, the internal architecture of a Resource holon

(Figure 13 (a)) is adapted to that shown in Figure 13 (b). Though the

Communication and Interfacing components are present in both models, the

Decision-making component in Figure 13 (a) is split into two components, namely

the Agenda Manager and Execution components.

The communication within the Erlang implementation can be classified as either

inter- or intra-holon communication. Inter-holon communication is the exchange of

messages between the different holons in the system, while intra-holon

communication refers to the messages sent between the holon’s software and

hardware components.

Messages follow the tuple format {Sender, Message}. Sender holds the

address of the process sending the message and Message holds the payload of the

message. The payload, for messages received by a resource holon, is in the form of

a record.

 In addition to the inter-holon communication, Figure 13 (b) also shows intra-holon

communication in terms of requests, results and execution information. As the

Communication component receives messages from other holons requesting a

service, request messages are formulated and forwarded to the Agenda Manager

component. The Agenda Manager processes the request and responds to the

Communication component, which in turn formulates and sends a reply to the

requesting holon. The Agenda Manager can also send a message to the Execution

component to activate execution. The Execution component parses the message to

extract the execution information which is passed on to the hardware. The hardware,

and subsequently the Execution component, gives feedback in the form of result

messages.

4.1.4.2.2. Holon Functional Components.

 The Resource holon model of Figure 13 (b) has four components: Communication,

Agenda Manager, Execution and Interfacing.

The Communication component of the Resource holon is responsible for

maintaining the inter-holon communication interface. It receives request messages

from other holons in the system, evaluates the message type and content and

forwards the message to the appropriate holon component. The holon component

then returns a result message, which the Communication component then sends to

the requesting holon.

The component is implemented as a single Erlang process running a receive-

evaluate loop. This recursive process receives messages from other holons and, by

means of pattern matching, identifies relevant messages and then forwards the

necessary information to the appropriate holon component. The Communication

component's process also receives intra-holon messages – by the same means the

messages are forwarded to the corresponding holon.

Stellenbosch University https://scholar.sun.ac.za

49

The Agenda Manager component manages the service of the Resource holon. The

component manages a list of service bookings by order holons and triggers the

Execution component, with the necessary execution information, according to the

agenda.

The Agenda Manager component is implemented through two processes - a

receive-evaluate loop, for receiving messages, and a generic finite state machine

(FSM) behaviour (using the OTP gen_fsm library). Through pattern-matching,

received messages are related to events which cause state transitions in the FSM.

The Execution component of the holon drives the hardware actions which constitute

the service(s) of the resource holon. It activates the sequential execution of

hardware functions, with the necessary execution information.

The Execution component is also implemented using a receive-evaluate loop, for

receiving messages, and a generic FSM behaviour. The required sequence of

hardware actions is formulated into this FSM. With each execution state, the

necessary activation and information messages are sent to the hardware via the

Interfacing component. The process receives feedback regarding the execution

status from the hardware – these messages are then used as events to trigger the

transitions between the states. When execution is completed, the execution result is

forwarded to the Agenda Manager and Communication components and ultimately

replied to the Order holon.

Figure 14 (a) shows the execution state diagram for the Robot holon. This example

shows three states: “ready”, “picking” and “placing” – each representing an

execution state of the robot. The FSM switches between states in accordance with

received messages from the Agenda Manager and the hardware.

The Interfacing component maintains the communication interface between the

Erlang control processes and the program on the robot controller. This component

isolates the hardware-specific communication structures from the Execution logic.

This component is implemented using a receive-evaluate loop for receiving

messages and a process for TCP communication. For TCP communication, the

process utilizes communication functions from the OTP gen_tcp and XML

functions from the XMErL libraries [16].

In addition to the OTP functionality used in the holon implementation described

above, more tools offered by Erlang/OTP are available for enhancing the

implementation. Two tools which can be very useful are the Supervisor and

Logging modules. For this implementation, a Supervisor process for all the

discussed components is included. The Supervisor process launches and shuts down

the processes in a specified order and restarts the components if they fail.

Erlang/OTP includes an error_logger module [17] which is used to output error,

warning and information reports to the terminal or to file. The format of these

reports can be customized according to the needs of the application.

Stellenbosch University https://scholar.sun.ac.za

50

4.1.5. Reconfiguration Experiment

A reconfiguration experiment was performed on the case study implementation to

demonstrate the reconfigurability of the Erlang-based Resource holon. The

experiment entailed a change to the service that is provided by the Robot holon –

more specifically, the service was adjusted to include a scanning operation. The

pick-‘n-place robot must then, prior to placing, bring the circuit breaker to the

vicinity of a scanner.

The added scanning function is only intended for diagnostic purposes and does not

entail a change to the product information. The addition then only affects the Robot

holon, and not the Order or Product holons.

The scanning function must be included in the Execution component of the Robot

holon. This means that an additional state must be added to the FSM. The state

diagrams of the FSM before and after the addition of the scanning function are

shown in Figure 14.

INIT

READY

PICKING

PLACING

Received
“ready” from

hardware

Received “placing
done” from
hardware

Received “start”
from Agenda

Manager

Received
“picking done”
from hardware

INIT

READY

PICKING

PLACING

Received
“ready” from

hardware

Received “placing
done” from
hardware

Transition with
event

Received “start”
from Agenda

Manager

Received
“picking done”
from hardware

Event

STATEState

SCANNING

Received
“scanning

done” from
hardware

(a) (b)

Figure 14: Execution state diagrams (a) before and (b) after adding the

scanning function.

The following code snippet shows the code for the FSM prior to the addition of the

scanning operation:

1) init(_) -> {ok,ready,[]}.
2) %STATE: ready
3) ready(Msg=#service{message_type=start,info=#coords{}},_)

->

Stellenbosch University https://scholar.sun.ac.za

51

4) robot_pi ! {robot_exec,
#service{message_type=start,
info=Msg#coords.pick_coords}},

5) {next_state,picking,[Msg#service.info]}.
6) %STATE: picking
7) picking(Msg=#service{message_type=done,result=true},
8) Coords) ->
9) robot_pi ! {robot_exec,

#service{message_type=start,
info=Coords#coords.place_coords}},

10) {next_state,placing,[]}.
11) %STATE: placing
12) placing(Msg=#service{message_type=done,result=true}, _)

->
13) robot_am ! {robot_exec,

Msg#service{message_type=done,result=true}},
14) {next_state,ready,[]}.

The states are defined as function heads (e.g. lines 3, 7 and 12) – the functions take

two input arguments: a transition event and the state data. When the transition event

occurs (e.g. a message is received), actions are performed and the new state is

specified. Here the actions involve sending messages to other processes using the

“!” operator (e.g. lines 4, 9 and 13). The new state to transition to is specified by

{next_state, StateName, StateData}, as is shown in lines 5, 10 and

14. The following code snippet shows the inserted code for the additional scanning

operation:

6) %STATE: picking
7) picking(Msg=#service{message_type=done,result=true},

Coords) ->

8) robot_pi ! {robot_exec,
#service{message_type=start, info=?ScanCoords}},

9) {next_state,scanning,[Coords]}.
10) %STATE: scanning
11) scanning(Msg=#service{message_type=done,result=true

}, Coords) ->

12) robot_pi !
{robot_exec,#service{message_type=start,

info=Coords#coords.place_coords},

13) {next_state,placing,Coords}.
14) %STATE: placing
15) placing(Msg=#service{message_type=done,result=true}

, _) -> …

The inserted code shows the definition of the new scanning state and, in lines 9 and

13, updates the transitions from and to the picking and placing states. The fixed

coordinates of the scanner are defined in the module as the macro ?ScanCoords.

Stellenbosch University https://scholar.sun.ac.za

52

The code shown above is added to the Execution FSM module and can, through hot

code-loading, replace the old FSM code while the holon is operating.

4.1.6. Conclusion

RMSs commonly employ holonic control architectures to enable the rapid

reconfiguration of hardware and control resources to adjust production capacity and

functionality. This paper shows that Erlang/OTP is an attractive solution for

implementing holonic control and presents an implementation of a Resource holon

as example.

The implementation example uses a pick-‘n-place robot as Resource holon. The

robot picks up circuit breakers from a fixture, places them in testers and ultimately

removes them again. The paper describes the implementation of the functional

holon components as Erlang processes, with specific use of the OTP generic finite

state machine library. The reconfigurability of the holon is demonstrated through

an experiment where an additional operation is added to the pick-‘n-place process.

The experiment shows that reconfiguration is easy, as the FSM code offers good

encapsulation of functionality and state transitions are clearly defined and easily

changed. The reconfiguration could also have been done during holon operation.

Future work will entail the expansion of the Erlang/OTP implementation to the

execution control system for an entire manufacturing cell, in which all of the

PROSA holons will be incorporated.

4.1.7. References

1. Bi, Z.M., Lang, S.Y.T., Shen, W. and Wang, L., 2008. Reconfigurable

Manufacturing Systems: The State of the Art. International Journal of

Production Research. Vol. 46, No. 4: 967 - 992

2. Martinsen, K., Haga, E., Dransfeld, S. and Watterwald, L.E., 2007. Robust,

Flexible and Fast Reconfigurable Assembly System for Automotive Air-

brake Couplings. Intelligent Computation in Manufacturing Engineering.

Vol. 6

3. Vyatkin, V., 2007. IEC 61499 Function Blocks for Embedded and

Distributed Control Systems Design. North Carolina: Instrumentation,

Systems and Automation Society, ISA

4. Mehrabi, M.G., Ulsoy, A.G., Koren, Y., 2000. Reconfigurable

Manufacturing Systems: Key to Future Manufacturing. Journal of

Intelligent Manufacturing. Vol. 13: 135 - 146

5. ElMaraghy, H., 2006. Flexible and Reconfigurable Manufacturing System

Paradigms. International Journal of Flexible Manufacturing System. Vol.

17:61-276

6. Bi, Z.M., Wang, L. and Lang, S.Y.T., 2007. Current Status of

Reconfigurable Assembly Systems. International Journal of Manufacturing

Research, Inderscience. Vol. 2, No. 3: 303 - 328

7. Paolucci, M. and Sacile, R., 2005. Agent-Based Manufacturing and Control

Systems. London: CRC Press

Stellenbosch University https://scholar.sun.ac.za

53

8. Leitao, P. and Restivo, F.J., 2006. ADACOR: A Holonic Architecture for

Agile and Adaptive Manufacturing Control. Computers in Industry. Vol. 57,

No. 2: 121-130

9. Armstrong, J., 2003. Making Reliable Distributed Systems in the Presence

of Software Errors. Doctor’s Dissertation. Royal Institute of Technology,

Stockholm, Sweden

10. Get Started with OTP. [S.a.]. [Online]. Available: http://www.erlang.org

(18 July 2013)

11. Chirn, J.L. and McFarlane, D., 2000. A Holonic Component-based

Approach to Reconfigurable Manufacturing Control Architecture.

Proceedings of the International Workshop on Industrial Applications of

Holonic and Multi-Agent Systems. pp. 219–223.

12. Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L. and Peeters, P.,

1998. Reference Architecture For Holonic Manufacturing Systems:

PROSA. Computers in Industry. Vol. 37: 255 – 274

13. Kotak, D., Wu, S., Fleetwood, M. and Tamoto, H., 2003. Agent-Based

Holonic Design and Operations Environment for Distributed

Manufacturing. Computers in Industry. Vol. 52: 95–108

14. Leitao, P. and Restivo, F.J., 2002. A Holonic Control Approach for

Distributed Manufacturing. Knowledge and Technology Integration in

Production and Services: Balancing Knowledge and Technology in Product

and Service Life Cycle. pp. 263–270. Kluwer Academic Publishers.

15. Kruger, K. and Basson, A.H., 2014. An Erlang-based Holon for

Reconfigurable Manufacturing Systems. Submitted To: Computers for

Industry.

16. XMErL Reference manual. [S.a.]. [Online]. Available:

http://www.erlang.org/doc/apps/xmerl (28 March 2014)

17. Erlang Kernel Reference Manual. [S.a.]. [Online]. Available:

http://www.erlang.org/doc/apps/kernel (28 March 2014)

Stellenbosch University https://scholar.sun.ac.za

54

4.2. Erlang-based Control Implementation for a Holonic

Manufacturing Cell

Karel Kruger a and Anton Basson a,*
a Dept of Mechanical and Mechatronic Eng, Stellenbosch Univ, Stellenbosch 7600, South Africa

* Corresponding author. Tel: +27 21 808 4250; Email: ahb@sun.ac.za

Abstract

Holonic control is generally used in reconfigurable manufacturing systems since

the modularity of holonic control holds the promise of easier reconfiguration,

reduction in complexity and cost, along with increased maintainability and

reliability. As an alternative to the commonly used agent-based approach, this paper

presents an Erlang-based holon internal architecture and implementation

methodology that exploits Erlang’s capabilities. The paper shows that Erlang is well

suited to the requirements of holonic and reconfigurable systems - due to strong

modularity, scalability, customizability, maintainability and robustness

characteristics.

Keywords: Erlang/OTP; Holonic manufacturing system (HMS); Reconfigurable

manufacturing system (RMS)

4.2.1. Introduction

The concept of Reconfigurable Manufacturing Systems (RMSs) is aimed at

addressing the needs of modern manufacturing, as have been shaped by aggressive

global competition and uncertainty resulting from dynamic changes in economical,

technological and customer trends (Leitao and Restivo, 2006). The critical

requirements for modern manufacturing systems include (Bi et al., 2008) short lead

times for the introduction of new products into the system, the ability to produce a

larger number of product variants and the ability to handle fluctuating production

volumes.

RMSs aim to switch between members of a particular family of products, by adding

or removing functional elements (hardware or software), with minimal delay and

effort (Martinsen et al., 2007; Vyatkin, 2007). RMSs are also designed to be able

to rapidly adjust the production capacity and functionality in response to sudden

changes, by reconfiguring hardware and control resources (Bi et al., 2008; Bi,

Wang, and Lang, 2007). RMSs therefore should be characterised by (Mehrabi,

Ulsoy, and Koren, 2000; ElMaraghy, 2006): modularity of system components,

integratability with other technologies, convertibility to other products,

diagnosibility of system errors, customizability for specific applications and

scalability of system capacity..

A popular approach for enabling control reconfiguration in RMSs is holonic control

architectures. The term holon (first introduced by Koestler in 1967) comes from the

Greek words “holos” (meaning “the whole”) and “on” (meaning “the particle”).

Holons are then “any component of a complex system that, even when contributing

to the function of the system as a whole, demonstrates autonomous, stable and self-

Stellenbosch University https://scholar.sun.ac.za

55

contained behaviour or function” (Paolucci and Sacile, 2005). When this concept is

applied to manufacturing or assembly systems, a holon is an autonomous and

cooperative building block for transforming, transporting, storing or validating

information of physical objects. A Holonic Manufacturing System (HMS) is then

“a holarchy (a system of holons which can cooperate to achieve a common goal)

which integrates the entire range of manufacturing activities” (Paolucci and

Sacile, 2005).

The application of the holonic concept to manufacturing control systems has been

a popular field of research since the early 1990’s. Even though several experimental

implementations have been reported, predominantly based on agent based

programming (such as Leitao and Restivo (2006)), we believe there is room for

improvement in terms of reduced complexity, greater potential for industry

acceptance, better robustness/fault-tolerance and better inherent scalability.

This paper evaluates a new alternative to agent-based approaches: the

implementation of holonic control using the Erlang programming language. Erlang

is a concurrent, functional programming language which was developed for

programming concurrent, scalable and distributed systems. In Erlang, many

lightweight processes can be employed to work concurrently while distributed over

many devices. Processes are strongly isolated, having no shared memory, and can

only interact through the asynchronous sending and receiving of messages

(Armstrong 2003). The Erlang programming environment is supplemented by the

Open Telecommunications Platform (OTP) - a set of robust Erlang libraries and

design principles providing middle-ware to develop Erlang systems (Anonymous,

s.a. (a); Logan, Merrit, and Carlsson, 2011).

The objective of this paper is to present an Erlang-based internal architecture for

holons and an implementation methodology, targeting a reconfigurable

manufacturing system. A resource holon in the PROSA holonic control architecture

(discussed in section 4.2.2.2) is used as a prototype since it contains all the

architectural elements required for the other holon types, as well as hardware

interfacing.

4.2.2. Holonic Control

This section motivates the use of the holonic control approach and gives some

background regarding reference architectures. The generic resource holon model,

used for the Erlang implementation, is also discussed.

4.2.2.1. Advantages of Holonic Control

The use of holonic control for RMSs holds many advantages: Holonic systems are

resilient to disturbances and adaptable in response to faults (Vyatkin 2007); have

the ability to organise production activities in a way that they meet the requirements

of scalability, robustness and fault-tolerance (Kotak et al., 2003); and lead to

reduced system complexity, reduced software development costs and improved

maintainability and reliability (Scholz-Reiter and Freitag, 2007).

Stellenbosch University https://scholar.sun.ac.za

56

4.2.2.2. Holonic Architecture

The full utilization of the above-mentioned advantages relies on the holonic

system's architecture. Several reference architectures, which specify the mapping

of manufacturing resources to holons and to structure the holarchy, have been

proposed (e.g. Chirn and McFarlane (2000); Leitao and Restivo (2006)), but the

most prominent is PROSA (Product-Resource-Order-Staff Architecture) (Van

Brussel et al., 1998).

PROSA defines four holon classes: product, resource, order and staff. The first three

classes of holons can be classified as basic holons, because, respectively, they

represent three independent manufacturing concerns: product-related technological

aspects (product holons), resource aspects (resource holons) and logistical aspects

(order holons).

The basic holons can interact with each other by means of knowledge exchange, as

is shown in Figure 15. The process knowledge, which is exchanged between the

product and resource holons, is the information and methods describing how a

certain process can be achieved through a certain resource. The production

knowledge is the information concerning the production of a certain product by

using certain resources – this knowledge is exchanged between the order and

product holons. The order and resource holons exchange process execution

knowledge, which is the information regarding the progress of executing processes

on resources.

Figure 15: Knowledge exchange between the PROSA holons.

Staff holons are considered to be special holons as they are added to the holarchy

to operate in an advisory role to basic holons. The addition of staff holons aim to

reduce work load and decision complexity for basic holons, by providing them with

expert knowledge.

Stellenbosch University https://scholar.sun.ac.za

57

The holonic characteristics of PROSA contribute to the different aspects of

reconfigurability mentioned in section 4.2.1. The ability to decouple the control

algorithm from the system structure, and the logistical aspects from the technical

aspects, aids integrability and modularity. Modularity is also provided by the

similarity that is shared by holons of the same type.

4.2.2.3. Resource Holon Model

The paper uses the resource holon as case study because of the range of capabilities

that is required, such as communication, execution control and hardware

interfacing. The resource holon model used as starting point is described in this

section – an adapted model for implementation with Erlang follows in section

4.2.4.1.

The internal architecture of a resource holon is illustrated in Figure 16. Individual

holons have at least two basic parts (Kotak et al., 2003; Leitao and Restivo, 2002):

a functional component and a communication and cooperation component. The

functional component can be represented by a purely software entity or, as in

resource holons, it could be a hardware interface represented by a software entity.

The communication and cooperation component of a holon is implemented by

software.

The communication component is responsible for the inter-holon information

exchange. The decision-making component is responsible for the manufacturing

control functions, regulating the behaviour and activities of the holon. The

interfacing component handles the intra-holon interaction, providing mechanisms

to access the manufacturing resources, monitor resource data and execute

commands in the resource.

Figure 16: Internal architecture of a resource holon (adapted from Leitao

and Restivo (2002)).

Stellenbosch University https://scholar.sun.ac.za

58

4.2.3. Advantages of using Erlang for Holonic Control Implementation

There are several inherent characteristics of Erlang which prove to be advantageous

for the implementation of holonic control. The most prominent advantages relate to

fault-tolerance, service availability and scalability.

The Erlang process model – whereby system functionality is distributed across a

number of cooperating and communicating processes – ensures that Erlang is built

on an inherently fault-isolating architecture. The processes act as abstraction

boundaries, limiting the propagation of error through the system (Armstrong, 2003).

This strong fault-tolerant nature of Erlang is further supplemented by the OTP

libraries for supervisory structures, which can be utilized to detect and trap system

errors and implement strategies to rectify the system behaviour (Armstrong, 2003).

Erlang allows for the updating of code without having to disturb the operation of a

running program since it has primitives which allow code to be replaced in a

running system (Däcker, 2000). Bug fixes and upgrades can be uploaded to a

running system without disturbing the current operation. This capability, along with

the previously mentioned fault-tolerance, enables Erlang systems to offer excellent

service availability (Armstrong, 2007).

Finally, Erlang provides the infrastructure for massive scalability and concurrency.

The lightweight nature of Erlang processes means that millions of processes can be

supported on a single processor (Armstrong, 2007). Furthermore, since Erlang

processes share no memory and all interaction is done through message passing,

processes can easily be distributed over a network of processors (Armstrong, 2003).

A comprehensive comparison of Erlang with other implementation options is

beyond the scope of this paper. However, from the authors' experience, the

following comments are offered:

Multi-agent systems (MASs) have been often been used to implement holonic

control architectures for manufacturing systems and cells. Interestingly, the

advantageous characteristics of Erlang can be directly related to what has been

identified as the shortcomings of commonly used agent based implementations.

Almeida et al. (2010) identified that two of the main issues regarding agent-based

implementations are that of scalability and fault-tolerance. Due to the high resource

requirements of MAS threads (when implemented in Java or C (Vinoski, 2007)),

the number of threads that can run on a processor limits scalability – this limitation

is emphasized when the implementation is to be done on resource-constrained

industrial controllers. In terms of fault-tolerance, there is still work to be done on

the implementation of supervisory structures which can identify, diagnose and

recover from disturbances or errors.

When considering the Java Agent DEvelopment (JADE) framework specifically,

which is often used for holonic control implementations, JADE agent threads suffer

drawbacks concerning scalability, as mentioned above, since they Java based.

Furthermore, JADE is aimed at providing infrastructure for a wider range of

implementations (i.e. beyond that of control applications for manufacturing

Stellenbosch University https://scholar.sun.ac.za

59

systems), but this infrastructure is mostly underutilized in the type of

implementations presented in this paper. In some cases, this additional functionality

adds complexity and coding overhead – a scenario where the sense of “scalable

complexity” (the idea that a system can be constructed through the inclusion of only

the functions and interfaces for the necessary functionality, and thus complexity, of

the system) of Erlang implementations could be beneficial. Lastly, it has been found

that programming MASs, even with Java programming experience, involves a

significant learning curve.

IEC 61131-3 languages are commonly used for control implementation in

manufacturing. While they work well for low level control, attempts to use these

languages for implementations of higher level control have achieved limited

success. The reason for this, in the experience of the authors, is that the features of

these languages that contribute to their reliability on the other hand restrict the

flexibility and extensibility of the code that are valuable for the implementation of

the high level control of holonic systems. Examples of these restrictions are that the

programmes nominally operate in a single thread and that dynamic instantiation of

objects, variables or data containers is not possible.

Object orientated programming (OOP) languages offer features between MASs and

IEC 61131-3 languages, and can therefore also be considered for developing

holonic control systems (Graefe and Basson, 2013). C# and Java appears to have a

wide user base in the software world, but their popularity in manufacturing control

is uncertain. The authors' research group have found C# to be a productive tool to

develop holonic control systems, utilising the classical OOP features. C# has the

advantage above Java that drivers for I/O devices are more readily available for C#.

However, the resource implications of multiple threads in C# are similar to that for

Java. Also, neither of these languages include the "built-in" fault-tolerance and

fault-management of Erlang.

4.2.4. Erlang-based Resource Holon

The internal holon architecture, inter- and intra-holon communication and the holon

functional components are discussed in this section. Furthermore, a general

implementation methodology is described and an implementation case study for the

Erlang-based resource holon is presented.

4.2.4.1. Internal Architecture

For the Erlang/OTP implementation, the internal architecture described in section

4.2.2.3 has been adapted to that shown in Figure 17. Though the Communication

and Interfacing components are present in both models, the Decision-making

component in Figure 2 is split into two components, namely the Agenda Manager

and Execution components.

The division of the Decision-making component into the Agenda Manager and

Execution components (discussed in section 4.2.4.2.2) is motivated by two factors:

Firstly, for a separation of functionality. By separating the functionality of handling

service bookings and that directly concerning execution, reconfigurability is

improved – the way in which bookings are handled and how a process must be

Stellenbosch University https://scholar.sun.ac.za

60

executed can be changed independently and with minimal effect on the other

component. Secondly, for software reusability: while the execution control may

differ from holon to holon, the way in which their services are managed is similar.

The Agenda Manager component can thus be used as a generic inclusion for every

service-rendering holon in the system.

Figure 17: Resource holon model for the Erlang/OTP implementation.

4.2.4.2. Implementation Methodology

This section presents a general implementation methodology for a holonic control

system with Erlang/OTP processes. A generic approach to facilitating

communication and implementing the holon functional components is described.

4.2.4.2.1. Facilitating Communication

Inter- and Intra-Holon Communication

In holonic systems, communication between system entities can be classified as

either inter- or intra-holon communication. Inter-holon communication refers to

communication between different holons in the system, while intra-holon

communication occurs between the internal components of a holon.

A typical example of inter-holon communication is the request of a resource holon

service by an order holon – the order holon sends a request to the resource holon to

which the resource holon replies with a request result. These request and result

messages are shown in Figure 3 as interchanged by the Holarchy and the resource

holon’s Communication component. In addition to the inter-holon communication,

Figure 17 also shows intra-holon communication - indicated as the exchange of

requests, results and execution information between the functional components of

the resource holon.

Stellenbosch University https://scholar.sun.ac.za

61

Messaging in Erlang

The Erlang process model dictates that information can only be shared amongst

processes through messages. Messages are sent using the message operator “!” in

the following format: Receiver ! Message. Receiver is a variable4 that stores

the process ID or registered name of the receiving process and the received message

is stored in the Message variable. Messages can be received by using the receive

statement with pattern matching, usually implemented in a loop (shown in section

4.2.4.3.1).

For increased traceability, the format by which messages are sent can be

implemented as Receiver ! {Sender,Message}. In this case, the message

payload is placed within a tuple together with the process ID or registered name of

the process sending the message. This format offers more options on the receiving

side, as pattern matching can then be performed on both the type and content of the

message, and from where the message originated.

To further facilitate communication, an ontology can be incorporated in the

implementation. The ontology definition can be done in one or many separate

header files, and included in the necessary modules. Using records, an Erlang data

type similar to structs in C, sets of information can be defined and used in creating

messages and matching messages to patterns. Records allow for data fields to be

accessed by name instead of order, and multiple records can be nested to

accommodate complex sets of information. An example of a record used to define

service messages is shown in section 4.2.4.3.1.

Communication in Functional Components

Taking advantage of the lightweight nature of processes, leading to cheap and

easily-managed concurrency, each functional component of the resource holon will

be implemented as one or more Erlang processes. For the components to cooperate,

information must be exchanged by means of messages. For this reason, each

functional component must employ a process which handles this communication.

A simple way to facilitate the communication is to spawn a concurrent process

running a receive-evaluate loop. The process calls a recursive function which

implements a receive statement, followed by a set of patterns which will be

matched against incoming messages. Upon successfully matching to a pattern,

some action can be taken (usually the sending of another message). After each

matching case, the function calls itself, resulting in a continuous loop.

The communication process described above separates the communication

functionality, within a functional component, from the execution logic. This

separation increases the reconfigurability and maintainability of the

implementation, as changes can be made to one process without influencing the

functionality of the other.

4 Variables in Erlang start with a capital letter.

Stellenbosch University https://scholar.sun.ac.za

62

4.2.4.2.2. Implementing the Holon Functional Components

Communication Component

The Communication component of the resource holon is responsible for

maintaining the communication interface with the rest of the holarchy – i.e. all

messages to and from other holons are handled by this component.

This component can be implemented using only the communication process

discussed in section 4.2.4.2.1. This process then allows for concurrency in the

communication and execution functionality of the holon – i.e. the Communication

component can operate uninterrupted and independent of the other functional

components.

Agenda Manager Component

The agenda, in the context of this paper, refers to a list of service commitments

(bookings) made by a resource holon to requesting order holons. The construction

and management of such a list provides opportunity for the implementation of

strategies to improve the performance of holonic systems by planning ahead

through forecasting and tentatively committing future availability of resources.

Two possible strategies that can be implemented are delegate multi-agent systems

(D-MAS) (Holvoet and Valckenaers, 2006) and a facilitating supervisor as found

in ADACOR (Leitao and Restivo, 2006). With D-MAS, holons delegate the

responsibility of populating and consulting the agendas of resource holons to a

swarm of lightweight agents. In ADACOR, a supervisor holon facilitates the

booking of resource services by task holons, according to forecasts and optimized

plans based on the inspection of agendas. Since the implementation of the

mentioned strategies predominantly influence the order (or task) holons, the

presented Agenda Manager component for resource holons will function similarly

for both strategies.

The Agenda Manager component is responsible for managing the service provided

by the resource holon. The component manages a list of service bookings by order

holons and triggers the Execution component, with the necessary execution

information, according to the agenda.

The Agenda Manager component requires two functions – one to receive and

evaluate messages from the other holon components, and one to manage the

resource’s service bookings and execution. For handling the messages, a process

running a receive-evaluate loop, similar to that of the Communication component,

can be used. The messages are passed on to the process which manages the service.

The logic for the service management could be implemented in different ways. The

logic can be implemented in a normal Erlang process or OTP behaviours can be

used. OTP provides two useful behaviours – a generic server (gen_server) and a

generic finite state machine (gen_fsm). The logic can thus be implemented in any

of the mentioned ways, with the selection based on the approach which best matches

the requirements of the service management model. A general summary of the

gen_fsm behaviour library is provided in section 4.2.7.

Stellenbosch University https://scholar.sun.ac.za

63

Execution Component

The Execution component of the holon is responsible for driving the hardware

actions related to the service of the resource holon. This component activates the

execution of hardware functions, with the necessary execution information and in

a specified sequence, to perform the service of the holon.

The Execution component is implemented similarly to the Agenda Manager

component, i.e. a receive-evaluate loop process, for receiving messages, and a

process for managing the service execution. The service execution can again be

done in different ways, but using the finite state machine (FSM) behaviour is an

attractive solution as the execution of resource holon services can usually be easily

modelled as FSMs.

When using the FSM approach, the required sequence of execution actions is

formulated into the gen_fsm behaviour. With each execution state, the necessary

activation and information messages are sent to the hardware via the Interfacing

component. The process receives feedback regarding the execution status from the

hardware, which trigger the transitions between the states. When execution is

completed, the execution result is replied to the Agenda Manager component, from

where it is forwarded to the Communication component and ultimately replied to

the order holon.

Interfacing Component

The Interfacing component maintains the communication interface between the

Erlang control programs and the hardware. This component isolates the hardware

specific communication structures from the execution logic.

The Interfacing component can be done in two ways, i.e. using OTP functions or

using ports (or linked-in port drivers). When using the first approach, the

component is implemented by a receive-evaluate loop process and a process

implementing the OTP libraries for interfacing, such as gen_tcp or gen_udp (for

TCP/IP or UDP communication). With the linked-in port driver approach, a

program can be developed in another language (C, Java, etc.) and be wrapped with

Erlang. The program can then be used as if it is just a pure Erlang module. This

allows for the creation of communication structures which are not incorporated in

OTP (such as Profibus or CANbus) or the use of a device specific driver or

application programming interface (API). The use of ports and other Erlang/OTP

integration tools is discussed in detail by Logan, Merrit, and Carlsson (2011).

Erlang also supports the use of eXtensible Markup Language (XML), which is

frequently used with TCP/IP communication. Two popular libraries for XML

functionality are XMErL (Anonymous s.a. (b)) and ErlSom (De Jong, 2007). These

libraries can be used, in conjunction with gen_tcp, to build and parse XML strings

and files for use in socket communication.

4.2.4.2.3. Applicability to other PROSA holons

The presented methodology can be extended to the other PROSA holons. As all

holons (and holon functional components) communicate through an exchange of

Stellenbosch University https://scholar.sun.ac.za

64

messages, the communication process presented in section 4.2.4.2.1 can be applied.

The process can be adapted for each specific holon component, according to the

messages that may be received.

The gen_server and gen_fsm OTP behaviours are equally useful in representing the

logic of the other holon types. These behaviours are especially applicable to the

functionality of the order holon where service bookings must be managed along

with task executions.

4.2.4.3. Case Study

As a case study, a resource holon for a pick-‘n-place robot was implemented using

Erlang/OTP. This section describes the implementation of the functional

components.

4.2.4.3.1. Communication Component

The Communication component is implemented as a single receive-evaluate loop

process. Messages are received and forwarded according to a successful pattern

match. To facilitate the communication, a record was created for service-related

messages. This record is constructed as follows:

#service{message_type, service_type, reply_to,
conversation_ID, requester_pid, provider_pid, result, info}

 message_type - specification of service message, e.g. request, cancel,

start.

 service_type - service specification, e.g. pick-‘n-place, inspect,

transport.

 reply_to – holon process ID to which reply must be sent (for inter-holon

communication)

 conversation_ID - unique reference to the sequence of messages

 requester_pid – process ID of the requesting process linked to the

service message

 provider_pid – process ID of the providing process linked to the service

message

 result - Boolean result of action linked to service message

 info - information linked to the service message

The following code snippet shows the working of the receive-evaluate process of

the Communication component (in this example named robot_comm), as pattern

matching is used to distinguish between an intra-holon message (from the Agenda

Manager component) and an inter-holon message (from another holon):

Stellenbosch University https://scholar.sun.ac.za

65

rec_messages() ->
receive

%message from agenda_manager in reply to service request
 {agenda_manager_fsm, Message=#service{}} ->

%extract the corresponding process ID
Pid = Message#service.reply_to,

 %send response to holon
Pid ! {robot_comm, Message},
%loop again

 rec_messages();

 %SERVICE message from other holon requesting a service
 {From, Message=#service{}} ->
 %forward message to agenda_manager

agenda_manager_fsm ! {robot_comm, Message},
%loop again

 rec_messages()
 end.

4.2.4.3.2. Agenda Manager Component

Two processes are used to implement the Agenda Manager component – one for

handling communication and one for managing the holon service. The

communication is handled by a process similar to that described for the

Communication component. To manage the service, a process using the OTP

behaviour for a generic finite state machine was chosen.

The state diagram used in the Agenda Manager FSM is shown in Figure 18. The

states of the FSM each constitute two elements: execution status and a list of

bookings (combined as a tuple in Figure 18). The execution status reflects whether

the holon hardware is currently in operation (“busy”) or idle (“free”), while the

booking list keeps record of commitments made to requesting holons. The state

transitions are driven by messages received from either the Execution or

Communication components.

Code snippets from the Agenda Manager FSM are shown below. The code shows

how events (which in these cases are the arrival of messages) are handled according

to the specific state and how state transitions are specified. The presented code

implements the states, events and transitions highlighted in Figure 18. The handling

of two different messages is shown when the Agenda Manager FSM is in the “free”

state – the messages are of types “booking request” and “start”, received from order

holons. The code also shows the handling of a “done” message from the Execution

component of the robot holon, in the “busy” state.

%STATE: free_booked --> resource is idle, but is booked
free_booked(Message=#service{message_type=booking_req},[Job_list]) ->
 %add request to bookings list
 NewJob_list=lists:append(Job_list,
[Message#service.requester_pid]),
 %reply request result to Order holon via robot_comm
 robot_comm ! {agenda_manager_fsm,Message#service{result=true}},
 %specify the next state and state information

Stellenbosch University https://scholar.sun.ac.za

66

{next_state, free_booked, [NewJob_list]};

%STATE: free_booked --> resource is idle, but is booked
free_booked(Message=#service{message_type=start},[Job_list]) ->
 %forward "start" message to resource_exec
 robot_exec ! {agenda_manager_fsm,Message},
 %specify the next state and state information
 {next_state,busy_booked,[Message#service.requester_pid,

lists:delete(Message#service.requester_pid, Job_list)]}.

