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Abstract

Proton pencil beam kernels as extracted from Geant4 Monte

Carlo simulations

M. V. J. Chisapi

Department of Physics,

Stellenbosch University,

Private Bag X1, Matieland 7602, South Africa.

Thesis: M.Sc.

December 2016

The contribution of primary protons, secondary protons, heavy recoil ions, and other

secondary particles to the total energy deposited in water by a proton pencil beam

(in the therapeutic energy regime) has been investigated using the Geant4 Monte

Carlo simulation toolkit. Simulation results have been compared with those calcu-

lated using dose distribution functions of the analytical beamlet model of Ulmer et

al., which is currently used in the commercial proton treatment-planning package

EclipseTM. Optimized settings for a robust, accurate, and computationally inexpen-

sive Geant4 simulations have also been proposed.
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Uittreksel

Proton dun-bundel dieptedosis berekeninge deur middel van

Geant4 Monte Carlo simulasies

(�Proton pencil beam kernels as extracted from Geant4 Monte Carlo

simulations�)

M. V. J. Chisapi

Departement Fisika,

Universiteit van Stellenbosch,

Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: M.Sc.

Desember 2016

Monte Carlo simulasies is gedoen met Geant4 om die primêre protone, sekondêre

protone, swaar terugslag-ione en ander sekondêre deeltjies se bydraes te bepaal tot

die energie wat deur `n dun protonbundel in water gedeponeer word. Hierdie on-

dersoek is uitgevoer vir protone in die terapeutiese energiegebied. Die resultate

wat vekrei is van die Monte Carlo simulasies is vergelyk met dosisverspreidings wat

breken is venaf die analitiese dun-bundel model van Ulmer et al. Dié model word

tans gebruik in die EclipseTM stelsel, wat `n kommersiële beplanningsisteem vir pro-

tonterapie is. Verstellings word ook verskaf wat verseker dat die Geant4 simulasies

geoptimaliseer is in terme van robuustheid, akkuraatheid en berekeningspoed.
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Chapter 1

Introduction

Since the �rst hospital-based proton therapy center was established in the 1990s,

proton radiation therapy has continued to gain popularity in cancer treatment. Hun-

dreds of di�erent types of cancers (emanating from di�erent body tissues) are being

diagnosed today. Some of them are not only di�cult to cure with prevalent meth-

ods (e.g., surgery, chemotherapy, x-ray or radiotherapy), but their treatment with

methods such as radiotherapy could lead to exposure of surrounding healthy tis-

sue or critical organs to damage by radiation. Conventional photon radiation has

been used extensively to treat certain tumours, either alone or in combination with

other modalities. Any form of cancer treatment plan involving radiation is adopted

based on its ability to deliver su�ciently high dose to the target volume, with the

aim of eradicating the cancerous tumour, while limiting dose falling on healthy

tissue as much as possible to avoid late e�ects and toxicity. With the advent of

improved computing, imaging, and scanning technology, photon therapy has under-

gone tremendous improvement over the past 15 to 20 years. For example, three-

dimensional conformal radiation therapy (3D-CRT), intensity modulated radiation

therapy (IMRT), image-guided radiation therapy (IGRT), volumetric modulated

arc therapy (VMAT), and intensity modulated arc therapy (IMAT), used today in

many cancer treatment centers, are some of the external-beam radiation techniques

that are taking advantage of the signi�cant computer technology evolution currently

happening around the world.

However, the energy-loss characteristic of protons traversing matter shows a lot of

potential insofar as optimizing trade-o�s between irradiating the target with a high

energy conformal beam and limiting the dose to critical structures is concerned [1].

Several authors writing on this topic have shown that proton therapy has all the

�exibility of the photon radiation, plus the possibility to control the penetration

depth of the proton beam in the target volume [2].

1
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1.1. A brief historical background of proton therapy 2

In clinical cancer treatment, proton beams within the therapeutic energy regime

of about 50-250 MeV, depending on the depth and or size of the tumour volume

in the patient, are used. The common approach is to accelerate protons from their

source by using particle accelerators (usually synchrotrons or cyclotrons) to di�erent

treatment rooms. Devices such as bending and focussing/defocussing magnets are

placed along the beam line to guide the beam to the treatment rooms. As proton

therapy continues to grow, researchers around the world have continued the quest

for better and more reliable ways of getting the most out of this modality insofar as

increasing the probability of curing the cancer is concerned.

1.1 A brief historical background of proton

therapy

Since the �rst medical application of ionizing radiation, in the form of x-rays, was

reported in 1895 [3] many technical advancements relating to the manner in which

radiation is administered to patients, bearing in mind its e�ects on biological tissue,

have been made. The adaptability of various technologies to the ionizing radia-

tion therapy and the notable evolution in the computing world has led to radiation

therapy becoming one of the main treatment options for cancer. The challenge in

external-beam radiation method of cancer treatment has always been with how to

reduce dose to healthy tissue while increasing or maintaining prescribed dose to tar-

get volumes. Techniques such as computerized treatment planning, patient setup,

advanced imaging, introduction of intensity-modulated radiotherapy (IMRT), etc.,

have tremendously transformed the way ionizing radiation is delivered to target vol-

umes in the history of radiation therapy. In addition, dose deposition characteristics

of di�erent type of particles can also go a long way in improving beam delivery ac-

curacy [1]. In fact, the medical use of proton beams (and other heavy ions) was �rst

proposed in 1946 by R. H. Wilson [4] primarily because of the physical characteristics

of the way they interact with matter. Wilson observed that the well known physics

of proton interactions and their energy loss in matter had the potential to enhance

delivery of higher radiation doses to the target volumes relative to `conventional'

photon radiation therapy. Protons lose their energy mainly through electromag-

netic (EM) interactions with orbital electrons of atoms of the target medium. As

the protons slow down, energy transfer to tissue per unit length increases. This

leads to almost uniform energy loss over a certain penetration depth (dependent on

incident proton energy) but increases sharply to the maximum before a subsequent

sharp distal fall o� as protons come to a stop (near the end of the range), resulting
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1.1. A brief historical background of proton therapy 3

in a depth-dose peak commonly referred to as the Bragg peak, Fig. 1.1, (after W.

H. Bragg) [5].

Figure 1.1: A sharp Bragg peak due to near-monoenergetic proton beams, a SOBP re-
sulting from weighted summation of Bragg peaks of di�erent ranges, and Bragg peaks with
varying ranges. Image sourced from [6].

A near-monoenergetic proton beam exhibits a very narrow Bragg peak, Fig. 1.1. In

order to get a Bragg peak that extends longitudinally in width and spreads over the

target volume (also known as spread-out Bragg peak (SOBP)), beams of di�erent

ranges and weights are added together. Variations in proton beam range can be

realized by employing various techniques, such as altering the machine energy or

placing an adjustable-degrader, e.g., a double wedge, across the beam line. Wilson

also suggested utilizing the Bragg peak and the �nite range of proton beams for

treating tumours seated deep within healthy tissue or close to critical organs [4].

A couple of years after Wilson �rst proposed the use of protons (and heavy ions)

for cancer treatment, some individuals and institutions began to explore the idea

further, �rst by trying to get an insight on the biological e�ects of proton radiation.

For instance, Lawrence et al. at Lawrence Berkeley Laboratory (LBL) published

their work on the biological study of protons on mice in 1952 [7]. Similarly, in 1955

radiation oncologists at Gustav Werner Institute in Uppsala, Sweden, ran experi-

ments on a series of animals (rabbits and goats) [8] [9] to study the biological e�ect of

proton radiation, while at Harvard Cyclotron Laboratory (HCL), extensive relative
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1.1. A brief historical background of proton therapy 4

biological e�ectiveness (RBE) [10] [11] studies of protons were done in the 1960s.

Initially, the major emphasis for proton therapy clinical research was on dose es-

calation for tumors which had poor local control with conventional radiotherapy

[2].

By the early 1990s, proton therapy was still at the experimental stage, based mainly

in research institutions [1]. More work still needed to be done to attain a full-scale use

of this treatment modality. For example, many proton machines had limited beam

energy, hence could not treat deep seated tumours. They also had �xed horizontal

beam lines and limited choice of beam angles, thus patients had to be immobilized

and positions reproduced in every treatment session. Early proton therapy facilities

employed a passive beam scattering technique, in which beam modifying devices

such as rotating range-modulator wheel, optional range-shifter plates, adjustable

energy-degrader, scattering �lters, range-compensators, were used to, mechanically,

obtain a spread-out-Bragg-peak (SOBP) that conform to the target volume. With

the evolution in the computer technology and the availability of devices such as the

multi-leaf collimator, the passive scattering has transformed into a more automated

beam delivery method. For example, beam shaping is now done with computer

controlled dynamic multi-leaf collimators [2].