%STATE: busy_booked --> resource is busy and is booked
busy_booked(Message=#service{message_type=done},[CurrJob,Job_list]) ->
 %forward result message to Order holon via robot_comm

robot_comm ! {agenda_manager_fsm,Message},
%specify the next state and state information
{next_state,free_booked,[Job_list]}.

INIT

{FREE,[n = 0]}

{FREE,[n > 0]}

{BUSY,[n = 0]}

{BUSY,[n > 0]}

Received
“ready” from

Exec FSM

Received
“booking
request”

Received “start”
from last

booked client

Received
“start” from

booked client

Received “done”
from Exec FSM

Received
“booking
request”

Received
“booking cancel”
from last booked

client

Received
“booking cancel”
from last booked

client

Received
“done” from

Exec FSM

Event

{EXEC STATUS,[BOOKING LIST]}

Transition with event

State

Received
“booking

request/cancel”

Received
“booking
request/
cancel”

Figure 18: State diagram of the Agenda Manager FSM.

Stellenbosch University https://scholar.sun.ac.za

67

4.2.4.3.3. Execution Component

The Execution component is implemented similar to the Agenda Manager

component – one process for handling communication and a gen_fsm process for

managing the execution.

Figure 19 shows a simple example of an execution state diagram for the pick-‘n-

place robot holon. This example shows three states: “ready”, “picking” and

“placing” – each representing an execution state of the robot. The FSM switches

between states in accordance with received messages from the Agenda Manager

and the hardware.

INIT

READY

PICKING

PLACING

Received
“ready” from

hardware

Received “placing
done” from
hardware

Event

STATE

Transition
with event

Received “start”
from Agenda

Manager

State

Received
“picking done”
from hardware

Figure 19: Example state diagram of the Execution FSM.

The implementation of the state diagram of Figure 19 using the gen_fsm OTP

behaviour is shown by the following code snippet:

%STATE: ready --> ready to perform operation
ready(Message=#service{message_type=start},_) ->

%send picking coordinates to interfacing component
 robot_pi ! {robot_exec, Message#service.info.coords.pick_coords},
 %specify the next state and state information
 {next_state, picking, Message}.

Stellenbosch University https://scholar.sun.ac.za

68

%STATE: picking --> executing picking operation
picking(picking_done, Message) ->
 %send placing coordinates to interfacing component

robot_pi ! {robot_exec, Message#service.info.coords.place_coords
},
 %specify the next state and state information

{next_state, placing, {CurrJob, Message}}.

%STATE: placing --> executing placing operation
placing(placing_done, Message) ->
 %send result to agenda manager component
 agenda_manager ! {robot_exec, Message=#service{result=true}},
 %specify the next state and state information
 {next_state, ready, []}.

4.2.4.3.4. Interfacing Component

For the case study implementation, the control software of the resource holon

interfaced with the controller of the robot through TCP/IP communication. The

XMErL library is used to build and parse XML strings. The following code snippet

shows how the gen_tcp OTP library (briefly summarized in section 4.2.7) is used

to communicate to the robot controller:

socket_client(Info) ->
 %connect to TCP server

{ok,Socket} = socket_connect(),
%build XML string

 XML_string = build_XML(Info),
%send string

 ok = gen_tcp:send(Socket, XML_string),
 %receive result of operation
 {ok,XML_data} = do_receive(Socket,[]),
 %close socket connection
 ok = gen_tcp:close(Socket),
 %extract result from string
 {XML_doc,_} = xmerl_scan:string(XML_data,[{encoding,latin1}]),
 Msg = extract_content('RESULT',[XML_doc]),
 Message=list_to_atom(Msg),
 Message.

socket_connect() ->
 %connect to socket

case gen_tcp:connect(?address, ?port,
[list,{packet,0},{active,false}]) of

 %success – return socket reference
 {ok, Socket} -> {ok, Socket};
 %failure – try again

_ -> timer:sleep(1000),
 socket_connect()
end.

Stellenbosch University https://scholar.sun.ac.za

69

4.2.4.3.5. Typical operation scenario

To illustrate the sequence of functionality of the presented Erlang based robot

holon, the operations involved in a typical scenario will be explained. The scenario

entails the receiving of a start message from some order holon, i.e. a request from

an order holon for the robot holon to start a previously booked service. This scenario

was selected as it involves functions from all of the robot holon components.

For the explanation of the of the scenario it is necessary to describe the state of the

holon FSM components. Assume that the Agenda Manager FSM is in the

“free_booked” state – i.e. the robot holon is currently idle, but its service has been

booked for use in the near future by order holons. The Execution FSM is in the

initial “ready” state, awaiting a start message from the Agenda Manager to execute

a pick-‘n-place service.

When the physical part associated with the order holon is in the position for the

pick-‘n-place service (which was previously booked by the order holon) to be

executed, the order holon will request the execution to be started by sending a start

message to the Communication component of the robot holon. As is presented in

section 4.2.4.3.1, the Communication component continuously awaits the arrival of

a message through the receive function. When the order holon sends the start

message, the message is received by the Communication components and is

compared against the defined message patterns. The start message will match the

following pattern:

%SERVICE message from other holon requesting a service
{From, Message=#service{}} ->
 %forward message to agenda_manager

agenda_manager_fsm ! {robot_comm, Message},
%loop again

 rec_messages()

Upon matching the pattern, the Communication component will forward the

message to the Agenda Manager FSM component. The Agenda Manager FSM is

in the “free_booked” state, thus the start message forwarded from the

Communication component will be compared to the defined state transition

patterns. The message will match the event specified by the following transition

pattern:

%STATE: free_booked --> resource is idle, but is booked
free_booked(Message=#service{message_type=start},[Job_list]) ->
 %forward "start" message to resource_exec
 robot_exec ! {agenda_manager_fsm,Message},
 %specify the next state and state information
 {next_state,busy_booked,[Message#service.requester_pid,

lists:delete(Message#service.requester_pid, Job_list)]}.

The Agenda Manager FSM will trigger execution of the service by forwarding the

message to the Execution component, then transition to the next state

“busy_booked”. The internal state data of the FSM is also changed – the process ID

Stellenbosch University https://scholar.sun.ac.za

70

of the order holon is removed from the list of received bookings and rather stored

as an additional variable CurrJob (indicating the PID of the order holon involved

in the current service execution) in the state data tuple.

The Execution component receives the start message as an event in the “ready”

state (as shown in the code snippet of section 4.2.4.3.3) and proceeds to execute the

pickup action of the pick-‘n-place service by sending a message – containing the

pickup coordinates as stored in the info field of the message from the order holon

– to the Interface component. The Execution FSM then transitions to the “placing”

state.

The Interface component extracts the coordinate information from the message

received from the Execution component, builds an XML string and sends it to the

physical robot controller using the gen_tcp library functions. As the robot

completes the pickup action, an XML message is sent to the Interface component

where the message is parsed and sent to the Execution component as the Erlang

atom picking_done.

The interaction between the Execution and Interfacing components continue as

described above until all the actions of the service have been completed – in this

scenario, when the Interfacing component sends the atom placing_done to the

Execution component. Before the Execution component then transitions back to the

“ready” state (awaiting a start message for the next service execution), it sends a

done message to the Agenda Manager FSM.

The Agenda Manager FSM will receive the done message from the Execution

component in the “busy_booked” state. With the done message event, the done

message is forwarded to the Communication component (which will use the

associated PID field of the message to forward the message to the correct Order

holon), before transitioning to the “free_booked” state.

4.2.4.4. Additional Erlang/OTP functionality

In addition to the OTP functionality used in the holon implementation described

above, two further tools offered by Erlang/OTP can be very useful, i.e. the

Supervisor and Logging modules.

Through the Supervisor module, Erlang allows the implementation of supervision

trees, in the form of a process structuring model in terms of workers and

supervisors. Worker processes do the computational work, while supervisor

processes monitor worker processes. This hierarchical structure allows for the

development of fault-tolerant programs, since supervisor processes can start and

stop worker processes, and restart them if they should fail (Anonymous, s.a. (a)).

As fault-tolerance is an important requirement for the modern manufacturing

environment, supervision trees can be very advantageous. For the implementation

of a resource holon, all the components discussed in the previous sections will be

worker processes and can be supervised by a supervisor process. Upon starting, the

Stellenbosch University https://scholar.sun.ac.za

71

supervisor process launches the processes in a specified order. The order to which

they are terminated during shut down is also specified. A restart strategy can be

specified for the supervisor process, i.e. the way in which processes are restarted in

event of a process failing. Three options are available (Anonymous, s.a. (a)):

 “one-for-one” – only the process that fails is restarted.

 “one-for-all” – if a worker process fails, all of the supervised processes are

terminated and restarted.

 “rest-for-one” – if a worker process fails, it and the subsequent processes

(in the start order) are terminated and restarted.

A supervisor process can thus be a very useful addition to the holon

implementation. At the very least, it provides a neat and simple way to start and

stop all the holon processes. With the selection of an appropriate restart strategy, a

supervisor process can add great robustness to the holon implementation.

Logging modules offer useful functionality related to diagnosibility, an important

requirement for reconfigurable systems. In terms of software diagnosibility,

logging is an important tool. Erlang/OTP includes an error_logger module

(Anonymous, s.a. (c)) which can be used to output error, warning and information

reports to the terminal or to file. The format of these reports can be customized

according to the needs of the application. The error_logger module can be used by

all holon processes to log events, errors and general process information to file, e.g.

received and sent message information, state transitions and process failures. This

information can be helpful for debugging or problem identification, or just for

monitoring.

4.2.5. Conclusion

Reconfigurable manufacturing systems (RMSs) are intended for situations

characterised by short product life cycles, large product variety and fluctuating

product demand, since RMSs have the ability to reconfigure hardware and control

resources to rapidly adjust the production capacity and functionality. RMSs

commonly employ holonic control architectures, because they share many

characteristics.

This paper motivates why the functional programming language Erlang and the

Erlang-based OTP (Open Telecom Platform) present an attractive solution for

implementing holonic control. It is shown that the requirements for which Erlang

was developed are highly relevant to holonic and reconfigurable control. The paper

then presents an implementation methodology and case study using Erlang/OTP.

The presented case study for the Erlang/OTP implementation focusses on the

resource holon, as defined by PROSA (Product-Resource-Order-Staff

Architecture). A generic model for a resource holon to suit an Erlang

implementation is presented, with four functional holon components, i.e.

communication, agenda manager, execution and interfacing. The implementation

of these components, using Erlang/OTP processes, is described.

Stellenbosch University https://scholar.sun.ac.za

72

Future work will entail the expansion of the Erlang/OTP implementation to the

control system for an entire manufacturing cell, in which all of the PROSA holons

will be incorporated. The Erlang/OTP manufacturing cell will then be subjected to

a series of experiments – the results of which will be used to perform a quantitative

and qualitative comparison with an equivalent MAS implementation.

4.2.6. References

Almeida, F.L., Terra, B.M., Dias, P.A., and Gonçales, G.M., 2010. Adoption Issues

of Multi-Agent Systems in Manufacturing Industry. Fifth International Multi-

conference on Computing in the Global Information Technology. pp. 238-244.

Anonymous, s.a. (a) Get Started with OTP. [Online]. Available:

http://www.erlang.org (18 July 2013).

Anonymous, s.a. (b). XMErL Reference manual.. [Online]. Available:

http://www.erlang.org/doc/apps/xmerl (28 March 2014).

Anonymous s.a. (c). Erlang Kernel Reference Manual. [S.a.]. [Online]. Available:

http://www.erlang.org/doc/apps/kernel (28 March 2014).

Anonymous s.a. (d). Erlang/OTP System Documentation. [S.a.]. [Online].

Available: http://www.erlang.org/doc/pdf/otp-system-documentation.pdf (28

March 2014).

Armstrong, J., 2003. Making Reliable Distributed Systems in the Presence of

Software Errors. Doctor’s Dissertation. Royal Institute of Technology, Stockholm,

Sweden.

Armstrong, J., 2007. Programming Erlang: Software for a Concurrent World.

Raleigh, North Carolina: The Pragmatic Bookshelf.

Bi, Z.M., Wang, L., and Lang, S.Y.T., 2007. Current Status of Reconfigurable

Assembly Systems. International Journal of Manufacturing Research,

Inderscience. Vol. 2, No. 3: 303 - 328.

Bi, Z.M., Lang, S.Y.T., Shen, W., and Wang, L., 2008. Reconfigurable

Manufacturing Systems: The State of the Art. International Journal of Production

Research. Vol. 46, No. 4: 967 - 992.

Chirn, J.L. and McFarlane, D., 2000. A Holonic Component-based Approach to

Reconfigurable Manufacturing Control Architecture. Proceedings of the

International Workshop on Industrial Applications of Holonic and Multi-Agent

Systems. pp. 219–223.

Däcker, B., 2000. Concurrent Functional Programming for Telecommunications:

A Case Study of Technology Introduction. Master’s Thesis. Royal Institute of

Technology, Stockholm, Sweden.

De Jong, W., 2007. Erlsom. [Online]. Available: http://erlsom.sourceforge.net (28

March 2014).

Stellenbosch University https://scholar.sun.ac.za

73

ElMaraghy, H., 2006. Flexible and Reconfigurable Manufacturing System

Paradigms. International Journal of Flexible Manufacturing System. Vol. 17: 61-

276.

Graefe, R. and Basson, A.H., 2013. Control of Reconfigurable Manufacturing

Systems using Object-Oriented Programming, Proceedings of the 5th International

Conference on Changeable, Agile, Reconfigurable and Virtual Production

(CARV2013). pp. 231-236.

Hebert, F., 2014. Learn Some Erlang For Great Good. No Starch Press.

Holvoet, T. and Valckenaers, P., 2006. Exploiting the Environment for

Coordinating Agent Intentions. AAMAS Conference. Hakodate, Japan (8–12 May).

Leitao, P. and Restivo, F.J., 2006. ADACOR: A Holonic Architecture for Agile and

Adaptive Manufacturing Control. Computers in Industry. Vol. 57, No. 2: 121-130.

Kotak, D., Wu, S., Fleetwood, M., and Tamoto, H., 2003. Agent-Based Holonic

Design and Operations Environment for Distributed Manufacturing. Computers in

Industry. Vol. 52: 95–108.

Leitao, P. and Restivo, F.J., 2002. A Holonic Control Approach for Distributed

Manufacturing. Knowledge and Technology Integration in Production and

Services: Balancing Knowledge and Technology in Product and Service Life Cycle.

pp. 263–270. Kluwer Academic Publishers.

Logan, M., Merrit, E., and Carlsson, R., 2011. Erlang and OTP in Action. Stamford:

Manning Publications Co.

Martinsen, K., Haga, E., Dransfeld, S., and Watterwald, L.E., 2007. Robust,

Flexible and Fast Reconfigurable Assembly System for Automotive Air-brake

Couplings. Intelligent Computation in Manufacturing Engineering. Vol. 6.

Mehrabi, M.G., Ulsoy, A.G., Koren, Y., 2000. Reconfigurable Manufacturing

Systems: Key to Future Manufacturing. Journal of Intelligent Manufacturing. Vol.

13: 135-146.

Paolucci, M. and Sacile, R., 2005. Agent-Based Manufacturing and Control

Systems. London: CRC Press.

Scholz-Reiter, B. and Freitag, M., 2007. Autonomous Processes in Assembly

Systems. Annals of the CIRP. Vol. 56: 712–730.

Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., and Peeters, P., 1998.

Reference Architecture for Holonic Manufacturing Systems: PROSA. Computers

in Industry. Vol. 37: 255–274.

Vinoski, S., 2007. Concurrency with Erlang. IEEE Internet Computing. Vol. 11,

No. 5: 90-93.

Vyatkin, V., 2007. IEC 61499 Function Blocks for Embedded and Distributed

Control Systems Design. North Carolina: Instrumentation, Systems and

Automation Society, ISA.

Stellenbosch University https://scholar.sun.ac.za

74

4.2.7. Appendix: OTP Libraries

This appendix provides a summary of the functionality and programmatic

implementation of the OTP libraries mentioned in this paper. The presented work

made use of two OTP libraries, namely the generic finite state machine (gen_fsm)

behaviour and generic Transmission Control Protocol (gen_tcp) libraries. The

description of the gen_fsm library is adapted from Anonymous (s.a. (d)) and, for

the gen_tcp library, from Anonymous (s.a. (c)) and Hebert (2014).

4.2.7.1. Generic finite state machine behaviour library

A finite state machine can be described as a set of relations between states, events

and actions. These relations can be expressed in the following form:

State x Event → Action(s), NextState

This expression states that when the FSM is in some State and some Event occurs,

some Action(s) will be performed and the FSM will transition to NextState.

Using the Erlang gen_fsm behaviour, these state transitions can be implemented by:

StateName(Event, StateData) ->
%code for actions here
{next_state, NextStateName, NewStateData}.

The name of the state the FSM is in when Event occurs is programmed as

StateName. StateData represents internal information regarding the current state.

When Event occurs, specific actions that must be performed can be programmed.

After all the required actions are completed, the statement ends with a description

of the state transition that follows. The transition description is represented as a

tuple with three elements: the first element is the atom next_state, designating

the transition description; the second element specifies the name of the state to

which the FSM will transition to and the last element specifies the internal

information associated with the next state.

The following code starts a gen_fsm behaviour in a new process:

gen_fsm:start_link({local, FsmName}, ModuleName, InitData,
Options)

 FsmName – the name by which the FSM process will be registered.

 ModuleName – the name of the module where the callback functions of the

FSM (i.e. the functions defining the state transitions) are located.

 InitData – information passed to the FSM during initialization.

 Options – a list of possible options for the gen_fsm process – e.g. timeouts,

debugging functions, etc.

Stellenbosch University https://scholar.sun.ac.za

75

When the gen_fsm behaviour is started, it enters the initialization function of the

FSM, programmed as:

init(InitData) ->
%code for initialization actions here
{ok, InitialStateName, StateData}.

The function performs the necessary initialization functions and concludes with the

definition of the initial state of the FSM. The FSM will consequently transition to

InitialStateName with the accompanying StateData.

With the FSM now occupying a specific state, it can receive notifications regarding

the occurrence of events. Processes can notify a specific gen_fsm process of an

event using the following function:

gen_fsm:send_event(FsmName, Event)

This function constructs a message of the Event and sends it to the gen_fsm

process. The event is handled in the current state of the FSM and will result in some

corresponding state transition, as was discussed earlier in this section.

4.2.7.2. Generic Transmission Control Protocol library

The gen_tcp library included in OTP provides functions to communicate with

sockets using Transmission Control protocol (TCP). Functions are included for both

server and client implementations – the simplest forms of which are briefly

presented in this section.

An Erlang process can act as a server for a designated TCP port, using:

{ok, Socket} = gen_tcp:listen(Port, Options)

 Port – the port number for the socket.

 Options – a list of socket configuration options.

 Socket – data type representing the TCP socket.

As the function name suggests, the server process will listen for incoming

connection requests at the specified port. When such a request is received, the

connection can be accepted:

gen_tcp:accept(Socket)

Also, a process can connect to a TCP socket as a client – this functionality is

provided through the function:

gen_tcp:connect(Address, Port, Options)

 Address – the IP address or host name for the socket.

Stellenbosch University https://scholar.sun.ac.za

76

When the connection is accepted by the corresponding server process, TCP

communication over the connected socket can be achieved. Both the server and

client processes use the same functions for the sending and receiving of messages

over the socket:

gen_tcp:send(Socket, DataPacket)

 DataPacket – information to be sent over socket.

gen_tcp:recv(Socket, Length)

 Length – the number of bytes to read from the socket.

Stellenbosch University https://scholar.sun.ac.za

77

4.3. Erlang-based Holonic Controller for a Modular Conveyor System

Karel Kruger a,* and Anton Basson a
a Dept of Mechanical & Mechatronic Eng, Stellenbosch Univ, Stellenbosch 7600, South Africa

* Corresponding author. Tel: +27 21 808 4258; Fax: +27 21 866 155 206;

kkruger@sun.ac.za

Abstract

Holonic systems have been a popular approach to face the challenges of the modern

manufacturing environment and should continue to play a vital role in the fourth

industrial revolution. Holonic control implementations have predominantly made

use of the Java Agent Development (JADE) framework – this paper presents, as an

alternative, a case study implementation based on Erlang. Erlang is a functional

programming language with strong scalability, concurrency and fault-tolerance

characteristics, which prove to be beneficial when applied to the manufacturing

control context. The case study used in this paper is the holonic control of a modular

conveyor system – this implementation was chosen to demonstrate the advantages

that Erlang can offer as implementation language for holonic systems.

Keywords: Erlang/OTP; Holonic Manufacturing Systems; Reconfigurable

Manufacturing Systems; Manufacturing Execution Systems; Automation

4.3.1. Introduction

The modern manufacturing environment is governed by a new set of requirements,

driven by unpredictability in market and technology trends. Modern manufacturing

systems must adhere to short lead times and enhanced adaptability for the

individualization of products and services, all while remaining competitive in a

global market. To address these challenges, recent movements towards the fourth

industrial revolution (often referred to as Industry 4.0) aim to enhance the

connectedness of the real and virtual worlds.

In [1], Monostori et al. consider Industry 4.0 to be characterized by the

individualization of products and services, new organization and control of the

entire value chain and the formulation of new business models. These

characteristics can be facilitated through the connection of humans, objects and

systems, and the generation and use of information in real-time.

CPS are systems of communicating computational entities, which are connected to

the physical world, that simultaneously use and provide data and services using the

Internet. These entities can monitor, control, coordinate and integrate the operations

of physical or engineered systems. Cyber-Physical Systems (CPS) will play a key

role in the connection of people, components/systems, information and services.

Cyber-Physical Production Systems (CPPS) can facilitate these enhancements in

manufacturing environments.

CPPS build on and utilize several developments in the field of manufacturing

science and technology, including that of Holonic Manufacturing Systems (HMSs).

Stellenbosch University https://scholar.sun.ac.za

78

Holonic systems – which is based on the theories of Koestler [2] – have often been

used in the design and control of manufacturing systems to reduce complexity and

cost, and improve scalability, maintainability and robustness [3][4]. Holonic

systems are based on the idea of dividing a complex system into smaller functional

entities – autonomous components that, through cooperation, constitute the system

functionality [4].

Holonic control architectures have predominantly been implemented in

manufacturing systems using multi-agent systems. Of the platforms that are

available for developing multi-agent systems, the Java Agent Development (JADE)

framework (see [5]) has been the most popular. This paper proposes an alternative

implementation, using Erlang/OTP.

Erlang is a functional programming language that was developed for programming

large-scale, distributed control applications [6]. Erlang was developed specifically

for the control of telecommunications switching systems [7], but the inherent

characteristics of Erlang – namely concurrency, scalability and fault-tolerance –

could prove greatly beneficial for the implementation of holonic control in modern

manufacturing systems. The Erlang programming environment is supplemented by

the Open Telecommunications Platform (OTP) [8][9] - a set of robust Erlang

libraries and design principles providing middle-ware to develop Erlang systems.

This paper presents an implementation of Erlang-based holonic control for a

modular conveyor system. The case study was selected for two reasons:

 The control of conveyor systems involve some of the key challenges that

the holonic systems approach aims to address. To reduce the complexity

of the system, the control implementation must exhibit good modularity

characteristics and perform numerous concurrent, distributed actions –

requirements that will clearly illustrate the advantages that Erlang has to

offer.

 The frequent use of conveyor systems in manufacturing systems has

inspired several research studies on the implementation of control. This

allows for qualitative and quantitative comparisons to be performed in

future work, which may be helpful in the formulation of benchmarks for

the performance of holonic control implementations.

This paper starts by providing details of the case study (section 4.3.2) and a short

overview of the important aspects of Erlang/OTP (section 4.3.3). Thereafter,

section 4.3.4 presents a discussion of the holonic control architecture and the

Erlang-based holonic control implementation is described in section 4.3.5. The

paper concludes with a discussion of the presented research and future work in

section 4.3.6.

4.3.2. Modular Conveyor Case Study

Modular palletized conveyor systems, as the system shown in Figure 20, are

frequently used for material handling in manufacturing systems. These conveyor

systems typically use motor-driven belts, along with stop gates and

lifting/transverse mechanisms, to move pallets (from here on referred to as carriers)

Stellenbosch University https://scholar.sun.ac.za

79

between the workstations of manufacturing systems. These conveyor systems are

often also equipped with RFID read/write modules (installed on several locations

on the conveyor), while the carriers are fitted with RFID tags. The RFID readers

provide feedback when a specific carrier arrives at a RFID reader location. The

RFID readers can be installed at the various stop gate locations.

Figure 20: Conveyor system at the Automation Lab of Stellenbosch

University.

This paper uses a modular conveyor system as case study. The conveyor system

that is installed in the Automation laboratory at Stellenbosch University (shown in

Figure 20) is too small to sufficiently illustrate the complexity of the control that is

encountered in industrial systems. Therefore, this research considered the control

implementation for an up-scaled, simulated conveyor system. A discussion of the

development of the simulation model can be found in [10].

The simulated model is based on the conveyor system that is used in an assembly

and quality assurance cell for electrical circuit breakers – the system layout is

illustrated in Figure 21. The conveyor moves carriers, which carry circuit breakers,

between the workstations of the system. The circuit breakers are placed onto the

carriers at the manual assembly station, from where they are moved to each of the

workstations (sequentially and in a clockwise direction) and finally removed at the

removal station.

Stellenbosch University https://scholar.sun.ac.za

80

Figure 21: Layout of the simulated conveyor system.

As an extension to the modularity of the conveyor hardware, several small PLCs

are used as opposed to using one centralized PLC – this is also incorporated in the

simulated conveyor system model. Segments of the conveyor are allocated to a

dedicated PLC, with all the interfacing between segments being handled at the

higher level of control implementation – this modular architecture is presented in

[11].

4.3.3. Erlang/OTP

While it would be over-ambitious to attempt a complete overview of Erlang/OTP,

this section aims to explain the architectural provisions and language mechanisms

that enable the suitability of Erlang/OTP for the implementation of holonic control

architectures.

4.3.3.1. Erlang Process Model

Erlang owes its concurrency to the process model on which it is built. These

processes, as the basic unit of abstraction, are extremely lightweight with memory

requirements that can vary dynamically. Not only can many processes work

concurrently, but they can be distributed across many devices (referred to as nodes).

Process are strongly isolated, having no shared memory, and can only interact

through the asynchronous sending and receiving of messages [7], as is discussed in

the next section.

4.3.3.2. Process Communication

Since Erlang processes do not share any memory, all the data exchange occurs

through message passing. Each process maintains its own mailbox to receive and

handle messages, and Erlang provides a message operator “!” to simplify the

sending of messages. A message can be sent from one process to another with the

following code:

Receiver ! {Sender, Message}

The Receiver variable is used to specify the process to receive the message – the

registered name or unique process identifier can be used. It is good practice for the

Stellenbosch University https://scholar.sun.ac.za

81

message to be constructed as a tuple, containing both sender and message content

information. The inclusion of the details of the sender process enables the receiver

process to reply to the message if needed. Message, the variable containing the

message content, can be of different data types (e.g. constant, tuple, list, etc.). The

record data type (which is similar to structs in C) is used in the presented

implementation to structure the content of messages. With records, sets of

information can be defined and used in creating messages and matching messages

to patterns. Records allow for data fields to be accessed by name instead of order,

and multiple records can be nested to accommodate complex sets of information.

An example of a record is shown below:

#service{message_type, conversation_ID, requester_pid,
provider_pid, result, info}

4.3.3.3. OTP Behaviours

OTP supplements Erlang development through the provision of robust libraries for

commonly used functionality (referred to as behaviours). Behaviours are provided

for the implementation of logic (as with the generic server and finite state machine

behaviours) and for facilitating communication (behaviours are provided for serial,

UDP and TCP communication). The generic finite state machine and TCP

communication behaviours are used in the presented implementation and therefore

a brief overview of the behaviours is given.

A Finite State Machine (FSM) can be described as a relation of states, events and

actions. When a FSM is in a state and an event occurs, some action(s) will be

performed and the FSM will transition to the next state. Using the Erlang gen_fsm

behaviour, these state transitions can be implemented by:

StateName(Event, StateData) ->

%code for actions to be performed

{next_state, NextStateName, NewStateData}.

The name of the state the FSM is in when Event occurs is programmed as the

function header StateName. StateData represents internal information

regarding the current state. When Event occurs (which in this implementation is

usually the arrival of a specific message in the process mailbox), specific actions

that must be performed can be programmed. After all the required actions are

completed, the statement ends with a description of the state transition that follows.

The transition description is represented as a tuple with three elements: the first

element is the atom next_state, designating the transition description; the second

element specifies the name of the state to which the FSM will transition to and the

last element specifies the internal information associated with the next state.

Stellenbosch University https://scholar.sun.ac.za

82

The gen_tcp behaviour included in OTP provides functions to communicate

through network sockets using the Transmission Control protocol (TCP). Functions

are included for both server and client implementations.

An Erlang process can act as a server for a designated TCP port, using:

{ok, Socket} = gen_tcp:listen(Port, Options)

The Port and Options variables specify the socket and configuration details, and the

Socket variable stores the instance of the created TCP network socket. As the

function name suggests, the server process will listen for incoming connection

requests at the specified port. When such a request is received, the connection can

be accepted with the function gen_tcp:accept(Socket).

Also, a process can connect to a TCP socket as a client – this functionality is

provided through the function:

gen_tcp:connect(Address, Port, Options)

The function requires the IP address or host name of the device where the socket

resides, as well as the port and configuration details as input parameters.When the

connection is accepted by the corresponding server process, TCP communication

over the connected socket can be achieved. Both the server and client processes use

the same functions for the sending and receiving of messages over the socket:

gen_tcp:send(Socket, DataPacket)

gen_tcp:recv(Socket, Length)

DataPacket contains the information to be sent, and Length specifies the number

of bytes that must be read from the socket.

4.3.4. Holonic Control Architecture

The Conveyor holon presented in this paper forms part of a holonic cell control

implementation. The cell control architecture is based on PROSA [12] – a

simplified schematic representation of the architecture is presented in Figure 22.

Detailed discussions of similar implementations are given in [13] and [14].

The architecture of the cell control implementation consists of three levels: High

Level Control (HLC), Low Level (station) Control (LLC) and hardware control.

The communication and coordination of the system holons occur within the HLC.

The HLC purely exists in the virtual environment, as the Product, Order and Staff

holons are all software entities. Resource holons, which consist of both hardware

and software entities, must also be represented in the HLC – it is therefore necessary

that these resource holons incorporate a component to handle the HLC functions.

Stellenbosch University https://scholar.sun.ac.za

83

Order Holons Staff HolonsProduct Holons

Conveyor HLC Station A HLC Station Z HLC

. . .
Conveyor LLC Station A LLC Station Z LLC

R
e

so
u

rc
e

 H
o

lo
n

s

Conveyor Holon Station A Holon Station Z Holon

Figure 22: Schematic of the holonic control architecture for the

manufacturing cell.

Where Resource holons consist of physical hardware entities, the station and

hardware levels of control are encountered. Station LLC enables the coordination

of the hardware functions for a station, to perform the service that the Resource

holon advertises in the HLC. Hardware control refers to the control of actuators and

sensors to successfully perform the various tasks included in the Resource holon’s

service.

4.3.5. Erlang-based Conveyor Holon

4.3.5.1. Conveyor Holon Architecture

As mentioned in section 4.3.4, the Conveyor holon forms part of the

implementation of the holonic control for a cell. The Conveyor holon is itself

implemented using a holonic architecture, i.e. the functions of the holon are mapped

to several autonomous and cooperating entities which work together to perform

complex transportation tasks. This holonic implementation then constitutes the

HLC component of the Conveyor holon (as can be seen from Figure 22) – the LLC

implementation is distributed over the number of PLCs that control dedicated

segments of the conveyor hardware.

The holons which comprise the Conveyor holon are shown in Figure 23 and the

respective roles and functions are discussed the following sections. The Conveyor

holon entails three main functions: inter-holon communication within the HLC and

intra-holon coordination within the Conveyor holon, execution of transportation

tasks and the interaction with and virtual representation of the conveyor hardware.

Stellenbosch University https://scholar.sun.ac.za

84

Carrier
Manager

Configuration
Map

Status Table

Carrier 1 Carrier 2 Carrier n. . .

LLC Interface

Transport execution
Route planning
Status updating

Figure 23: Intra-holon communication within the Conveyor holon.

4.3.5.2. Communication

4.3.5.2.1. Inter-holon Communication

The Carrier Manager holon is responsible for handling all communication with the

other holons in the cell controller. The Conveyor holon interacts with three types of

holons in the cell controller: the staff holon handling the service directory (a list of

service-providing Resource holons), other Resource holons which have a physical

interaction with the Conveyor holon, and Order holons.

As is usually encountered in the implementation of holonic systems, this presented

implementation tries to mirror the physical system as far as possible. An example

of this is when Resource holons must physically remove products from the

conveyor or place products on it. This interaction is mirrored in the virtual

environment - before removing or placing a product on the conveyor, Resource

holons must first send a release request or binding request message to the Conveyor

holon. This allows the Conveyor holon to ensure that a suitable carrier is present at

the location of placing, or that the intended product is available to be removed by

the resource holon. After the Conveyor holon replies to the request, the Resource

holon can continue with the physical operation.

The approach of mirroring the physical interactions in the virtual system means that

when an Order holon requires a transport service to the next booked service-

providing station, the physical product instance for which it is responsible will

already be present on a carrier on the conveyor. The Order holon can then proceed

to send the Conveyor holon a service start message to perform the transportation

service.

The Carrier Manager receives requests from Order holons to perform a transport

service from some start position to a specified destination. The Carrier Manager

then checks if a suitable Carrier holon is available at the requested starting position.

If a Carrier is available, the Carrier manager sends a start message to the selected

Stellenbosch University https://scholar.sun.ac.za

85

Carrier – if no Carrier is currently available, the Carrier Manager will search for a

compatible, idle Carrier holon and direct it to the designated starting location.

4.3.5.2.2. Intra-holon Communication

Three types of communication occur between the holons of the Conveyor holon:

transportation service execution, route planning and status update communication

– these interactions are shown in Figure 23.

Transportation service execution communication requires interaction between

holons in order to coordinate and execute the transportation tasks that the Conveyor

holon must perform for Order holons. As the Carrier Manager receives requests

from Order holon, the requests are allocated to suitable Carrier holons. The Carrier

Manager sends service start messages to the relevant Carrier holons - these

messages specify the end destination to where the Carrier holons must navigate. To

execute the movement between conveyor nodes along the selected route, the Carrier

holons request actuation from the specific PLCs by sending request messages to the

LLC Interface holon. The LLC Interface holon then in turn replies with a

confirmation that the requested actuation has been performed by the conveyor

hardware. When a Carrier holon has completed its assigned transport task, it sends

this confirmation to the Carrier Manager and awaits a new task.

Route planning communication entails the gathering of information by holons to

aid the route finding process. Predominantly, this communication is performed by

Carrier holons – when Carrier holons are assigned a transportation task, they are

responsible for planning their own route. The Carrier holons request information of

the physical conveyor configuration from the Configuration Map holon and status

information of the conveyor nodes and transitions from the Status Table holon –

this process is discussed in more detail in section 4.3.5.6. The Carrier Manager

holon will also occasionally initiate route planning communication – this occurs

when the Carrier Manager must control Carrier holon movement for coordination

purposes.