The technological advancements happening around the world coupled with the in-

volvement of commercial companies have given rise to sophisticated equipment as-

sociated with proton treatment delivery. Among them are isocentric gantries, which

are capable of irradiating a target volume from any arbitrary direction around the pa-

tient, accurate imaging equipment such as the PET/CT, which combines a positron

emission tomography (PET) scan and a computed tomography (CT) scan, and com-

puterized treatment planning programs. This has made possible the adoption of dy-

namic proton beam delivery techniques such as spot or pencil beam scanning (also

known as the intensity-modulated proton therapy (IMPT)). Compared to passive

beam scattering, which uses beam modifying devices to produce a required dose

distribution in the target volume, IMPT uses magnets to direct an unmodulated

pencil beam from the accelerator (synchrotron) onto the target cross section area

(in spot or continuous form) while varying the energy and the intensity to control

its penetration depth. IMPT therefore o�ers proton dose distributions that are

highly conformal to the target volume, thereby increasing sparing of the normal

tissue. Furthermore, a number of companies around the world today manufacture

proton therapy related equipment, making the treatment modality more accessi-

ble to the public. The �rst hospital-based proton therapy facility, equipped with

modern technology, e.g., gantries, was opened in October, 1990 at the Loma Linda
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1.2. Proton dose calculation algorithms 5

University Medical Center (LLUMC) [1]. A few years down the line, more proton

therapy centers started mushrooming across the world and the numbers have since

been growing steadily [12]. Among the earliest centers to be opened is the iThemba

Laboratory for Accelerator-Based Sciences proton therapy facility, which was com-

missioned in September 1993 in Cape Town, South Africa. It provides a proton beam

with maximum energy of 200 MeV which is used for both medical applications and

for research purposes [13]. Currently, there are over sixty operational proton ther-

apy centers around the world and over thirty more are scheduled for commissioning

within the next two to three years [14].

1.2 Proton dose calculation algorithms

The wide acceptance proton therapy is currently receiving across the globe has

heightened the need for accurate and relatively fast dose calculation algorithms.

For routine clinical treatment planning, analytical dose calculation algorithms are

preferred as they are both feasible and computationally fast compared to Monte

Carlo [15] methods. Several forms of proton dose calculation algorithms exist today,

the majority of which are based on the pencil beam model [16] [17] [18].

The pencil beam model is a mathematical model attempting to zoom in and assim-

ilate the dose-deposition process of a very narrow (and near-monoenergetic) proton

beam in the patient and subsequently approximating the e�ect of such interaction

processes for a broad beam. The pencil beam model, based on the Fermi-Eyges the-

ory of particle transport [19], was �rst applied to electron dose calculation algorithms

by Hogstrom [16]. With suitable modi�cations however, his formalisms are widely

used today in proton pencil beam dose calculation algorithms. Hogstrom de�nes a

pencil beam as a narrow particle beam with in�nitesimally small lateral dimension

(cross section) impinging at a point on a semi-in�nite medium [16]. The dose de-

livered by the broad beam is approximately equal to the sum of dose deposited by

individual near mono-energetic pencil beams. In other words, this approach sug-

gests that a 3D broad beam is made up of an in�nitely large number of narrow

pencil beams impinging on the surface of the medium [20]. Due to inhomogeneity of

the medium, these pencil beams lose their energy di�erently even though they are

subject to similar interaction processes. Several authors have shown that individual

pencil beam dose distributions can indeed be summed up to give, approximately,

the total dose deposited in the medium by the broad beam [21] [16] [17] [22].

A good proton-dose calculation algorithm must take into account all possible energy

loss processes while being both accurate and relatively fast. To date, a number of
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algorithms used to predict proton-dose distribution in the patient have been devel-

oped using di�erent approaches [17] [18] [23] [22] [21] [24] [25]. While the majority of

these dose-calculation algorithms have to some extent compromised accuracy for the

sake of achieving clinically viable computational speeds, a few of them, e.g., Ulmer's

beamlet model, have attempted to take into account all the physics while remaining

computationally inexpensive. The rate of energy loss per unit track length (stopping

power) in di�erent material have been successfully calculated using the Bethe-Bloch

equation (BBE) and the results [26] [27] are widely used to develop relatively fast

dose-calculation algorithms. On the other hand, incorporating an algorithm that

gives a comprehensive description of multiple Coulomb scattering (MSC) can be

quite involved. Various MSC theories e.g., Molière's [28] (known to be the most

comprehensive), Highland's [29], Goudsmith and Saunderson's [30], Lewis' [31], etc.,

exist today. The choice of the MSC theory for a proton dose-calculation algorithm

to be used in a treatment planning system (TPS) can depend on the feasibility to

incorporate it and/or the trade-o�s between the accuracy and the computational

speed. Usually, relatively less involved theories, such as Highland's, are employed

or minor permissible modi�cations are made to the original MSC theory in order

to achieve a clinically viable analytical dose-calculation algorithm. Literature shows

that, with a few exceptions, a large number of proton pencil-beam algorithms in use

today either improve on or are a generalization of the Fermi-Eyges theory [16] [32]

[33] [34], which is a relatively simple particle-transport theory [19].

1.3 Monte Carlo simulations

Modern approaches to deriving proton-dose calculation algorithms try to use data

from Monte Carlo (MC) simulations [25] [35] as these (MC methods) account for

all physical processes, thereby providing the most accurate means of approximating

proton energy-deposition in matter and the interaction of radiation with matter

in general [1] [36]. Besides providing a practical alternative to measured beam

pro�les, MC methods are capable of simulating scenarios that may prove di�cult

or impossible to do experimentally [1]. These can also save beam time by reducing

the need for experiments. Basically, MC simulations can be used for predicting dose

distributions in the patient, studying the physics of proton beams, designing and

testing the beam delivery system, for quality assurance purposes, and so on [1] [37].

In general, a MC method (or simulation) is a numerical method for approximating

the probability of a certain outcome by using randomly sampled numbers from a

probability density function. MC methods are mainly used to �nd numerical solu-
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tions to problems that are too complicated to solve analytically. Random number

generators used in modern day computers have very long periods, making them

capable of simulating complex stochastic processes before the sampled number se-

quence eventually repeats itself. Conceptually, a MC algorithm takes as input the

numbers sampled randomly from a probability distribution and performs a calcu-

lation. In radiotherapy, the probability distribution could represent possible ways

a particle might interact in a given step consistent with the laws of physics. The

calculation is performed repeatedly over a very large number (N) of samples, thus,

allowing the simulation of all possible outcomes. The result is a probability distri-

bution of a certain outcome, which converges as N → ∞. The uncertainty in the

result decreases with increasing number of samples taken, N (i.e., ≈ 1/
√
N).

Charged particle transport in matter depends on the interaction probabilities (i.e.,

cross sections) per unit distance [36]. MC methods are widely used today in radiation

therapy to simulate physics interactions on a step-by-step basis. At each step of the

particle's passage through the medium, the probability of physics interactions and

their outcomes is represented by probability density functions, making the simulation

equivalent to solving the Boltzmann particle-transport equation for protons [1].

1.3.1 Geant4 Monte Carlo detector simulation toolkit

Geant4 (i.e., GEometry AND Tracking) is an open source Monte Carlo detector sim-

ulation toolkit for simulating passage of particles (radiation) through matter [38]. It

is developed and maintained by an international collaboration of physicists and soft-

ware engineers (Geant4 collaboration) from all around the world [39]. The Geant4

code is written in object-oriented C++ programming language and is widely used

in high energy physics, space science, nuclear and accelerator physics as well as in

medical sciences. Besides o�ering versatile ways of tracking particles in the medium

with realistic magnetic or electric �elds, the Geant4 detector simulating toolkit com-

prises a comprehensive collection of a large variety of particles, physics processes,

models and cross-section libraries for particle transport in matter. Because of its

complexity, the Geant4 code relies signi�cantly on the optimized computing power

of modern computers (e.g., multi-threading) and the extensible nature of object-

oriented C++. Moreover, the Geant4 kernel (central unit) is designed to work in

conjunction with non-Geant4 graphic systems and interfaces, such as OpenGL, Qt,

DAWN, and ROOT, to aid visualization of the geometry and trajectories as well

as for data analysis purposes [40] [39] [41]. The Geant4 toolkit therefore allows for

development of a program capable of carrying out tasks from the initial problem

de�nition all the way through to the generation of results, or even �nal plots for
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publication [38].

1.4 Objectives and aims

The main aim of this work is to generate pencil beam kernels (i.e., 3D dose distribu-

tions in water) by simulating the traversal of proton pencil beams in the energy range

of clinical interest (i.e., 50-250 MeV) through water using the Geant4 MC simulation

toolkit, and to assess the contribution of primary protons, secondary protons, and

heavy recoil ions and other secondary particles to the total absorbed dose. Such

investigations will lay a foundation for future development of an in-house MC-based

analytical model for pencil-beam kernels (and eventually a pencil-beam dose cal-

culation algorithm) for the iThemba LABS proton therapy program. This work is

motivated by the analytical proton beamlet model of Ulmer et al. [35], which is par-

tially implemented in the commercial proton treatment planning system, EclipseTM,

of Varian medical systems1. The beamlet model will therefore be used mostly as

a reference point. Like in the beamlet model, the energy deposited in water will

be sorted into the following categories: primary protons (pp), secondary protons

(sp), and a third group comprising heavy recoil ions and other secondaries which

will be denoted as (rc). Both the radial and depth-dependent components of the

energy deposited by each particle category will be investigated at respective depths

and for the longitudinal depth, respectively. To embark on this undertaking, it was

necessary to �rst learn the formalism of the Geant4 detector simulation toolkit and

establish an optimized list of the simulation control parameters and physics settings

for a robust, fast and accurate MC (Geant4) simulations.