Finally, the status updating communication involves the LLC Interface holon

passing status information, received from the PLCs, to the Status Table holon.

4.3.5.3. Virtual Conveyor Representation

The physical configuration and run-time status of the conveyor nodes and

transitions are represented in the virtual environment by two holons: the

Configuration Map holon and the Status Table Holon.

The Configuration Map holon contains the functions to read the configuration

information, from an operator-defined description, into an accessible data structure

(in this case, an Erlang Term Storage (ETS) table). The ETS table entries follow

the format:

{Node_name, LLC_port_number, [Transition1, Transition2,…]}

Stellenbosch University https://scholar.sun.ac.za

86

The name of the node, the port number for communication to the controlling PLC

and the transitions that are available from the node are specified. The transitions are

described by the following information:

{Connected_node, Transition_time, Transition_capacity}

 Connected_node – name of the node which constitutes the end point of

the transition.
 Transition_time – the time it takes for a carrier to travel the transition

(based on the speed of the conveyor).
 Transition_capacity – the number of carriers that can travel along

the transition at any given time.

The Status Table holon maintains an ETS table of the conveyor node and transition

status based on messages received from the LLC Interface holon – i.e. the status

information is dynamically updated as carriers move along the conveyor. The

format of the ETS table entries is as follows:

{{Node,Connected_node},{Status, Queue_list, Capacity}}

 {Node,Connected_node} – the two nodes that constitute the start and

end nodes of the transition.

 Status – indicates whether the transition can take another carrier or not,

based on its capacity and current queue.

 Queue_list – a list of all the carriers currently travelling along the

transition.

 Capacity – the number of carriers that can travel along the transition at

any given time.

The Configuration Map and Status Table holons handle all request messages from

other holons, searches for and replies with the desired configuration and status

information.

4.3.5.4. Carrier Manager

The Carrier Manager holon maintains the interface for inter-holon communication

with the other PROSA holons (as discussed in section 4.3.5.2). The Carrier

Manager also handles intra-holon communication – i.e. messages from Carrier

holons or the LLC Interface holon. The Carrier Manager thus functions as a server

– messages are received and, according to message type and content, the

appropriate functions are executed. Examples of such functions are

handleStartRequest() or handleCarrierDone().

An important function of the Carrier Manager is to allocate transportation tasks

received from Order holons to the most suitable Carrier holon. A start message is

then sent to the selected Carrier holon, upon which the transport service will be

performed. Once the service is completed, the Carrier holon notifies the Carrier

Manager, which in turn notifies the relevant Order holon.

Stellenbosch University https://scholar.sun.ac.za

87

Usually, the Carrier holons perform movements according to the Order holon

request allocated to them by the Carrier Manager. However, the Carrier Manager

also has the functionality to make decisions regarding the movement of carriers

directly. This functionality is needed to ensure flow on the conveyor (i.e. not having

carriers block certain segments) and to store carriers when they are no longer

required.

4.3.5.5. Conveyor Low Level Control Interface

The LLC Interface holon is responsible for maintaining the interface between the

Erlang control programs and the low level control PLCs – this is depicted in Figure

24.
TC

P
 S

o
ck

e
t

TC
P

 S
o

ck
e

t

TC
P

 S
o

ck
e

t

TC
P

 S
o

ck
e

t

TC
P

 S
o

ck
e

t

PLC PLC PLC PLC PLC

LLC Interface

Conveyor Holon Components

Figure 24: LLC interface of the Conveyor holon.

The communication to the PLCs is done over Ethernet, with messages encoded as

XML strings. The PLCs can parse the XML strings to extract the necessary

information pertaining to the actuation that must be performed. The LLC Interface

holon employs a concurrent Erlang process for every TCP socket connection that

must be maintained – i.e. a connection to each of the PLCs is maintained by a

dedicated process.

The LLC Interface holon receives messages from both Carrier holons and the

Carrier Manager holon. As the Carrier holons execute their delegated transport

services, they must send request messages to the relevant PLCs via the LLC

Interface. This occurs every time a Carrier holon arrives at a node – the message

will request the actuation at the given node to direct the carrier towards the next

Stellenbosch University https://scholar.sun.ac.za

88

desired node (according to the planned route). The LLC Interface interprets this

message to determine which PLC the message is intended for (according to the

segment of the conveyor where the node is located). The message is then compiled

into an XML string and is send over the correct TCP socket to the PLC. Messages

from the Carrier Manager holon are handled in the same way.

To maintain a representation of the conveyor status during operation, the LLC

Interface holon sends messages to the Status Table holon when it receives

notifications from or sends actuation commands to the PLCs.

4.3.5.6. Carrier Holon

Each carrier that is unloaded onto the conveyor is represented in the holonic system

by a Carrier holon. Every time a carrier is unloaded, the Carrier Manager spawns a

new instance of the Carrier holon Erlang process. The Carrier holon encapsulates

the functionality to perform transportation services by controlling the movement of

the physical carrier on the conveyor system. Although the physical carrier has no

actuators or sensors, control of the movement is performed through communication

between the Carrier holons and the controlling PLCs, via the LLC Interface holon.

4.3.5.6.1. Behaviour

The control logic of the Carrier holon is implemented using the standard OTP finite

state machine behaviour. The Carrier holon transitions between states based on the

occurrence of events (in this case, the arrival of messages).

The Carrier holon behaviour is described by two states: stopped and moving. The

stopped state is entered when the holon awaits its next transportation task and when

it reaches a node while travelling towards its destination. The behaviour enters the

moving state once the LLC Interface holon confirms that the carrier has been

physically routed towards the next node on the route. Once the LLC Interface holon

notifies the Carrier holon of arrival at the next node, the state transitions to stopped.

4.3.5.6.2. Communication

As is shown in Figure 23, the Carrier holon engages in communication with other

holons during transport service execution and route planning. In the transport

execution activity, Carrier holons receive messages from the Carrier Manager holon

to initiate a new transport service that must be performed by the carrier. The Carrier

holons then send a notification message back to the Carrier Manager when the

service is done and awaits the next service to be awarded. When the Carrier holons

travel along their route, they send requests to the LLC Interface - which interprets

the messages and forwards it to the correct PLC – to perform the necessary

actuations to direct the carrier along its desired route. The Carrier holons also

receive notification messages from the LLC Interface when the carriers arrive at

conveyor nodes.

For route planning, Carrier holons must exchange messages with the Configuration

Map and Status Table holons. When a Carrier holon is awarded a transportation

task, it first determines which route to follow from its current location to its desired

location. The Carrier holon can obtain the conveyor configuration and status

Stellenbosch University https://scholar.sun.ac.za

89

information, which allows for the implementation of route finding algorithms and

strategies.

4.3.6. Conclusion and Future Work

The paper presents an Erlang-based holonic control implementation for a modular

conveyor system. The controller is successfully implemented for a simulated,

medium-sized manufacturing cell (incorporating ten different workstations). The

conveyor is incorporated as a Resource holon in the PROSA holonic architecture,

upon which the control of the manufacturing cell is based.

The Conveyor holon is responsible for the movement of carriers (which transport

products or work pieces around the cell) by controlling the actions of the conveyor

hardware via low level control PLCs. The holon performs several functions –

communication with other cell level holons, route planning and route execution

through hardware coordination. The Conveyor holon is itself implemented as a

holarchy, with the involved functions performed through the cooperation of the

collection of holons.

The described implementation aims to exploit the advantages that are offered by

Erlang, namely modularity, scalability and concurrency. From the presented

research, the following remarks can be offered:

 The inherent modularity and concurrency of Erlang programming provides

a natural facilitation for the implementation of holonic principles.

 The holonic controller exhibits good scalability and reconfigurability with

very little effort.

 The compact, readable code, along with the modularity of Erlang programs,

allow for a reduction in programming complexity.

 The standard libraries offered by OTP contribute greatly to the simplicity

and robustness of the control implementation, with potential for further

improvement.

 In future work, the research will focus on establishing benchmarks for a

formal evaluation of this implementation and an equivalent multi-agent

system for comparison.

4.3.7. References

1. L. Monostori, B. Kadar, T. Bauernhansl, S. Kondoh, S. Kumara, G.

Reinhart, O. Sauer, G. Schuh, W. Sihn and K. Ueda. “Cyber-Physical

Systems in Manufacturing”, CIRP Annals – Manufacturing Technology,

Vol. 65: 621-641, 2016.

2. Koestler, The Ghost in the Machine, London: Arkana Books, 1967.

3. Scholz-Reiter and M. Freitag. “Autonomous Processes in Assembly

Systems”, Annals of the CIRP, Vol. 56: 712-730, 2007.

4. Kotak, S. Wu, M. Fleetwood and H. Tamoto, “Agent-Based Holonic Design

and Operations Environment for Distributed Manufacturing”, Computers in

Industry, Vol. 52: 95–108, 2003.

5. F. Bellifemine, G. Caire and D. Greenwood, Developing Multi-Agent

Systems with JADE, John Wiley & Sons, Ltd., 2007.

Stellenbosch University https://scholar.sun.ac.za

90

6. J. Armstrong, “Erlang”, Communciations of the ACM, Vol. 53, No. 9:68-

75, 2010.

7. J. Armstrong, Making Reliable Distributed Systems in the Presence of

Software Errors, Doctor’s Dissertation, Royal Institute of Technology,

Stockholm, Sweden, 2003.

8. M. Logan, E. Merrit and R. Carlsson, Erlang and OTP in Action, Stamford:

Manning Publications Co., 2011.

9. Get Started with OTP. [S.a.]. [Online]. Available: http://www.erlang.org

(18 July 2013)

10. K. Kruger and A.H. Basson. “Validation of a Holonic Controller for a

Modular Conveyor System using an Object-Oriented Simulation

Framework”, Workshop on Service Orientation in Holonic and Multi-Agent

Manufacturing 2016, Lisbon, Portugal (October 2016).

11. M.J. Kotze and A.H. Basson, “Control of a Modular Conveyor System

Using Object Oriented Programming”, submitted for review.

12. H. Van Brussel, J. Wyns, P. Valckenaers, L. Bongaerts and P. Peeters,

“Reference Architecture for Holonic Manufacturing Systems: PROSA”,

Computers in Industry, Vol. 37: 255 – 274, 1998.

13. K. Kruger and A.H. Basson, “Implementation of an Erlang-based Resource

Holon for a Holonic Manufacturing Cell”, Service Orientation in Holonic

and Multi-Agent Manufacturing, Studies in Computational Intelligence,

Springer International Publishing, 2015.

14. K. Kruger and A.H. Basson, “Erlang-based Control Implementation for a

Holonic Manufacturing Cell”, International Journal of Computer

Integrated Manufacturing, Vol. 30, No. 6:641-652, Taylor & Francis, 2017.

Stellenbosch University https://scholar.sun.ac.za

91

5. Multi-Agent System Holonic Control Implementation
To evaluate the Erlang holonic control implementation, a comparison will be

performed with the status quo in holonic control implementation – multi-agent

systems. This section provides an overview of the MAS holonic control

implementation for the testbed system described in section 3.2.

The MAS implementation is presented in the form of a paper, titled “JADE Multi-

Agent System Holonic Control Implementation for a Manufacturing Cell”. The

paper presents the implementation of the PROSA holonic reference architecture

using the JADE platform for MAS development. The use of JADE behaviours to

implement agent functionality and facilitate agent communication is described.

Stellenbosch University https://scholar.sun.ac.za

92

JADE Multi-Agent System Holonic Control Implementation for a

Manufacturing Cell

Karel Kruger a,* and Anton Basson a
a Dept of Mechanical and Mechatronic Eng, Stellenbosch Univ, Stellenbosch 7600, South Africa

* Corresponding author. Tel: +27 21 808 4258; Email: kkruger@sun.ac.za

Abstract

Multi-Agents Systems (MASs) is a popular approach for the implementation of

holonic control architectures in manufacturing systems. Software agents and holons

share several similarities, allowing for the exploitation of the advantages that are

offered by holonic systems. The Java Agent Development (JADE) framework is

the tool most often used in implementations of holonic control. This paper describes

a JADE MAS implementation of the Product-Resource-Order-Staff Architecture

(PROSA) for holonic control of a manufacturing cell. The mapping of the holonic

and MAS architectures is explained and the communication and functionality of the

individual agents in the MAS is detailed.

Keywords: Multi-Agent System (MAS); Java Agent Development framework

(JADE); Holonic manufacturing system (HMS); Reconfigurable manufacturing

system (RMS)

5.1. Introduction
Modern manufacturing systems require short lead times for the introduction of new

products into the system, the ability to produce a larger number of product variants

and the ability to handle fluctuating production volumes (Bi et al., 2008). The

concept of Reconfigurable Manufacturing Systems (RMSs) is aimed at addressing

these requirements.

RMSs aim to switch between members of a family of products, through the addition

or removal of functional elements (hardware or software), with minimal delay and

effort (Martinsen et al., 2007; Vyatkin, 2007). RMSs can rapidly adjust the

production capacity and functionality in response to sudden changes, by

reconfiguring hardware and control resources (Bi et al., 2008; Bi, Wang, and Lang,

2007). RMSs are characterised by (Mehrabi, Ulsoy, and Koren, 2000;

ElMaraghy, 2006): modularity of system components, integrability with other

technologies, convertibility to other products, diagnosability of system errors,

customizability for specific applications and scalability of system capacity.

Holonic control architectures is a popular approach for enabling control

reconfiguration in RMSs. The term holon (first introduced by Koestler in 1967)

comes from the Greek words “holos” (meaning “the whole”) and “on” (meaning

“the particle”). Holons are “any component of a complex system that, even when

contributing to the function of the system as a whole, demonstrates autonomous,

stable and self-contained behaviour or function” (Paolucci and Sacile, 2005). When

this concept is applied to manufacturing systems, holons are autonomous and

cooperative building blocks for transforming, transporting, storing or validating the

Stellenbosch University https://scholar.sun.ac.za

93

information of physical objects. A Holonic Manufacturing System (HMS) is a

system of holons that can cooperate to integrate the entire range of manufacturing

activities (Paolucci and Sacile, 2005).

The use of holonic control for RMSs holds many advantages: holonic systems are

resilient to disturbances and adaptable in response to faults (Vyatkin, 2007); have

the ability to organise production activities in a way that they meet the requirements

of scalability, robustness and fault tolerance (Kotak et al., 2003); and lead to

reduced system complexity, reduced software development costs and improved

maintainability and reliability (Scholz-Reiter and Freitag, 2007).

The application of the holonic concept to manufacturing control systems has been

a popular field of research since the early 1990’s. The most popular approach to

implementing holonic control architectures has been Multi-Agent Systems (MASs).

The main motivation for this approach is the similarities between holons and

software agents – both must exhibit autonomy and provide interfaces to facilitate

cooperation. Several experimental implementations have been reported, such as

Leitao and Restivo (2006) and Giret and Botti (2009).

Several tools exist for the development of MASs – of these tools, the Java Agent

Development (JADE) framework is most commonly used in the control of

manufacturing systems. JADE was developed by Telecom Italia and has been

distributed under an open source license since 2000. The JADE framework provides

the middleware to facilitate distributed applications that exploit the software agent

abstraction (Bellifemine et al., 2007). JADE provides tools that simplify the

development, testing and operation of MASs, such as the Agent Management

System (AMS) and the Directory Facilitator (DF). The AMS includes all the

functionality to manage the agents in the MAS, from the creation of agents, to the

migration and termination of agents. The DF provides a mechanism for the

registration and discovery of resources by agents in the MAS. JADE also provides

special Java classes, called behaviours, for implementing common functionality of

agents – this includes behaviours for communication protocols that comply with the

Foundation for Intelligent, Physical Agents (FIPA) specifications for agent

communication.

This paper presents a JADE MAS implementation of a holonic reference

architecture for a manufacturing cell. The implemented PROSA holonic

architecture is discussed in section 5.2 and the case study, on which the

implementation is based, is presented in section 5.3. The MAS holonic control

implementation is described in section 5.4 and the paper concludes with a

discussion of related and future work.

5.2. Holonic Reference Architecture
The exploitation of the advantages of holonic control, as mentioned in section 5.1,

relies on the holonic system's architecture. Several reference architectures, which

specify the mapping of manufacturing resources and information to holons and to

structure the holarchy, have been proposed (e.g. Chirn and McFarlane (2000) and

Stellenbosch University https://scholar.sun.ac.za

94

Leitao and Restivo (2006)), but the most prominent is the Product-Resource-Order-

Staff Architecture (PROSA), as developed by Van Brussel et al. (1998).

PROSA defines four holon classes: Product, Resource, Order and Staff. The first

three classes of holons can be classified as basic holons, because, respectively, they

represent three independent manufacturing concerns: product-related technological

aspects (Product holons), resource aspects (Resource holons) and logistical aspects

(Order holons).

The basic holons can interact with each other by means of knowledge exchange, as

is shown in Figure 25. The process knowledge, which is exchanged between the

Product and Resource holons, is the information and methods describing how a

certain process can be achieved through a certain resource. The production

knowledge is the information concerning the production of a certain product by

using certain resources – this knowledge is exchanged between the Order and

Product holons. The Order and Resource holons exchange process execution

knowledge, which is the information regarding the progress of executing processes

on resources.

Figure 25: Knowledge exchange between the PROSA holons.

Staff holons are considered to be special holons as they are added to the holarchy

to operate in an advisory role to basic holons. The addition of Staff holons aim to

reduce work load and decision complexity for basic holons, by providing them with

expert knowledge.

The holonic characteristics of PROSA contribute to the different aspects of

reconfigurability mentioned in section 5.1. The ability to decouple the control

algorithm from the system structure, and the logistical aspects from the technical

aspects, aids integrability and modularity. Modularity is also provided by the

similarity that is shared by holons of the same type.

Stellenbosch University https://scholar.sun.ac.za

95

5.3. Case Study
The case study used for the presented implementation is a manufacturing cell for

the assembly and quality assurance of electrical circuit breakers. The layout of the

cell is shown in Figure 26. The cell consists of the following workstations:

 Manual assembly station – the sub-components of circuit breakers are

assembled and placed on empty carriers on the conveyor.

 Inspection station – a machine vision inspection is performed on the circuit

breakers as the carriers are moved by the conveyor.

 Electrical test station – circuit breakers are picked up by a robot and placed

into testing machines. The testing machines perform the necessary

performance and safety tests on every breaker. When the testing is

completed for a breaker, it is removed from the testing machine by the robot

and placed on an empty carrier on the conveyor.

 Stacking station – multiple circuit breakers are stacked to produce multi-

pole circuit breakers. The breakers are removed, stacked and placed on

empty carriers by a robot.

 Riveting station – the casings of the circuit breakers are manually riveted

shut.

 Removal station – the completed circuit breakers are removed from carriers.

The breakers are then moved to the next cell for packaging.

The conveyor moves product carriers between the various workstations. The

conveyor is equipped with stop gates and lifting stations at every workstation. The

carriers are fitted with Radio Frequency Identification (RFID) tags and RFID

readers are placed at multiple positions along the conveyor, to provide feedback of

carrier location.

Figure 26: Layout of the electrical circuit breaker assembly and quality

assurance cell.

5.4. Holonic Control Implementation
This section presents the JADE MAS implementation of holonic control, based on

PROSA, for a manufacturing cell. The embodiment of the holonic architecture

through a MAS is explained and the communication between system agents is

discussed. Finally, the functionality and implementation of the individual agent

types are described.

Stellenbosch University https://scholar.sun.ac.za

96

5.4.1. Holonic Architecture

In accordance with PROSA, the various functional components of the

manufacturing cell are embodied as Product, Resource, Order or Staff holons. All

of the holons are represented in the high level control implementation by software

agents. The cooperation of the agents within the MAS implementation provide all

the necessary functionality to drive the production of the manufacturing cell.

The information that pertains to the production of every product that is to be

manufactured by the cell is contained within Product holons. Since these holons

exist purely as information within the control implementation, the holons are

wholly represented as Product agents within the MAS.

The Order holons should exhibit the functionality to utilize the product information

to produce a product of a specific type. Order holons encapsulate the logic and

information needed for production, and thus only exist within the high level control

implementation, where Order holons are represented as Order agents.

In the presented architecture, it is only the Resource holons that include both

physical and software functional components. A Resource holon contains the

resource hardware (as present on the factory floor), the low level control component

(that control the actuators of the hardware and receives feedback from sensors) and

the high level control component. The high level control components is

implemented as a Resource agent in the MAS control implementation. Resource

agents must provide the functionality to communicate with the other agents in the

MAS, manage the agenda of the resource (i.e. the schedule of the execution of the

resource’s services), control the service execution tasks and sequences and maintain

a communication interface with the low level control components of the Resource

holon. The internal architecture of the Resource agent is presented in Figure 27.

The implementation includes one special Resource agent – the Transport agent. The

Transport agent is responsible for the high level control of the conveyor system,

which moves the product carriers between the different workstations. The

implementation makes use of conveyor controller that was previously developed

using Erlang (see Kruger and Basson (2016) for details). The Transport agent

included in this implementation acts as a wrapper, i.e. to provide an agent interface

to the Erlang controller. This interface allows the agents in the MAS to

communicate with the Erlang controller as if it was just another Resource agent.

The Staff holons for the manufacturing cell are implemented as different agents in

the MAS. Some of the Staff holons functionality are provided by JADE, such as the

AMS and DF. Two other Staff agents are included: the Order Manager agent (to

manage the creation and monitoring of Order agents within the MAS) and the

Performance Logger agent (to record the performance of Resource and Order agents

for diagnostic purposes).

Stellenbosch University https://scholar.sun.ac.za

97

Figure 27: Internal architecture for the Resource agent.

5.4.2. Agent Communication

The cooperation of agents within the MAS is achieved through communication –

information is passed as messages between agents. The implementation aimed to

make use of the communication protocols and accompanying functionality

provided by JADE – specifically, the FIPA Rational-Effect protocol and the

contract net protocol. To supplement the communication a messaging ontology is

defined and is applied to the construction of the content information that is added

to the various message instances. This ontology and the formation of customized

communication protocols using the JADE protocols are described in the following

sections.

5.4.2.1. Messaging ontology

The implementation makes use of eXtensible Markup Language (XML) ontology

for structuring the information exchanged during communication. The XML

ontology specifies the information that must accompany a specific message type,

as is determined by the elements that comprise the XML document.

The templates of the XML documents for the various message types are included

in every agent. When a message is composed, the template is used and the required

information is added to the elements. The constructed XML document is then

converted to a string data type, so that the data can be added to the content slot of a

normal JADE ACL message. On the receiver side, the template is used to determine

the elements of the received message from where data must be extracted. The string

obtained from the content slot is converted back to an XML document, from which

point it can be parsed and the required information can be extracted. An example

Stellenbosch University https://scholar.sun.ac.za

98

of the content of a start request message, as would be sent from an Order agent to

a Resource agent, is shown below:

<?xml version="1.0" encoding="UTF-8"?>
<message>
 <initiator>OrderAgent_O24</initiator>
 <responder>ResourceAgent_R06</responder>
 <msg>
 <message_type>start</message_type>
 <service_type>test</service_type>
 <conversation_ID>C021</conversation_ID>
 <result>undefined</result>
 <info>
 <product_ID>P02</product_ID>

</info>
 </msg>
</message>

5.4.2.2. Service booking, confirmation and execution

Order agents, as embodiments of Order holons, are responsible for driving

production – each Order holon exhibits the functionality coordinate the resources

necessary to produce their specific product. The Order agents then follow a protocol

for the booking of resource services, according to the tasks specified by the product

information. When the part is ready for the next service to be performed on it, the

Order agent must first confirm the service booking and then start the execution of

the service. This interaction is illustrated in Figure 28.

Figure 28: Communication between an Order agent and a Resource agent.

Stellenbosch University https://scholar.sun.ac.za

99

The booking of services is accomplished through a contract net protocol between

the Order agent and the Resource agents. After the Order agent obtains the agent

identifiers of all the Resource agents capable of performing a specific service, it

initiates the communication protocol with each Resource agent. The protocol

commences with the sending of Call For Proposal (CFP) messages to each

Resource agent. The Resource agents reply to this CFP message with a proposal.

The received proposals are compared and the Resource agent that sent the best

proposal is sent an Accept Proposal message. Once the selected Resource agent

replies with an inform message, the booking is completed.

When the product that is controlled by the Order agent is ready for the next booked

service to be performed on it, the Order agent must first confirm that the service

booking is still valid – this is done by using the simple FIPA Rational-Effect (RE)

protocol. The Order agent initiates the protocol by sending a request message to the

booked Resource agent. This request message contains a XML string in its content

slot, which contains the “confirm” string in the element holding data for the

message type. The Resource agent parses the XML string content of the request

message and identifies it as a confirmation message. If the details of the Order agent

are present in the bookings list of the resource agent, it replies with an inform

message (if not, a failure message is sent – this is an indication of a fault in the

execution of the Order agent). The confirmation step is included in the

communication protocol as an additional check.

Upon receiving confirmation, the Order agent again initiates a simple RE protocol

– in this case, the content slot of the request message is similar to the string version

of the XML document presented in section 5.4.2.1. The Resource agent identifies

the request as a start message and immediately replies to the Order agent with an

Agree message and start the execution of the service. The agree message provides

an indication to the Order agent that execution of the service has started on the

product – this indication can be used to start a timer, which can indicate when an

error has occurred in the Resource agent. Upon completion of the service, the

Resource agent sends an inform message to the Order agent.

5.4.2.3. Interaction with the Transport Agent

Most of the services performed at the workstations involves physical interaction

with the carriers of the conveyor – e.g. at the input of the Electrical Test Station

(ETS) products are removed from carriers for testing and, upon completion, are

placed back on empty carriers available at the output of the station. This physical

interaction between resources and the conveyor at the workstations is replicated in

the virtual interaction, i.e. in the communication between the various Resource

agents and the Transport agent.

The MAS architecture dictates that the coordination of services is done by Order

agents – e.g. an Order agent will trigger the execution of a transportation service

and, once completed, will thereafter trigger the execution of a testing service. The

Order agent is blind to the interaction between the ETS and Transport agent

Stellenbosch University https://scholar.sun.ac.za

100

necessary for the testing service to be executed – this interaction is completed

through Resource-to-Resource communication.

From the physical system, two types of interaction between resources and the

conveyor are identified: the placing of products on empty carriers and the removal

of products from carriers. These physical interactions are represented by two

AchieveRE protocols – one performing a binding_request and the other a

release_request. The binding_request is used to initiate the placement of a product

on a carrier, i.e. the binding of a product to a carrier. Alternatively, the

release_request initiates the removal of a product from a carrier, so that a previously

bound product is released from a carrier. The sequence of communication between

an Order, ETS and Transport agent for the execution of a testing service is

illustrated in Figure 29.

Figure 29: Communication sequence between the Order, ETS Resource and

Transport agents.

Each type of request is accompanied by the exchange of important information.

With a binding_request message the Resource agent must include information

regarding the type of product that it wants to place on a carrier – since carriers might

be fitted with fixtures that are specifically designed for certain product types, this

information is used by the Transport agent to determine if a suitable carrier is

available at the workstation. The message content is structured as follows:

<?xml version="1.0" encoding="UTF-8"?>
<message>
 <initiator>ResourceAgent_R06</initiator>
 <responder>TransportAgent</responder>
 <msg>

Stellenbosch University https://scholar.sun.ac.za

101

 <message_type>binding_request</message_type>
 <conversation_ID>C021</conversation_ID>
 <result>undefined</result>
 <info>
 <order_ID>OA43</order_ID>
 <product_ID>P02</product_ID>

</info>
 </msg>
</message>

The Transport agent will reply with the result of the request – either an inform or

failure. If the result is true, the specific position on the carrier may be specified, as

carriers can be fitted with multiple fixtures and are thus capable of carrying more

than one product at a time. The message content has the following structure:

<?xml version="1.0" encoding="UTF-8"?>
<message>
 <initiator>ResourceAgent_R06</initiator>
 <responder>TransportAgent</responder>
 <msg>
 <message_type>binding_request</message_type>
 <conversation_ID>C021</conversation_ID>
 <result>true</result>
 <info>
 <place_coords>
 <x>0.0</x>
 <y>200.0</y>
 <z>10.0</z>
 <ang>0.0</ang>
 </place_coords>

</info>
 </msg>
</message>

For a release_request, the Resource agent must specify the product to be released,

based on the Order agent that governs it. For a release_request message, the content

slot of the FIPA RE Request message will contain the following XML string:

<?xml version="1.0" encoding="UTF-8"?>
<message>
 <initiator>ResourceAgent_R06</initiator>
 <responder>TransportAgent</responder>
 <msg>
 <message_type>release_request</message_type>
 <conversation_ID>C027</conversation_ID>
 <result>undefined</result>

Stellenbosch University https://scholar.sun.ac.za

102

 <info>
 <order_ID>OA43</order_ID>

</info>
 </msg>
</message>

Should the requested product be available on the carrier at the workstation, the

Transport agent will reply with an inform message. If multiple products are present

on the carrier, the Transport agent must also specify the position of the product on

the carrier – the information is structured as follows:

<?xml version="1.0" encoding="UTF-8"?>
<message>
 <initiator>ResourceAgent_R06</initiator>
 <responder>TransportAgent</responder>
 <msg>
 <message_type>release_request</message_type>
 <conversation_ID>C027</conversation_ID>
 <result>true</result>
 <info>
 <pick_coords>
 <x>0.0</x>
 <y>200.0</y>
 <z>10.0</z>
 <ang>0.0</ang>
 </pick_coords>

</info>
 </msg>
</message>

5.4.3. Agents

The MAS implementation contains agents of four types, as prescribed by PROSA,

namely Product, Resource, Order and Staff agents. The functionality of each agent

type is described in this section.

5.4.3.1. Product Agent

The Product agent exhibits the behaviour of a simple server, only replying to

received messages requesting the information for a specified product. The agent

employs an AchieveREResponder behaviour to receive and handle request

messages from Order agents. These request messages specify the product type in

the content of the request message. The product information is then retrieved from

the product information XML file and is converted to an XML string. The product

information string is then added to the content slot of the inform ACL message that

is replied to the requesting agent.

Stellenbosch University https://scholar.sun.ac.za

103

An extract from the product information XML file is shown below:

<?xml version="1.0" encoding="UTF-8"?>
<product_information>
 <product id="p01">
 <task_info>
 <task type="feed">
 <place_coords>
 <x>0.0</x>
 <y>0.0</y>
 <z>0.0</z>
 <ang>0.0</ang>
 </place_coords>
 </task>
 <task type="transport">
 <origin>"undefined"</origin>
 <destination>"undefined"</destination>
 </task>

 </task_info>
 </product>

5.4.3.2. Resource Agent

The Resource agents employ behaviours to negotiate service bookings via the

contract net protocol, handle confirmation and start requests and the execution of

the resource’s service.

To negotiate service bookings, Resource agents employ the

ContractNetResponder behaviour. In the handleCFP() method, the agent

creates a proposal – this proposal contains a value that indicates the length of the

resource’s booking list. If a proposal is successful and an accept_proposal message

is received, the information of the booking Order agent is added to the bookings

list.

The confirmation of service bookings by an Order agent, as discussed in section

5.4.2.2, is handled with an AchieveREResponder behaviour added to the

execution of Resource agents. The behaviour matches every incoming message to

a message template – the message template uses a regular expression to evaluate

the XML string content of the received message.

Stellenbosch University https://scholar.sun.ac.za

104

INIT

{FREE,[n = 0]}

{FREE,[n > 0]}

{BUSY,[n = 0]}

{BUSY,[n > 0]}

Received
“ready” from

Exec FSM

Received
“booking
request”

Received “start”
from last

booked client

Received
“start” from

booked client

Received “done”
from Exec FSM

Received
“booking
request”

Received
“booking cancel”
from last booked

client

Received
“booking cancel”
from last booked

client

Received
“done” from

Exec FSM

Event

{EXEC STATUS,[BOOKING LIST]}

Transition with event

State

Received
“booking

request/cancel”

Received
“booking
request/
cancel”

Figure 30: State diagram for the Agenda Management component of the

Resource agent.

The agent behaviour, as described by the state diagram in Figure 30, is constructed

through three concurrently active JADE behaviours. Concurrency within the

execution of the agent is needed to ensure that the Resource agent remains available

for communication even when it is performing its designated service. One

behaviour is responsible for handle service booking requests using the contract net

protocol and another behaviour handles the confirmation protocol for service

bookings. The third behaviour is responsible for the execution of the service as

initiated by an Order agent that previously booked the Resource agent’s service.

To handle service bookings from Order agents a ContractNetResponder

behaviour is added to the execution of the Resource agent. The

ContractNetResponder behaviour is built on the JADE finite state machine

behaviour – the behaviour is constructed with the necessary states to participate in

a CNP negotiation. The states provide the necessary methods to handle the

communication with the CNP initiator agent.

Stellenbosch University https://scholar.sun.ac.za

105

An AchieveREResponder is added to the agent execution to handle the

confirmation of service bookings by Order agents. Similar to the

ContractNetResponder behaviour described above, the

AchieveREResponder behaviour embodies a finite state machine that is

configured to handle the communication of the FIPA RE protocol. The behaviour

compares a received message with a defined message template – in this case, the

content of the message is matched to a template specifying a confirmation message.

To handle the communication intended to start the execution of a booked service, a

SSResponderDispatcher behaviour is added. The SSResponderDispatcher

behaviour launches a behaviour that is dedicated to handle the communication with

one specific agent, for a single communication session only. The

createResponder() method of this behaviour allows the developer to specify

which behaviour to handle the session. Here, a

SSIteratedAchieveREResponder is utilised to handle the communication

involved with the execution of the Resource’s service. The

SSIteratedAchieveREResponder is similar to the AchieveREResponder

behaviour discussed earlier, but is different in the sense that the behaviour

terminates after a single communication session.

For the SSIteratedAchieveREResponder behaviour that is launched to handle

the start message, the standard handleRequest() method is overwritten. Instead,

by using the registerHandleRequest() method, the actions that occur when a

start request is received can be specified by the developer. This method is then used

to add an FSMBehaviour that describes the execution of the Resource’s service.

The behaviours described above, up to the service execution FSMBehviour, are

generic for all Resource agents. Each Resource agent adds a FSMBehaviour that

is specific to the service(s) that it can perform. The behaviour executes all the

actions that are necessary to perform the booked service. Upon completion, the

FSMBehaviour returns the result of the execution to the

SSIteratedAchieveREResponder behaviour, which in turn replies to the Order

agent with an inform or failure message.

5.4.3.3. Order Agent

Order agents must book and trigger the execution of the services, provided by

Resource agents, to complete all the tasks specified in the product information of a

certain product type. The finite state machine behaviour to implement this

functionality and facilitate the necessary communication (as explained in section

5.4.2.2) is described in this section.

The Order agent firstly adds a behaviour to request and receive the product

information from the Product agent – this is done by an AchieveREInitiator

behaviour. Thereafter, the Order agent executes a FSMBehaviour until the product

that it is responsible for is completed. The FSMBehaviour embodies the state

diagram shown in Figure 31.

Stellenbosch University https://scholar.sun.ac.za

106

Figure 31: State diagram for the behaviour of an Order agent.

The execution in the “free-booking” ({FREE, [n < Bbuf]}) state is

implemented using a TickerBehaviour. The function of this behaviour is to

perform service bookings sequentially for the services specified in the product task

list. This behaviour is executed periodically, adding a new

ContractNetInitiator behaviour for service booking every time. The number

of service bookings to be made in advance is determined by the user-defined

booking buffer variable (Bbuf in Figure 31) – when the number of bookings made

(n in Figure 31) is equal to the booking buffer, the FSMBehaviour transitions to

the next state.

In the “free-booked” ({FREE, [n == Bbuf]}) state a OneShotBehaviour is

added that triggers the execution of the first booked service in the bookings list of

the Order agent. The execution, which includes the confirmation and starting of the

service via communication with the booked Resource agent, is performed by a

SequentialBehaviour (discussed at the end of this section). The

SequentialBehaviour is started in a separate thread to simplify concurrency of

the Order agent behaviours. The service that is being executed is removed from the

bookings list, meaning that the number of entries is less than the specified booking

buffer – the FSMBehaviour now transitions to the “busy-booking” state.

Stellenbosch University https://scholar.sun.ac.za

107

The behaviour of the “busy-booking” ({BUSY, [n < Bbuf]}) state is similar to

the “free-booking” state. A TickerBehaviour adds ContractNetInitiator

behaviours until the booking buffer is reached. When all required bookings have

been made, a state transition to the “busy-booked” state occurs.

The “busy-booked” ({BUSY, [n == Bbuf]}) state also implements a

TickerBehaviour, but here the behaviour just periodically checks the status of

the booking list and service execution. During the first execution of the

TickerBehaviour an AchieveREResponder behaviour is added. This

behaviour will receive any booking cancellations from booked Resource agents

(which can occur when the Resource agent either fails or is manually shut down) –

in which case the cancelled booking is removed from the bookings list and a state

transition is triggered back to the “busy-booking” state. Also, at every execution,

the variable indicating the status of service completion is checked. If the service is

completed, the state transitions to the “free-booked” state again so that the

execution of the next booked service can be started. If the service is completed and

it was the last service required for the product, the FSMBehaviour transitions to a

“done” state to terminate execution of the Order agent.

When an Order agent has made enough service bookings to fill the booking buffer,

the first service in the bookings list (which corresponds to the next service to be

performed according to the product information) can be started. The confirmation

of the service bookings and the starting of the service execution, through the

protocols discussed in section 5.4.2.2, are done in a separate behaviour to the

FSMBehaviour described above, and in a dedicated thread. The use of a dedicated

thread, instead of adding concurrency through behaviours, was selected due to the

simplicity of implementation. The thread is again terminated once the service is

completed by the Resource agent.

The thread implements a JADE SequentialBehaviour to sequentially execute

two AchieveREInitaitor behaviours – one for confirming the service booking

and the other to start the execution. Once the Resource agent indicates the

successful completion of the service execution through an inform message, the

necessary updates are made to the agent variables and the behaviour, and thereafter

the thread, terminates.

5.4.3.4. Staff Agents

Staff agents are included in the MAS implementation to provide the functionality

that is not exhibited by the Product, Order and Resource agents. Apart from the

Staff agents included in JADE (such as the Directory Facilitator), two Staff agents

were added to the implementation: an Order Management agent and a Performance

Logger agent.

5.4.3.4.1. Order Management Agent

As the name suggests, the Order Manager (OM) agent is responsible for the

management of the Order agents within the MAS. The OM agent maintains a

Graphical User Interface (GUI) to receive input from the user concerning the

Stellenbosch University https://scholar.sun.ac.za

108

creation of Order agents. The user can specify the number of Order agents and the

type of products they must produce – this information can be entered manually in

the GUI fields, or a XML production schedule filename can be specified.

From the input information, the OM agent launches Order agents by sending

requests to the Agent Management System. The OM agent displays the number of

active Order agent in the MAS in the GUI – this number is incremented with each

launched agent. Once Order agents have completed all required tasks, a done

message is sent to the OM agent before the agent terminates – the number of Order

agents is decremented when a done message is received.

5.4.3.4.2. Performance Logger Agent

To gather diagnostic information on the performance of Resource and Order agents,

a Performance Logger (PL) agent is added to the MAS. The PL agent records the

number of times a Resource agent performs its service, the duration of each service

execution and the total time that the Resource agent spends in service execution –

all data required to calculate the utilization of the resource during a period of

production. The agent also records the start and end times of the execution of Order

agent, in order to provide data for the calculation of the time-in-system of each

product and the overall production throughput.

Resource agents send a start message to the PL agent every time a service execution

is started and a done message when the execution is completed. The PL agent starts

a timer for every start message received from a Resource agent and stops the timer

when the done message is received. The information is stored in an ArrayList

data structure – the entries of the ArrayList are of a custom class type, with fields

for the Resource agent’s name, its activity status, the total number of services

performed and the total time that the Resource has been active. Similarly, Order

agents send corresponding messages upon their instantiation and termination.

5.5. Conclusion
Holonic control architectures have been frequently used in manufacturing systems

to reduce the complexity of the control system, simplify reconfiguration and

improve robustness. Multi-Agent Systems (MASs) have often been used to

facilitate the implementation of holonic control due to the similarities between

holons and software agents. Of the MAS development tools used to implement

holonic control in manufacturing systems, the Java Agent Development (JADE)

framework is the most popular choice.

This paper presented a JADE MAS implementation of a reference holonic control

architecture for a manufacturing cell. The implementation used an electric circuit

breaker assembly and testing cell as case study, of which the various functional

components were mapped to the holon types as prescribed by the PROSA reference

architecture. The high level control components of the holons are implemented as

agents in the MAS. The communication between the agents is described and the

implementation of the functionality for each agent type is discussed.

Stellenbosch University https://scholar.sun.ac.za

109

The implementation of holonic control using JADE MASs has become the status

quo within the field of holonic and reconfigurable manufacturing systems. For this

reason, the presented MAS implementation is used as a baseline for a comparison

with an equivalent holonic control implementation that is based on the Erlang

programming language (details on this implementation can be found in Kruger and

Basson (2015; 2017 (a)). The evaluation criteria and the comparison are presented

in Kruger and Basson (2017 (b); 2017 (c)).

5.6. References
Bi, Z.M., Wang, L., and Lang, S.Y.T., 2007. Current Status of Reconfigurable

Assembly Systems. International Journal of Manufacturing Research,

Inderscience. Vol. 2, No. 3: 303 - 328.

Bi, Z.M., Lang, S.Y.T., Shen, W., and Wang, L., 2008. Reconfigurable

Manufacturing Systems: The State of the Art. International Journal of Production

Research. Vol. 46, No. 4: 967 - 992.

Bellifemine, F., Caire, G. and Greenwood, G., 2007. Developing Multi-Agent

Systems with JADE. John Wiley & Sons, Ltd.

Chirn, J.L. and McFarlane, D., 2000. A Holonic Component-based Approach to

Reconfigurable Manufacturing Control Architecture. Proceedings of the

International Workshop on Industrial Applications of Holonic and Multi-Agent

Systems. pp. 219–223.

ElMaraghy, H., 2006. Flexible and Reconfigurable Manufacturing System

Paradigms. International Journal of Flexible Manufacturing System. Vol. 17: 61-

276.

Giret, A. and Botti, V., 2009. Engineering Holonic Manufacturing Systems.

Computers in Industry. Vol. 60:428-440.

Kotak, D., Wu, S., Fleetwood, M., and Tamoto, H., 2003. Agent-Based Holonic

Design and Operations Environment for Distributed Manufacturing. Computers in

Industry. Vol. 52: 95–108.

Kruger, K. and Basson, A.H., 2015. Implementation of an Erlang-Based resource

Holon for a Holonic Manufacturing Cell. Service Orientation in Holonic and Multi-

Agent Manufacturing, Studies in Computational Intelligence, Springer

International Publishing.

Kruger, K. and Basson, A.H., 2016. Erlang-based Holonic Controller for a Modular

Conveyor System. 6th Workshop on Service Orientation in Holonic and Multi-Agent

Manufacturing. Lisbon, Portugal (October 2016).

Kruger, K. and Basson, A.H., 2017 (a). Erlang-Based Control Implementation for

a Holonic Manufacturing Cell. International Journal of Computer Integrated

Manufacturing. Vol. 30, No. 6:641-652.

Kruger, K. and Basson, A.H., 2017 (b). Evaluation Criteria for Holonic Control

Implementations in Manufacturing Systems. Submitted to the International Journal

of Computer Integrated Manufacturing, September 2017.

Stellenbosch University https://scholar.sun.ac.za

110

Kruger, K. and Basson, A.H., 2017 (c). Comparison of Multi-Agent System and

Erlang Holonic Control Implementations for a Manufacturing Cell. Submitted to

the International Journal of Computer Integrated Manufacturing, September 2017.

Leitao, P. and Restivo, F.J., 2006. ADACOR: A Holonic Architecture for Agile and

Adaptive Manufacturing Control. Computers in Industry. Vol. 57, No. 2: 121-130.

Martinsen, K., Haga, E., Dransfeld, S., and Watterwald, L.E., 2007. Robust,

Flexible and Fast Reconfigurable Assembly System for Automotive Air-brake

Couplings. Intelligent Computation in Manufacturing Engineering. Vol. 6.

Mehrabi, M.G., Ulsoy, A.G., and Koren, Y., 2000. Reconfigurable Manufacturing

Systems: Key to Future Manufacturing. Journal of Intelligent Manufacturing. Vol.

13: 135-146.

Paolucci, M. and Sacile, R., 2005. Agent-Based Manufacturing and Control

Systems. London: CRC Press.

Scholz-Reiter, B. and Freitag, M., 2007. Autonomous Processes in Assembly

Systems. Annals of the CIRP. Vol. 56: 712–730.

Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., and Peeters, P., 1998.

Reference Architecture for Holonic Manufacturing Systems: PROSA. Computers

in Industry. Vol. 37: 255–274.

Vyatkin, V., 2007. IEC 61499 Function Blocks for Embedded and Distributed

Control Systems Design. North Carolina: Instrumentation, Systems and

Automation Society, ISA.

Stellenbosch University https://scholar.sun.ac.za

111

6. Evaluation
This section describes the evaluation of the Erlang holonic control implementation.

The evaluation is aimed at determining the suitability of the Erlang programming

language, supplemented by OTP, for the implementation of holonic control in

manufacturing systems. As is discussed in section 1.4, the evaluation uses a

comparison with an equivalent control implementation using a JADE MAS.

The section is comprised of two papers. In section 6.1, the first paper, “Evaluation

Criteria for Holonic Control Implementations for Manufacturing Systems”,

presents the evaluation criteria that is used for the proposed evaluation. The paper

formulates a set of requirements for holonic control implementations and relates

these requirements to quantitative and qualitative performance measures. The

second paper, which performs an evaluation and comparison of the Erlang and

MAS holonic control implementations, is presented in section 6.2 and is titled

“Comparison of Multi-Agent System and Erlang Holonic Control Implementations

for a Manufacturing Cell”. The comparison is performed according to the

evaluation criteria presented in the first paper.

The two papers presented in this section have not been published, but have been

submitted to an appropriate international journal for review.

Stellenbosch University https://scholar.sun.ac.za

112

6.1. Evaluation Criteria for Holonic Control Implementations in

Manufacturing Systems

Karel Kruger a,* and Anton H Basson a
a Dept of Mechanical and Mechatronic Eng, Stellenbosch Univ, Stellenbosch 7600, South Africa

* Corresponding author. Tel: +27 21 808 4258; Email: kkruger@sun.ac.za

Abstract

Holonic control architectures have often been implemented in research on modern

manufacturing systems. Although many holonic control systems were implemented

using agent-based programming platforms, other platforms hold potential

advantages. A comparison of alternative implementations of holonic control

requires a set of evaluation criteria that can be used to compare the alternative. This

paper presents such a set of evaluation criteria that are focussed on the

implementation of holonic control in manufacturing systems. The evaluation

criteria are formulated from a review of literature, combined with experience in

developing holonic control implementations. The most important characteristics,

requirements and performance measures are identified and discussed.

Keywords: Holonic Manufacturing System (HMS); Reconfigurable Manufacturing

System (RMS); evaluation criteria

6.1.1. Introduction

Modern manufacturing has been shaped by aggressive global competition and

uncertainty, characterised by dynamic changes in economical, technological and

customer trends (Leitao and Restivo, 2006). Bi et al. (2008) identifies the critical

requirements for modern manufacturing systems to be the shortening of lead times

for the introduction of new products into the system, the ability to produce a larger

number of product variants and the ability to handle fluctuating production

volumes.

The requirements for modern manufacturing necessitate paradigm shifts, such as

Reconfigurable Manufacturing Systems (RMSs) and, more recently, Cyber-

Physical Production Systems (CPPSs) and Industry 4.0. RMSs are designed to

facilitate fast and easy switching between members of a particular family of

products, by adding or removing functional elements (hardware or software)

(Martinsen, 2007; Vyatkin, 2007). Bi et al. (2007; 2008) argue that RMSs should

also be able to rapidly adjust the production capacity and functionality in response

to sudden changes, by reconfiguring hardware and control resources. Sharing some

of RMSs' properties, CPPSs have recently become a major focus. The three main

characteristics of CPPSs are (Monostori et al., 2016):

 Intelligence – the elements are able to acquire information from their

surroundings and act autonomously;

 Connectedness – the ability to set up and use connections to the other

elements of the system – including human beings – for cooperation and

Stellenbosch University https://scholar.sun.ac.za

113

collaboration, and to the knowledge and services available on the Internet;

and

 Responsiveness towards internal and external changes.

Holonic control architectures are well suited to enable control reconfiguration in

RMSs and CPPSs. Koestler (1967) first introduced the term holon – a combination

of the Greek words “holos” (meaning “the whole”) and “on” (meaning “the

particle”). Holons are then “any component of a complex system that, even when

contributing to the function of the system as a whole, demonstrates autonomous,

stable and self-contained behaviour or function” (Paolucci and Sacile, 2005). In

manufacturing systems, a holon can be generally defined as an autonomous and

cooperative building block for transforming, transporting, storing or validating

information of physical objects. A Holonic Manufacturing System (HMS) is then

“a holarchy (a system of holons which can cooperate to achieve a common goal)

which integrates the entire range of manufacturing activities” (Paolucci and Sacile,

2005).

In HMSs, holons can comprise software alone or a combination of software and

hardware. In this paper, the focus is on the software parts of HMSs and the computer

hardware on which the software runs, which usually correspond to the control parts

of the HMS. For brevity, the term HMS will further be used in this paper, but

readers should keep in mind that it only refers to the software and associated

computers. However, low level controllers tightly coupled with specific hardware,

such as variable speed drives, are also excluded from consideration in this paper.

There have been several implementations of HMSs. The most common approach is

Multi-Agent Systems (MASs). The two most prominent examples of this approach

can be found in the implementation of the PROSA (Van Brussel et al., 1998) and

ADACOR (Leitao and Restivo, 2006). MASs are also commonly applied in CPPS

(Monostori et al., 2016).

It is important here to distinguish between the holonic architecture and its

implementation. Often, in manufacturing systems context, the terms MAS and

HMS are used nearly interchangeably, presumably since they share so many

characteristics. However, a HMS need not be a MAS and can be implemented using

other approaches. For example, the IEC 61499 standard has been used to implement

holonic control on industrial PLCs (Vyatkin, 2007). Other implementations are the

Holonic Component Based Architecture (Chirn and McFarlane, 2000) and an

Erlang/OTP implementation (Kruger and Basson, 2017 (a)). Reasons for

considering alternatives to an MAS when implementing a HMS include that MASs

have found little acceptance in manufacturing industries and that MAS place high

demands on the computer systems when systems become complex.

The evaluation of alternative HMS implementations has proven to be a challenging

task. Several studies have included evaluation criteria, with the formulations

varying in focus and perspective. These variations inhibit the comparison of

different researchers' work. The HMS Consortium initially identified a set of critical

factors for holonic systems to facilitate agile manufacturing systems for the 21st

Stellenbosch University https://scholar.sun.ac.za

114

century (Christensen, 1994). As HMSs have often been closely linked with research

on RMSs, the six key characteristics for reconfigurable systems (as defined by

Koren and Shpitalni (2010)) have frequently been used as a starting point for the

formulation of evaluation criteria – naturally, these formulations are focussed on

reconfigurability. In the validation of ADACOR, the evaluation was focussed on

agility in the event of unexpected disturbances (Leitao and Restivo, 2008).

This paper presents evaluation criteria that are focussed on providing a base for

comparing the implementation of holonic control in manufacturing systems. It must

be emphasised that the focus here is not on the evaluation of a holonic architecture,

but on alternative implementations of a given architecture. The formulation of the

evaluation criteria is based on considerations from literature and from the authors’

experience in researching alternative implementations of holonic control in

manufacturing systems.

The paper starts with identifying the desired characteristics for holonic control

implementations, from which a set of requirements are derived. The requirements

are then used to formulate a set of quantitative and qualitative performance

measures that can be used to evaluate and compare holonic control

implementations.

6.1.2. Characteristics and Requirements for Holonic Control Implementation

There have been many attempts to formulate a set of desired characteristics and

resulting requirements for modern manufacturing systems – several have focussed

specifically on HMSs. The formulations presented in Christensen (1994), Bussman

(1998) and Bussman and McFarlane (1999) during early holonic systems research

are still relevant. These formulations are used here as the basis for the formulation

of the characteristics and requirements that are used as base for the proposed

evaluation criteria.

The set of desired characteristics to be exhibited by holonic control

implementations is derived from the following objective: developing holonic

control systems that are tailored to satisfy the needs of industry, in order to achieve

greater industry adoption.

Despite a great deal of research and laboratory implementations of holonic systems

– predominantly using MASs – there are only few cases of effective adoption by

industry (Almeida et al., 2010). Considering the needs of industry, two over-arching

characteristics that hold great value for industry, are identified – availability and

supportability. To meet these needs, a third characteristic, development

productivity, focusses on the development of reliable, customized holonic control

implementations with short lead times. Elaborations on the proposed

characteristics, and the requirements necessary to achieve them, are presented in

the following sections.

6.1.2.1. Availability and Supportability

The HMS Consortium identified availability as a critical factor for a successful

modern enterprise (Christensen, 1994). In the manufacturing industry, the

Stellenbosch University https://scholar.sun.ac.za

115

importance of availability is seen in the conservative approach used when selecting

controllers, with a strong preference for well-established brands of automation

controllers, in spite of the availability of lower cost alternatives. In this paper, the

availability of the system is defined as the percentage of time that a system is

capable of production, even in some sub-optimal capacity. To achieve high

availability, a manufacturing system must meet three important requirements:

reconfigurability, robustness and maintainability.

For industry adoption, it is then also important for systems to be easily supported.

Supportability, in this context, refers to the presence of infrastructure and

mechanisms to facilitate the adoption, customization and maintenance of a HMS.

The supportability of an implementation is dependent on maintainability,

portability and controller requirements.

The importance of reconfigurability have been emphasised in the literature on

RMSs (e.g. Koren (2010)), but has also found renewed interest in research on

CPPSs and Industry 4.0 (Monostori et al., 2016). Reconfiguration refers to the

process wherein functional entities (hardware or software) are added, removed or

rearranged in a manufacturing system. Reconfiguration activities may involve

changes to the products, machinery, production capacity or control system. All of

these changes can halt production, but a system with good reconfigurability can

achieve short down- and ramp-up times – thus improving system availability.

However, to reduce the complexity and level of effort associated with such changes,

the system must inherently support reconfigurability.

The availability and supportability of a system can be adversely affected by the

occurrence of faults, e.g. machine breakdowns or communication failures. The

ability of the system to remain available for production (be it in some sub-optimal

state) amidst the occurrence of such events is characterised as robustness. A fault is

defined here, as in Leitao (2004), as a disturbance that causes an unexpected

disruption to production. The HMS Consortium (Christensen, 1994) identified fault

tolerance as a critical factor for holonic system architectures and it has been an area

of focus in studies on HMSs (see Leitao (2004), Leitao et al. (2006) and Leitao and

Restivo (2008)).

All systems require periodic maintenance to ensure continued production over an

extended period. The maintenance of software involves the modification of the

system or its components to correct faults, improve performance or adapt to the

changes in the environment (Coleman et al., 1994). Maintainability then refers to

the complexity and effort involved in maintenance activities. Maintenance is

generally considered to incur a significant fraction of the life cycle costs of

software. In a manufacturing control context, good maintainability characteristics

reduce the production downtime and costs due to maintenance and thus improve

the availability and supportability of the system.

The requirements for the controllers to be used for the holonic control

implementation are an important consideration for availability and supportability.

Two types of controller requirements are considered: the computational capacity of

Stellenbosch University https://scholar.sun.ac.za

116

controllers and the ability to use controllers in distributed networks. The

computational requirements focus specifically on processing power and memory

usage, as improvements in microprocessor technology have opened the way for

highly distributed control networks in the manufacturing industry – as driven by the

CPPS and Industry 4.0 movements. These distributed networks of connected

controllers are essential for the implementation of decentralized control

architectures. Controllers might be obtained from different vendors, varying in

software and hardware platforms and interfaces. It is thus vital for holonic control

implementations to utilize a variety of limited-resource controllers effectively in

distributed networks, with minimal changes to architecture and execution.

6.1.2.2. Development Productivity

From the perspective of the developers of HMSs, productivity is an important

consideration. Trendowicz and Münch (2009) agree with Kennedy et al. (2004) that

development productivity is highly dependent on the attributes of the selected

programming language. Productivity can be dependent on numerous attributes, but

the following are selected as the most relevant to this evaluation: the complexity of

the software, the reusability of software artefacts and the verification of the

developed software.

Trendowicz and Münch (2009) report that software complexity is commonly used

as a productivity factor in different domains of software development. This is not

surprising, since complexity can be indicative of the difficulty in implementing,

understanding, modifying and maintaining software programs (Weyuker, 1988).

The reuse of software involves using existing software artefacts in the construction

of a new software system (Krueger, 1992). The reusability that is offered by a

programming language can reduce the amount of code generation and thus increase

productivity (Prieto-Diaz and Freeman, 1987).

Finally, every piece of software that is developed must be tested to verify that the

desired functionality and reliability is exhibited. The programs constituting a

holonic control implementation will typically be subjected to dynamic software

testing (Vaos and Miller, 1995) to ensure probable correctness. It is important that

the chosen programming language offer mechanisms to facilitate the efficient

verification of code.

6.1.3. Relationships between Requirements and Performance Measures

The characteristics and requirements identified in the previous section can be

related to a set of quantitative and qualitative performance measures. The

performance measures are indicative of one or more of the requirements for holonic

control implementations – this relationship is shown in Table 3. The performance

measures are discussed in the following sections.

Stellenbosch University https://scholar.sun.ac.za

117

Table 3: Relationships between requirements and performance measures.

Characteristics

Availability
Supportability

Development Productivity

Requirements

R
e

co
n

fi
gu

ra
b

ili
ty

R
o

b
u

st
n

e
ss

M
ai

n
ta

in
ab

ili
ty

C
o

n
tr

o
lle

r

re
q

u
ir

e
m

e
n

ts

C
o

m
p

le
xi

ty

V
e

ri
fi

ca
ti

o
n

R
e

u
sa

b
ili

ty

P
e

rf
o

rm
an

ce
 m

e
as

u
re

s

Q
u

an
ti

ta
ti

ve

Reconfiguration time * * * *

Development time * * *

Code complexity * *

Code extension rate * * *

Code re-use rate * * * *

Computational
resource requirements

 *

Q
u

al
it

at
iv

e

Modularity * * * *

Integrability * *

Diagnosability * * * *

Convertibility * *

Fault tolerance *

Distributability *

Developer training
requirements

 * * *

6.1.4. Performance Measures

6.1.4.1. Quantitative Measures

This section introduces each of the quantitative performance measures that form

part of the evaluation criteria. For each measure, the relevance concerning holonic

control implementations is discussed, the underlying concept or philosophy is

described and the method of measurement is explained.

6.1.4.1.1. Reconfiguration Time

Section 6.1.2.1 explains the importance of reconfigurability in improving system

availability and supportability. Reconfigurability is determined by the complexity

and amount of work involved in performing a reconfiguration. A time measurement

Stellenbosch University https://scholar.sun.ac.za

118

is used to indicate the ease and required effort by which reconfiguration of a holonic

control implementation can be performed. The time it takes to perform a

reconfiguration activity is referred to as the reconfiguration time.

Reconfiguration time can be measured by conducting a reconfiguration experiment,

e.g. by introducing a new holon into an existing HMS, where the new holon differs

from the types of holons already in the HMS. Reconfiguration time would then be

measured as the time required by the developer to adapt the system to effectively

utilize the new holon, including the time needed to implement the required changes

to the code of the holons and the verification that the system performs as required.

The development time for the new holon itself is excluded from this measurement,

since it is considered in the next performance measure.

6.1.4.1.2. Development Time

As mentioned in section 6.1.1, short lead times is a key requirement for holonic

manufacturing systems. The lead time for the introduction of new production

capability or system functionality is strongly influenced by the development

process. Development time here therefore refers to the time required to develop new

control software. The development may include the reuse of code or be based on

existing functional software components, but the end product exhibits functionality

different to that of any existing component.

As with reconfiguration time, development time can be measured through a

reconfiguration experiment. In such an experiment, a new type of holon can be

developed and added to an existing holonic system. The source code of the holon

software can consist of both new and reused code and software artefacts. The

verification of the developed software is included in the development time

measurement.

Development time is then measured in terms of developer work hours. To ensure

that the focus remains purely on the part of the implementation process affected by

the implementation platform, the measurement excludes an initial planning period,

i.e. the time required for the developer to fully understand the problem at hand and

orientate himself within the source code library of the holonic control

implementation.

6.1.4.1.3. Code Complexity

In section 6.1.2.2 it is argued that software complexity has a significant influence

on development productivity. Moreover, the complexity of implementing

reconfigurable manufacturing and control systems is considered as a barrier to

industry adoption (Almeida, 2010). It is thus necessary to include a performance

measure with focus on the perceived complexity of the source code in the control

implementation.

Many studies have focussed on the development and use of measures to quantify

the complexity of program source code. Some commonly used measures are aimed

at the complexity of the algorithm that is implemented, such as the cyclomatic

number (McCabe, 1976). However, many holonic control implementations follow

Stellenbosch University https://scholar.sun.ac.za

119

similar reference architectures and algorithms – the complexity measure used here

is thus aimed at the complexity of the resulting source code.

Any evaluation based on complexity measures should be approached with care. It

is a challenging task to formulate objective metrics. The proposed evaluation is

similar to that shown in Cesarini et al. (2008), using a code complexity measure

that is based on a simple "source lines of code" (SLOC) measurement. This measure

is based on a simple philosophy: more lines of code mean more work, and more

errors. Hubbard (1999) argues that a SLOC measurement is dependent on at least

three factors:

 Program functionality

 Programmer skill

 Programming language

Assuming that similar architectures are used for holonic control implementations,

which allow for similar functionality and performance (which can be explicitly

verified), a bias in SLOC due to differences in program functionality is avoided. It

is inevitable that a bias would exist due to programmer skill, but the impact thereof

can be diminished by considering multiple programmers with varied programming

experience. Finally, the influence of programming language on SLOC is in line with

the aim of this evaluation.

The SLOC measure is intuitive to understand and attractive due to the ease by which

the counting of SLOC can be automated. The SLOC count includes lines of code

that:

 Are non-blank

 Are not comments

 Are not delimiters for code elements

 Are not declarations for the inclusion of software artefacts to the inspected

module or class (import in Java and include in Erlang)

 Have been produced by the developer (i.e. not automatically generated).

In the event of software reconfiguration, the SLOC measure is also used as the basis

for two other quantitative measures – code extension rate and code reuse rate – as

described in the following sections.

6.1.4.1.4. Code Extension Rate

Any HMS reconfiguration usually involves the reconfiguration of the controller

source code for one or more holons. The time and effort of such a reconfiguration

is dependent on the ease by which the source code can be adapted. Code extension

rate is an index that represents the growth rate of the scale, and thus complexity, as

an existing implementation is reconfigured to meet new functional requirements

(Chirn and McFarlane, 2005).

Stellenbosch University https://scholar.sun.ac.za

120

Code extension rate (𝐸𝑖+1) is calculated as the ratio of the code complexity measure

in SLOC in the final configuration (𝑆𝐿𝑂𝐶)𝑖+1 to that of the initial configuration

(𝑆𝐿𝑂𝐶)𝑖 – a visual explanation is illustrated in Figure 32. Code extension rate is

calculated as follows:

𝐸𝑖+1 =
(𝑆𝐿𝑂𝐶)𝑖+1

(𝑆𝐿𝑂𝐶)𝑖

Figure 32: Illustration for the calculation of code extension and reuse rates.

6.1.4.1.5. Code Reuse Rate

The importance of software reusability in achieving high productivity is explained

in section 6.1.2.2. Similar to the code extension rate, code reuse rate can be

calculated in the event of reconfiguration. Code reuse rate provides a measure of

the percentage of source code in a new configuration that is reused from an initial

configuration.

Again considering Figure 32, code reuse rate (𝑅𝑖+1) is calculated as the ratio of

SLOC in the new configuration that was reused from the initial configuration

(𝑆𝐿𝑂𝐶)𝑖
′, to the total SLOC of the final configuration (𝑆𝐿𝑂𝐶)𝑖+1:

𝑅𝑖+1 =
(𝑆𝐿𝑂𝐶)𝑖

′

(𝑆𝐿𝑂𝐶)𝑖+1

6.1.4.1.6. Computational Resource Requirements

Advances in microprocessor technology in recent years have led to enhanced

functionality at lower cost. This evolution of controllers holds advantages for

HMSs, where control implementations are often distributed over multiple

communicating controllers. These controllers are, however, still limited in their

computational and memory capacity. It is then important that the programming

language used for holonic control implementations allow for the exploitation of

these controllers, within their limits of use.

Considering holonic control architectures, it might be desired that a significant

portion of the control processes be distributed to dedicated, resource-limited

controllers. The measure of the computational resource requirements of the holonic

control implementation is an important indicator of the extent to which the

functionality can be supported by resource-limited controllers.

Stellenbosch University https://scholar.sun.ac.za

121

To assess the computational resource requirements, two measures are used:

 CPU time – as an indicator of CPU usage, CPU time is the measurement of

the combined time, over all available cores, that the CPU executes

instructions for the holonic control implementation (Microsoft TechNet,

s.a.). CPU time is measured by the operating system and in Windows is

available in the processes window of the task manager application. The CPU

time is recorded at the start of production (thus the CPU time involved with

system startup is excluded) and again when production of the last product is

completed.

 Memory usage – the Random Access Memory (RAM) consumed by each

implementation is monitored during production. Windows includes the

Performance Monitor application, which allows the user to record many of

the counters exposed by the operating system. There exist counters for every

active process on the PC. The Private Working Set counter measures the

RAM (in bytes) that is consumed by a single process (Microsoft TechNet,

s.a.) – this counter is recorded for the duration of a production run.

6.1.4.2. Qualitative Measures

The qualitative performance measures included in this set of evaluation criteria are

discussed in this section. The relevance and importance of each measure is

discussed and the specific qualities that are compared are identified.

6.1.4.2.1. Modularity

Modularity is considered a critical characteristic in most aspects of modern

manufacturing. Wiendahl et al. (2007) list modularity as a key enabler for

changeable manufacturing, affecting both physical and software elements. Koren

(2006) includes modularity as a key characteristic for RMSs, classifying it as a

supporting characteristic that reduces reconfiguration time and effort. Baldwin and

Clark (2006) argue that modularity, in general, has three purposes:

 Managing complexity, as it provides an effective division of cognitive

labour;

 Enabling parallel work, as it allows work on modules to be performed

simultaneously and independently; and

 Accommodating future uncertainty, as it facilitates changes or

improvements to the system without affecting the system as a whole.

In computer science and industry, modularity has been considered and implemented

since as early as the 1950s. Software modularity refers to the architectural

provisions of a software framework to facilitate the encapsulation and

compartmentalization of functionality. Baldwin and Clark (2006) indicate that

software modularity depends on three specifications:

 Architecture – identifying the modules;

 Interfaces – defining how modules interact; and

 Tests – verifying the performance of individual and interacting modules.

Stellenbosch University https://scholar.sun.ac.za

122

The proposed criteria, based on the above-mentioned specifications, in this context

are:

1. The architectural considerations in the platform that enable the modular

implementation of a holonic reference architecture.

2. The provisions in the programming language to facilitate the interaction of

software modules.

3. The mechanisms for verifying the performance of individual and interacting

modules provided in the programming platform/language.

6.1.4.2.2. Integrability

Koren (2006) also lists integrability as a key, supporting characteristic for RMSs.

The connectedness expected in CPPSs also relies on integrability (Monostori et al.,

2016). Integrability refers to the ability to quickly and effectively integrate

mechanical, informational and control components with an existing system. In a

dynamic manufacturing environment where new technologies are rapidly

developed, the extent to which such technologies can be integrated and effectively

exploited is critically important. Considering the adoption of holonic control

systems by industry, it is also crucial that legacy systems can be integrated with

new control implementations.

In the context of control implementation, integrability depends on the interfaces

provided by the programming language to facilitate integration with software and

communication technologies. The integrability of the implementations is thus

evaluated in terms of the following aspects:

 The interfaces that each programming language provides to integrate with

foreign code, i.e. software components developed in different programming

languages. Common examples are the integration of Dynamic Linked

Libraries (DLLs) (to incorporate specific functionality) or a device driver to

utilize hardware (e.g. network cards and cameras). New holonic control

implementations might be required to utilize legacy software systems

written in a different programming language. The use of these systems

might be desired as they could already be optimized for performance, were

specifically developed for some context or it would be too time consuming

to rewrite the code.

 The provision of libraries or functions to implement communication

protocols. This is important for the interface between the high level and low

level control, where the communication protocol may be prescribed by the

low level controller or machine specifications.

6.1.4.2.3. Diagnosability

Diagnosability is the last of the supporting characteristics for RMSs, as identified

by Koren (2006), and is also a key characteristic of CPPSs and Industry 4.0

(Monostori et al., 2016). Diagnosability here refers to the ease and speed by which

the source of quality and reliability problems can be identified in a system. The

diagnosability of a system also affects the amount of time required to determine

whether a system is performing correctly and reliably. It is then intuitive that good

Stellenbosch University https://scholar.sun.ac.za

123

system diagnosability reduces ramp-up time after reconfiguration and downtime

during maintenance.

Diagnosability is also important in the context of software systems. Le Traon et al.

(2003) reason that an important part of the software validation effort is spent on

testing and diagnosis. While testing is concerned with uncovering and detecting

errors, diagnosis aims to locate the components of the system where the error

originated. Diagnosability then refers to the effort and speed by which the source

of errors can be precisely located in a software system. The diagnosis of errors, and

hence diagnosability of a system, is dependent on the capacity of the testing strategy

to isolate components in the system.

The modular nature of holonic control implementations allow for the classification

of two types of errors: errors that occur within the execution of a holon, or errors

arising from the interaction between holons or holon components. The following

provisions of the implementations influence the diagnosis of these errors:

 The functionality for constructing tests to identify the cause and location of

errors.

 The built-in functionality or mechanisms for monitoring communication

and execution.

6.1.4.2.4. Convertibility

Koren (2006) lists convertibility as a key, critical characteristic for reconfigurable

systems, enabling a reduction of reconfiguration time and system life-cycle cost and

increasing system productivity. At the control level, convertibility refers to the

transformation of the functionality of the existing system to meet new production

requirements.

It is often necessary for the operator (or some external process) to make changes to

the manufacturing system during operation. Examples of such changes include

alterations to the production schedule (e.g. rush orders) or the manual shut down

and restarting of workstations (e.g. for unscheduled maintenance). The provisions

in the implementation to facilitate such changes, with minimal disruption, are

therefore evaluated.

6.1.4.2.5. Fault Tolerance

It is inevitable that faults will occur within a manufacturing system. These faults

might be the result of programming errors, machine or controller breakdowns, or

communication failures. Fault tolerance refers to the ability to remain operational

with a useful degree of system stability, and is a critical indicator of system

robustness. The evaluation criteria for fault tolerance is based on the following:

 Fault isolation – it is critical for control implementations to limit the

propagation of errors, i.e. to minimize the effects of an error on other

components of the system. The isolation of the fault minimizes the impact

of the disturbance on the system.