1.5 Thesis structure overview

Chapter 2 discusses the di�erent ways in which proton beams interact with matter.

It describes the basic physics of proton energy loss and the production of secondary

particles. This chapter ends with a brief explanation of how these interaction pro-

cesses are included in the Geant4 simulation toolkit.

Chapter 3 covers the mathematical de�nitions of simple proton beam con�gurations.

It also introduces the mathematical description of dose deposited (the pencil beam

kernel) at a given point in the medium by a very narrow proton beam (pencil beam).

The rest of the chapter discusses ways di�erent types of particles contribute to the

3D dose deposition by a pencil beam.

1Proton Algorithm Reference Guide-EclipseTM, April 2007.
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1.5. Thesis structure overview 9

In chapter 4 the derivation of the analytical proton beamlet model by Ulmer et al.

is outlined.

Chapter 5 covers the simulation of the passage of proton pencil beams (of clinical

energy range) through water using the Geant4 (MC) toolkit. An optimized simula-

tion parameter list is suggested, the physics models are discussed, and the general

setup and settings for the Geant4 simulations are outlined.

Chapter 6 discusses the results from the simulations. A comparison of dose distri-

butions from the Geant4 simulations and the Ulmer beamlet model are also given

here.

A conclusion is presented in chapter 7 together with an outline on possible future

work.
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Chapter 2

Proton interaction mechanisms

The interaction of protons with matter takes place via three distinct processes: they

su�er energy loss by electromagnetic (EM) collisions with atomic electrons, multiple

Coulomb de�ections by atomic nuclei, and sometimes undergo nuclear collisions, in

which incident protons inelastically scatter o� the medium nucleus, leaving it in the

excited state, or physically knock constituent protons, neutrons, or light nucleon

clusters out of the nucleus [1]. In this chapter we review the physics of proton

interactions with matter.

2.1 Energy loss processes

Protons traversing a given target medium (e.g., water) lose energy mainly through

electromagnetic (EM) collisions with atomic electrons, causing them to eventually

stop in the medium. Although important only at incident energies far less than the

clinical range (below 20 keV [26]), protons also lose energy by elastic EM collisions

with atomic nuclei, giving rise to the so-called nuclear stopping power Snuc [42].

A proton (or a charged particle) penetrating the medium interacts with the atoms

via the Coulomb force, leading to excitation of the atomic electrons or ionization

of the atoms (see Table 2.1). This is the main process by which protons traversing

matter lose their energy. Apart from that, incident protons can physically eject

orbital electrons from the atom (see Table 2.1 and Fig. 2.1(a)). Ejected electrons

are called δ-rays and have kinetic energy equivalent to that lost by projectile protons.

As protons slow down in the medium, the rate of energy loss increases, leading

to a sharp increase in ionization of the medium atoms near the end of the range,

thus leading to the Bragg peak. According to Gottschalk, the range R0 of a quasi-

monoenergetic proton beam is de�ned as the depth of material at which half the

10
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2.1. Energy loss processes 11

protons that undergo only EM interactions have stopped [1] [42]. For water, this

range can be approximated as

R0 ≈ d80, (2.1.1)

where d80 is the depth in water corresponding to the distal 80% point of the Bragg

peak [42] [1]. An incident mono-energetic proton beam may be assumed to be un-

dergoing continuous interactions (hence losing energy continuously) as it penetrates

a homogeneous medium. Such an approximation allows for �uctuations in energy

loss to be ignored, therefore, the so-called continuous-slowing-down-approximations

(CSDA) [35] technique can be used to approximate the range RCSDA of the proton

beam in the medium. In the CSDA framework, protons in the incident mono-

energetic beam would be assumed to eventually stop at the same depth in the

medium. However, whether their initial energy is the same or varies, protons travers-

ing matter have been observed to stop at di�erent points (even if the medium is

homogeneous), a phenomenon referred to as energy or range straggling1 [26]. Janni

[26] explored the theory of straggling and showed that range straggling in light (low

Z) and heavy (high Z) materials di�er only slightly, meaning that the shape of the

Bragg peak almost remains the same when, say, water is replaced by plastic or

lead (Pb). Changing the incident proton energy however changes both the peak-to-

plateau ratio of the Bragg curve and its shape [25].

2.1.1 The stopping power

The amount of energy lost per unit distance travelled by a charged particle through

the medium, also known as the linear stopping power S ≡ −dE/dz (MeV/cm), is a

function of the incident particle energy and the target material [1]. In proton therapy

however, the mass stopping power S/ρ ≡ −dE/ρdz (MeV/(g/cm2)), de�ned as the

amount of energy lost per unit areal distance, is frequently used. The mass stopping

power equation was derived around 1933 by Bethe and Bloch [26]. For an elemental

target with atomic number Z and relative atomic mass A, traversed by a projectile

of charge ze and velocity v = βc, S/ρ can be calculated by

−1

ρ

dE

dz
=

4πr2
emec

2

β2

1

u

Z

A
z2L(β). (2.1.2)

The quantity L(β) is called the stopping number. It accounts for the �ne details of

the energy loss process. The factor 4πr2
emec

2/u is a material-independent constant

1Energy straggling as a result of �uctuations in energy loss, or range straggling to refer directly
to the resulting variations in range.
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2.1. Energy loss processes 12

Interaction Interaction Principal In�uence on Dosimetric
type target ejectiles Projectile manifestations

Inelastic Atomic Primary proton, Quasi-continuous, Energy loss
Coulomb electrons ionization energy loss determines range in
scattering electrons patient

Elastic Coulomb Atomic nucleus Primary proton, Change in Determines
scattering recoil nucleus trajectory lateral penumbra

sharpness

Non-elastic Atomic nucleus Secondary Removal of Primary �uence
nuclear reactions protons and primary proton generation of stray

heavy ions, from beam neutrons, generation
neutrons, and of prompt gammas
gamma rays for in vivo

interrogation

Bremsstrahlung Atomic nucleus Primary proton, Energy loss, Negligible
Bremsstrahlung change in
photon trajectory

Table 2.1: Summary of proton interaction types, targets, ejectiles, in�uence on projectiles,
and selected dosimetric manifestations, Table by [43].

approximately equal to 0.307075 MeV cm2 g−1. The constant re is the classical

electron radius = 2.817 × 10−13 cm, u is the atomic mass unit, and mec
2 ≈ 0.511

MeV is the electron rest energy. The quantity L can be written as

L(β) = L0(β) + zL1(β) + z2L2(β), (2.1.3)

where zL1 is the Barkas correction, and z2L2, the Bloch correction. Bethe derived

the stopping power theory on the basis of the �rst-order Born approximation. These

corrections account for departures from this approximation, and are important only

at low projectile velocities (i.e., lower than velocities of the atomic electrons) [44].

The term L0 is given by

L0(β) =
1

2
ln

(
2mec

2β2Wm

(1− β2)I2

)
− β2 − C

Z
− δ

2
, (2.1.4)

where C/Z is the target shell correction, and δ/2, the relativistic density-e�ect cor-

rection, I is the mean excitation energy of the target material (discussed in Sec.

2.1.1.1). The factor Wm is the maximum energy that can be transferred to an

unbound electron at rest in a single proton-electron collision [1]. It is given by

Wm =
2mec

2β2

1− β2
×
[
1 +

2me

mp(1− β2)1/2
+
me

mp

]−1

. (2.1.5)

The factor in the square brackets is nearly unity and contributes only at relativistic

energies. For clinical incident energy range, Eq. (2.1.8) is a reasonably accurate
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2.1. Energy loss processes 13

approximation for the full relativistic description.

The density-e�ect δ and the shell correction C are important only at high and low

energies respectively [45]. The density-e�ect δ arises from the fact that a proton

polarizes the atoms along its path, leading to the disturbance in the electron �eld

which in turn reduces the in�uence of the outer lying electrons on the proton energy

loss [26] [45]. The density-e�ect becomes more important at incident energies far

beyond the clinical energy regime and for high medium densities. On the other

hand, the shell correction accounts for e�ects arising when the incident particle

velocity becomes less or equal to the orbital velocity of the bound electrons. At

such energies, the assumption that the electron is at rest relative to the incident

particle is no longer valid and the Bethe-Bloch formula without the shell correction

term breaks down [45].