Stellenbosch University https://scholar.sun.ac.za

124

 Fault detection – for a system to be tolerant of faults, it is essential that faults

are identified when they occur. Only when a fault is detected is it possible

for the system to react.

 Fault handling – it is desired for the system to react in the event of a detected

fault in order to ensure system stability and reduce the effect on the overall

performance.

6.1.4.2.6. Distributability

An attractive characteristic of the holonic systems approach is that it inherently

enables distributed control. Different definitions exist for distributed control in

manufacturing systems (see Bousbia and Trentesaux (2002) for a summary) – in

this paper, it refers to the implementation of a decentralized control architecture of

which the control components run on multiple independent controllers, connected

on a network.

The distribution of control promise advantages in robustness and portability.

Having the control implemented on multiple controllers ensures a greater tolerance

for faults and simplifies the application of unplanned changes in the system. The

capacity for distribution allows the control implementation to be extended to utilize

additional controllers (possibly added to the cell/system during a reconfiguration)

and support the physical distribution of manufacturing. The evaluation criteria are

thus based on the following:

 The architectural provisions to facilitate distribution.

 The facilitation of communication between distributed control components.

 The availability of tools for developing, testing and commissioning

distributed systems.

 The portability properties – i.e. the provisions for the implementation to be

installed on different platforms.

6.1.4.2.7. Developer Training Requirements

It is natural to expect the developers of holonic control implementations to be

trained in holonic systems theory and in the development of software. However,

since the holonic systems community is still relatively small, developers are scarce

– new developers, regardless of their prior background in software development,

usually require training in the specifics of holonic control principles and

implementation practices. This training regimen can be costly and time consuming.

It is considered here that a developer must understand the holonic architecture, be

able to implement the execution and communication functionality in a specified

programming language and verify the functionality of the system. With these

capabilities, the developer is able to commission the system and perform

reconfiguration and maintenance activities as facilitated by the implementation.

From these actions it is clear that the developer training requirements are indicative

of the reconfigurability and maintainability of the control implementation, and also

the complexity and verification effort involved in the software development. The

Stellenbosch University https://scholar.sun.ac.za

125

evaluation criteria examine the expertise and experience required of the developer

to perform the following tasks:

 Implement holon behaviour.

 Implement concurrency in the holonic control implementation.

 Implement mechanisms for inter-holon communication.

 Implement mechanisms for external communication.

 Verify the functionality of the control implementation.

6.1.5. Conclusion

This paper presents a set of evaluation criteria for comparing alternative

implementations of the software of HMSs. The criteria build on criteria used in

literature, such as the key requirements for RMSs and the critical factors for HMSs,

but is specifically formulated to emphasise the implementation of holonic control

in manufacturing systems.

Three characteristics of the control implementation that will promote the

development of holonic systems tailored to the needs of industry were identified:

availability, supportability and development productivity. From these

characteristics, several requirements for control implementations are derived. To

enable an evaluation and comparison based on the requirements, the paper proposes

a set of quantitative and qualitative performance measures.

It should be noted that a comparison of alternative implementations would only be

possible on a case study basis for the quantitative performance measures, since the

values attributed to the performance measures are case-dependent. To achieve a

more generic comparison of implementation alternatives, further research is

required to identify a standardised set of test cases.

6.1.6. References

Almeida, F.L., Terra, B.M., Dias, P.A., and Gonçales, G.M., 2010. Adoption Issues

of Multi-Agent Systems in Manufacturing Industry. Fifth International Multi-

conference on Computing in the Global Information Technology. pp. 238-244.

Baldwin, C. and Clark, K., 2006. Modularity in the Design of Complex Engineering

Systems. Complex Engineered Systems. pp.175-205.

Bi, Z.M., Wang, L., and Lang, S.Y.T., 2007. Current Status of Reconfigurable

Assembly Systems. International Journal of Manufacturing Research,

Inderscience. Vol. 2, No. 3: 303 - 328.

Bi, Z.M., Lang, S.Y.T., Shen, W., and Wang, L., 2008. Reconfigurable

Manufacturing Systems: The State of the Art. International Journal of Production

Research. Vol. 46, No. 4: 967 - 992.

Bousbia, S. and Trentesaux, D., 2002. Self-Organization in Distributed

Manufacturing Control: State-of-the-Art and Future Trends. 2002 IEEE

International Conference on Systems, Man and Cybernetics. Vol. 5, pp. 6-12.

Stellenbosch University https://scholar.sun.ac.za

126

Bussman, S., 1998. An Agent-Oriented Architecture for Holonic Manufacturing

Control. 1st Workshop on Intelligent Manufacturing Systems. Lausanne,

Switzerland.

Bussman, S. and McFarlane, D., 1999. Rationales for Holonic manufacturing

Control. Proceedings of the 2nd International Workshop on Intelligent

Manufacturing Systems. Leuven, Belgium (September 1999). pp. 177-184.

Cesarini, F., Pappalardo, V. and Santoro, C., 2008. A Comparative Evaluation of

Imperative and Functional Implementations of the IMAP Protocol. Proceedings of

the 7th ACM SIGPLAN Workshop on Erlang. pp. 29-40. ACM.

Chirn, J.L. and McFarlane, D., 2000. A Holonic Component-based Approach to

Reconfigurable Manufacturing Control Architecture. Proceedings of the

International Workshop on Industrial Applications of Holonic and Multi-Agent

Systems. pp. 219–223.

Christensen, J.H., 1994. Holonic Manufacturing Systems: Initial Architecture and

Standards Directions. First European Conference on Holonic Manufacturing

Systems. Hannover, Germany (December, 1994).

Coleman, D., Ash, D., Lowther, B. and Oman, P., 1994. Using Metrics to Evaluate

Software System Maintainability. Computer. Vol. 27, No. 8:44-49.

Prieto-Diaz, R. and Freeman, P., 1987. Classifying Software for Reusability. IEEE

Software. Vol. 4, No. 1:6-16.

Hubbard, D., 1999. The IT Measurement Inversion. CIO Enterprize Magazine.

Kennedy, K., Koelbel, C. and Schreiber, R., 2004. Defining and Measuring the

Productivity of Programming Languages. International Journal of High

Performance Computing Applications. Vol. 18, No. 4:441-448.

Koestler, A., 1967. The Ghost in the Machine. London: Arkana Books.

Koren, Y., 2006. General RMS Characteristics: Comparison with Dedicated and

Flexible systems. Reconfigurable Manufacturing Systems and Transformable

Factories. pp. 27-45. Springer, Berlin Heidelberg.

Koren, Y. and Shpitalni, M., 2010. Design of Reconfigurable Manufacturing

Systems. Journal of Manufacturing Systems. Vol. 29, pp. 130-141.

Krueger, C.W., 1992. Software Reuse. ACM Computing Surveys (CSUR). Vol. 24,

No. 2:131-183.

Kruger, K. and Basson, A.H., 2017 (a). Erlang-Based Control Implementation for

a Holonic Manufacturing Cell. International Journal of Computer Integrated

Manufacturing. Vol. 30, No. 6:641-652.

Kruger, K. and Basson, A.H., 2017 (b). Comparison of Multi-Agent System and

Erlang based Control Implementations for a Holonic Manufacturing Cell. To be

submitted to the International Journal of Computer Integrated Manufacturing,

January 2018.

Stellenbosch University https://scholar.sun.ac.za

127

Leitao, P., 2004. An Agile and Adaptive Holonic Architecture for Manufacturing

Control. Ph.D. Dissertation. University of Porto, Portugal.

Leitao, P. and Restivo, F.J., 2006. ADACOR: A Holonic Architecture for Agile and

Adaptive Manufacturing Control. Computers in Industry. Vol. 57, No. 2: 121-130.

Leitao, P. and Restivo, F.J., 2008. Implementation of a Holonic Control System in

a Flexible Manufacturing System. IEEE Transactions on Systems, Man and

Cybernetics – Part C: Applications And Reviews. Vol. 38, No. 5:699-709.

Le Traon, Y., Ouabdesselam, F., Robach, C. and Baudry, B., 2003. From Diagnosis

to Diagnosability: Axiomatization, Measurement and Application. Journal of

Systems and Software. Vol. 65, No. 1:31-50.

Martinsen, K., Haga, E., Dransfeld, S., and Watterwald, L.E., 2007. Robust,

Flexible and Fast Reconfigurable Assembly System for Automotive Air-brake

Couplings. Intelligent Computation in Manufacturing Engineering. Vol. 6.

McCabe, T.J., 1976. A Complexity Measure. IEEE Transactions on Software

Engineering. Vol. 4, pp. 308-320.

Microsoft TechNet, s.a. Task Manager. Available:

https://technet.microsoft.com/en-us/library (30 August 2017)

Microsoft TechNet, s.a. Overview of Performance Monitor. Available:

https://technet.microsoft.com/en-us/library/cc749154 (30 August 2017)

Monostori, L., Kádár, B., Bauernhansl, T., Kondoh, S., Kumara, S., Reinhart, G.,

Sauer, O., Schuh, G., Sihn, W. and Ueda, K., 2016. Cyber-Physical Systems in

Manufacturing. CIRP Annals - Manufacturing Technology. Vol 65, pp 621–641.

Paolucci, M. and Sacile, R., 2005. Agent-Based Manufacturing and Control

Systems. London: CRC Press.

Trendowicz, A. and Münch, J., 2009. Factors Influencing Software Development

Productivity: State‐of‐the‐Art and Industrial Experiences. Advances in Computers.

Vol. 77, pp.185-241.

Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., and Peeters, P., 1998.

Reference Architecture for Holonic Manufacturing Systems: PROSA. Computers

in Industry. Vol. 37, pp. 255–274.

Voas, J.M. and Miller, K.W., 1995. Software Testability: The New

Verification. IEEE Software. Vol. 12, No. 3:17-28.

Vyatkin, V., 2007. IEC 61499 Function Blocks for Embedded and Distributed

Control Systems Design. North Carolina: Instrumentation, Systems and

Automation Society, ISA.

Weyuker, E.J., 1988. Evaluating Software Complexity Measures. IEEE

Transactions on Software Engineering. Vol. 14, No. 9:1357-1365.

Stellenbosch University https://scholar.sun.ac.za

128

Wiendahl, H.P., ElMaraghy, H.A., Nyhuis, P., Zah, M.F., Wiendahl, H.H., Duffie,

N. and Brieke, M., 2007. Changeable Manufacturing: Classification, Design and

Operation. Annals of CIRP. Vol. 56, No. 2: 783 – 809.

Stellenbosch University https://scholar.sun.ac.za

129

6.2. Comparison of Multi-Agent System and Erlang Holonic Control

Implementations for a Manufacturing Cell

Karel Kruger a,* and Anton H Basson a
a Dept of Mechanical and Mechatronic Eng, Stellenbosch Univ, Stellenbosch 7600, South Africa

* Corresponding author. Tel: +27 21 808 4258; Email: kkruger@sun.ac.za

Abstract

This paper presents a comparison between two holonic control implementations,

using the Erlang programming language and Java Agent Development (JADE)

framework multi-agent system, respectively. Erlang exhibits several characteristics

that make it suitable – and even potentially beneficial – for holonic control, while

JADE multi-agent systems have become the status quo in holonic systems research.

The comparison is done using both quantitative and qualitative performance

measures, which are specifically formulated to focus on the implementation of

holonic control. The results show that the Erlang implementation is inherently

capable of most of the functionality offered by the JADE implementation, while

even exhibiting some advantages over its counterpart. The comparison indicates

that Erlang is very well suited for implementing holonic control and warrants

further exploration and development.

Keywords: Erlang/OTP; Multi-agent systems; Holonic manufacturing system

(HMS); Reconfigurable manufacturing system (RMS)

6.2.1. Introduction

Holonic systems have become a popular approach for addressing the challenges of

modern manufacturing systems: short lead times for the introduction of new

products into the system; producing a larger number of product variants and

handling fluctuating production volumes (Bi et al., 2008). The term holon comes

from the Greek words “holos” (meaning “the whole”) and “on” (meaning “the

particle”) (Koestler, 1967). Holons are “any component of a complex system that,

even when contributing to the function of the system as a whole, demonstrates

autonomous, stable and self-contained behaviour or function” (Paolucci and Sacile,

2005). When this concept is applied to manufacturing systems, holons are

autonomous and cooperative building blocks for transforming, transporting, storing

or validating the information of physical objects. A Holonic Manufacturing System

(HMS) is a system of holons that can cooperate to integrate the entire range of

manufacturing activities (Paolucci and Sacile, 2005).

The holonic systems approach to manufacturing holds many advantages: holonic

systems are resilient to disturbances and adaptable in response to faults (Vyatkin,

2007); have the ability to organise production activities in a way that they meet the

requirements of scalability, robustness and fault tolerance (Kotak et al., 2003); and

lead to reduced system complexity, reduced software development costs and

improved maintainability and reliability (Scholz-Reiter and Freitag, 2007).

Stellenbosch University https://scholar.sun.ac.za

130

The application of the holonic concept to manufacturing control systems has been

a popular field of research since the early 1990’s – often utilised to enable control

reconfiguration in Reconfigurable Manufacturing Systems (RMSs). The RMS

concept aims to produce manufacturing systems that can switch between members

of a family of products, through the addition or removal of functional elements

(hardware or software), with minimal delay and effort (Martinsen, 2007; Vyatkin,

2007). RMSs can rapidly adjust the production capacity and functionality in

response to sudden changes, by reconfiguring hardware and control resources (Bi

et al., 2008; Bi et al., 2007). Koren and Shpitalni (2010) characterise RMSs by:

modularity of system components, integrability with other technologies,

convertibility to other products, diagnosability of system errors, customizability for

specific applications and scalability of system capacity.

Sharing some of RMSs' properties, Cyber-Physical Production Systems (CPPSs)

have recently become a major focus. The three main characteristics of CPPSs are

(Monostori et al., 2016): "Intelligence (smartness), i.e. the elements are able to

acquiring information from their surroundings and act autonomously;

Connectedness, i.e. the ability to set up and use connections to the other elements

of the system – including human beings – for cooperation and collaboration, and to

the knowledge and services available on the Internet; and Responsiveness towards

internal and external changes. Holonic systems share many of these characteristics

with CPSSs.

Several experimental implementations of holonic control have been reported, such

as Leitao and Restivo (2006) and Giret and Botti (2009). The most popular

approach has been Multi-Agent Systems (MASs), which has become the status quo

in holonic control implementation. The main motivation for this approach is the

similarities between holons and software agents – both must exhibit autonomy and

provide interfaces to facilitate cooperation.

This paper aims to evaluate, through a comparison, an alternative to MASs. The

implementation is based on the Erlang programming language – a concurrent,

functional programming language that was developed for programming concurrent,

scalable and distributed systems. Erlang employs many lightweight processes to

work concurrently, while distributed over many devices. The process model of

Erlang facilitates processes that are strongly isolated, do not share memory and only

interact through the exchange of messages (Armstrong, 2003). The Erlang

programming environment is supplemented by the Open Telecommunications

Platform (OTP) - a set of robust Erlang libraries and design principles providing

middle-ware to develop Erlang systems (Anonymous, s.a. (a); Logan et al., 2011).

The evaluation of holonic systems, including holonic control of RMSs, has proven

to be a challenging task. Several studies and developments have generated

evaluation criteria, with the formulations varying in focus and perspective (e.g.

Christensen (1994), Koren and Shpitalni (2010) and Leitao and Restivo (2008)). In

alignment with the objective of the presented research, this paper will make use of

Stellenbosch University https://scholar.sun.ac.za

131

the evaluation criteria formulated by Kruger and Basson (2017 (c)), which is

focussed on the implementation phase of holonic control.

This paper presents the methodology that was followed for the proposed

comparison (section 6.2.2), briefly describes the implementations (section 6.2.3)

and introduces the case study that is used as context (section 6.2.4). Section 6.2.5

provides an overview of the evaluation criteria and sections 6.2.6 and 6.2.7 perform

the comparison according to the set of performance measures. Finally, the results

of the comparison are discussed and the findings are presented in section 6.2.8.

6.2.2. Methodology

This paper presents a comparison of two different holonic control implementations

based on the same reference architecture. One implementation is done using

Erlang/OTP and the other is done using a MAS. The MAS is developed using the

Java Agent Development (JADE) framework, which is middleware that facilitates

the development of agent-based systems (Bellifemine et al., 2007). From here on,

the programming language of the implementations will refer either to Erlang with

OTP, or MAS developed with JADE.

To perform a comparison of the two implementations is a challenging task – the

implementations are different in not just the programming language, but also in

programming paradigm (imperative and functional). While several studies have

attempted such comparisons (e.g. Harrison et al. (1996), Prechelt (2000) and

Cesarini et al. (2008)), assessments based on generic, objective and quantitative

measures are hard to come by. Aiming to avoid this treacherous terrain, the

comparison presented in this paper has a specific focus: the suitability of the Erlang

programming language as a tool for implementing holonic control. The comparison

thus pays less attention to the philosophical and semantic differences between the

programming languages, and rather compares the provisions of each programming

language to facilitate the implementation of holonic control. This methodology is

similar to that adopted by Chirn and McFarlane (2005) in evaluating the

effectiveness of a holonic system design.

The implementation of the same architecture in the two programming languages

forms the basis for the comparison. The PROSA reference architecture (described

in section 6.2.3.1) was used as the foundation for the development of both the

Erlang and MAS holonic control implementations (described in section 6.2.3.2 and

section 6.2.3.3 respectively). The use of a common reference architecture allowed

for comparable functionality in the two implementations – the similarity was

verified through a series of verification experiments, as presented in section 6.2.5.1.

For the implementations, the software was developed according to common

practices – i.e. libraries provided with the software were used as far as possible, and

the development followed the principles outlined in literature (Logan et al. (2011),

Armstrong (2007) and Anonymous (s.a. (b)) for Erlang and Bellifemine et al.

(2007) for JADE).

Stellenbosch University https://scholar.sun.ac.za

132

To improve the reliability and validity of the proposed comparison, the same

developer performed the two implementations. The premise of implementing a

common reference architecture relies on consistency in the developer’s

understanding and interpretation of the architecture. Additionally, even though the

code is significantly different, the developer follows a similar approach in each

implementation. The developer possesses the following relevant expertise and

experience:

 Undergraduate degree in mechatronic engineering.

 Master’s degree in mechatronic engineering, of which the thesis focussed

on the development and evaluation of two holonic control implementations

– one being a MAS developed in JADE and the other a IEC61499

application using Function Block Development Kit (Vyatkin, 2007) –

further details can be found in Kruger and Basson (2013).

 Online course on Erlang programming (prior to which the developer was

unfamiliar with Erlang programming).

In line with the objective of this research, the evaluation criteria is set up from the

perspective of the developers and consumers of holonic control implementations,

as opposed to that of computer scientists. The performance measures are thus

derived from the requirements for holonic manufacturing systems and the

evaluation aims to emphasise the extent to which each implementation satisfy these

requirements. The evaluation criteria are discussed in section 6.2.5.3.

Several aspects of the comparison involve impressions, experiences and

philosophies, which are not suited to quantification, leading to criteria comprised

of both quantitative and qualitative performance measures (sections 6.2.6 and

6.2.7). Even though the evaluation is inherently subjective, the comparison strives

to provide an unbiased reflection of the suitability of Erlang for holonic control

implementation – this is enforced through reference to experimental data, examples

from code and findings from literature, as far as possible.

6.2.3. Holonic Control Implementations

6.2.3.1. Holonic Architecture

The advantages of holonic control are largely provided by the holonic system's

architecture. Several reference architectures, which specify the mapping of

manufacturing resources and information to holons and to structure the holarchy,

have been proposed (e.g. Chirn and McFarlane (2000) and Leitao and Restivo

(2006)), but the most prominent is the Product-Resource-Order-Staff Architecture

(PROSA) – developed by Van Brussel et al. (1998).

PROSA defines four holon classes: Product, Resource, Order and Staff. The first

three classes of holons can be classified as basic holons, because, respectively, they

represent three independent manufacturing concerns: product-related technological

aspects (Product holons), resource aspects (Resource holons) and logistical aspects

(Order holons).

Stellenbosch University https://scholar.sun.ac.za

133

The basic holons interact with each other by means of knowledge exchange, as is

shown in Figure 33. Resource holons query the Product holons for the process

requirements, of a given product type, pertaining to the specific tasks that the

Resource holons can perform. The Order and Product holons exchange production

knowledge related to the Resource holon services that are required for producing a

product. The Order and Resource holons exchange process execution knowledge,

which is the information regarding the progress of executing processes on

resources.

Figure 33: Knowledge exchange between the PROSA holons

Staff holons are considered to be special holons as they are added to the holarchy

to operate in an advisory role to basic holons. The addition of staff holons aim to

reduce work load and decision complexity for basic holons, by providing them with

expert knowledge.

The holonic characteristics of PROSA contribute to the different aspects of

reconfigurability mentioned in section 6.2.1. The ability to decouple the control

algorithm from the system structure, and the logistical aspects from the technical

aspects, aids integrability and modularity. Modularity is also provided by the

similarity that is shared by holons of the same type.

6.2.3.2. Erlang Implementation

Details of the Erlang-based holonic control implementation are given by Kruger

and Basson (2017 (a)). Each PROSA holon comprises a number of Erlang processes

in the control implementation. The implementation makes use of the generic OTP

behaviours – notably those for supervision, finite state machines and Transmission

Control Protocol (TCP) communication. The process model of Erlang is used to

incorporate a high degree of concurrency in the control implementation, with

message passing between processes to share data. The record data type in Erlang

was used to develop a custom communication ontology and protocol for the

implementation.

Stellenbosch University https://scholar.sun.ac.za

134

6.2.3.3. MAS Implementation

The MAS control implementation is described in Kruger and Basson (2017 (b)).

The holons of PROSA are represented as software agents in the control level of the

manufacturing system. The implementation is constructed using JADE, with

standard behaviours for functionality and communication being used as far as

possible. A combination of standard communication protocols are used, along with

an eXtensible Markup Language (XML) ontology, to achieve the desired

interaction between the agents of the MAS.

6.2.4. Case Study

The case study used for the comparison of the implementations is a manufacturing

cell for the assembly and quality assurance of electrical circuit breakers. The layout

of the cell is shown in Figure 34. The cell consists of the following workstations:

 Manual assembly station – the sub-components of circuit breakers are

assembled and placed on empty carriers on the conveyor.

 Inspection station – a machine vision inspection is performed on the circuit

breakers as the carriers are moved by the conveyor.

 Electrical test station – circuit breakers are picked up by a robot and placed

into testing machines. The testing machines perform the necessary

performance and safety tests on every breaker. When the testing is

completed for a breaker, it is removed from the testing machine by the robot

and placed on an empty carrier on the conveyor.

 Riveting station – the casings of the circuit breakers are manually riveted

shut.

 Removal station – the completed circuit breakers are removed from carriers.

The breakers are then moved to the next cell for packaging.

As part of a reconfiguration experiment (presented in section 6.2.5.2), an additional

workstation is added to the manufacturing cell – the stacking station. At this station,

multiple circuit breakers are stacked to produce multi-pole circuit breakers. The

breakers are removed, stacked and placed on empty carriers by a robot.

The conveyor moves product carriers between the various workstations. The

conveyor is equipped with stop gates and lifting stations at every workstation. The

carriers are fitted with Radio Frequency Identification (RFID) tags and RFID

readers are placed at multiple positions along the conveyor, to provide feedback of

carrier location.

Stellenbosch University https://scholar.sun.ac.za

135

Figure 34: Layout of the electrical circuit breaker assembly and quality

assurance cell.

6.2.5. Evaluation Overview

An overview of the evaluation of Erlang for the implementation of holonic control

is presented in this section. As discussed in section 6.2.2, the suitability of Erlang

for the implementation of holonic control is evaluated in comparison with a MAS

implementation. Firstly, this section presents the verification that both

implementations exhibit similar functionality and performance. Thereafter, the

design of a reconfiguration experiment is described and an overview of the

evaluation criteria is presented.

6.2.5.1. Verification Experiments

The verification experiments aimed to prove that the implementations, as

embodiments of the same reference architecture, exhibit similar functionality and

performance. This verification was done through experiments that emphasise the

functionality of the holonic architecture, negating the influence of the respective

programming languages. Performance measures, as computed from the results of

the experiments, are compared to verify the intended similarity.

The experiments were performed using simulations of the manufacturing cell

described in section 6.2.4. The experiments involved the simulation of two

production scenarios for each implementation - the simulated production of ten

orders (of the same product type) with a cell configuration that:

1. does not include redundant workstations (i.e. only one workstation was

active for the electrical testing, riveting and removal tasks, respectively).

2. includes active redundant workstations for the electrical testing, riveting and

removal tasks.

The first experiment aimed to exhibit the basic functionality as defined by the

implemented holonic architecture – for each order, the required service-providing

resource holons must be identified and booked, and the execution of each service

must be triggered. With no redundant resources, the production sequence is fixed.

Stellenbosch University https://scholar.sun.ac.za

136

The second experiment required the additional functionality of selecting the best

service-providing resource holon according to received proposals. The additional

redundant resources introduce emergent behaviour in the holonic implementations

and thus unpredictability in the production sequence.

The most obvious method of verifying the similarity in functionality was to simply

observe each control implementation during the experimental production scenarios.

While it can be confirmed that the implementations performed similar functions

and successfully executed the simulated production, quantitative measures are more

convincing. Therefore, two quantitative performance measures were extracted from

the simulated production scenarios:

 Production throughput refers to the rate by which orders are completed,

calculated as total number of completed orders over the total production

time.

 Resource utilization is measured as the percentage of the total production

time that a resource is active (i.e. performing a specific task/operation on an

order).

Both production throughput and resource utilization have been used as quantitative

performance measures in previous studies on manufacturing system control (e.g.

Leitao (2004) and Bussman and Sieverding (2001)). Production throughput gives

an indication of the performance of the overall basic functionality, while resource

utilization provides an indication of the performance of scheduling and executing

services. It is expected that two implementations of the same reference architecture

should achieve similar results for the two performance measures.

Table 4 summarizes the results obtained from the verification experiments. For both

experiments, the results show a close correlation in the performance of the two

implementations. The results serve as proof that the Erlang and MAS control

implementations exhibit similar functionality, allowing for a fair comparison.

Table 4: Results of verification experiments.

 Experiment 1 Experiment 2

 Resource utilization (%) Resource utilization (%)

Resources Erlang MAS Erlang MAS

Feeder station 19.3 20.1 24.6 23.8

Inspection station 11.6 12.0 14.7 14.2

Electrical test station 59.8 60.9 38.7 36.7

Electrical test station (#2) n/a n/a 36.7 35.7

Riveting station 38.5 40.1 25.4 24.9

Riveting station (#2) n/a n/a 26.2 24.9

Removal station 15.4 16.1 9.8 10.6

Removal station (#2) n/a n/a 9.8 9.5

 Throughput (parts/min) Throughput (parts/min)

 2.3 2.4 2.9 2.8

Stellenbosch University https://scholar.sun.ac.za

137

6.2.5.2. Reconfiguration Experiment

A reconfiguration experiment was performed to obtain a number of the quantitative

performance parameters for the reconfiguration and development of the two

implementations. The experiment involved the addition of a new Resource holon,

capable of stacking multiple circuit breakers, to the system described in section

6.2.4.

The reconfiguration experiment required changes to the Product and Order holons

to incorporate the newly added Stacking holon. Two Product holons were added –

one for producing single-pole circuit breakers that can be stacked to form multiple-

pole breakers, and one for the production of stacked three-pole breakers. The

general messaging functionality for Order holons needed to be updated to

incorporate the exchange of task-specific information with the Stacking holon.

After the required alterations, the performances of the implementations were

verified.

6.2.5.3. Evaluation Criteria

The comparison makes use of the evaluation criteria formulated by Kruger and

Basson (2017 (c)) as shown in Table 5.

The criteria are based on the desirable characteristics of manufacturing systems.

Availability, as a measure of reliability, is widely considered to be an important

characteristic in manufacturing contexts. Since alternative implementations of the

same holonic architecture is considered here, development productivity is also

included as a desirable characteristic. Supportability is related to both availability

and development productivity, but is listed explicitly because the choice of

implementation for the controller can have a significant influence in the

supportability.

Seven requirements were derived from the desirable characteristics, as shown in

Table 5. The requirements often affect more than one characteristic and therefore

no explicit linkages are attempted in Table 5. A set of quantitative and qualitative

performance measures are also presented in Table 5. The performance measures are

indicative of one or more of the requirements for holonic control implementations.

Stellenbosch University https://scholar.sun.ac.za

138

Table 5: Relationships between requirements and performance measures.

Characteristics

Availability
Supportability

Development Productivity

Requirements

R
e

co
n

fi
gu

ra
b

ili
ty

R
o

b
u

st
n

e
ss

M
ai

n
ta

in
ab

ili
ty

C
o

n
tr

o
lle

r

re
q

u
ir

e
m

e
n

ts

C
o

m
p

le
xi

ty

V
e

ri
fi

ca
ti

o
n

R
e

u
sa

b
ili

ty

P
e

rf
o

rm
an

ce
 m

e
as

u
re

s

Q
u

an
ti

ta
ti

ve

Reconfiguration time * * * *

Development time * * *

Code complexity * *

Code extension rate * * *

Code re-use rate * * * *

Computational
resource requirements

 *

Q
u

al
it

at
iv

e

Modularity * * * *

Integrability * *

Diagnosability * * * *

Convertibility * *

Fault tolerance *

Distributability *

Developer training
requirements

 * * *

6.2.6. Quantitative Performance Measures

This section presents the results of a comparison of MAS and Erlang

implementations in terms of the quantitative performance measures given in Table

5. The discussion of the implications of the results of each comparison is deferred

to section 6.2.8 since the performance measures should be considered together to

draw sensible conclusions.

6.2.6.1. Reconfiguration Time

The reconfiguration times measured in the reconfiguration experiment described in

section 6.2.5.2 are presented in Table 6. The reconfiguration time measurements do

not include the development time for the Stacking holon, which is compared in

section 6.2.6.2.

Stellenbosch University https://scholar.sun.ac.za

139

The results show that to complete the reconfiguration Erlang required 67% of the

time required by the MAS implementation. The difference in reconfiguration time

occurred during the verification activity. This can attributed to the ease by which

functions can be tested individually and reliably, since Erlang functions are not

affected by program state. For the MAS implementation, it is difficult to test

functionality at a functional granularity finer than that of the agent encapsulation.

Even in that case, the functionality is still subject to the state of the program.

Table 6: Reconfiguration and development time measurements

 MAS Erlang

Reconfiguration time (hours) 2.7 1.8

Development time (hours) 3 2.5

6.2.6.2. Development Time

During the reconfiguration experiment (section 6.2.5.2), the time was measured for

the development of a new Stacking holon. In both implementations, the generic

components (in this case, the encapsulations for holon communication and agenda

management) could be used as is, with development only required for the execution

components. The Stacking holon performs two services:

1. Remove_to_stack – single-pole circuit breakers are removed from the

conveyor and placed in a buffer, from where they will be used to produce

stacked three-pole breakers. This service resembles that of the Removal

Resource holon – the code of the execution component of this holon could

be reused and modified to perform the remove_to_stack service.

2. Stacking – three-pole breakers are assembled through the stacking of single-

pole breakers that are stored in the buffer. With this service, the code from

the execution component of the Feeding holon could be reused and modified

to constitute the stacking service.

The time required to develop the Stacking holon in both implementations was

measured – the measurements are shown in Table 6. The measurements indicate

that the Erlang implementation required 83% of the development time required for

the MAS implementation. As in the reconfiguration time evaluation, the difference

in development time can be attributed to different mechanisms available for

software verification in the two implementations.

6.2.6.3. Code Complexity

As motivated by Kruger and Basson (2017 (c)), source lines of code (SLOC) is used

as measure of code complexity. Table 7 presents the SLOC count for the Order

holon and Resource holon associated with the electrical test station (ETS Resource

holon) in each control implementation. The Order holon was chosen since it is

typical of a holon that requires considerable interaction with a variety of other

holons, while the ETS Resource holon was chosen since a holonic controller will

typically contain several Resource holons.

Stellenbosch University https://scholar.sun.ac.za

140

Table 7: Code complexity measurements.

 MAS Erlang

Order holon 441 318

ETS Resource holon 352 175

The data shows that implementation in Erlang resulted in a SLOC reduction of 28%

for the Order holon and 50% for the ETS resource holon. Considering the results

reported in Nyström et al. (2007), where SLOC comparisons are made between

Erlang and C++ implementations, this reduction in code is expected.

6.2.6.4. Code Extension Rate

Code extension rate is an index that represents the growth rate of the scale, and thus

complexity, as an existing implementation is reconfigured to meet new functional

requirements (Chirn and McFarlane, 2005). The development of the Stacking holon

(as described for the reconfiguration experiment in section 6.2.5.2) was used for the

measurement of code extension rates for the two implementations. The initial

configuration was based on the execution components from the Feeding and

Removal Resource holons (since these components were combined and modified

to construct the execution behaviour of the Stacking holon), as well as the generic

Resource holon communication and agenda management components.

Table 8 shows the calculated code extension rates for the implementations. The

closer the code extension rate is to unity, the less growth in complexity occurred in

converting from the initial to the final configuration – this indicates better system

reconfigurability. The extension rates for the languages are similar, but the MAS

implementation produced a marginally better result.

Table 8: Code extension rate measurements.

 MAS Erlang

Initial configuration

SLOC

429 228

Final configuration

SLOC

480 275

Code extension rate 1.1 1.2

6.2.6.5. Code Reuse Rate

Software reusability is important for achieving high productivity (Kruger and

Basson, 2017 (c)). Code reuse rate can be calculated in the event of reconfiguration

and provides a measure of the percentage of source code in a new configuration that

is reused from an initial configuration.

The development of the Stacking holon in the reconfiguration experiment (section

6.2.5.2) was based on the reuse and modification of existing software artefacts.

Code was reused from the generic communication and agenda management

components of Resource holons, and the execution components of the Feeding and

Stellenbosch University https://scholar.sun.ac.za

141

Removal Resource holons. Table 9 presents, for each implementation, the SLOC

count for the final configuration, the count of SLOC that have been reused from the

initial configuration and the calculated reuse rates.

The data shows that for the MAS implementation, 88% of the final configuration

source code was reused (i.e. code from the previous configuration retained without

modification). The Erlang implementation also showed good reusability, but

achieved 11% lower reuse of code in the reconfiguration process.

Table 9: Code reuse rate measurements.

 MAS Erlang

Final configuration SLOC 480 275

Final configuration SLOC

(reused)

424 211

Code reuse rate 0.88 0.77

6.2.6.6. Computational Resource Requirements

Manufacturing automation controllers are usually limited in their computational

and memory capacity. It is therefore important that the implementation allows for

the efficient exploitation of these controllers, within their limits of use.

The data for the computational resource requirements was obtained by performing

a simulated production experiment. For both control implementations, the

production of ten orders was simulated. The measurements were started as the

production was triggered, thus excluding the start-up processes of the

implementations from the measurement. The data was obtained during the

experiment by using the Performance Monitor and Task Manager applications of

the Windows operating system.

Table 10 presents the data obtained from the Performance Monitor application –

the total operating system (OS) thread count for each implementation and the RAM

used in each case. The results show that the Erlang implementation consumes far

less memory resources than the MAS. On average, the Erlang implementation

utilizes almost three times fewer OS threads and consumes about five times less

memory than the MAS implementation. It should be noted that in Erlang, the use

of OS threads are not typically controlled by the developer and the scheduling of

Erlang processes to OS threads is done automatically by the Erlang virtual machine

(Logan et al., 2011). The number of concurrent Erlang processes far exceed the

number of OS threads utilized.