2.1.1.1 The mean excitation potential

The mean excitation energy (or ionization potential) I of the target material is

a material dependent quantity and by far the main source of uncertainty in the

clinical energy range [1]. In practice, it is very di�cult to calculate I with su�cient

accuracy. Therefore, it is usually obtained by �tting measured range-energy values

(for materials where data exists) or interpolated with the guidance of the theory [42]

(in cases where measurements are unavailable). For media of unknown ionization

potential, Bragg's additivity rule:

S

ρ
=
∑
i

wi

(
S

ρ

)
i

, (2.1.6)

is used. Here, the term wi is the fraction by weight of the ith element. Bragg's

additivity rule suggests that mass stopping power for mixtures or compounds can

be estimated by the linear combination of the stopping powers of the constituent

elements [46]. However, because of the signi�cant in�uence the chemical bonding in

compounds has on the mass stopping power Eq. (2.1.6) is largely an approximation.

Range-energy tables can slightly di�er depending on the author's choice for the I

value. In Geant4, I values recommended by ICRU [44] are used [47].

Overall, the Bethe-Bloch formula is accurate enough for the radiotherapy energy

regime and it is permissible to omit most of these corrections [1] in this energy

range. Eq. (2.1.2) can therefore be used in its simplest or non-relativistic form:

S

ρ
≡ −1

ρ

dE

dz
= 0.307075

Z

A

1

β2

(
ln
Wm

I
− β2

)
MeV

g/cm2
, (2.1.7)

with

Wm =
2mec

2β2

1− β2
. (2.1.8)
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2.2. Multiple Coulomb scattering 14

At very low energies (e.g., / 2 MeV), this formula is no longer accurate, therefore,

the corrections must be implemented. Implementing these corrections can be quite

involved mathematically, especially in the already complicated MC codes. Several

authors [46] [26] [44] have calculated the mass stopping powers of various material

for clinical incident proton energy range which are today tabulated into range-energy

tables, e.g., of Janni [26], ICRU report 49 [27], etc. These look-up tables are used

in most MC codes today, which would otherwise take very long to execute.

In the Geant4 toolkit, the Bethe-Bloch equation is used to calculate the hadron

energy loss down to 2 MeV, below which a parameterization based on the ICRU

report 49 [44] is implemented [48]. In Geant4, any interaction process calculates the

continuous and discrete energy loss in the medium. Above a given energy threshold

(range cut) the energy loss of the particle is simulated by the explicit production

of secondary particles (gammas, electrons, positrons, protons, etc.) while below the

threshold, the energy loss is treated as continuous [47]. Therefore, if a given particle

su�ers continuous energy loss via several processes, the total continuous part of the

energy loss will be the sum. In order to speed up the simulations, the continuous

energy loss (which occurs at very low energies depending on the user-de�ned cut-

o� value) is pre-calculated during the initialization phase of the Geant4 simulation

and stored in the dE/dz table. The ranges of the particle in a given material are

then calculated using this table and stored in the Range table, which eventually is

inverted into the InverseRange table. At run time, values of the continuous energy

loss and range are obtained using these tables. Discrete energy loss is not involved

at this stage. In contrast to the continuous energy loss, the production of secondary

particles above the production threshold is sampled explicitly by each energy loss

process [47].

2.2 Multiple Coulomb scattering

Protons passing through matter may also get de�ected by atomic nuclei, a process

commonly referred to as scattering, more precisely, multiple Coulomb scattering since

the observed angular dispersion is due to a cumulative e�ect of many random small

single-scatterings. Both the proton and the nucleus have a positive charge, as such,

their interactions are largely electrostatic in nature (as a result of the Coulomb force

acting between them, see (b) in Figure 2.1). Such large numbers of small single-

de�ections are better treated statistically. The overall spatial distribution tends

towards a Gaussian (Figs. 2.2a and 2.2b) provided the scattering events occur at

small angles, a condition largely satis�ed by protons traversing a low Z medium such
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2.2. Multiple Coulomb scattering 15

Figure 2.1: Schematic illustration of proton interaction mechanisms: (a) energy loss via
inelastic Coulomb interactions, (b) de�ection of proton trajectory by repulsive Coulomb
elastic scattering with nucleus, (c) removal of primary proton and creation of secondary
particles via non-elastic nuclear interaction (p: proton,e: electron, n: neutron, γ: gamma
rays). Image from Newhauser [43].

as water or plastic [1].

Several theories of multiple scattering have been developed since the 1930s [28]

[1]. In the Gaussian approximations the main focus is the dependence of the mean

scattering angle θ0 on proton energy and scattering material as well as its thickness.

The so-called Molière's characteristic multiple scattering angle θM , given by

θM =
1√
2

(χc
√
B) (2.2.1)

is analogous to θ0 [1]. In Eq. 2.2.1, χc is the characteristic single scattering angle.

For an incident proton (charge number z, momentum p, speed v) passing through

a signi�cantly thin target (t:thickness�proton range) consisting of a single element

(atomic weight A, atomic number Z), χc can be written as

χ2
c = c3t/(pv)2, (2.2.2)

where

c3 ≡ 4πNA

(
e2

~c

)2

(~c)2 z
2Z2

A
, (2.2.3)

and B is the reduced target thickness,

B − lnB = b, (2.2.4)
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2.2. Multiple Coulomb scattering 16

(a) MCS in thin slab.MP-Measuring
plate.

(b) Lateral scattering due to MCS
yields a Gaussian.

Figure 2.2: Multiple Coulomb scattering resulting from proton interactions with nuclei of
medium atoms (images from [1] and [49] respectively).

NA ≈ 6.022× 1023 mol−1 is Avogadro's number, e2/~c ≈ 1/137 is the �ne structure

constant, and ~c ≈ 197 × 10−13 MeV cm is the conversion factor. The quantity

b is the natural logarithm of the e�ective number of collisions in the target. The

physical interpretation of χc is that, on average, a proton su�ers exactly one single

scatter greater than χc in its traversal of the target [1].

De�ning a reduced angle,

θ
′ ≡ θ

χc
√
B

(2.2.5)

Molière approximates the angular distribution function f(θ) of the proton space

angle θ by a power series in 1/B:

f(θ) =
1

2πθ2
M

1

2

[
f (0)(θ

′
) +

f (1)(θ
′
)

B
+
f (2)(θ

′
)

B2

]
(2.2.6)

where the f (n) are given by

f (n)(θ
′
) =

1

n!

∫ ∞
0

ydyJ0(θ
′
y)ey

1/4

(
y2

4
ln
y2

4

)n
. (2.2.7)

and f (0) is a Gaussian:

f (0)(θ
′
) = 2e−θ

′2
. (2.2.8)

A good summary of Molière's theory is given in [1], while the detailed theory is in

the original papers [28]. Although given here in brief, it can be clearly seen that

Molière's theory is mathematically complicated.
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In subsequent years continuous improvements or re-evaluation of some of these scat-

tering theories has been on the rise, with the view of arriving at accurate but easier

to evaluate formulae for purposes of clinical dose calculation algorithms. Examples

of such undertakings include Highland's formula [29], which he derived by parame-

terizing the full Molière/Bethe/Hanson theory, and Urbàn model [50], which is based

on the Lewis theory of multiple Coulomb scattering [31].

Highland's formula calculates the mean scattering angle θ0 as

θ0 =
14.1MeV

pv

√
L

LR

[
1 +

1

9
log10

(
L

LR

)]
rad, (2.2.9)

where pv is the kinematic factor given by Eq. (A.0.6), L is the target thickness,

and LR is the radiation length of the target material [1]. The radiation length is the

distance over which the incident particle's energy is reduced by a factor e−1(≈ 0.37)

due to radiation losses alone [51]. This scattering angle is integrated along the beam

axis (z-axis), and the lateral standard deviation at depth z (for beam axis coinciding

with the z-axis) can be given by

σ2
x,MCS(Z) =

[
1 +

1

9
log10

(
z

LR

)]2

×
[ ∫ z

0

(
14.1MeV

pv
× (z− z′)

)2
1

LR
dz
′
]
. (2.2.10)

Another theory very appropriate for describing the spatial and angular distributions

of protons traversing matter is the Fermi-Eyges theory [19]. The Fermi-Eyges the-

ory is a relatively simple theory that describes the propagation of a particle beam

through matter. It gives the solution to the Fermi equation which in turn derives

from the more fundamental linear Boltzmann equation in two steps [52]: First, with

the assumption that the scattering of interacting particles occur over small angles,

the Boltzmann equation is approximated by the Fokker-Planck equation. Second,

the Fokker-Planck equation is reduced to the Fermi equation by assuming continu-

ous energy loss of the penetrating particle (CSDA), that is, the energy of incident

particle is a well de�ned and continuous function of the penetration depth [52] [33].

Ideally, the angular distribution of protons in a given medium approximates a Gaus-

sian for small angles (see Figs. 2.2a and 2.2b) followed by a scattering tail, which is

e�ectively governed by the small-angle Rutherford scattering, with dσ/dΩ ≈ 1/θ4.

The Fermi-Eyges theory was initially applied to pencil beam algorithms for electron

beams by Hogstrom [16].