Stellenbosch University https://scholar.sun.ac.za

142

Table 10: Thread count, memory usage and CPU time consumption

measurements.

 MAS Erlang

Thread count

Min 56 28

Max 90 28

Avg 77 28

RAM usage (MB)

Min 29.4 24

Max 152.9 24.3

Avg 123.3 24.1

CPU time

consumption

Total (s) 7 16

% of total

CPU time
3.3 7.8

The Task Manager application was used to measure the CPU time used by each

implementation. The results in Table 10 show that the MAS implementation used

7 seconds of CPU time (3.3% of the total CPU time) for the duration of the

experiment, while 16 seconds (7.8% of the total CPU time) were used by the Erlang

implementation. The better performance by the MAS implementation is because

the implementation has fewer concurrent processes than the Erlang implementation.

Moreover, the use of behaviours with execution blocking means that agent threads

operate in an idle state for a large fraction of the time.

6.2.7. Qualitative Performance Measures

This section uses the qualitative performance measures given in Table 5 to compare

MAS and Erlang implementations. As with the qualitative measures, the discussion

of the implications of the results of each comparison is deferred to section 6.2.8, to

allow the performance measures to be considered together.

6.2.7.1. Modularity

Following from Kruger and Basson (2017 (c)), the modularity of software is

determined through three specifications – that of architecture, module interaction

and testing. These three specifications form the basis for comparison of the Erlang

and MAS implementations.

Architecture

The JADE MAS is built using the Java programming language. Java incorporates

the JADE framework as a Java archive (JAR) file. Java program code is contained

in classes that may contain definitions and methods, and collections of classes can

be encapsulated in packages. JADE provides the Agent class, which encapsulates

all the basic functionality needed to construct the MAS. The Agent class utilizes

another special class – behaviours – to encapsulate functionality that can be

combined to constitute the behaviour of agents.

In Erlang, modules are used as the containers of program code. All program code

in Erlang is structured as functions. Erlang provides standard libraries that include

many modules containing useful functions. Similarly, OTP is a set of robust

Stellenbosch University https://scholar.sun.ac.za

143

libraries that can be used in the structuring and execution of processes. Erlang also

provides a mechanism for encapsulating definitions and functions to be utilized by

several modules – header files.

Module Interaction

Java classes and methods can be used by other classes in the system – this exposure

is defined by access modifiers. In Erlang, the functions that are contained in

modules can be exported – this allows for the use of these functions in other

modules. As mentioned above, the definitions and functions contained in header

files can be included in modules.

Testing

Individual Java methods can be tested using unit tests. JADE offers several tools

for verifying the behaviour of the MAS or individual agents, such as the Sniffer,

Introspector and Dummy agents (details are presented in Bellifemine et al. (2007)).

Every function in Erlang that is exported from a module (i.e. the function can be

called from other modules) can be individually tested. The function can be called,

with a set of input arguments, from a testing process (often a shell process, where

the developer gives the inputs). Erlang also provides a mechanism for verifying the

behaviour of processes – the observer application can, among other things

(Anonymous, s.a. (c)), trace messages received and sent by processes, and provide

information on the function that is executed by a process at any given time. The

functionality and use of the Observer application will be highlighted in following

sections.

The functional programming of Erlang means that processes have no state or side

effects – this ensures that the output of the function, to a set of input arguments, is

reliable and repeatable. This is, however, not true for Java programming, where the

output returned by methods can be affected by the state of the class exposing the

method.

6.2.7.2. Integrability

The first point of comparison focusses on the interfaces provided by the

implementations to incorporate software components developed in other

programming languages. Thereafter the support for communication protocols is

compared.

Integration of foreign code

With JADE, Java provides the Java Native Interface (JNI) (Anonymous, s.a. (d)) –

a native programming interface that allows Java code to interoperate with

applications written in other programming languages, such as C, C++ and

Assembler. This interface is useful for integrating legacy systems, supplementing

the functionality offered by Java or improving performance.

Logan et al. (2011) explain how the Erlang message-passing paradigm is extended

to interface with code written in other languages. Foreign code can be represented

in an Erlang application as a process-like object, called a port. The Erlang processes

Stellenbosch University https://scholar.sun.ac.za

144

can then pass messages to the foreign code via the port. For plain ports, the foreign

code (of any programming language) runs in a separate OS process and

communicates to the port using the standard inputs/outputs, with all data passed as

a byte stream. Alternatively, with linked-in port drivers, the foreign code runs in

the same OS process space as the Erlang virtual machine. When working with

distributed Erlang nodes, C and Java programs can be made to masquerade as

Erlang nodes. This functionality is contained in two libraries – Erl_Interface for C

and Jinterface for Java.

The above-mentioned mechanisms to integrate foreign in each application code can

also be used to access industrial communication protocols, e.g. through industrial

Ethernet. The support in each implementation for common PC based

communication is discussed in the following section.

Support for communication protocols

The Java platform includes the net package, which provides classes for

implementing networking applications. The classes provide the functionality to

facilitate socket communication over networks and supports both TCP/IP and UDP

(Anonymous, s.a. (e)). Libraries are available for TCP/IP and UDP (Anonymous,

s.a. (f)) network communication in Erlang.

For basic text interface implementations, it is often appealing to use XML for

structuring the text information. XMErL (Anonymous, s.a. (g)) is an Erlang library

for XML functions. Several libraries for building and parsing XML are available

for Java.

For serial communication, Java provides the JavaComm serial communication API

– however, it is not available for all Java platforms and support has been withdrawn

for use with Windows OS (Anonymous, s.a. (h)). Alternatively, the free-software

libraries RXTX (Anonymous, s.a. (i)) and jSerialComm (Anonymous, s.a. (j)) can

be used. For serial communication in Erlang the gen_serial library (Anonymous,

s.a. (k)) allows for the use of standard serial ports, on both Windows and UNIX

platforms.

6.2.7.3. Diagnosability

Errors in a holonic control implementation can occur within the execution of a

holon, or in the interaction between holons or holon components. The time and

effort required to diagnose an error depends on the availability of information. It is

therefore necessary for the developer to have access to information regarding the

execution of each holon and the interaction between holons. The provisions in the

Erlang and MAS implementations for diagnosing such errors are considered in this

section.

Both implementations provide mechanisms to gather information from and test the

interaction of holons – JADE includes the Sniffer agent and Erlang provides the

Observer application. These tools provide the functionality to trace the

communication between holons. The trace can provide information on the senders

and receivers of messages, the message type and message content. To test the

Stellenbosch University https://scholar.sun.ac.za

145

interactions, JADE includes the Dummy agent tool and in Erlang, shell processes

can be used to this effect. Dummy agents can be used to construct messages to be

sent to other agents and to receive messages, as these agents react to the dummy

messages. Dummy agents provide a graphical user interface for easy construction

of messages to be sent and viewing of received messages. Shell processes in Erlang

are “interactive” processes that allow the developer to input expressions. The

developer can construct messages in the shell process and send them to any other

active process. Every process in Erlang has a mailbox – the shell process can thus

also receive messages that can be viewed by the developer.

To diagnose errors occurring within a holon's execution, both implementations also

provide tools to obtain information on the execution of a holon. JADE provides the

Introspector agent, which can be used to debug the behaviour of a single agent. The

Introspector agent allows the developer to monitor the queue of scheduled

behaviours and control their execution (e.g. a behaviour can be executed step by

step) (Bellifemine et al., 2007). Similarly, the Observer application in Erlang can

be used to monitor Erlang processes by tracing the execution of functions by a

process.

The Sniffer tool in JADE is good for verifying the interaction between agents.

However, the verification of holon execution is not as simple. The Introspector

agent provides some detail of the execution of an agent, but often that is not enough

to identify the reasons for or sources of detected bugs. Occasionally an agent

receives a message, but does not react as expected (or does not react at all). In such

cases, it might be required to use a tool such as the Java debugger, which is powerful

but less user friendly.

Erlang’s Observer tool is not as user friendly as the JADE Sniffer, but includes the

additional functionality to trace the execution of processes at different levels. Along

with this tracing, the easy construction of test code to verify the behaviour of a

process affords the developer freedom in the verification process. The increased

modularity of the Erlang implementation further simplifies the verification process.

Finally, it is important to consider the capacity for error isolation – or, alternatively,

the minimization of error propagation – in each implementation. Errors in software

systems can propagate, resulting in failures in components other than where the

error originated. This propagation can complicate the process of locating the source

of errors and has a detrimental effect on the diagnosability of the system. It is in

this respect that the process model of Erlang offers significant advantages, as is

further discussed in section 6.2.7.5.

6.2.7.4. Convertibility

At the control level, convertibility refers to the transformation of the functionality

of the existing system to meet new production requirements. The mechanisms

provided in each application to make changes to the controller functionality are

discussed in this section.

Stellenbosch University https://scholar.sun.ac.za

146

Making changes to the MAS implementation is simplified by a set of effective tools.

JADE includes the Remote Monitoring Agent (RMA) – a graphical tool for the

monitoring and manipulation of the running agent platform. The RMA facilitates

interaction with the Agent Management System (AMS), which allows for control

over the execution of agents. Among other functions, this allows the developer to

stop a running agent and remove it from the system – the agent can then be launched

again or a different agent can then be launched in its place (possibly with the same

name).

Erlang modules can be constructed to allow for similar control over the execution

of processes. Functions can be exported from modules to allow the developer

(through a shell process) or a supervisor process to stop and start an executing

process. As Erlang does not readily include a tool like the RMA of JADE, so this

functionality must be implemented by the developer.

An interesting capability of Erlang is that it allows for hot code loading – i.e. the

code to be executed can be changed while the system is running. A second, newer

version of a module can be loaded and the transition to the new code will be made

automatically (Armstrong, 2007). This functionality means that bug fixes, updates

and upgrades to code can be introduced with no system downtime.

6.2.7.5. Fault Tolerance

The isolation, detection and handling of faults are critical for achieving fault

tolerance in control implementations. The evaluation here concentrates on the

functionality provided in the two implementations for each of these aspects.

Armstrong (2003) identifies the inability to isolate components as the main

limitation of developing fault tolerant systems in many popular programming

languages. Specifically considering Java, Czajkowski and Daynés (2001) argue that

to run multiple Java applications safely on the same computer, each application

should be run in its own Java Virtual Machine and in its own OS process – a

scenario detrimental to efficiency, performance and scalability. In contrast, the

provisions for error isolation in Erlang are present at the architectural level. The

process model allows for the isolation of errors - processes, as the basic unit of

abstraction, act as abstraction boundaries that limit the propagation of errors

(Armstrong, 2003).

In the MAS implementation, exceptions are thrown when errors are detected. The

onus lies on the developer to catch exceptions where necessary and handle them

accordingly. Erlang provides similar functionality for the detection of errors. The

problem with this method of detecting errors, and subsequently handling them, is

that it provides only one opportunity for reaction – should the exception not be

handled correctly, the process will fail.

Erlang thus provides additional functionality to improve fault tolerance, employing

supervision hierarchies to detect and handle faults. The supervision behaviour is an

important provision of OTP. Where worker processes execute specific tasks as

required by the application, supervisor processes can be used to monitor the

Stellenbosch University https://scholar.sun.ac.za

147

execution of workers. Supervisor processes can also monitor other supervisors, thus

constructing supervision trees. Supervisor processes act as an error trapping

“layer”, which can monitor applications and restore it to a safe state in the event of

an error (Armstrong, 2010). The supervisor behaviour allows for the

implementation of strategies to handle the occurrence of errors in processes (details

are presented in Logan et al. (2011)). This functionality is not readily available in

JADE and would require implementation by the developer.

6.2.7.6. Distributability

Distributability is important for implementing decentralized control architectures.

Some important provisions in the implementations for distributability are

considered in this section.

Distributable architecture

A JADE platform is composed of agent containers. Containers are Java processes

that maintain the execution space in which agents can exist - providing the JADE

run-time and all the services needed for hosting and executing agents. Containers

can be distributed over a network of controllers. JADE provides the infrastructure

for communication between agents residing in different containers and also for

agent mobility, allowing agents to move between containers.

In Erlang, nodes are the architectural provision for distribution. Nodes are instances

of the Erlang VM that are configured for networking and a set of connected nodes

are referred to as a cluster. Similar to the agents in JADE, the processes in Erlang

can communicate and migrate between nodes in a cluster.

Communication in distribution

Achieving communication in distributed systems firstly involves the discovery of

components that are distributed on a network. In order for control components to

communicate, they must identify and locate the other components in the distributed

system. Thereafter, the communication between these distributed components must

be facilitated.

Every JADE platform has a main container, which acts as the bootstrap point for

the platform. The main container provides functions to allow for the dynamic

discovery of control components in a distributed MAS:

 Managing the container table, which holds the object references and

addresses of all the containers in the platform.

 Managing the global agent descriptor table, which is the registry of all

agents in the platform.

 Hosting the Agent Management System (AMS) and Directory Facilitator

(DF) providing services to the entire platform.

In Erlang, the discovery of distributed nodes is done by the Erlang Port Mapper

Daemon (EPMD) process. An EPMD process is automatically started on the

machine when a node is started. When a local node wants to communicate with a

remote node, the EPMD process on the local machine queries the EPMD process

on the remote machine for the specified communication port. Erlang does not come

Stellenbosch University https://scholar.sun.ac.za

148

with a standard service for dynamic resource discovery over a cluster, but the basic

functionality can be easily developed or, for more advanced functions, an OTP

application (see Logan (2010)) is available as an add-on.

In both implementations, the communication mechanism is unaffected by the

distribution of the control components. The JADE platform provides a unique

location-independent interface that abstracts the underlying communication

infrastructure, allowing for transparent communication between agents that exist on

different remote machines. Similar location transparency exists in Erlang. The

processes on connected nodes can exchange messages by using the Process

Identifiers (PIDs) – the node on which a process resides is embedded in its PID.

The registered names of processes can also be used to address messages – these

names are only registered on the residing node, thus messages must be sent as:

{RegisteredName, Node} ! Message.

Tools for distribution

For both MAS and Erlang, the tools provided for debugging and monitoring are

equally useful for non-distributed and distributed implementations. The location

transparency of the distributed control components mean that the functionality of

the tools remains unaffected. In JADE, the Dummy and Sniffer agents can be used

to test and monitor distributed control components communicating over connected

machines – the same applies to the Observer application in Erlang. The AMS in

JADE allows for the easy migration of agents between containers – a useful tool

that is not included in the standard Erlang tools. Erlang, on the other hand, allows

for the creation of remote shells on the local machine. These shell processes can

provide an interface to the processes of remote nodes, simplifying and adding

functionality to the testing of distributed implementations.

Portability

Both Java and Erlang run on virtual machines, which makes applications in these

languages platform independent. The MAS and Erlang implementations are

supported on the most prominent PC operating systems – Windows, Unix/Linux,

and Mac OS X. There have also been efforts in both languages for enabling

embedded applications on resource-limited microcontrollers (Brouwers et al.

(2008) and Anderson and Bergström (2011)).

Standardization and guidelines

In both implementations, the development of code is guided by behaviours. The

behaviours provided by JADE and OTP define a broad structure for implementing

the functionality that holons must exhibit. This structure promotes uniformity in the

software.

For communication, JADE adheres to the standards of FIPA. While adherence to

these standards might limit the freedom of the developer, it allows for

interoperability between MASs created by different developers. In standard Erlang,

there is no guidelines concerning communication – developers have total freedom

to implement the communication to fit their application. The lack of uniformity

Stellenbosch University https://scholar.sun.ac.za

149

decreases the capacity for interoperability, but allow for increased customization to

meet a given set of requirements.

6.2.7.7. Developer Training Requirements

The comparison between the MAS and Erlang implementations is here based on

five tasks that must be performed by the developer: implement holon behaviour;

implement inter-holon communication; implement external communication;

implement concurrency and verify the functionality of the developed system.

Holon behaviour

Both implementations provide structures for constructing complex functionality.

The JADE behaviour class provides several options for construction, like finite

state machines, sequential or parallel execution or timer-based behaviours.

Erlang/OTP provides two generic behaviours, i.e. servers and finite state machines,

which can be customized to exhibit a desired functionality.

JADE behaviours are not pre-emptive and the control of their execution is left to

the developer. Implementing complex functionality using behaviours can thus be

difficult – especially when multiple behaviours are concurrently active in an agent.

Developers often need to consult the source code of the JADE classes to understand

the intended use of behaviours.

In Erlang/OTP, the behaviour classes are executed sequentially by processes – the

logical flow of implemented behaviours is easier to predict and control. As with all

Erlang functions, the functions within the OTP behaviours only have access to the

data received as inputs. Considering a finite state machine implementation, the

information describing the state of the behaviour must be passed from one function

to another – this can become complicated and tedious when implementing complex

behaviour.

It is natural to encounter challenges in both implementations, but the implications

of such challenges must be compared. It is the experience of the authors that, due

to the complexity of using behaviours, the construction of complex functionality is

more challenging in the MAS implementation and requires more training and

experience from the developer.

Inter-holon communication

The facilitation of inter-holon communication involves four main tasks: message

construction; message sending; receiving messages and implementing

communication protocols. Achieving these tasks in the two implementations is

compared here.

Message construction. Messages in the MAS implementation are based on the

Agent Content Language (ACL) and JADE provides the ACLMessage class with

methods for message construction. The construction is done by assigning data to

the defined data fields for a specific message instance. In the presented Erlang

implementation, messages are constructed as records. Records have defined data

fields to which values can be assigned.

Stellenbosch University https://scholar.sun.ac.za

150

Message sending. Both implementations provide a simple mechanism for sending

messages. A constructed message can be sent to a recipient by using the

send(ACLMessage message) method in JADE (the ACLMessage class requires

that the receiver information be added to the recipient field). In Erlang, the message

operator (!) provides this functionality – e.g. process_id ! {sender,
message}.

Receiving messages. Both implementations use a receive() method/function to

receive a message in a running agent/process. JADE requires the construction of

message templates to handle messages, i.e. received messages are compared to

predefined templates. Erlang uses pattern matching – a received message is

compared to predefined patterns describing message structure and content.

Implementing communication protocols. JADE provides behaviour classes to

facilitate communication protocols as defined by the FIPA standards. These

behaviours are based on the finite state machine behaviour, with the state transitions

determined by the exchange of messages. In the Erlang implementation, such

protocols were implemented through customized OTP finite state machine

behaviours.

From the above, and considering that both implementations are based on the

exchange of messages, it is evident that Erlang and JADE strive to simplify the

construction, exchange and handling of messages. The communication is easier to

facilitate in the Erlang implementation – this is expected, since message passing is

a critical aspect of the Erlang language. The formalization of communication is

simplified by using the FIPA standards in the MAS implementation. It is the

responsibility of the developer to construct such formalizations in the Erlang

implementation – for this reason the developer of the Erlang implementation

requires more experience and a clear definition of communication protocols.

External communication

The implementations used TCP communication to interact with the lower level

controllers in the case study. In both cases, the utilized libraries provided functions

for server and client functionality, maintaining socket connections and exchanging

data over connected sockets. This communication was achieved with similar ease

in the Erlang and MAS implementations.

Concurrency

Holonic control implementations assume concurrency at the holonic system level,

but often some concurrency is desired within a holon. A common example, from

the implementations presented in this paper, is for a holon to participate in

synchronous network socket communication with a lower level controller, while

remaining available to handle booking requests from other holons. A comparison

shows significant differences in achieving concurrency in the Erlang and MAS

implementations.

For the MAS, concurrency at system level is facilitated by the JADE AMS. The

AMS ensures that every agent starts in a dedicated OS thread. To achieve

Stellenbosch University https://scholar.sun.ac.za

151

concurrency within the execution of an agent, JADE provides the

ThreadedBehaviourFactory class. This class provides a method to wrap a

normal JADE behaviour into a threaded behaviour, allowing the behaviour to be

executed in its own thread (Bellifemine et al., 2007). Threaded behaviours should

be used with care, as possible issues may arise concerning agent termination and

synchronization when accessing resources.

As mentioned in section 6.2.3.2, each holon comprises a number of Erlang

processes. In Erlang, all processes run concurrently and can be created either using

the OTP Supervisor behaviour (wherein concurrent child processes are

automatically created) or explicitly using the spawn(Module, Function,
Arguments) function. Since processes have no shared memory and information

can only be shared through message passing, synchronization issues are negated.

Erlang was designed with concurrency as a key requirement – it is thus much easier

and safer to achieve concurrency in Erlang than in a JADE MAS. Of course, this

may tempt developers to overuse concurrency in the software design, but the

lightweight processes of Erlang negate the potential pitfalls (especially concerning

performance and computational requirements).

Verification of functionality

A comparison of the strategies and tools for verification of the two implementations

is presented in sections 6.2.7.1 and 6.2.7.3. The comparison here will consider the

previous discussions, focussing on the required capabilities of the developer to

verify the execution and interaction of holons in the control implementations.

The verification of holon interaction is simplified for the developer by the Sniffer

tool, available for the MAS implementation. For verification of the holon execution,

the freedom to adjust the level of detail and easily creating test code (or supplying

specific inputs) aid the developer in the Erlang implementation. Furthermore, the

functional nature of Erlang allows the developer to perform verification with a

higher level of granularity – i.e. smaller components of the software can be verified,

and with much greater ease, than in the MAS implementation.

6.2.8. Comparison

This section discusses of the implications of the performance measures, as

presented in sections 6.2.6 and 6.2.7, on the requirements for holonic manufacturing

systems as presented in Table 5. Thereafter the discussion is extended to the desired

characteristics to be exhibited by holonic manufacturing systems.

6.2.8.1. Reconfigurability

The performance of a reconfiguration experiment (section 6.2.5.2) provided data

for reconfiguration time, code extension rate and code reuse rate performance

measures. The experiment produced interesting results – while the Erlang

implementation required less time to perform the reconfiguration, it showed a

greater growth in complexity with less reuse.

Stellenbosch University https://scholar.sun.ac.za

152

Two reasons for these contrasting results are:

 The impact of the difficulty and effort involved in verifying the reconfigured

code is ignored in the code extension and reuse rate measures. As mentioned

in section 6.2.7.3, the verification of code was experienced to be more

challenging for the MAS implementation than its Erlang counterpart.

 The difference in the number of SLOC in each implementation prior to the

reconfiguration should also be taken into account. It is shown in section

6.2.6.3 that the Erlang implementation initially had significantly fewer

SLOC – additional SLOC added during the experiment will thus have a

greater impact on the calculation of the code extension and reuse rates.

Koren and Shpitalni (2010) lists modularity, integrability, convertibility and

diagnosability as key characteristics for reconfigurability. Evaluating and

comparing these qualitative performance measures shows that the Erlang

implementation provides similar integration and conversion mechanisms to the

MAS implementation. The Erlang process model, however, affords some

advantages over the MAS implementation concerning modularity and

diagnosability.

The comparison shows that the Erlang implementation has very good

reconfigurability properties – arguably even more so than the MAS implementation.

6.2.8.2. Robustness

The evaluation of diagnosability and fault tolerance – two qualitative performance

measures – are used to illustrate the robustness of the control implementations.

Sections 6.2.7.3 and 6.2.7.5 indicate that the implementations provide similar tools

for obtaining execution and communication information and supplying test inputs

to the system, but the shell process in the Erlang implementation provides extra

freedom and flexibility to the developer.

Where the Erlang implementation poses the greatest advantage is with its inherent

fault tolerance. The process model of Erlang decreases the propagation of errors

through the system. As Erlang was designed with robustness as a key requirement,

it is not surprising that it out performs a standard MAS implementation.

6.2.8.3. Maintainability

Code complexity, code extension and reuse rates are considered to be indicative of

the maintainability property of the control implementations. The effect of the code

extension and reuse rate results, as obtained from the reconfiguration experiment,

have been discussed earlier in this section. The measure for code complexity,

however, is obtained from the initial configuration of the implementation source

code. The results indicate that the Erlang implementation is less complex than the

MAS implementation.

Considering qualitative measures, Table 5 indicates that modularity, convertibility,

diagnosability and the developer requirements have a significant influence on the

maintainability of a control implementation. Modularity allows for maintenance to

specific system components without having to consider the remainder of the

Stellenbosch University https://scholar.sun.ac.za

153

system, while convertibility facilitates the adaption of the functionality of the

control implementation to meet new requirements. Diagnosability makes it easier

to identify and locate components in need of maintenance. The maintenance must

be performed by staff – the expertise and experience required by these staff

members are indicated by the developer requirements for the implementation. The

convertibility of the implementations are similar. The modularity and

diagnosability advantages of the Erlang implementation have been highlighted

earlier in the discussion. The comparison of developer requirements also showed

the benefits of the Erlang implementation, specifically to the verification process

that usually accompanies any maintenance activity.

The comparisons therefore show that an Erlang implementation holds significant

advantages above a MAS implementation regarding maintainability.

6.2.8.4. Controller requirements

The controller requirements, as imposed by the needs of holonic control

implementations, are evaluated through two performance measures: computational

resource requirements and distributability. The results obtained for memory usage

and processor time for each implementation are presented in section 6.2.6.6. The

results indicated that the Erlang implementation required significantly less memory,

but was more processor intensive. The increased processor time can be attributed

to the nature of the Erlang implementation, where a focus on concurrency leads to

a high number of active processes consuming processor time. The qualitative

evaluation of the distributability of each implementation (in section 6.2.7.6) showed

similar functionality.

6.2.8.5. Complexity

The complexity of the control implementations is reflected by several quantitative

performance measures: development time, reconfiguration time, code complexity,

code extension rate and code reuse rate. The additional time required for

development and reconfiguration of the MAS implementation is indicative of an

increased perceived complexity – especially concerning the verification of the

software functionality. Along with the time measurements, this complexity is also

reflected in the higher code complexity calculated for the MAS implementation.

The code extension and reuse rates are in favour of the MAS implementation, but

the reasons for this have already been highlighted in the discussion above about

reconfigurability. Considering the requirements for the developer, the use of

behaviours for specifying holon functionality, using threaded behaviours for

achieving concurrency and verifying the behaviour of the system requires a higher

level of expertise and experience in development of MAS implementations than

with Erlang. However, the functionality of the AMS and DF of JADE makes it

easier to implement and manage distribution in the MAS implementation.

6.2.8.6. Verification

As mentioned, the measurements for development and reconfiguration time

indicate the advantages offered by the Erlang implementation. In Erlang, greater

freedom is afforded to the developer for the construction of specific tests and the

Stellenbosch University https://scholar.sun.ac.za

154

testing of individual functions allows for high granularity in the verification

process. The process model also provides high modularity, simplifying the testing

strategy.

The complexity and effort involved in the verification of the functionality exhibited

by a control implementation can be deduced from three qualitative performance

measures: modularity, diagnosability and developer requirements. Modularity

allows for the verification of smaller, individual system components that together

constitute complex functionality. Diagnosability points the developer to the source

of errors. The requirements of the developer, concerning expertise and experience,

indicate the difficulty and amount of work required to verify the system

functionality. The advantages of the Erlang implementation regarding modularity

and diagnosability have been referred to in earlier discussion. The advantages of

using Erlang, concerning the verification of developed software, are discussed in

the comparison of developer requirements (section 6.2.7.7).

The opinion of the authors is that the Erlang implementation inherently provides

better support for the developer in the verification process, but that the ease of use

can be improved through the inclusion of tools resembling those offered by the

MAS implementation.

6.2.8.7. Reusability

The development time, reconfiguration time and code reuse rate measurements are

used to evaluate the software artefact reusability in each control implementation.

The reconfiguration experiment showed that the main differences in the

development and reconfiguration times are due to the verification process – it was

observed that the implementations allowed for similar levels of code reuse. The

MAS implementation showed better code reuse rate results, but further testing (on

a larger scale) is required for confirmation.

Modularity and integrability properties are considered to be indicative of the

reusability in each implementation. The comparison shows that the Erlang

implementation exhibits better modularity and provides integration mechanisms

that are similar to the MAS implementation.

6.2.9. Findings, Considerations and Future Work

The comparison of the MAS and Erlang holonic control implementations yielded

interesting results. The evaluation indicates that Erlang matches the functionality

of the MAS implementation, and even offers advantages regarding the desired

characteristics for the holonic control of manufacturing systems.

The Erlang process model exhibits enhanced modularity and robustness properties,

leading to improved system availability. It is easier to support Erlang

implementations, due to good maintainability and distributability properties. The

development productivity that can be achieved using Erlang is also a significant

benefit, due to the resulting reduction in software complexity and simplification of

the verification process.

Stellenbosch University https://scholar.sun.ac.za

155

The premise of the comparison makes this result even more significant. The MAS

was developed using JADE – a framework specific for the development of agents,

which has been considered as a very suitable medium for implementing the

software components of a holonic system. This specific tool is then compared to an

implementation using standard Erlang with generic OTP libraries – perhaps a fairer

comparison would have been between implementations in standard Java and

Erlang. Still, the comparison with a JADE MAS confirms the inherent suitability

and potential of the Erlang programming language for the implementation of

holonic control.

However, some challenges were identified with the Erlang implementation. The

first is a lack of standardization – the JADE compliance with FIPA standards, along

with the suggested use of standard behaviours, offer advantages pertaining to

uniformity and interoperability. Erlang also lacks some tools to simplify the

verification and distribution of holonic systems – e.g. a graphical tool for tracing

communication (like the JADE Sniffer) and a service for discovering resources

within a distributed system (such as the Directory Facilitator of JADE).

Furthermore, while the Erlang implementation used notably less memory than its

MAS counterpart did, it required more processor time – this could have a

detrimental effect on the performance of large, highly concurrent software systems.

Further testing and evaluation of Erlang holonic control implementations are

required to address this issue.

The following topics have been identified for future work:

 An Erlang framework for holonic control – the creation of functions,

modules, libraries and tools to provide a framework for the development of

holonic control implementations in Erlang.

 MAS in Erlang – to introduce standardization in Erlang applications, it

would be useful to integrate the existing FIPA standards. An

implementation and evaluation of an Erlang-based MAS for holonic control

should be investigated. The Erlang experimental agent tool, eXAT (Di

Stefano and Santoro, 2003), is an existing framework that can be used for

such an implementation.

6.2.10. References

Andersson, F. and Bergström, F., 2011. Development of an Erlang System Adapted

to Embedded Devices. Department of Information Technology, Uppsala University,

Sweden.

Anonymous, s.a. (a). Get Started with OTP. [Online]. Available:

http://www.erlang.org (18 July 2013).

Anonymous, s.a. (b). Erlang/OTP System Documentation. [Online]. Available:

http://www.erlang.org/doc (1 September 2017).

Anonymous, s.a. (c). Erlang Observer. [Online]. Available:

http://www.erlang.org/doc (1 September 2017).

Stellenbosch University https://scholar.sun.ac.za

156

Anonymous, s.a. (d). Java Native Interface Specification. [Online]. Available:

http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html (1

September 2017).

Anonymous, s.a. (e). Java Networking. [Online]. Available:

https://docs.oracle.com/javase/8/docs/technotes/guides/net/index.html (1

September 2017).

Anonymous, s.a. (f). Erlang Kernel Reference Manual. [Online]. Available:

http://www.erlang.org/doc (1 September 2017).

Anonymous, s.a. (g). XMErl Reference Manual. [Online]. Available:

http://www.erlang.org (18 July 2013).

Anonymous, s.a. (h). Serial Programming/Serial Java. [Online]. Available:

https://en.wikibooks.org/wiki/Serial_Programming/Serial_Java (1 September

2017).

Anonymous, s.a. (i). RXTX. [Online]. Available:

http://rxtx.qbang.org/wiki/index.php/Main_Page (1 September 2017).

Anonymous, s.a. (j). jSerialComm. [Online]. Available:

http://fazecast.github.io/jSerialComm (1 September 2017).

Anonymous, s.a. (k). Gen_serial Documentation. [Online]. Available:

http://tomszilagyi.github.io/gen_serial/api/gen_serial.html (1 September 2017).

Armstrong, J., 2003. Making Reliable Distributed Systems in the Presence of

Software Errors. Doctor’s Dissertation. Royal Institute of Technology, Stockholm,

Sweden.

Armstrong, J., 2007. Programming Erlang: Software for a Concurrent World.

Raleigh, North Carolina: The Pragmatic Bookshelf.

Armstrong, J., 2010. Erlang. Communications of the ACM. Vol. 53, No. 9:68-75.

Bellifemine, F., Caire, G. and Greenwood, G., 2007. Developing Multi-Agent

Systems with JADE. John Wiley & Sons, Ltd.

Bi, Z.M., Wang, L., and Lang, S.Y.T., 2007. Current Status of Reconfigurable

Assembly Systems. International Journal of Manufacturing Research,

Inderscience. Vol. 2, No. 3: 303 - 328.

Bi, Z.M., Lang, S.Y.T., Shen, W., and Wang, L., 2008. Reconfigurable

Manufacturing Systems: The State of the Art. International Journal of Production

Research. Vol. 46, No. 4:967 - 992.

Brouwers, N., Corke, P. and Langendoen, K., 2008. Darjeeling, a Java Compatible

Virtual Machine for Microcontrollers. Proceedings of the ACM/IFIP/USENIX

Middleware'08 Conference Companion. pp. 18-23.

Bussmann, S. and Sieverding, J., 2001. Holonic Control of an Engine Assembly

Plant: An Industrial Evaluation. 2001 IEEE International Conference on Systems,

Man, and Cybernetics. Vol. 5, pp. 3151-3156.

Stellenbosch University https://scholar.sun.ac.za

157

Cesarini, F., Pappalardo, V. and Santoro, C., 2008. A Comparative Evaluation of

Imperative and Functional Implementations of the IMAP Protocol. Proceedings of

the 7th ACM SIGPLAN Workshop on Erlang. pp. 29-40.

Chirn, J.L. and McFarlane, D., 2000. A Holonic Component-based Approach to

Reconfigurable Manufacturing Control Architecture. Proceedings of the

International Workshop on Industrial Applications of Holonic and Multi-Agent

Systems. pp. 219–223.

Chirn, J.L. and McFarlane, D., 2005. Evaluating Holonic Control Systems: A Case

Study. Proceedings of the 16th IFAC World Conference. Prague, Czech Republic.

Christensen, J.H., 1994. Holonic Manufacturing Systems: Initial Architecture and

Standards Directions. First European Conference on Holonic Manufacturing

Systems. Hannover, Germany (December, 1994).

Czajkowski, G. and Daynés, L., 2001. Multitasking without Compromise: A Virtual

Machine Evolution. In ACM SIGPLAN Notices. Vol. 36, No. 11:125-138.

Di Stefano, A. and Santoro, C., 2003. eXAT: an Experimental Tool for

Programming Multi-Agent Systems in Erlang. Workshop on Objects and

Agents. Villasimius, Italy (September 2003).

Giret, A. and Botti, V., 2009. Engineering Holonic Manufacturing Systems.

Computers in Industry. Vol. 60:428-440.

Harrison, R., Samaraweera, L.G., Dobie, M.R. and Lewis, P.H., 1996. Comparing

Programming Paradigms: An Evaluation of Functional and Object-Oriented

Programs. Software Engineering Journal. Vol. 11, No. 4:247-254.

Nyström, J., Trinder, P. and King, D., 2007. Evaluating High-Level Distributed

Language Constructs. ACM SIGPLAN Notices. Vol. 42, No. 9:203-212.

Koestler, A., 1967. The Ghost in the Machine. London: Arkana Books.

Koren, Y. and Shpitalni, M., 2010. Design of Reconfigurable Manufacturing

Systems. Journal of Manufacturing Systems. Vol. 29, pp. 130-141.