The Fermi-Eyges theory approximates the lateral spread of an initially parallel and

in�nitesimally narrow proton beam as a function of depth in water, z (in centime-

ters), to a Gaussian of width

x2
MCS(z) = σ2

x,MCS =

∫ z

0

(z − z′)2T (z
′
)dz

′
[cm2], (2.2.11)
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where the lateral variance of the beam,

x2
MCS(z) =

N∑
i=1

x2
i /N (2.2.12)

is equal to the square of the standard deviation of the Gaussian pro�le (σ2
x,MCS(z)),

in the limit of many scattering events (N), and

T (z) ≡ dθ2/dz (2.2.13)

is the scattering power [1], simply de�ned as the rate of increase of the variance of

the MCS angle [53]. However, the commonly used formula for the scattering power

is the parameterization,

T (z) = Tdm = [0.524 + 0.1975 log10(1− (pv/p1v1)2) + 0.2320 log10(pv/MeV)

−0.0098 log10(pv/MeV) log10(1− (pv/p1v1)2)]×
(
Es

pv

)2
1
LR
, (2.2.14)

which is called the improved non-local formula, as given by Gottschalk [53]. Here,

pv[MeV] is the product of the proton momentum and velocity and is a function of

z; p1v1 is the initial product of momentum and velocity, Es = 15.0 MeV, and LR is

the radiation length (36.1 cm for water) [1].

In the Gaussian approximation, each pencil beam evolves in water according to

σx,MCS(z) such that at any depth z the total distribution can be explained in terms

of the convolution of two Gaussian functions: the initial unperturbed Gaussian shape

and the additional spreading due to MSC in the medium [1].

2.2.1 Multiple Coulomb scattering in Geant4

In order to optimize speed in MC simulations, condensed algorithms are used instead

of the detailed algorithms. Detailed simulation algorithms account for every colli-

sion/interaction that a simulated particle experiences. A simulation by a detailed

algorithm can be considered exact, i.e., it gives the same results as the solution of the

transport equation [50]. Because the detailed algorithm simulates every interaction,

it can only be used for simulations which involve a small number of collisions, such

as the interaction of low energy projectiles with thin foils, or low density gas [50].

On the other hand, condensed simulation algorithms simulate global e�ects (such

as the net energy loss, displacement and change of direction of the charged particle)

of the collisions at the end of the step (or track segment). Condensed simulation

algorithms are used to simulate high energy particle transport in solid or liquid

media where the average number of collisions is very large such that the detailed
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simulation becomes ine�cient [50]. The displacement and the change of direction of

the penetrating particle are calculated by MSC algorithms that are incorporated in

the transport codes. The accuracy of these algorithms is limited by the accuracy of

the approximations used in MSC models.

The MSC model used by default in the Geant4 toolkit (since version 10.0) is the

G4UrbanMscModel, developed by L. Urbàn [50]. The Urbàn MSC model belongs

to the class of condensed simulation algorithms and is applicable to all types of

particles at any energy. It is based on the Lewis model of MSC [31], i.e., it uses

model functions that have been chosen in such a way as to give the same moments of

angular and spatial distributions after a step as the Lewis model [50]. Compared to

the Lewis model, the MSC theories of Molière, Goudsmit-Saunderson [30], etc., only

determine the angular distribution after a step, they do not compute the moments

of the spatial distributions. The G4UrbanMscModel simulates the scattering of the

charged particle after a given step, computes the path length correction and the

lateral displacement of the particle penetrating the medium [50]. Below (Sec. 2.2.2)

we brie�y discuss the Lewis theory and give a short overview of the Urbàn model.

2.2.2 The Urbàn model of multiple Coulomb scattering

The Lewis theory describes a direct method of obtaining exact results from the dif-

fusion equation of the multiple scattering of charged particles traversing an in�nite

and homogeneous medium, without the usual small-angle approximation. In the

development of the theory, Lewis carried out an expansion of the cross-section for

scattering in spherical harmonics, leading to a di�usion equation that rapidly con-

verges in the case of large-angle scattering when integrated over all space, and whose

coe�cients can be exactly determined. The determination of the coe�cients leads

to expressions for various moments of spatial and angular distributions. Lewis also

showed that his angular distribution result can be transitioned to cases in which

only the small-angle scattering is important [31].

Based on the Lewis theory of multiple scattering, Urbàn developed a model for MSC

to be used in the Geant4 toolkit. The model uses the transport mean free paths, λi,

to determine properties of the MSC process. The i-th transport mean free path is

given by
1

λi
= 2πna

∫ 1

−1

[1− Pi(cosχ)]
dσ(χ)

dΩ
d(cosχ), (2.2.15)

where dσ(χ)/dΩ is the di�erential cross section for scattering, Pi(cosχ) is the i-th

Legendre polynomial, and na is the number of atoms per volume. Instead of using

the cross section directly, the model uses the �rst and second transport mean free
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paths (λ1 and λ2) to compute the di�erent spatial and angular distributions. The

straight distance between the endpoints of a step is called the geometrical path length

`, while the total length travelled by a particle is referred to as the true path length

t. In order to accurately describe the transport of a particle in matter, the step

limitation imposed by the physics processes and the geometry of the detector are

compared and the minimum step length is selected as the actual step length. The

role of the MSC algorithm in this capacity is to transform the minimum `physics

step length' into `geometrical step length' (i.e., t → `, also known as the inverse

of the path length correction). Once the actual step length is determined and the

particle position has changed, the MSC carries out the path length correction: the

transformation `→ t, since the energy loss and scattering computation need the true

step length t. For instance, at the end of this step length (t) the scattering angle θ

of the particle is sampled according to the model function, and lateral displacement

is calculated using the equation (for a particle with the initial direction parallel to

the z-axis)

〈x2 + y2〉 =
4λ2

1

3

[
τ − κ+ 1

κ
+

κ

κ− 1
e−τ − 1

κ(κ− 1)
e−κτ

]
, (2.2.16)

where τ = t/λ1 and κ = λ1/λ2. The lateral correlation given by

〈xυx + yυy〉 =
2λ1

3

[
1− κ

κ− 1
e−τ +

1

κ− 1
e−κτ

]
(2.2.17)

determines the direction of the lateral displacement. In Eq. (2.2.17) υx and υy are

the x and y components, respectively, of the direction unit vector [50].

Step limitation algorithms are also implemented in the transport process of this

model to keep the particle from crossing the volume in one step or to restrict the

step size of the particle entering a new volume for the sake of good simulation of

backscattering. Similarly, boundary crossing is treated by a stepping algorithm

which prevents the last step of the particle from being bigger than the mean free

path of elastic scattering in the given volume. This restricts the particle to single

scattering at or very close to the boundary [50].

The reliability of the Geant4 MC simulations under the implementation of the Urbàn

MSC model has been tested against experimental and Geant32 simulation results,

which implemented Molière's theory [54] [55]. Some benchmarking comparisons have

been done for the scattering angle distribution, energy deposit distribution in detec-

tors, transmission of charged particles, backscattering of charged particles, etc., in

2A predecessor of Geant4, it was written in FORTRAN.
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di�erent media. Overall, with the implementation of the Urbàn MSC model, Geant4

simulation results agree with experimental data within experimental uncertainties.

Molière's theory is well known for reproducing the Gaussian type of angular dis-

tribution at small angles and the Rutherford-like scattering at large angles. The

Lewis theory equally gives a good description of the long single-scattering tail in

addition to Gaussian distribution for small-angle scattering. There is yet to be an

authoritative comparison of the two theories, as such we cannot categorically state

which theory is more accurate. However, the outstanding di�erence is that one the-

ory (Molière's) calculates only the angular distribution of a particle at the end of

the step whereas the other (Lewis') computes the spatial distribution as well. It

su�ces to observe that compared to the Geant3 (which implemented Molière's the-

ory) simulations, the Geant4 (using the Urbàn model) simulation results give better

agreement with experimental data [54] [55].

2.3 Nuclear interactions

Incident protons can also undergo elastic or nonelastic collisions with the atomic

nuclei of the medium. In elastic collisions the projectile proton physically scatters

o� the target nucleus while maintaining its total kinetic energy. Nonelastic collisions

on the other hand can physically knock nucleons or light nucleon clusters out of

the target nucleus, leaving the nucleus in the excited state. The excited nucleus

subsequently decay by emitting nucleons or γ-rays, or by undergoing β−/β+ decays

[45]. Possible products of nonelastic nuclear interactions comprise protons, neutrons,

electrons, gammas, heavy fragments such as alphas, and recoiling residual nuclei (see

Table 2.1 and Fig. 2.1 (c)), generally referred to as secondaries or secondary particles

[42]. Since the medium considered here is water, nonelastic interactions in the energy

range of clinical interest are predominantly with the oxygen nuclei:

p + 16
8O→ p + n + 15

8O or 16
8O(p, pn)15

8O

p + 16
8O→ n + 16

9F or 16
8O(p, n)16

9F

p + 16
8O→ p + p + 15

7N or 16
8O(p, 2p)15

7N

p + 16
8O→ α + 13

7N or 16
8O(p, α)13

7N

p + 16
8O→ d + 15

8O or 16
8O(p, d)15

8O

n + 16
8O→ p + 16

7N or 16
8O(n, p)16

7N

n + 16
8O→ p + n + 15

7N or 16
8O(n, pn)15

7N

n + p(H)→ n + p(recoil) or 1
1H(n, n)1

1H



(2.3.1)
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The proton-oxygen cross-section for nonelastic nuclear reactions has a threshold

energy of ETh = 7 MeV, which is the energy required to overcome the repulsive

Coulomb barrier [56] [57].