Kotak, D., Wu, S., Fleetwood, M., and Tamoto, H., 2003. Agent-Based Holonic

Design and Operations Environment for Distributed Manufacturing. Computers in

Industry. Vol. 52, pp. 95–108.

Kruger, K. and Basson, A.H., 2013. Multi-agent Systems vs IEC 61499 for Holonic

Resource Control in Reconfigurable Systems. 46th CIRP Conference on

Manufacturing Systems. Vol. 7, pp. 503-508.

Kruger, K. and Basson, A.H., 2017a. Erlang-Based Control Implementation for a

Holonic Manufacturing Cell. International Journal of Computer Integrated

Manufacturing. Vol. 30, No. 6:641-652.

Stellenbosch University https://scholar.sun.ac.za

158

Kruger, K. and Basson, A.H., 2017b. Holonic Control Implementation Using a

JADE Multi-Agent System. Internal Technical Report. Department of Mechanical

and Mechatronic Engineering, Stellenbosch University, South Africa.

Kruger, K. and Basson, A.H., 2017c. Evaluation Criteria for Holonic Control

Implementations in Manufacturing Systems. Submitted to the International Journal

of Computer Integrated Manufacturing, September 2017.

Leitao, P., 2004. An Agile and Adaptive Holonic Architecture for Manufacturing

Control. Ph.D. Dissertation. University of Porto, Portugal.

Leitao, P. and Restivo, F.J., 2006. ADACOR: A Holonic Architecture for Agile and

Adaptive Manufacturing Control. Computers in Industry. Vol. 57, No. 2: 121-130.

Logan, M., 2010. The Resource Discovery Application. [Online]. Available:

https://libraries.io/github/erlware/resource_discovery (1 September 2017).

Logan, M., Merrit, E., and Carlsson, R., 2011. Erlang and OTP in Action. Stamford:

Manning Publications Co.

Martinsen, K., Haga, E., Dransfeld, S., and Watterwald, L.E., 2007. Robust,

Flexible and Fast Reconfigurable Assembly System for Automotive Air-brake

Couplings. Intelligent Computation in Manufacturing Engineering. Vol. 6.

Monostori, L., Kádár, B., Bauernhansl, T., Kondoh, S., Kumara, S., Reinhart, G.,

Sauer, O., Schuh, G., Sihn, W. and Ueda, K., 2016. Cyber-Physical Systems in

Manufacturing. CIRP Annals - Manufacturing Technology. Vol. 65, pp. 621–641.

Paolucci, M. and Sacile, R., 2005. Agent-Based Manufacturing and Control

Systems. London: CRC Press.

Prechelt, L., 2000. An Emperical Comparison of Seven Programming Languages.

Computer. Vol. 33, No. 10:23-29.

Scholz-Reiter, B. and Freitag, M., 2007. Autonomous Processes in Assembly

Systems. Annals of the CIRP. Vol. 56, pp. 712–730.

Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., and Peeters, P., 1998.

Reference Architecture for Holonic Manufacturing Systems: PROSA. Computers

in Industry. Vol. 37, pp. 255–274.

Vyatkin, V., 2007. IEC 61499 Function Blocks for Embedded and Distributed

Control Systems Design. North Carolina: Instrumentation, Systems and Automation

Society, ISA.

Stellenbosch University https://scholar.sun.ac.za

159

7. Conclusion
The dynamic and highly competitive nature of the modern manufacturing

environment has introduced a new set of challenges, urging researchers and

industry to formulate new and innovative solutions. The concepts of holonic and

reconfigurable manufacturing systems showed great promise to address the

challenges. Unfortunately, these concepts could not achieve significant adoption by

industry and hence were predominantly restricted to academic, experimental

implementations.

The latest emerging paradigm in manufacturing science and technology, Industry

4.0, can potentially have a significant impact on the manufacturing industry. The

difference in impact can be attributed to the support from the German government

and several big players in the manufacturing automation industry. Industry 4.0

considers all aspects of the manufacturing industry, aiming to enhance

individualization of products through highly flexible production, extensively

integrate customers and businesses in value-added processes and link production

and high-quality services to deliver hybrid products. To achieve these goals,

Industry 4.0 relies on Cyber-Physical Production Systems (CPPs) to enhance the

connectedness throughout all levels of the manufacturing enterprise.

CPPSs aim to enhance the intelligence, connectedness and responsiveness of

manufacturing systems. These goals closely resemble those of holonic and

reconfigurable manufacturing systems, indicating the relevance of research on these

topics to the development and implementation of CPPSs.

The objective of the presented research is to evaluate the suitability of the Erlang

programming language as an alternative for the implementation of holonic control

in manufacturing systems. The dissertation presents an Erlang-based holonic

control implementation for a manufacturing cell. The Erlang implementation is

evaluated through a comparison with an equivalent implementation using Multi-

Agent Systems (MASs), which is considered as the status quo for holonic control

implementation in manufacturing systems research.

To accomplish the evaluation of the holonic control implementations, a case study

was selected and evaluation criteria were formulated. The case study involves the

execution control of an assembly and quality assurance cell for electrical circuit

breakers. The evaluation criteria focusses on both the development of control

implementations and the adoption of the implementations by industry. The criteria

are related to a set of quantitative and qualitative performance measures that are

indicative of seven critical requirements for holonic control implementations. The

Erlang and MAS implementations are evaluated and compared according to these

performance measures and requirements.

The comparison of the MAS and Erlang holonic control implementations yielded

interesting results. The evaluation indicated that the Erlang implementation

matches the functionality of the MAS implementation and even offers some

advantages for the desired characteristics for the holonic control of manufacturing

Stellenbosch University https://scholar.sun.ac.za

160

systems. The advantages in availability and supportability can be attributed to the

enhanced modularity and fault tolerance of the Erlang implementation. The Erlang

implementation is also found to allow for increased development productivity

through a reduction in software complexity and simplification of software

verification.

The premise of the comparison makes this result even more significant. The MAS

was developed using JADE – a framework specific for the development of agents,

which is well established as a suitable medium for implementing the software

components of holonic systems. This implementation is then compared to an

implementation using standard Erlang, with generic OTP libraries – perhaps a fairer

comparison would have been between implementations in standard Java and

Erlang. Still, the comparison with a JADE MAS confirms the inherent suitability of

the Erlang programming language for the implementation of holonic control, which

warrants further research on the topic.

However, some challenges were identified with the Erlang implementation that

requires further investigation and development:

 Standardization – the JADE compliance with FIPA standards, along with

the suggested use of standard behaviours, offer advantages pertaining to

uniformity and interoperability.

 Tools – Erlang lacks some important tools to simplify the verification and

distribution of holonic systems – e.g. a graphical tool for tracing

communication (like the JADE Sniffer) and a service for discovering

resources within a distributed system (such as the Directory Facilitator of

JADE).

 Computational resource requirements – the evaluation showed that Erlang

implementation used significantly less memory than its MAS counterpart

did, but that it consumed more processor time. While not necessarily a

problem in all applications, high processor usage could have a detrimental

effect on the performance of large, highly concurrent software systems.

Further testing and evaluation of the architecture for Erlang holonic control

implementations are required to address this issue.

Furthermore, there is great potential for further research on the use of Erlang for

control implementation in manufacturing systems. The following topics have been

identified for future work:

 Further refinement of the architecture for Erlang holonic control

implementations – the architecture presented in this dissertation should

serve as a starting point for the development of more complete and advanced

architectures. These architectures should consider the inclusion and

exploitation of the other interesting features of Erlang – specifically, the use

of supervision trees to increase fault tolerance and the increased availability,

supportability and maintainability that can be achieved through hot code

loading.

Stellenbosch University https://scholar.sun.ac.za

161

 An Erlang framework for holonic control – the creation of functions,

modules, libraries and tools to provide a framework specifically for the

development of holonic control implementations.

 MAS in Erlang – to introduce standardization in Erlang applications, it

would be useful to integrate the existing FIPA standards. An

implementation and evaluation of an Erlang-based MAS for holonic control

should be investigated. The Erlang experimental agent tool, eXAT (Di

Stefano and Santoro, 2003), is an existing framework that can be used for

such an implementation.

 Standardized test cases and benchmarks for the evaluation of holonic

control implementations – the dissertation presents criteria and a

methodology for the evaluation of holonic control implementations. The

applicability of this framework to other cases must be evaluated and it is

recommended that further research be conducted into the formulation of

standardized test cases and benchmarks.

Stellenbosch University https://scholar.sun.ac.za

162

8. References

Andersson, F. and Bergström, F., 2011. Development of an Erlang System Adapted

to Embedded Devices. Department of Information Technology, Uppsala University,

Sweden.

Anonymous, s.a. (a). Get Started with OTP. [Online]. Available:

http://www.erlang.org/doc (1 September 2017).

Anonymous, s.a. (b). Erlang/OTP System Documentation. [Online]. Available:

http://www.erlang.org/doc (1 September 2017).

Anonymous, s.a. (c). XMErL Reference Manual. [Online]. Available:

http://www.erlang.org/doc/apps/xmerl (1 September 2017).

Anonymous, s.a. (d). Erlang Kernel Reference Manual. [Online]. Available:

http://www.erlang.org/doc/apps/kernel (1 September 2017).

Anonymous, s.a. (e). Erlang Observer. [Online]. Available:

http://www.erlang.org/doc (1 September 2017).

Anonymous, s.a. (f). Java Native Interface Specification. [Online]. Available:

http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html

(1 September 2017).

Anonymous, s.a. (g). Java Networking. [Online]. Available:

https://docs.oracle.com/javase/8/docs/technotes/guides/net/index.html

(1 September 2017).

Anonymous, s.a. (h). Serial Programming/Serial Java. [Online]. Available:

https://en.wikibooks.org/wiki/Serial_Programming/Serial_Java

(1 September 2017).

Anonymous, s.a. (i). RXTX. [Online]. Available:

http://rxtx.qbang.org/wiki/index.php/Main_Page (1 September 2017).

Anonymous, s.a. (j). jSerialComm. [Online]. Available:

http://fazecast.github.io/jSerialComm (1 September 2017).

Anonymous, s.a. (k). Gen_serial Documentation. [Online]. Available:

http://tomszilagyi.github.io/gen_serial/api/gen_serial.html (1 September 2017).

Almeida, F.L., Terra, B.M., Dias, P.A., and Gonçales, G.M., 2010. Adoption Issues

of Multi-Agent Systems in Manufacturing Industry. Fifth International Multi-

conference on Computing in the Global Information Technology. pp. 238-244.

Stellenbosch University https://scholar.sun.ac.za

163

Armstrong, J., 2003. Making Reliable Distributed Systems in the Presence of

Software Errors. Doctor’s Dissertation. Royal Institute of Technology, Stockholm,

Sweden.

Armstrong, J., 2007. Programming Erlang: Software for a Concurrent World.

Raleigh, North Carolina: The Pragmatic Bookshelf.

Armstrong, J., 2010. Erlang. Communications of the ACM. Vol. 53, No. 9:68-75.

Armstrong, J., Virding, R. Wikström, C. and Williams, M., 1996. Concurrent

Programming in Erlang. Second Edition. New Jersey: Prentice Hall.

Baldwin, C. and Clark, K., 2006. Modularity in the Design of Complex Engineering

Systems. Complex Engineered Systems. pp. 175-205.

Bellifemine, F., Caire, G. and Greenwood, G., 2007. Developing Multi-Agent

Systems with JADE. John Wiley & Sons, Ltd.

Bi, Z.M., Lang, S.Y.T., Shen, W. and Wang, L., 2008. Reconfigurable

Manufacturing Systems: The State of the Art. International Journal of Production

Research. Vol. 46, No. 4:967-992.

Bi, Z.M., Wang, L. and Lang, S.Y.T., 2007. Current Status of Reconfigurable

Assembly Systems. International Journal of Manufacturing Research,

Interscience. Vol. 2, No. 3:303-328.

Black, G. and Vyatkin, V., 2009. Intelligent Component-Based Automation of

Baggage Handling Systems with IEC 61499. IEEE Transactions on Automation

Science and Engineering. Vol. 7, No. 2:337-351.

Bousbia, S. and Trentesaux, D., 2002. Self-Organization in Distributed

Manufacturing Control: State-of-the-Art and Future Trends. 2002 IEEE

International Conference on Systems, Man and Cybernetics. Vol. 5:6-12.

Brouwers, N., Corke, P. and Langendoen, K., 2008. Darjeeling, a Java Compatible

Virtual Machine for Microcontrollers. Proceedings of the ACM/IFIP/USENIX

Middleware'08 Conference Companion. pp. 18-23.

Bussman, S., 1998. An Agent-Oriented Architecture for Holonic Manufacturing

Control. 1st Workshop on Intelligent Manufacturing Systems. Lausanne,

Switzerland.

Bussman, S. and McFarlane, D., 1999. Rationales for Holonic manufacturing

Control. Proceedings of the 2nd International Workshop on Intelligent

Manufacturing Systems. Leuven, Belgium (September 1999). pp. 177-184.

Stellenbosch University https://scholar.sun.ac.za

164

Bussmann, S. and Sieverding, J., 2001. Holonic Control of an Engine Assembly

Plant: An Industrial Evaluation. 2001 IEEE International Conference on Systems,

Man, and Cybernetics. Vol. 5:3151-3156.

Candido, G. and Barata, J., 2007. A Multiagent Control System for Shop Floor

Assembly. Proceedings of the 3rd International Conference on Industrial

Applications of Holonic and Multi-agent Systems, HOLOMAS 2007. Regensburg,

Germany. pp. 293-302.

Cesarini, F., Pappalardo, V. and Santoro, C., 2008. A Comparative Evaluation of

Imperative and Functional Implementations of the IMAP Protocol. Proceedings of

the 7th ACM SIGPLAN Workshop on Erlang. pp. 29-40. ACM.

Chirn, J.L. and McFarlane, D., 2000. A Holonic Component-based Approach to

Reconfigurable Manufacturing Control Architecture. Proceedings of the

International Workshop on Industrial Applications of Holonic and Multi-Agent

Systems. pp. 219–223.

Chirn, J.L. and McFarlane, D., 2005. Evaluating Holonic Control Systems: A Case

Study. Proceedings of the 16th IFAC World Conference. Prague, Czech Republic.

Christensen, J.H., 1994. Holonic Manufacturing Systems: Initial Architecture and

Standards Directions. First European Conference on Holonic Manufacturing

Systems. Hannover, Germany (December, 1994).

Coleman, D., Ash, D., Lowther, B. and Oman, P., 1994. Using Metrics to Evaluate

Software System Maintainability. Computer. Vol. 27, No. 8:44-49.

Czajkowski, G. and Daynés, L., 2001. Multitasking without Compromise: A Virtual

Machine Evolution. In ACM SIGPLAN Notices. Vol. 36, No. 11:125-138.

Däcker, B., 2000. Concurrent Functional Programming for Telecommunications:

A Case Study of Technology Introduction. Master’s Thesis. Royal Institute of

Technology, Stockholm, Sweden.

De Jong, W., 2007. Erlsom. [Online]. Available: http://erlsom.sourceforge.net

(28 March 2017).

Di Stefano, A. and Santoro, C., 2003. eXAT: an Experimental Tool for

Programming Multi-Agent Systems in Erlang. Workshop on Objects and

Agents. Villasimius, Italy (September 2003).

ElMaraghy, H., 2006. Flexible and Reconfigurable Manufacturing System

Paradigms. International Journal of Flexible Manufacturing System. Vol. 17:61–

276.

Stellenbosch University https://scholar.sun.ac.za

165

FIPA (Foundation for Intelligent Physical Agents), 2010. [Online]. Available:

http://www.fipa.org. (2017, July 20).

Giret, A. and Botti, V., 2009. Engineering Holonic Manufacturing Systems.

Computers in Industry. Vol. 60:428-440.

Graefe, R. and Basson, A.H., 2013. Control of Reconfigurable Manufacturing

Systems using Object-Oriented Programming. Proceedings of the 5th International

Conference on Changeable, Agile, Reconfigurable and Virtual Production

(CARV2013). pp. 231-236.

Harrison, R., Samaraweera, L.G., Dobie, M.R. and Lewis, P.H., 1996. Comparing

Programming Paradigms: An Evaluation of Functional and Object-Oriented

Programs. Software Engineering Journal. Vol. 11, No. 4:247-254.

Hebert, F., 2014. Learn Some Erlang For Great Good. No Starch Press.

Holvoet, T. and Valckenaers, P., 2006. Exploiting the Environment for

Coordinating Agent Intentions. AAMAS Conference. Hakodate, Japan (8–12 May).

Hubbard, D., 1999. The IT Measurement Inversion. CIO Enterprize Magazine.

Kennedy, K., Koelbel, C. and Schreiber, R., 2004. Defining and Measuring the

Productivity of Programming Languages. International Journal of High

Performance Computing Applications. Vol. 18, No. 4:441-448.

Koestler, A., 1967. The Ghost in the Machine. London: Arkana Books.

Koren, Y., 2006. General RMS Characteristics: Comparison with Dedicated and

Flexible systems. Reconfigurable Manufacturing Systems and Transformable

Factories. pp. 27-45. Springer, Berlin Heidelberg.

Koren, Y., Heisel, U., Jovane, F., Moriwaki, T., Pritschow, G., Ulsoy, G and Van

Brussel, H., 1999. Reconfigurable Manufacturing Systems. Annals of the CIRP.

Vol. 48, No. 2:527-540.

Koren, Y. and Shpitalni, M., 2010. Design of Reconfigurable Manufacturing

Systems. Journal of Manufacturing Systems. Vol. 29:130-141.

Koren, Y. and Ulsoy, A.G., 1997. Reconfigurable Manufacturing Systems.

ERC/RMS Report #1. Ann Arbor, USA.

Koren, Y. and Ulsoy, A.G., 2002. Vision, Principles and Impact of Reconfigurable

Manufacturing Systems. Production International. pp. 14-21.

Stellenbosch University https://scholar.sun.ac.za

166

Kotak, D., Wu, S., Fleetwood, M. and Tamoto, H., 2003. Agent-Based Holonic

Design and Operations Environment for Distributed Manufacturing. Computers in

Industry. Vol. 52:95–108.

Kotze, M.J., 2016. Modular Control of a Reconfigurable Conveyor System. Thesis.

Stellenbosch University, South Africa.

Krueger, C.W., 1992. Software Reuse. ACM Computing Surveys (CSUR). Vol. 24,

No. 2:131-183.

Kruger, K. and Basson, A.H., 2013. Multi-agent Systems vs IEC 61499 for Holonic

Resource Control in Reconfigurable Systems. 46th CIRP Conference on

Manufacturing Systems. Vol. 7:503-508.

Kruger, K. and Basson, A.H., 2015. Implementation of an Erlang-based Resource

Holon for a Holonic Manufacturing Cell. Service Orientation in Holonic and Multi-

agent Manufacturing. Studies in Computational Intelligence, Vol. 594:49-58.

Springer.

Kruger, K. and Basson, A.H., 2017 (a). Erlang-Based Control Implementation for

a Holonic Manufacturing Cell. International Journal of Computer Integrated

Manufacturing. Vol. 30, No. 6:641-652.

Kruger, K. and Basson, A.H., 2017 (b). Erlang-Based Holonic Controller for a

Modular Conveyor System. Service Orientation in Holonic and Multi-Agent

Manufacturing. Studies in Computational Intelligence, Vol. 694:191-200. Springer.

Kruger, K. and Basson, A.H., 2017 (c). Validation of a Holonic Controller for a

Modular Conveyor System using an Object-Oriented Simulation Framework.

Service Orientation in Holonic and Multi-Agent Manufacturing. Studies in

Computational Intelligence, Vol. 694:427-435. Springer.

Lee, J., Bagheri, B. and Kao, H., 2015. A Cyber-Physical Systems Architecture for

Industry 4.0-based Manufacturing Systems. Manufacturing Letters. Vol. 3:18-23.

Leitao, P., 2004. An Agile and Adaptive Holonic Architecture for Manufacturing

Control. Ph.D. Dissertation. University of Porto, Portugal.

Leitao, P. and Restivo, F.J., 2002. A Holonic Control Approach for Distributed

Manufacturing. Knowledge and Technology Integration in Production and

Services: Balancing Knowledge and Technology in Product and Service Life Cycle.

pp. 263–270. Kluwer Academic Publishers.

Leitao, P. and Restivo, F.J., 2006. ADACOR: A Holonic Architecture for Agile and

Adaptive Manufacturing Control. Computers for Industry. Vol. 57, No. 2:121-130.

Stellenbosch University https://scholar.sun.ac.za

167

Leitao, P. and Restivo, F.J., 2008. Implementation of a Holonic Control System in

a Flexible Manufacturing System. IEEE Transactions on Systems, Man, and

Cybernetics. Vol. 38, No. 5:699-709.

Leitao, P., Colombo, A.W. and Karnouskos, S., 2016. Industrial Automation Based

on Cyber-Physical Systems Technologies: Prototype Implementations and

Challenges. Computers in Industry. Vol. 81:11-25.

Le Traon, Y., Ouabdesselam, F., Robach, C. and Baudry, B., 2003. From Diagnosis

to Diagnosability: Axiomatization, Measurement and Application. Journal of

Systems and Software. Vol. 65, No. 1:31-50.

Lepuschitz, W., Vrba, P., Vallee, M., Merdan, M., Kaindl, H., Arnautovic, E., 2009.

An Automation Agent Architecture with a Reflective World Model in

Manufacturing Systems. 2009 IEEE International Conference on Systems, Man and

Cybernetics. pp. 305-310.

Lewis, R.W., 1998. Programming Industrial Control Systems Using IEC 1131.

London: Institute of Electrical Engineers.

Logan, M., 2010. The Resource Discovery Application. [Online]. Available:

https://libraries.io/github/erlware/resource_discovery (1 September 2017).

Logan, M., Merrit, E., and Carlsson, R., 2011. Erlang and OTP in Action. Stamford:

Manning Publications Co.

Lowy, J. and Montgomery, M., 2015. Programming WCF Services. 4th edition.

O’Reilly Media.

Marik, V., Vrba, P., Tichy, P., Hall, K.H., Staron, R.J., Maturana, F.P., Kadera, P.,

2010. Rockwell Automation’s Holonic and Multi-Agent Control Systems

Compendium. 2010 IEEE Transactions on Systems, Man and Cybernetics, Part C:

Applications and Reviews. Vol. 41, No. 1:14-30.

Martinsen, K., Haga, E., Dransfeld, S. and Watterwald, L.E., 2007. Robust, Flexible

and Fast Reconfigurable Assembly System for Automotive Air-brake Couplings.

Intelligent Computation in Manufacturing Engineering. Vol. 6.

McCabe, T.J., 1976. A Complexity Measure. IEEE Transactions on Software

Engineering. Vol. 4:308-320.

Mehrabi, M.G., Ulsoy, A.G., Koren, Y., 2000. Reconfigurable Manufacturing

Systems: Key to Future Manufacturing. Journal of Intelligent Manufacturing.

Vol. 13:135-146.

Stellenbosch University https://scholar.sun.ac.za

168

Mehrabi, M.G., Ulsoy, A.G., Koren, Y. and Heytler, P., 2002. Trends and

Perspectives in Flexible and Reconfigurable Manufacturing Systems. Journal of

Intelligent Manufacturing. Vol. 13:135-146.

Meng, F., Tan, D. and Wang, Y., 2006. Development of Agent for Reconfigurable

Assembly System with JADE. Proceedings of the 6th World Congress on

Intelligent Control and Automation. Dalian, China. pp. 7915-7919.

Microsoft TechNet, s.a. Task Manager. Available:

https://technet.microsoft.com/en-us/library (30 August 2017).

Microsoft TechNet, s.a. Overview of Performance Monitor. Available:

https://technet.microsoft.com/en-us/library/cc749154 (30 August 2017).

Monostori, L., Kádár, B., Bauernhansl, T., Kondoh, S., Kumara, S., Reinhart, G.,

Sauer, O., Schuh, G., Sihn, W. and Ueda, K., 2016. Cyber-Physical Systems in

Manufacturing. CIRP Annals - Manufacturing Technology. Vol. 65:621–641.

Nyström, J., Trinder, P. and King, D., 2007. Evaluating High-Level Distributed

Language Constructs. ACM SIGPLAN Notices. Vol. 42, No. 9:203-212.

Paolucci, M. and Sacile, R., 2005. Agent-Based Manufacturing and Control

Systems. London: CRC Press.

Pegden, C.D., 2007. Simio: A New Simulation System Based on Intelligent

Objects. Proceedings of the 2007 Winter Simulation Conference. pp. 2294-2300.

Pegden, C.D., 2008. Introduction to Simio. Proceedings of the 2008 Winter

Simulation Conference. pp. 229-235.

Prechelt, L., 2000. An Emperical Comparison of Seven Programming Languages.

Computer. Vol. 33, No. 10:23-29.

Prieto-Diaz, R. and Freeman, P., 1987. Classifying Software for Reusability. IEEE

Software. Vol. 4, No. 1:6-16.

Raj, T., Shankar, R. and Suhaib, M., 2007. A Review of Some Issues and

Identification of Some Barriers in the Implementation of FMS. International

Journal of Flexible Manufacturing System. Vol. 19:1-40.

Rooker, M.N., Hummer, O., Sunder, C., Strasser, T. and Kerbleder, G., 2007.

Downtimeless System Evolution: Current State and Future Trends. 5th IEEE

Conference on Industrial Infomatics. Vol. 2:1077-1082.

Scholz-Reiter, B. and Freitag, M., 2007. Autonomous Processes in Assembly

Systems. Annals of the CIRP. Vol. 56:712-730.

Stellenbosch University https://scholar.sun.ac.za

169

Trendowicz, A. and Münch, J., 2009. Factors Influencing Software Development

Productivity: State‐of‐the‐Art and Industrial Experiences. Advances in Computers.

Vol. 77:185-241.

Valckenaers, P. and van Brussel, H., 2015. Design for the Unexpected. 1st edition.

Butterworth-Heinemann, ISBN: 9780128036624.

Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L. and Peeters, P., 1998.

Reference Architecture For Holonic Manufacturing Systems: PROSA. Computers

in Industry. Vol. 37:255-274.

Vinoski, S., 2007. Concurrency with Erlang. IEEE Internet Computing. Vol. 11,

No. 5:90-93.

Voas, J.M. and Miller, K.W., 1995. Software Testability: The New

Verification. IEEE Software. Vol. 12, No. 3:17-28.

Vrba, P., 2003. MAST: Manufacturing Agent Simulation Tool. Proceedings of the

IEEE Conference on Emergent Technology for Factory Automation. Vol. 1:282-

287.

Vrba, P., Lepuschitz, W., Vallee, M., Merdan, M., Resch, J., 2009. Integration of a

Heterogeneous Low Level Control in a Multi-Agent System for the Manufacturing

Domain. 2009 IEEE International Conference on Systems, Man and Cybernetics.

pp. 7-14.

Vrba, P., Marik, V., 2009. Capabilities of Dynamic Reconfiguration of Multi-Agent

Based Industrial Control Systems. 2009 IEEE Transactions on Systems, Man and

Cybernetics, Part A: Systems and Humans. Vol. 40, No. 2:213-223.

Vyatkin, V., 2007. IEC 61499 Function Blocks for Embedded and Distributed

Control Systems Design. North Carolina: Instrumentation, Systems and

Automation Society, ISA.

Wang, L., Cai, N., Feng, H.Y., 2007. Dynamic Setup Dispatching and Execution

Monitoring using Function Blocks. Proceedings of the 2nd International Conference

on Changeable, Agile, Reconfigurable and Virtual (CARV) Production. pp. 699-

708.

Wang, L. and Haghighi, A., 2016. Combined Strength of Holons, Agent and

Function Blocks in Cyber-Physical Systems. Journal of Manufacturing Systems.

Vol. 40:25-34.

Weyuker, E.J., 1988. Evaluating Software Complexity Measures. IEEE

Transactions on Software Engineering. Vol. 14, No. 9:1357-1365.

Stellenbosch University https://scholar.sun.ac.za

170

Wiendahl, H.P., ElMaraghy, H.A., Nyhuis, P., Zah, M.F., Wiendahl, H.H., Duffie,

N. and Brieke, M., 2007. Changeable Manufacturing: Classification, Design and

Operation. Annals of CIRP. Vol. 56, No. 2:783-809.

Wiger, U., 2001. Four-fold Increase in Productivity and Quality. Workshop on

Formal Design of Safety Critical Embedded Systems. March 21-23, Munich,

Germany.

Xie, H., Shen, W., Neelamkavil, J., Hao, Q., 2007. Simulation and Optimization of

Mixed-Model Assembly Lines Using Software Agents. Proceedings of the 2nd

International Conference on Changeable, Agile, Reconfigurable and Virtual

(CARV) Production. pp. 340-347.

Stellenbosch University https://scholar.sun.ac.za

171

Appendix A: Erlang and JADE Source Code
This appendix presents the source code for the Electrical Test Station Resource

holon, as implemented in Erlang and JADE. The source code for the

communication, agenda management and execution components of the internal

Resource holon architecture, as presented in Figure 27, is shown. The line numbers

added to the code indicate the SLOC measurement, as used in section 6.2.

Stellenbosch University https://scholar.sun.ac.za

172

A.1. Erlang Resource Holon

A.1.1. Communication Component
-module(resource_comm).

-include("messaging.hrl").

%macro for function that adds the reference to the registered name

-define(MAKE_NAME(Name,Ref),list_to_atom(atom_to_list(Name)++Ref)).

-define(MAKE_NETWORK_NAME(Name,Ref),{list_to_atom(atom_to_list(Name)++Ref),'main@meg461398.stb.sun.ac.za'}).

%% ==

%% API functions

%% ==

-export([rec_messages/1,start/1]).

1 start(Ref) -> Pid = spawn_link(resource_comm,rec_messages,[Ref]),

2

register(?MAKE_NAME(resource_comm,Ref), Pid),

3

{ok,Pid}.

%% ==

%% Internal functions

%% ==

%function maintaining the inter-holon communication interface

4 rec_messages(Ref) ->

5

Resource_comm = ?MAKE_NAME(resource_comm,Ref),

6

Resource_am = ?MAKE_NAME(resource_am,Ref),

7

Resource_exec = ?MAKE_NAME(resource_exec,Ref),

8

receive

%SERVICE message from resource_am process, in reply to some service request

9

{Resource_am,Message=#service{message_type=register}} ->

10

>

error_logger:info_report([{reporter, {self(), erlang:process_info(self(), registered_name)}},{event,
message_received}, {content, {Resource_am,Message}}]),

11

service_directory ! {?MAKE_NAME(resource_comm,Ref),Message},

12

rec_messages(Ref);

Stellenbosch University https://scholar.sun.ac.za

Stellenbosch University https://scholar.sun.ac.za

173

13

{Resource_am,Message=#service{}} ->

14

error_logger:info_report([{reporter, {self(), erlang:process_info(self(), registered_name)}},{event,
message_received}, {content, {Resource_am,Message}}]),

15

Pid = Message#service.requester_pid,

16

Pid ! {?MAKE_NETWORK_NAME(resource_comm,Ref),Message},

17

rec_messages(Ref);

18

{Resource_exec,Message=#service{}} ->

19

error_logger:info_report([{reporter, {self(), erlang:process_info(self(), registered_name)}},{event,
message_received}, {content, {Resource_am,Message}}]),

20

Pid = Message#service.provider_pid,

21

Pid ! {?MAKE_NETWORK_NAME(resource_comm,Ref),Message},

22

rec_messages(Ref);

%SERVICE message from some holon providing a service

23

{From,Message=#service{requester_pid=Resource_exec}} ->

24

>

error_logger:info_report([{reporter, {self(), erlang:process_info(self(), registered_name)}},{event,
message_received}, {content, {From,Message}}]),

25

Resource_exec ! {Resource_comm,Message},

26

rec_messages(Ref);

%SERVICE message from some holon requesting a service

27

{From,Message=#service{}} ->

28

>

error_logger:info_report([{reporter, {self(), erlang:process_info(self(), registered_name)}},{event,
message_received}, {content, {From,Message}}]),

29

Resource_am ! {Resource_comm,Message},

30

rec_messages(Ref);

31

{From,Message} ->

32

io:format("~p received unexpected message: {~p,~p}~n",[Resource_comm,From,Message])

end.

Stellenbosch University https://scholar.sun.ac.za

Stellenbosch University https://scholar.sun.ac.za

174

A.1.2. Agenda Manager Component
-module(resource_am).

-include("messaging.hrl").

-behaviour(gen_fsm).

%macro for function that adds the reference to the registered name

-define(MAKE_NAME(Name,Ref),list_to_atom(atom_to_list(Name)++Ref)).

%% ==

%% API functions

%% ==

-export([start/1,rec_messages/1]).

-export([init/1,ready/2,free_free/2,free_alloc/2,busy_alloc/2]).

%start gen_fsm process

33 start(Ref) -> gen_fsm:start_link({local,?MAKE_NAME(resource_am_fsm,Ref)}, resource_am, [Ref], []),

%start comm interface process

34

Pid = spawn_link(resource_am,rec_messages,[Ref]),

35

register(?MAKE_NAME(resource_am,Ref), Pid),

36

{ok,Pid}.

%% ==

%% Internal functions

%% ==

%process for handling communication to the FSM

37 rec_messages(Ref) ->

38

Resource_comm = ?MAKE_NAME(resource_comm,Ref),

39

Resource_exec = ?MAKE_NAME(resource_exec,Ref),

40

Resource_am_fsm = ?MAKE_NAME(resource_am_fsm,Ref),

41

receive

42

{Resource_exec,Message} -> gen_fsm:send_event(Resource_am_fsm, Message),

43

>

error_logger:info_report([{reporter, {self(), erlang:process_info(self(), registered_name)}},{event,
message_received}, {content, {Resource_exec,Message}}]),

44

rec_messages(Ref);

Stellenbosch University https://scholar.sun.ac.za

Stellenbosch University https://scholar.sun.ac.za

175

45

{Resource_comm,Message=#service{}} -> gen_fsm:send_event(Resource_am_fsm, Message),

46

>

error_logger:info_report([{reporter, {self(), erlang:process_info(self(), registered_name)}},{event,
message_received}, {content, {Resource_comm,Message}}]),

47

rec_messages(Ref)

 end.

%FSM initialization

48 init([Ref]) -> {ok,ready,[Ref]}.

%STATE: ready --> fsm is initialized and awaits "ready" message from resource_exec

49 ready(Message=#service{message_type=status,info={ready,Service_type}},[Ref]) ->

50
>

error_logger:info_report([{reporter, {self(), erlang:process_info(self(), registered_name)}},{event,
state_transition}, {content, {ready,free_free}}]),

51
>

?MAKE_NAME(resource_comm,Ref) !
{?MAKE_NAME(resource_am,Ref),#service{message_type=register,service_type=Service_type,requester_pid=resource_comm},

52

{next_state,free_free,[Ref]}.

%STATE: free_free --> the operational holon is idle, with no jobs allocated

53 free_free(Message=#service{message_type=propose},[Ref]) ->

54

Proposal = create_proposal([]),

55

?MAKE_NAME(resource_comm,Ref) ! {?MAKE_NAME(resource_am,Ref),Message#service{result=true,info=Proposal}},

56

{next_state, free_free,[Ref]};

57 free_free(Message=#service{message_type=allocate},[Ref]) ->

58

?MAKE_NAME(resource_comm,Ref) ! {?MAKE_NAME(resource_am,Ref),Message#service{result=true}},

59
>

error_logger:info_report([{reporter, {self(), erlang:process_info(self(), registered_name)}},{event,
state_transition}, {content, {free_free,free_alloc}}]),

60

{next_state, free_alloc,[[Message#service.requester_pid],Ref]}.