Explicit evaluation and theoretical modelling of nuclear interactions, as has been

done for stopping and scattering processes, proves mathematically challenging. Their

dose contribution is however signi�cantly low compared to that of primary protons

(see Fig. 2.3) [58] [59]. In some analytical pencil beam algorithms, the e�ects of

nuclear interactions on the total dose distribution are assumed to be small and of-

ten accounted for by using measured depth-dose distributions. Studies previously

Figure 2.3: Depth-dose distribution for 160 MeV proton beam incident on a water phan-
tom. Also plotted are the individual dose contributions of the primary protons and the
secondary particles (Image from [60]).

conducted to investigate the in�uence of nonelastic nuclear interactions on dose dis-

tribution [58] [59] [60] show that nonelastic nuclear interactions remove primary

protons from the incident beam, thereby decreasing the peak-to-plateau ratio of the

total depth-dose distribution. Furthermore, generated secondary particles (except

for neutrons) have short range and large scattering angles [1] [42]. Another in�u-

ence nonelastic nuclear interactions have on the depth-dose distribution, especially
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at high incident proton energies ('200 MeV), is a dose build-up e�ect observed in

the entrance region of the Bragg curve [61]. The build-up e�ect is partly caused by

the Landau tails in the proton-electron energy transfer [35] (see Sec. 4.2). All these

factors have to be included in a dose calculation algorithm if a more accurate result

is to be achieved.

2.3.1 Including nuclear interactions in Geant4 simulations

With its �exible framework for modular implementation of physics processes, the

Geant4 toolkit is capable of putting together various kinds of hadronic interaction

modules3. These modules describe the elastic scattering, inelastic scattering, nuclear

interactions and the transport of secondary particles. In MC codes nuclear interac-

tions are usually taken into account by using the total nonelastic nuclear interaction

cross-section and branching ratios of di�erent reaction channels liberating secondary

particles [58]. In Geant4, hadronic interaction cross-sections are either tabulated,

parameterized using analytical functions, or deduced from other cross-sections via

general nuclear physics principles [58].

To model nonelastic nuclear interactions, one can assume an incident proton inter-

acting with nucleons in the target nucleus, thereby liberating secondary nucleons

and leaving the nucleus in an excited state (also known as the intra-nuclear cascade

phase). Subsequently, the nucleus de-excites to equilibrium by emitting nucleons,

and the residual nucleus can de-excite further (e.g., by evaporation) [48]. To simulate

these processes, selected models are applied to di�erent phases (e.g., intra-nuclear

cascade, pre-equilibrium, and equilibrium) of the nuclear system as it evolves with

time. Within the clinical energy range, the binary cascade and the Bertini cascade

models for inelastic nuclear scattering of protons, neutrons, and heavier ions are

known to give comprehensive description of the intra-nuclear cascade phase [48].

However, in the present work we follow the recommendations of Jarlskog et al. [48]

and choose the binary cascade model over the Bertini cascade model for reasons that

the latter gives a less accurate description of the target by considering it to have dis-

continuous nuclear density distributions and potentials, uses entirely classical calcu-

lation of scattering, is devoid of Coulomb barrier simulation, and disregards nuclear

momenta in calculations of reaction cross-sections. The binary cascade model also

automatically invokes the G4PreCompoundModel (used to simulate the de-excitation

of the nucleus in the pre-equilibrium phase) when energy of particles in the intra-

cascade phase reaches a lower limit, whereas the Bertini cascade model invokes its

3Note that term `module' is used here to refer to a collection of models that work together to
achieve a particular result.
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own `pre-equilibrium model', which is less accurate compared to the former [62] as

shown by Quesada et al. [62]. At equilibrium, several de-excitation models are

present (see Table 5.2) through the G4ExcitationHandler but for therapeutic pro-

ton interaction with water the evaporation model (G4VEvaporation) is su�cient

[48]. Table 5.1 gives, among others, physics processes, models and data sets used in

Geant4 to describe nuclear interactions.
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Chapter 3

Simple proton beam con�gurations

In order to derive a satisfactory mathematical description of particle transport

in matter, beam and geometric con�gurations must be explicitly de�ned. Sim-

ple beam con�gurations range from pencil beams (sometimes referred to as point-

monodirectional beams or beamlets [32]) to broad beams. Pencil beam here means

that spatial and angular dimensions of the proton beam are in�nitesimally narrow

at the point the beam impinges onto the medium. Similarly, in the plane-parallel

beam con�gurations, individual proton pencil beams are assumed to be incident

normally onto the plane surface of the medium. Simple beam con�gurations such as

pencil beams are widely used in developing dose calculation algorithms for particle

beams as they give a basis on which mathematical models for more realistic beam

con�gurations can be derived [22].

3.1 Pencil beam kernels

The introductory part of the mathematical description of simple proton beam con-

�gurations is given in Appendix B.3. A pencil beam can be derived from the plane-

parallel beam such as Eq. (B.3.3) by limiting the target surface area onto which the

beam is incident. If we assume a narrow beam of monoenergetic particles incident

on a small area δA = δxδy on the x− y plane at z = 0, the dose deposited by such

a pencil beam at some point ~r in the medium can be written as

Dpb(δA;~r) = Φ
′

pp

∫ ∫
δA

Dpb

(
E;x− x′ , y − y′ , z

)
dx
′
dy
′
. (3.1.1)

Here, it is assumed that the energy spectrum of the source protons is uniform

throughout the small area δA, i.e.,

Φ
′

pp(x
′
, y
′
, E) = Φppψpp(E) ∀(x′ , y′) ∈ δA, (3.1.2)

25
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where Φpp and ψpp(E) are the �uence and the normalized energy distribution of

the initial protons respectively. Eq. (3.1.1) follows from Eq. (B.3.3) and is only

valid for a homogeneous semi-in�nite medium, it is therefore a limiting case of a

plane-parallel beam [63]. In Eq. (3.1.1), the pencil kernel Dpb is given by

Dpb(~r) =

∫ ∞
0

ψpp(E)Dpp(E;~r). (3.1.3)

The dose deposited in the homogeneous semi-in�nite area Ω(z) (symmetric to the

initial beam direction) by each pencil beam can be summed up to approximate the

dose of an arbitrary broad beam:

D(x, y, z) =

∫ Emax

0

dE

∫ ∫
Ω(z)

Ψ
(
E;x

′
, y
′)
Dpb

(
E;x− x′ , y − y′ , z

)
dx
′
dy
′
. (3.1.4)

The integration is over the limits of the area Ω(z), conformal to the target volume,

onto which a collection of parallel PBs are incident normally [16]. The term Ψ

is the relative strength or energy �uence of the PBs at x
′
, y
′
. It depends on the

incident proton energy, the material and the geometry of elements in the beamline.

Therefore, algorithms used to calculate the energy �uence usually involve modelling

of the geometry and material of the beamline con�gurations, a topic beyond the

scope of the current work. Hong et al. [17] developed such an algorithm to account

for e�ects of elements upstream of the patient, and of the air gap between them and

the patient, on the absorbed dose. The quantity Dpb denotes the dose distribution at

the point ~r in the medium by the monoenergetic PB of energy E [16]. Throughout

the rest of this work we will refer to Dpb as the pencil beam kernel. The maximum

penetration depth of the pencil beam kernel depends largely on the incident proton

pencil beam energy and the density of the target [1]. It is however, independent of

the e�ects of elements upstream of the target. The primary focus of this work is to

model the three-dimensional proton pencil beam kernel Dpb.

At any arbitrary point p(x, y, z) = p(r, φ, z) in three-dimensional space, the PB

kernel takes the form

Dpb(E;x, y, z) = Dpb(E; r, φ, z) = Dpb(E; r, 0, z) = Dpb(E; r, z) (3.1.5)

∀ φ ∈
(
0, 2π

]
and ∀ z ∈ R.

Here, (r, φ, z) are the cylindrical coordinates, and r =
√
x2 + y2. The PB kernel

Dpb(r, φ, z) is radially symmetric about the z-axis or direction of propagation of the

PB, therefore, does not depend on the azimuthal angle φ. Furthermore, Dpb can

be written as a product of the depth dependent term g(z) and the o�-axis term

f(E;x, y, z) = f(E; r, z) [16] [17] [32] [18] as

Dpb(E; r, z) = f(E; r, z)g(E; z). (3.1.6)
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The o�-axis term f(x, y, z) describes the lateral spread of the primary proton PB

as a function of penetration depth, a phenomenon resulting from multiple Coulomb

scattering (MSC) and range straggling [16] [1]. The depth-dependent term g(z)

corresponds to the central-axis of the broad beam measured in water. Therefore, it

is usually obtained from measured depth dose distributions of broad beams in the

water phantom [16] [17].