%STATE: free_alloc --> the operational holon is idle, but jobs have been allocated

61 free_alloc(Message=#service{message_type=propose},[Job_list,Ref]) ->

62

Proposal = create_proposal(Job_list),

63

?MAKE_NAME(resource_comm,Ref) ! {?MAKE_NAME(resource_am,Ref),Message#service{result=true,info=Proposal}},

64

{next_state, free_alloc,[Job_list,Ref]};

65 free_alloc(Message=#service{message_type=allocate},[Job_list,Ref]) ->

66

NewJob_list=lists:append(Job_list, [Message#service.requester_pid]),

Stellenbosch University https://scholar.sun.ac.za

Stellenbosch University https://scholar.sun.ac.za

176

67

?MAKE_NAME(resource_comm,Ref) ! {?MAKE_NAME(resource_am,Ref),Message#service{result=true}},

68

{next_state, free_alloc, [NewJob_list,Ref]};

69 free_alloc(Message=#service{message_type=deallocate},[Job_list,Ref]) ->

70

NewJob_list=lists:delete(Message#service.requester_pid, Job_list),

71

io:format("Upon deallocate in free_alloc - new job list is ~p~n",[NewJob_list]),

72

?MAKE_NAME(resource_comm,Ref) ! {?MAKE_NAME(resource_am,Ref),Message#service{result=true}},

73

case NewJob_list of

74

[] -> error_logger:info_report([{reporter, {self(), erlang:process_info(self(), registered_name)}},{event,
state_transition}, {content, {free_alloc,free_free}}]),

%go to free_free state if no more jobs are allocated

75

{next_state, free_free,[Ref]};

76

NewJob_list -> {next_state, free_alloc,[NewJob_list,Ref]}

end;

77 free_alloc(Message=#service{message_type=confirm},[Job_list,Ref]) ->

%{confirm, true} is sent when Pid is an element of the Job_list

78
>

?MAKE_NAME(resource_comm,Ref) ! {?MAKE_NAME(resource_am,Ref),Message#service{result =
lists:member(Message#service.requester_pid, Job_list)}},

79

{next_state, free_alloc,[Job_list,Ref]};

80 free_alloc(Message=#service{message_type=start},[Job_list,Ref]) ->

%send "start" message to resource_exec - the process must reply to resource_am process

81

?MAKE_NAME(resource_exec,Ref) ! {?MAKE_NAME(resource_am,Ref),Message},

82

{next_state,busy_alloc,[Message#service.requester_pid,lists:delete(Message#service.requester_pid, Job_list),Ref]}.

%STATE: busy_alloc --> the operational holon is busy performing a job and jobs are allocated

83 busy_alloc(Message=#service{message_type=start,requester_pid=CurrJob,result=true},[CurrJob,Job_list,Ref]) ->

%forward confirmation of the "action start" to resource_comm

84

?MAKE_NAME(resource_comm,Ref) ! {?MAKE_NAME(resource_am,Ref),Message},

85
>

error_logger:info_report([{reporter, {self(), erlang:process_info(self(), registered_name)}},{event,
state_transition}, {content, {busy_alloc,busy_alloc}}]),
%go to busy_alloc as next state

86

{next_state,busy_alloc,[CurrJob,Job_list,Ref]};

87 busy_alloc(Message=#service{message_type=start,requester_pid=CurrJob,result=false},[CurrJob,Job_list,Ref]) ->

Stellenbosch University https://scholar.sun.ac.za

Stellenbosch University https://scholar.sun.ac.za

177

%forward rejection of the "action start" to resource_comm

88

?MAKE_NAME(resource_comm,Ref) ! {?MAKE_NAME(resource_am,Ref),Message},

89

error_logger:info_report([{reporter, {self(), erlang:process_info(self(), registered_name)}},{event,
state_transition}, {content, {busy_alloc,free_alloc}}]),
%go to free_alloc as next state

90

{next_state,free_alloc,[lists:append(Job_list,[CurrJob]),Ref]};

91 busy_alloc(Message=#service{message_type=start},[CurrJob,Job_list,Ref]) ->

%already busy

92

?MAKE_NAME(resource_comm,Ref) ! {?MAKE_NAME(resource_am,Ref),Message#service{result=false}},

93
>

error_logger:info_report([{reporter, {self(), erlang:process_info(self(), registered_name)}},{event,
state_transition}, {content, {busy_alloc,busy_alloc}}]),
%go to busy_alloc as next state

94

{next_state,busy_alloc,[CurrJob,Job_list,Ref]};

95 busy_alloc(Message=#service{message_type=confirm},[CurrJob,Job_list,Ref]) ->

%{confirm, true} is sent when Pid is an element of the Job_list

96
>

?MAKE_NAME(resource_comm,Ref) ! {?MAKE_NAME(resource_am,Ref),Message#service{result =
lists:member(Message#service.requester_pid, Job_list)}},

97

{next_state, busy_alloc,[CurrJob,Job_list,Ref]};

98 busy_alloc(Message=#service{message_type=propose},[CurrJob,Job_list,Ref]) ->

99

Proposal = create_proposal(Job_list),

100

?MAKE_NAME(resource_comm,Ref) ! {?MAKE_NAME(resource_am,Ref),Message#service{result=true,info=Proposal}},

101

{next_state, busy_alloc,[CurrJob,Job_list,Ref]};

102 busy_alloc(Message=#service{message_type=allocate},[CurrJob,Job_list,Ref]) ->

103

?MAKE_NAME(resource_comm,Ref) ! {?MAKE_NAME(resource_am,Ref),Message#service{result=true}},

104

{next_state, busy_alloc,[CurrJob, lists:append(Job_list, [Message#service.requester_pid]),Ref]};

105 busy_alloc(Message=#service{message_type=deallocate},[CurrJob,Job_list,Ref]) ->

106

NewJob_list=lists:delete(Message#service.requester_pid, Job_list),

107

io:format("Upon deallocate in busy_alloc - new job list is ~p~n",[NewJob_list]),

108

?MAKE_NAME(resource_comm,Ref) ! {?MAKE_NAME(resource_am,Ref),Message#service{result=true}},

109

{next_state, busy_alloc,[CurrJob,NewJob_list,Ref]};

110 busy_alloc(Message=#service{message_type=done},[CurrJob,Job_list,Ref]) ->

Stellenbosch University https://scholar.sun.ac.za

Stellenbosch University https://scholar.sun.ac.za

178

111

case Message#service.requester_pid of

112

CurrJob ->?MAKE_NAME(resource_comm,Ref) ! {?MAKE_NAME(resource_am,Ref),Message},

113

 case Job_list of

114

>

[] -> error_logger:info_report([{reporter, {self(), erlang:process_info(self(),
registered_name)}},{event, state_transition}, {content, {busy_alloc,free_free}}]),

%go to free_free state if no more jobs are allocated

115

 {next_state,free_free,[Ref]};

116

>

Job_list -> error_logger:info_report([{reporter, {self(), erlang:process_info(self(),
registered_name)}},{event, state_transition}, {content, {busy_alloc,free_alloc}}]),

117

 {next_state,free_alloc,[Job_list,Ref]}

 end

end.

%===

118 create_proposal(Bookings_list) ->

119

 (length(Bookings_list) + 1).

A.1.3. Execution Component
-module(resource_exec_ets).

-behaviour(gen_fsm).

-include("messaging.hrl").

%macro for function that adds the reference to the registered name

-define(MAKE_NAME(Name,Ref),list_to_atom(atom_to_list(Name)++Ref)).

%% ==

%% API functions

%% ==

-export([start/1]).

-export([rec_messages/1]).

-export([init/1,ready/2,ready_for_start/2,ready_to_test/2,testing_done/2]).

%start gen_fsm process

120 start(Ref) -> gen_fsm:start_link({local,?MAKE_NAME(resource_exec_fsm,Ref)}, resource_exec_ets, [Ref], []),

Stellenbosch University https://scholar.sun.ac.za

Stellenbosch University https://scholar.sun.ac.za

179

%start comm interface process

121

Pid = spawn_link(resource_exec_ets,rec_messages,[Ref]),

122

register(?MAKE_NAME(resource_exec,Ref), Pid),

123

{ok,Pid}.

%% ==

%% Internal functions

%% ==

%process for handling communication to the FSM

124 rec_messages(Ref) ->

125

Resource_pi = ?MAKE_NAME(resource_pi,Ref),

126

Resource_exec_fsm = ?MAKE_NAME(resource_exec_fsm,Ref),

127

receive

128

{Resource_pi,Message} ->

129

>
error_logger:info_report([{reporter, {self(), erlang:process_info(self(), registered_name)}},{event,
message_received}, {content, {Resource_pi,Message}}]),

130

gen_fsm:send_event(Resource_exec_fsm, Message),

131

rec_messages(Ref);

132

{From,Message=#service{}} ->

133

>
error_logger:info_report([{reporter, {self(), erlang:process_info(self(), registered_name)}},{event,
message_received}, {content, {From,Message}}]),

134

gen_fsm:send_event(Resource_exec_fsm,Message),

135

rec_messages(Ref)

end.

%FSM initialization

136 init([Ref]) -> {ok,ready,[Ref]}.

137 ready(Message=#service{message_type=status,info=ready},[Ref]) ->

%status received from resource_pi - status sent to resource_am

138

?MAKE_NAME(resource_am,Ref) ! {?MAKE_NAME(resource_exec,Ref),#service{message_type=status,info={ready,test}}},

139
>

error_logger:info_report([{reporter, {self(), erlang:process_info(self(), registered_name)}},{event,
state_transition}, {content, {ready,ready_for_start}}]),

140

{next_state,ready_for_start,[Ref]}.

Stellenbosch University https://scholar.sun.ac.za

Stellenbosch University https://scholar.sun.ac.za

180

%STATE: ready_for_start --> the exec process is ready to start testing process

141 ready_for_start(Message=#service{message_type=start},[Ref]) ->

%notify event logger

142

event_logger ! {?MAKE_NAME(resource_exec,Ref),start},

143

io:format("~p received start request from ~p~n",[?MAKE_NAME(resource_exec,Ref),Message#service.requester_pid]),

%find name/pid of transport holon to which release_request must be sent

144
>
>

?MAKE_NAME(resource_comm,Ref) !
{?MAKE_NAME(resource_exec,Ref),#service{message_type=request,service_type=transport,requester_pid=?MAKE_NAME(resource
_exec,Ref),provider_pid=service_directory}},

145

{next_state,ready_for_start,[Message#service.requester_pid,Message,Ref]};

146 ready_for_start(Msg=#service{message_type=request, service_type=transport},[CurrJob,Message,Ref]) ->

147

[Transport_holon] = Msg#service.info, %assuming there will be only one transport holon

%send release_request to transport holon

148

Task_ref = CurrJob,

149
>
>

?MAKE_NAME(resource_comm,Ref) !
{?MAKE_NAME(resource_exec,Ref),#service{message_type=release_request,requester_pid=?MAKE_NAME(resource_exec,Ref),prov
ider_pid=Transport_holon,info=Task_ref}},

150

{next_state,ready_to_test,[Message#service.requester_pid,Message,Ref]}.

%STATE: ready_to_test --> the exec process is ready to execute testing process

151 ready_to_test(Msg=#service{message_type=release_request,result=true},[CurrJob,Message,Ref]) ->

152

io:format("Release_request successful!~n"),

153

Pick_coords = Msg#service.info, %extract task info

154

?MAKE_NAME(resource_am,Ref) ! {?MAKE_NAME(resource_exec,Ref),Message#service{result=true}}, %send confirmation of
service started
%send placing coordinates to robot_pi

155

?MAKE_NAME(resource_pi,Ref) ! {?MAKE_NAME(resource_exec,Ref),Pick_coords},

156
>

error_logger:info_report([{reporter, {self(), erlang:process_info(self(), registered_name)}},{event,
state_transition}, {content, {ready_to_test,testing_done}}]),

157

{next_state,testing_done,[CurrJob,Message,Ref]}.

%STATE: done --> the testing process is complete

158 testing_done(done,[CurrJob,Message,Ref]) ->

159

io:format("Testing done~n"),

Stellenbosch University https://scholar.sun.ac.za

Stellenbosch University https://scholar.sun.ac.za

181

160
>
>

?MAKE_NAME(resource_comm,Ref) !
{?MAKE_NAME(resource_exec,Ref),#service{message_type=request,service_type=transport,requester_pid=?MAKE_NAME(resource
_exec,Ref),provider_pid=service_directory}},

161

{next_state,testing_done,[CurrJob,Message,Ref]};

162 testing_done(Msg=#service{message_type=request, service_type=transport},[CurrJob,Message,Ref]) ->

163

[Transport_holon] = Msg#service.info, %assuming there will be only one transport holon

%send release_request to transport holon

164

Task_ref = CurrJob,

165
>
>

?MAKE_NAME(resource_comm,Ref) !
{?MAKE_NAME(resource_exec,Ref),#service{message_type=binding_request,requester_pid=?MAKE_NAME(resource_exec,Ref),prov
ider_pid=Transport_holon,info={Task_ref,p01,?MAKE_NAME(?MAKE_NAME(resource_comm,Ref),"_output")}}},

166

{next_state,testing_done,[CurrJob,Message,Ref]};

167 testing_done(Msg=#service{message_type=binding_request, result=true},[CurrJob,Message,Ref]) ->

%notify event logger

168

event_logger ! {?MAKE_NAME(resource_exec,Ref),done},

169
>

io:format("~p placed task ~p on transport holon carrier at
~p~n",[?MAKE_NAME(resource_exec,Ref),CurrJob,Msg#service.info]),

170

?MAKE_NAME(resource_am,Ref) ! {?MAKE_NAME(resource_exec,Ref),Message#service{message_type=done,result=true}},

171

{next_state,ready_for_start,[Ref]};

172 testing_done(Msg=#service{message_type=binding_request, result=false},[CurrJob,Message,Ref]) ->

173

timer:sleep(1000),

174
>
>

?MAKE_NAME(resource_comm,Ref) !
{?MAKE_NAME(resource_exec,Ref),Msg#service{result=undefined,info={CurrJob,p01,?MAKE_NAME(?MAKE_NAME(resource_comm,Ref
),"_output")}}},

175

{next_state,testing_done,[CurrJob,Message,Ref]}.

Stellenbosch University https://scholar.sun.ac.za

Stellenbosch University https://scholar.sun.ac.za

182

A.2. JADE Resource Agent

A.2.1. Resource Agent
package agents;

import java.io.StringReader;

 ...

import jade.util.leap.Set;

1 public class ResourceAgent extends Agent{

2

private ArrayList<AID> booking_list = new ArrayList<AID>();

3

private int booking_buff = 10;

4

private AchieveREResponder started_task_responder;

5

private Boolean task_started = false;

6

private Boolean task_done = false;

7

private String[] service_type;

8

private String service_requested;

9

public HashMap<Integer,additional.BufferEntryData> stack_buffer = new HashMap<Integer,additional.BufferEntryData>();

10

protected void setup(){

11

Object[] args = getArguments();

12

service_type = (String[]) args;

// register agent services with the Directory Facilitator

13

DFAgentDescription dfd = new DFAgentDescription();

14

dfd.setName(getAID());

15

for(int index = 0; index < service_type.length; index++){

16

ServiceDescription sd = new ServiceDescription();

17

sd.setType(service_type[index]);

18

sd.setName(getLocalName());

19

dfd.addServices(sd);

}

20

try{

Stellenbosch University https://scholar.sun.ac.za

Stellenbosch University https://scholar.sun.ac.za

183

21

DFService.register(this, dfd);

}

22

catch (FIPAException fe){

23

fe.printStackTrace();

}

//add behaviour to respond to booking requests using CNP

24

MessageTemplate mt = MessageTemplate.MatchPerformative(ACLMessage.CFP);

25

addBehaviour(new ContractNetResponder(this, mt){

26

protected ACLMessage handleCfp(ACLMessage cfp){

27

ACLMessage reply = cfp.createReply();

//check bookings list to see if available for booking

28

if(booking_list.size() < booking_buff){

29

reply.setPerformative(ACLMessage.PROPOSE);

30

int proposal = booking_list.size() + 1;

31

reply.setContent(String.valueOf(proposal));

}

32

else{

33

reply.setPerformative(ACLMessage.REFUSE);

}

34

return reply;

}

35

protected ACLMessage handleAcceptProposal(ACLMessage cfp, ACLMessage propose,ACLMessage accept){

36

ACLMessage result = accept.createReply();

//update bookings list

37

booking_list.add(accept.getSender());

38

result.setPerformative(ACLMessage.INFORM);

39

return result;

}

});

Stellenbosch University https://scholar.sun.ac.za

Stellenbosch University https://scholar.sun.ac.za

184

//add behaviour to handle confirmation inquiries

40

>
>

MessageTemplate confirm_req =
MessageTemplate.and(MessageTemplate.MatchPerformative(ACLMessage.REQUEST),MessageTemplate.MatchContent("confirm"
));

41

addBehaviour(new AchieveREResponder(this,confirm_req){

42

protected ACLMessage prepareResultNotification(ACLMessage request,ACLMessage response){

//create reply to message

43

ACLMessage result = request.createReply();

//check if requesting agent has made a booking

44

if(booking_list.indexOf(request.getSender()) != -1){

45

result.setPerformative(ACLMessage.INFORM);

46

result.setContent(request.getContent());

}

47

else{

48

result.setPerformative(ACLMessage.FAILURE);

49

result.setContent(request.getContent());

}

50

return result;

}

});

51

>
MessageTemplate req_temp = MessageTemplate.and(MessageTemplate.MatchPerformative(ACLMessage.REQUEST),new
MessageTemplate(new RegexMatchExpression("<message_type>start\\.*") {}));
//add behaviour to launch a Responder behaviour for every incoming request

52

addBehaviour(new SSResponderDispatcher(this,req_temp){

53

public Behaviour createResponder(ACLMessage req_msg) {

54

System.out.println(this.myAgent.getName() + " created a Responder for received request!");

//get XML content of request message

55

String req_msg_content = req_msg.getContent();

56

System.out.println(myAgent.getName() + " request content: " + req_msg_content.toString());

57

Document xml_content = XmlTools.buildXmlDoc(req_msg_content);

Stellenbosch University https://scholar.sun.ac.za

Stellenbosch University https://scholar.sun.ac.za

185

58

>
service_requested =
xml_content.getDocumentElement().getElementsByTagName("service_type").item(0).getTextContent();

59

System.out.println(myAgent.getName() + " request to perform service: Execute_" + service_requested);

60

SSIteratedAchieveREResponder responder = null;

61

ThreadedBehaviourFactory tbf = new ThreadedBehaviourFactory();

62

Boolean resource_busy = (Boolean) this.getDataStore().get("resource_busy");

63

if(resource_busy == null){

64

resource_busy = false;

}

65

if(resource_busy==false){

66

System.out.println("Stack buffer at start: ");

67

for(int i: stack_buffer.keySet()){

68

String order_id = stack_buffer.get(i).getID();

69

String prod_id = stack_buffer.get(i).getProdType();

70

System.out.println(i + " -> " + order_id + " / " + prod_id);

}

71

this.getDataStore().put("resource_busy", true);

72

responder = new SSIteratedAchieveREResponder(this.myAgent,req_msg);

//get keys for DataStore entries

73

String req_key = responder.REQUEST_KEY;

74

String reply_key = responder.REPLY_KEY;

//put received request message in DataStore

75

responder.getDataStore().put(responder.REQUEST_KEY, req_msg);

//construct arguments object to pass to execute behaviour

76

Object[] args1 = new Object[5];

77

args1[0] = responder.getDataStore();

78

args1[1] = req_key;

79

args1[2] = reply_key;

80

args1[3] = this.getDataStore();

81

args1[4] = stack_buffer;

Stellenbosch University https://scholar.sun.ac.za

Stellenbosch University https://scholar.sun.ac.za

186

//instantiate a new behaviour instance to handle the received request message;

82

responder.registerHandleRequest(setBehavName("Resource_execution.Execute_" + service_requested,args1));

//construct and send AGREE to requesting holon

83

ACLMessage agree = req_msg.createReply();

84

responder.sendAgree(agree);

}

85

else{

//resource is busy and FAILURE must be replied to START request

86

responder = new SSIteratedAchieveREResponder(this.myAgent,req_msg){

87

protected ACLMessage handleRequest(ACLMessage req_msg){

88

ACLMessage refuse = req_msg.createReply();

89

refuse.setPerformative(ACLMessage.FAILURE);

90

return refuse;

}

};

}

//close/terminate behaviour when the current session ends

91

responder.closeSessionOnNextReply();

92

return tbf.wrap(responder);

}

});

}

93

public FSMBehaviour setBehavName(String className,Object args){

94

FSMBehaviour b = new FSMBehaviour();

95

try {

96

Class[] carg = new Class[1];

97

carg[0] = Object[].class;

98

ExecuteBehaviourMethods instance = new ExecuteBehaviourMethods();

99

Method meth = ExecuteBehaviourMethods.class.getDeclaredMethod("execute_" + service_requested, carg);

Stellenbosch University https://scholar.sun.ac.za

Stellenbosch University https://scholar.sun.ac.za

187

100

b = (FSMBehaviour) meth.invoke(instance,args);

101

} catch (Throwable e) {

102

e.printStackTrace();

}

103

return b;

}

104

protected void takeDown(){

//deregister from DF

105

try { DFService.deregister(this); }

106

catch (Exception e) {}

//send cancellation messages to all booked agents

107

ACLMessage cancel = new ACLMessage(ACLMessage.REQUEST);

108

cancel.setContent("cancel");

109

for(int i = 0; i < booking_list.size(); i++){

110

cancel.addReceiver(booking_list.get(i));

}

111

send(cancel);

}

}

A.2.2. Execution Behaviour FSM
package Resource_execution;

import jade.core.Agent;

import jade.core.behaviours.*;

import jade.lang.acl.ACLMessage;

public class ExecuteBehaviourMethods extends Agent{

//private AchieveREResponder start_responder;

private DataStore ds;

Stellenbosch University https://scholar.sun.ac.za

Stellenbosch University https://scholar.sun.ac.za

188

private String req_key;

private String result_key;

private ACLMessage response;

112

public FSMBehaviour execute_test(Object[] args){

113

ds = (DataStore) args[0];

114

req_key = (String) args[1];

115

result_key = (String) args[2];

116

Execute_test exec = new Execute_test();

117

exec.var_init(args);

118

FSMBehaviour b = new FSMBehaviour();

119

b.setDataStore(ds);

120

b.registerFirstState(exec.new ReleaseRequestor(exec, response, new DataStore()), "ReleaseRequestor");

121

b.registerState(exec.new Execute(), "Execute");

122

b.registerState(exec.new BindingRequestor(exec, response, new DataStore()), "BindingRequestor");

123

b.registerLastState(exec.new Done(exec, response, ds), "Done");

124

b.registerTransition("ReleaseRequestor", "Execute",1);

125

b.registerTransition("Execute", "BindingRequestor",2);

126

b.registerDefaultTransition("BindingRequestor", "Done");

127

return b;

}

}

A.2.3. Execution Behaviour

 package Resource_execution;

 import java.util.ArrayList;

 ...

 import jade.util.leap.Set;

128 public class Execute_test extends Agent{

129 private DataStore ds;

Stellenbosch University https://scholar.sun.ac.za

Stellenbosch University https://scholar.sun.ac.za

189

130 private DataStore disp_ds;

131 private String req_key;

132 private String result_key;

133 public void var_init(Object[] args){

134 ds = (DataStore) args[0];

135 req_key = (String) args[1];

136 result_key = (String) args[2];

137 disp_ds = (DataStore) args[3];

 }

138 public class ReleaseRequestor extends AchieveREInitiator{

139 public ReleaseRequestor(Agent a, ACLMessage req_msg, DataStore ds1) {

140 super(a, req_msg, ds1);

 }

141 public Vector prepareRequests(ACLMessage msg){

 //indicate event with performance logger

142 ACLMessage sm = new ACLMessage(ACLMessage.INFORM);

143 sm.addReceiver(new AID("PerformanceLogger",AID.ISLOCALNAME));

144 sm.setContent("start");

145 myAgent.send(sm);

146 printDS("prepReqs DS",parent.getDataStore());

147 printDS("prepReqs DS1",getDataStore());

148 AID[] service_providers = findServiceProviders("transport");

149 ACLMessage req_msg = new ACLMessage(ACLMessage.REQUEST);

 //build XML message content

150 XML message_type = XmlTools.buildXmlElement("message_type", "release_request");

151 ACLMessage start_req = (ACLMessage)parent.getDataStore().get(req_key);

152 XML task_ref = XmlTools.buildXmlElement("task_ref", start_req.getSender().getLocalName());

153 ArrayList<XML> info_elements = new ArrayList<XML>();

154 info_elements.add(task_ref);

Stellenbosch University https://scholar.sun.ac.za

Stellenbosch University https://scholar.sun.ac.za

190

155 XML info = XmlTools.buildXmlElement("info", info_elements);

156 ArrayList<XML> msg_elements = new ArrayList<XML>();

157 msg_elements.add(message_type);

158 msg_elements.add(info);

159 XML msg_info = XmlTools.buildXmlElement("msg", msg_elements);

160 XML initiator = XmlTools.buildXmlElement("initiator", this.getAgent().getLocalName());

161 XML responder = XmlTools.buildXmlElement("responder", "TransportAgent");

162 ArrayList<XML> message_elements = new ArrayList<XML>();

163 message_elements.add(initiator);

164 message_elements.add(responder);

165 message_elements.add(msg_info);

166 XML message = XmlTools.buildXmlElement("message", message_elements);

167 XMLDocument xmlDoc = XmlTools.buildXmlDoc(message);

168 String xmlMsg = xmlDoc.toString();

169 req_msg.setContent(xmlMsg);

170 req_msg.addReceiver(service_providers[0]);

171 Vector messages = new Vector();

172 messages.add(req_msg);

173 return messages;

 }

174 public void handleAgree(ACLMessage agree_msg){

175 >
System.out.println(myAgent.getName() + " received AGREE from " + agree_msg.getSender().getName() + " during
AchieveRE: " + agree_msg);

 }

176 public void handleFailure(ACLMessage fail_msg){

177 >
System.out.println(myAgent.getName() + " received FAILURE from " + fail_msg.getSender().getName() + " during
AchieveRE: " + fail_msg);

178 try {

179 Thread.sleep(1000);

180 } catch (InterruptedException e) {

Stellenbosch University https://scholar.sun.ac.za

Stellenbosch University https://scholar.sun.ac.za

191

181 e.printStackTrace();

 }

 //reset variables and AchieveREInitiator behaviour

182 reset();

 }

183 public void handleInform(ACLMessage inform_msg){

184 printDS("inform DS1",getDataStore());

185 >
System.out.println(myAgent.getName() + " received Inform from " + inform_msg.getSender().getName() + " with
content: " + inform_msg.getContent());

 }

186 public int onEnd(){

187 return 1;

 }

188 public AID[] findServiceProviders(String service_type){

189 int i;

190 AID[] service_providers = null;

191 DFAgentDescription template = new DFAgentDescription();

192 ServiceDescription sd = new ServiceDescription();

193 sd.setType(service_type);

194 template.addServices(sd);

195 try {

196 DFAgentDescription[] result = DFService.search(this.myAgent, template);

197 service_providers = new AID[result.length];

198 if(service_providers.length != 0){

199 System.out.println("Found the Resource agents:");

200 for (i=0;i < result.length;i++) {

201 service_providers[i] = result[i].getName();

202 System.out.println(result[i].getName());

 }

 }

Stellenbosch University https://scholar.sun.ac.za

Stellenbosch University https://scholar.sun.ac.za

192

203 else{

204 System.out.println("Did not find any Resource agents providing the service: " + service_type);

 }

 }

205 catch (FIPAException fe) {

206 fe.printStackTrace();

 }

207 return service_providers;

 }

208 public void printDS(String name, DataStore ds){

209 Set keys = ds.keySet();

210 Iterator it = keys.iterator();

211 while(it.hasNext()){

212 String key = it.next().toString();

213 try{

214 String value = ds.get(it.next()).toString();

 }

215 catch(NoSuchElementException e){

216 System.out.println("No element found");

 }

217 catch(NullPointerException e){

218 System.out.println(key + " = Element null");

 }

 }

 }

 }

219 public class Execute extends Behaviour{

220 Boolean started = false;

221 Boolean done = false;

Stellenbosch University https://scholar.sun.ac.za

Stellenbosch University https://scholar.sun.ac.za

193

222 public void action() {

223 do_test();

224 done = true;

 }

225 public void do_test(){

226 try {

227 Thread.sleep(15000);

228 } catch (InterruptedException e) {

229 e.printStackTrace();

 }

 }

230 public boolean done() {

231 if(!done){

232 return false;

 }

233 else{

234 return true;

 }

 }

235 public int onEnd(){

236 return 2;

 }

 }

237 public class BindingRequestor extends AchieveREInitiator{

238 public BindingRequestor(Agent a, ACLMessage req_msg, DataStore ds1) {

239 super(a, req_msg, ds1);

 }

240 public Vector prepareRequests(ACLMessage msg){

241 printDS("prepReqs DS",parent.getDataStore());

Stellenbosch University https://scholar.sun.ac.za

Stellenbosch University https://scholar.sun.ac.za

194

242 printDS("prepReqs DS1",getDataStore());

243 AID[] service_providers = findServiceProviders("transport");

244 ACLMessage req_msg = new ACLMessage(ACLMessage.REQUEST);

 //build XML message content

245 XML message_type = XmlTools.buildXmlElement("message_type", "binding_request");

 //get original start request message from task holon

246 ACLMessage start_req = (ACLMessage)parent.getDataStore().get(req_key);

247 XML task_ref = XmlTools.buildXmlElement("task_ref", start_req.getSender().getLocalName());

248 XML prod_id = XmlTools.buildXmlElement("prod_ID", "p01");

249 XML binding_location = XmlTools.buildXmlElement("binding_location", myAgent.getLocalName()+"_output");

250 ArrayList<XML> info_elements = new ArrayList<XML>();

251 info_elements.add(task_ref);

252 info_elements.add(prod_id);

253 info_elements.add(binding_location);

254 XML info = XmlTools.buildXmlElement("info", info_elements);

255 ArrayList<XML> msg_elements = new ArrayList<XML>();

256 msg_elements.add(message_type);

257 msg_elements.add(info);

258 XML msg_info = XmlTools.buildXmlElement("msg", msg_elements);

259 XML initiator = XmlTools.buildXmlElement("initiator", this.getAgent().getLocalName());

260 XML responder = XmlTools.buildXmlElement("responder", "TransportAgent");

261 ArrayList<XML> message_elements = new ArrayList<XML>();

262 message_elements.add(initiator);

263 message_elements.add(responder);

264 message_elements.add(msg_info);

265 XML message = XmlTools.buildXmlElement("message", message_elements);

266 XMLDocument xmlDoc = XmlTools.buildXmlDoc(message);

267 String xmlMsg = xmlDoc.toString();

268 req_msg.setContent(xmlMsg);

Stellenbosch University https://scholar.sun.ac.za

Stellenbosch University https://scholar.sun.ac.za

195

269 req_msg.addReceiver(service_providers[0]);

270 Vector messages = new Vector();

271 messages.add(req_msg);

272 return messages;

 }

273 public void handleAgree(ACLMessage agree_msg){

274 >
System.out.println(myAgent.getName() + " received AGREE from " + agree_msg.getSender().getName() + " during
AchieveRE: " + agree_msg);

 }

275 public void handleFailure(ACLMessage fail_msg){

276 >
System.out.println(myAgent.getName() + " received FAILURE from " + fail_msg.getSender().getName() + " during
AchieveRE: " + fail_msg);

277 try {

278 Thread.sleep(1000);

279 } catch (InterruptedException e) {

280 e.printStackTrace();

 }

 //reset variables and AchieveREInitiator behaviour

281 reset();

 }

282 public void handleInform(ACLMessage inform_msg){

283 printDS("inform DS1",getDataStore());

284 >
System.out.println(myAgent.getName() + " received Inform from " + inform_msg.getSender().getName() + " with
content: " + inform_msg.getContent());

 }

285 public AID[] findServiceProviders(String service_type){

286 int i;

287 AID[] service_providers = null;

288 DFAgentDescription template = new DFAgentDescription();

289 ServiceDescription sd = new ServiceDescription();

290 sd.setType(service_type);

Stellenbosch University https://scholar.sun.ac.za

Stellenbosch University https://scholar.sun.ac.za

196

291 template.addServices(sd);

292 try {

293 DFAgentDescription[] result = DFService.search(this.myAgent, template);

294 service_providers = new AID[result.length];

295 if(service_providers.length != 0){

296 System.out.println("Found the Resource agents:");

297 for (i=0;i < result.length;i++) {

298 service_providers[i] = result[i].getName();

299 System.out.println(result[i].getName());

 }

 }

300 else{

301 System.out.println("Did not find any Resource agents providing the service: " + service_type);

 }

 }

302 catch (FIPAException fe) {

303 fe.printStackTrace();

 }

304 return service_providers;

 }

305 public void printDS(String name, DataStore ds){

306 System.out.println(name + " info: ");

307 Set keys = ds.keySet();

308 Iterator it = keys.iterator();

309 while(it.hasNext()){

310 String key = it.next().toString();

311 try{

312 String value = ds.get(it.next()).toString();

313 System.out.println(key + " = " + value);

Stellenbosch University https://scholar.sun.ac.za

Stellenbosch University https://scholar.sun.ac.za

197

 }

314 catch(NoSuchElementException e){

315 System.out.println("No element found");

 }

316 catch(NullPointerException e){

317 System.out.println(key + " = Element null");

 }

 }

 }

 }

318 public class Done extends OneShotBehaviour{

319 public ACLMessage result = null;

320 public Done(Agent a, ACLMessage req_msg, DataStore ds) {

321 super();

 }

322 public void action(){

 //indicate event with performance logger

323 ACLMessage sm = new ACLMessage(ACLMessage.INFORM);

324 sm.addReceiver(new AID("PerformanceLogger",AID.ISLOCALNAME));

325 sm.setContent("done");

326 myAgent.send(sm);

327 System.out.println("Execute_fsm done!");

 //printDS("Done DS", ds);

328 printDS("Done DS1", parent.getDataStore());

 //obtain original "start" request message as received by AchieveREResponder behaviour

329 ACLMessage start_req = (ACLMessage)parent.getDataStore().get(req_key);

330 >
System.out.println("Got original start request from " + start_req.getSender().getName() + " with content: " +
start_req.getContent());

 //create reply to original request message

331 ACLMessage result = start_req.createReply();

Stellenbosch University https://scholar.sun.ac.za

Stellenbosch University https://scholar.sun.ac.za

198

332 result.setPerformative(ACLMessage.INFORM);

333 result.setContent(start_req.getContent());

334 parent.getDataStore().put(result_key, result);

335 disp_ds.put("resource_busy", false);

 }

336 public int onEnd(){

337 printDS("OnEnd DS1", parent.getDataStore());

338 return 0;

 }

339 public void printDS(String name, DataStore ds){

340 System.out.println(name + " info: ");

341 Set keys = ds.keySet();

342 Iterator it = keys.iterator();

343 while(it.hasNext()){

344 String key = "no_key";

345 try{

346 key = it.next().toString();

347 String value = ds.get(it.next()).toString();

348 System.out.println(key + " = " + value);

 }

349 catch(NoSuchElementException e){

350 System.out.println("No element found");

 }

351 catch(NullPointerException e){

352 System.out.println(key + " = Element null");

 }

 }

 }

 }

Stellenbosch University https://scholar.sun.ac.za

Stellenbosch University https://scholar.sun.ac.za

199

Stellenbosch University https://scholar.sun.ac.za

Stellenbosch University https://scholar.sun.ac.za