3.2 Pencil beam kernel decomposition

In this work we treat the total dose deposited in the medium as a sum of the

contributions from three categories of particles: primary protons (pp), secondary

protons (sp), and the rest of the particles and residual nuclei (e.g., deuterons, tritons,

α-particles, 3He) put together into a group we loosely call recoil (rc) ions. A similar

approach was taken in the dose calculation algorithm developed by Ulmer et al. [32]

(see Ch. 4). Let us denote these categories of particles as:

1 = pp→ primary protons,

2 = sp→ secondary protons,

3 = rc→ recoil and other secondary charged particles heavier than protons

(e.g., deuterons, tritons, α-particles, 3He).

The absorbed dose can therefore be decomposed into components corresponding to

dose from each category of the interacting particles as follows (we will assume Dpb

is implied (i.e., D = Dpb) as well as the dependence of Dpb on E, r and z)

D = Dpp + Dsp + Drc (3.2.1)

=
3∑
i=1

Di (3.2.2)

=
3∑
i=1

fi(E; r, z)gi(E; z), (3.2.3)

where fi(E; r, z) and gi(E; z) are the o�-axis and the depth-dependent terms respec-

tively, and the summation is over the three di�erent category of particles (i = 1, 2, 3)

that are contributing to the total dose absorbed in the medium. We brie�y discuss

here how each particle category contributes to the total absorbed dose:

3.2.1 Primary protons (pp)

These are protons originally incident on the medium and before they undergo nuclear

interactions. Primary protons lose their energy only through Coulomb interactions,
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in which a fraction of their energy is given to atomic electrons of the medium,

leading to ionization (see Fig. 2.1) while part of it goes into atomic excitation

and or dissociation [64] [21]. Due to the small electron to proton mass ratio, the

energy transferred to each atomic electron at each interaction is generally quite

small. Literature shows that the maximum energy transferred to knock-on electrons

(δ−rays) never exceed 500 eV for 200 MeV protons [44] [43]. Overall, all of the energy

the proton loses in each electronic collision can be assumed to be deposited locally

(at the site of interaction), hence contributing to the kernel component Dpp [15].

The loss of primary protons due to inelastic nuclear interactions causes reduction in

primary proton �uence, and is also taken into account by Dpp.

3.2.2 Secondary protons (sp)

Energy lost through inelastic nuclear interactions is transferred to uncharged parti-

cles (neutrons and photons), secondary protons, and charged particles heavier than

protons, such as deuterons, tritons, 3He, alpha particles and recoil nuclei [59] [56]

[58] [65]. Secondary protons contribute ≈ 10% of the total dose proximal to the

Bragg peak of the unmodulated proton beam [58]. Occasionally, secondary particles

undergo inelastic nuclear interactions, some of them yielding tertiary protons and

several other tertiary particles. All protons produced in an inelastic nuclear interac-

tion are referred to as `secondary protons' (Sec. 2.3), hence contribute to the dose

component Dsp through the Coulomb interactions (as described above for primary

protons). Secondary protons, p′, produced in elastic collisions such as 1H(p, p′)1H′

contribute to Dsp through Coulomb interactions, while the recoil proton 1H′ (the

recoil hydrogen nucleus) contribute to Drc.

3.2.3 Secondary neutrons and photons

Except through the emission of secondary protons in (n, pn) reactions, secondary

neutrons do not signi�cantly contribute to the dose distribution as they interact

further away from the point where they are emitted [59]. They are however, mainly

responsible for the long tail beyond the distal edge of the Bragg peak [63]. This

tail is insigni�cant relative to the Bragg peak. In the (n, pn) reactions, the dose

that is deposited by p is assigned to Dsp, and that deposited by n to Drc. On the

other hand, emission of secondary photons from inelastic nuclear interactions are

negligible [15] [58]. In the current work the energy deposited by these photons was

allocated to Drc.
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3.2.4 Recoil and other secondary charged particles (rc)

The recoil and secondary charged particles heavier than protons (e.g., deuterons,

tritons, α-particles, 3He) are assumed to deposit most of their energy locally, hence

their dose contribution to the total kernel D is through Drc [59]. Paganetti [58]

shows that the energy deposited by these particles contribute less than 0.1% to the

total dose.

Let us now de�ne ρgi(z)dz as the average energy Ēi deposited at depths between

z and z + dz by primary protons (pp, i = 1), secondary protons (sp, i = 2),

and recoil ions and secondaries other than protons (rc, i = 3), where ρ is the

density of the medium. Also, let 2πfi(r, z)rdr denote fractions of the energy ρgi(z)dz

imparted to the medium by each particle category at radial distances between r and

r + dr o� the z-axis. The depth dependent components (also known as depth dose

distributions) gi(z) are given in units of MeV cm2/g (per source proton), while the

o�-axis components or radial dose distributions fi(r, z) are given in units of cm−2

[63]. We can also write

g(z) =
3∑
i=1

gi(z) (3.2.4)

as the total energy-deposition distribution, so that

Ē = ρg(z)dz =
3∑
i=1

Ēi (3.2.5)

is the average energy, per source proton, deposited in the medium at depths between

z and z+dz by all the radiation particles in the �eld [63] [66]. The radial distribution

fi(r, z) is de�ned by

fi(r, z) = Di(r, z)/gi(z), (3.2.6)

with

ρ

∫ ∞
0

g(z)dz = E0, (3.2.7)

2π

∫ ∞
0

f(r, z)rdr = 1 ∀z > 0,

2π

∫ ∞
0

fi(r, z)rdr = 1 ∀z > 0

 , (3.2.8)

where E0 is the initial energy of the monoenergetic primary protons and i = 1, 2, 3

(the particle categories). It must be noted that the scattering is radially symmetric

about the z-axis (or the direction of the pencil beam). Inserting Dpb(r, z) into Eq.

(B.3.10), it can be shown, with the help of Eq. (3.2.7), that g(z) is equivalent to
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the central-axis depth dose distribution of the broad parallel beam:

g(z) = lim
R→∞

Dpp(R; z). (3.2.9)

It follows immediately that

gi(z) = lim
R→∞

Di
pp(R; z) ∀i = 1, 2, 3. (3.2.10)
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Chapter 4

The analytical proton beamlet model

The proton beamlet model is an analytical dose calculation algorithm for proton

pencil beams (beamlets) developed by Ulmer et al. [67]. It is based on the complete

integration of the Bethe-Bloch equation which also provides the determination of

RCSDA, E(z) and dE(z)/dz using only those parameters given by the Bethe-Bloch

equation itself (i.e., without further empirical parameterization). The results ob-

tained from this integration were compared with Geant4 MC simulations. The

Geant4 toolkit was also used to analyse lateral distributions, nonelastic nuclear in-

teractions, the build-up e�ect, and to obtain or adjust some numerical parameters

[32] [35].

4.1 The integration of the Bethe-Bloch equation

In this section we discuss, without too much detail, the integration of the Bethe-

Bloch equation and the derivation of the beamlet model as given by Ulmer et al. in

[67] [68] [35] [32] [57]. The integration of the Bethe-Bloch equation according to [67]

leads to a power expansion of RCSDA in terms of E0:

RCSDA =
1

ρ
· AN

Z

N∑
i=1

αiE
pi
I E

i
0 (limN→∞). (4.1.1)

To arrive at Eq. (4.1.1), the boundary conditions

z = 0⇒ E = E0,

z = RCSDA ⇒ E = 0
(4.1.2)

were applied. The term EI refers to an average ionization energy, Z/AN to the

nuclear charge/mass number of the absorbing material, and ρ to it's density (g/cm3).

The coe�cients αi in Eq. (4.1.1) are determined by the complete integration of the

31
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α1 α2 α3 α4 p1 p2 p3 p4

6.8469× 10−4 2.26769× 10−4 −2.4610× 10−7 1.4275× 10−10 0.4002 0.1594 0.2326 0.3264

Table 4.1: Parameter values for Eq. (4.1.1) if E0 is in MeV, EI in eV and RCSDA in cm
[68]

Bethe-Bloch equation and are given in Table 4.1. For water, Z = 10, AN = 18,

ρ = 1.0 g/cm3, and EI = 75.1 eV, Eq. (4.1.1) becomes:

RCSDA =
N∑
i=1

aiE
i
0 (limN→∞). (4.1.3)

The case of N=4 yields very accurate results for energies below 300 MeV [35]. The

coe�cients ai in Eq. (4.1.3) are given in Table 4.2.

a1 a2 a3 a4

6.94656× 10−3 8.13116× 10−4 −1.21068× 10−6 1.053× 10−9

Table 4.2: Parameter values for Eq. (4.1.3) if E0 is in MeV, EI in eV and RCSDA in cm
[68]

Transforming Eq. (4.1.3) into a sum of exponential functions results in an inverted

form which can be used for the calculation of the initial (input) energy from the

residual range: E(z) = E(RCSDA−z). A restriction to N=5 leads to highly accurate

results for energies below 300 MeV.

E0 = RCSDA

5∑
k=1

Ake
−RCSDA/βk ,

E(z) = (RCSDA − z)
5∑

k=1

Ake
−(RCSDA−z)/βk


(4.1.4)

with parameter values given in the Table 4.3.

A1 A2 A3 A4 A5 β1 β2 β3 β4 β5

99.639 25.055 8.8075 4.19001 9.1832 0.0975 1.24999 5.7001 10.6501 106.727

Table 4.3: Parameter values for Eq. (4.1.4) with N = 5, E0 is in MeV, EI in eV and
RCSDA in cm, Ak in MeV/cm and βk is in cm [68]

At this stage, the stopping power S(z) can be derived from E(z):

S(z) = −dE(z)

dz
=

5∑
k=1

Ak
[
1− β−1

k (RCSDA − z)
]
e−(RCSDA−z)/βk , (4.1.5)
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which is a sum of 5 exponential functions. In order to speed up the dose calculations,

the 5 exponential functions in Eq. (4.1.5) were replaced by simpler functions, leading

to

Sapprox =
5∑

k=1

ϕk(E0, z), (4.1.6)

with

ϕ1 = C1(E0) exp(−(RCSDA − z)2/τ 2
0 )θ(RCSDA − z),

ϕ2 = 2C2(E0)θ(RCSDA − z),

ϕ3 = 2C3(E0) exp(−Qp(E0)(RCSDA − z))θ(RCSDA − z),

ϕ4 = 2C4(E0)(z/RCSDA)2θ(RCSDA − z),

ϕ5 = 2C5(E0)(1− z/RCSDA)θ(RCSDA − z)


. (4.1.7)

The term exp(−Qp(RCSDA−z)) (ϕ3) provides the main contribution of the exponen-

tially increasing part of the Bragg curves [35]. The Gaussian term (ϕ1) containing

a half-width τ0 ≈ 10−5 cm re�ects the behaviour of the Bethe-Bloch equation in the

environment of the CSDA-range, which would otherwise be singular. Thus, ϕ1 is

therefore used instead of the δ−function (if lim τ0 → 0). However, in the presence

of range straggling the problem of the singularity does not exist (as will be shown

later). The functions ϕ2, ϕ4, and ϕ5 result from the power expansion of Eq. (4.1.5)

with respect to the initial plateau and slowly increasing S(z) up to the order of

z2/R2
CSDA [35]. A unit step function θ(RCSDA − z):

θ(RCSDA − z) =

1 if z ≤ RCSDA,

0 if otherwise
(4.1.8)

is used in order to express the condition that the energy E(z) is zero at z > RCSDA.

The term Qp is expressed as Qp = πPE/zmax, where zmax is given below in Eq. (4.3).

The parameter PE and the coe�cients Ci (i = 1, ..., 5) depend linearly on E0 and

are determined by the variation procedure:

300∑
E0=1

∫ RCSDA

0

|S(z)− Sapprox(z)|2dz = Minimum,

S(z) ≈ Sapprox =
5∑

k=1

ϕk(z, E0)


. (4.1.9)

The contribution of C5 was found to be negligible and is omitted (i.e., C5 = 0), the

accelerated algorithm is therefore restricted to four coe�cients Ci (i = 1, ...4) and a

parameter PE (related to ϕ3) which are calculated by

Ci = α0,i + α1,iE0 (i = 1, .., 4)

PE = α0,5 + α1,5E0

}
. (4.1.10)
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According to Ulmer et al. reproducing the parameter values in Table 4.4 by carrying

Ci C1 C2 C3 C4 PE

α0,i 2.277463 0.2431 1.0295 0.4053 6.26751
α1,i -0.0018473 0.0007 -0.00103 -0.0007 0.00103

Table 4.4: Parameters used to calculate the energy dependence of Ci and PE according to
Eq. (4.1.10) [68]

out a least-squares �t against Geant4 results for di�erent initial energies (E0) led to

the mean standard deviations of the order 0.04%− 0.06% [32].

4.2 Fluence decrease of primary protons

By performing an integration of the total nuclear proton-oxygen cross-section Ulmer

et al. [57] derived the equation for the �uence decrease of primary protons Φpp due

to nuclear interactions of protons in water as

Φpp(z) =
1

2

(
1− uq z

RCSDA

)[
1 + erf

(
RCSDA − z

τ

)]
Φ0,

uq = [(E0 − ETh)/Mpc
2]1.032

 , (4.2.1)

where Φ0 is the arbitrary initial �uence of a proton beamlet at the surface, E0

is the initial proton energy, ETh = 7 MeV is the threshold energy for inelastic

nuclear interactions (i.e., necessary to overcome the Coulomb repulsion of the oxygen

nucleus),Mpc
2 = 938.276 MeV is the proton rest energy, and erf is the error function.

Good agreement of the �uence decrease was found with the data of Chadwick et

al. [69]. To account for energy/range straggling, Ulmer et al. �rst assumed that

the energy/range straggling can be described by a Gaussian type of �uctuation.

Therefore, the widths of the corresponding distributions can be added quadratically:

τ =
√
τ 2
strg + τ 2

in, (4.2.2)

where τin represents the distribution of the incident beam and τstrg the variation of

the range due to straggling along the beam path [35]. The term τstrg reaches its

maximum at RCSDA:

τstrg(RCSDA) =
√

2× 0.012703276×

R0.9352
CSDA, if RCSDA ≥ 1cm

R1.763
CSDA, if RCSDA ≤ 1cm

. (4.2.3)

For incident proton energies lower than 100 MeV, the energy-transfer distribution

can be accurately de�ned by the symmetrical Gaussian, hence for a monoenergetic
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proton beam (i.e., τin = 0), a constant value of τstrg can be used along the whole

path of the beam. However, for incident energies greater than 100 MeV, Landau

tails: asymmetrical �uctuations in the energy transfer, become more important,

hence the depth dependence of τstrg must be used. High energy protons undergo

fewer hits, but deliver high energy to environmental electrons per hit, leading to

asymmetrical energy transfer in the plateau region [35]. The consequence of this is

the build-up e�ect which is observed in the plateau region for high energy (&200

MeV) incident proton beams. As the kinetic energy of the incident particle decreases

with increasing depth in the medium, the build-up e�ect also decreases. This is

observed because the �uctuations in energy transfer tend to become symmetrical as

the residual energy continue to decrease towards 100 MeV. Ulmer et al. suggests

using the modi�ed Gaussian convolutions, i.e., the Gaussian convolution kernel with

additional relativistic correction terms expressed by the �rst and second (for E0 .300

MeV) order terms in a series expansion of Hermite polynomials [35].

4.3 The dose distributions of primary protons

In the April 2007 Proton Algorithm Reference Guide [70] however, the inclusion of

energy/range straggling, for quasi-monoenergetic narrow proton beams (beamlets)

in the clinical energy range (0-250 MeV), was done by using a Gaussian1 convolution

kernel of the form

I(z) =

∫
Imono(u)×Gstrg(u− z)du,

Gstrg(u− z) =
1√
πτ

exp

(
− (u− z)2

τ 2
strg

)
 . (4.3.1)

The term τ is as given by Eq. (4.2.2), except the restriction, τin = 0, to monoen-

ergetic beamlets has been applied here. The overall depth dose distribution for

primary protons, including the e�ect of energy/range straggling, is a combination

of the �uence decrease of primary protons and the integration of the Bethe-Bloch

equation:

Spp(E0, τstrg, z) = Φ0

[
1− uq

(
z

RCSDA

)]
[I1(E0, τstrg, z) + I2(E0, τstrg, z) + I3(E0, τstrg, z)

+ I4(E0, τstrg, z) + I5(E0, τstrg, z)]

,

(4.3.2)

where Φ0 (dimensionless) can be put equal to 1, the factor (1 − uq × z/RCSDA)

represents the number of remaining protons at a given depth, and the Ii-terms
1The Gaussian usually has the exponential of the form −r2/(2σ2), but for computational

reasons,
√
2σ is substituted for τ in Eq. (4.3.1) [70]
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(i = 1, .., 5) result from functions of Eq. (4.1.7) subject to a Gaussian convolution

with τ according to Eq. (4.3.1) to account for energy/range straggling. They are

given as

I1 =

(
C1 −

Clin × τstrg√
πRCSDA

− C4 × τstrg × (RCSDA + z)√
πR2

CSDA

)
× exp

(
− (RCSDA − z)2

τ 2
strg

)
,

I2 =

(
C2 +

C4 × τ 2
strg

2×
√
πR2

CSDA

)
×
[
1 + erf

(
RCSDA − z

τstrg

)]
,

I3 = C3 exp

(
− PE × π ×

RCSDA − z
zmax

)
×
[
erf

(
RCSDA − z

τstrg
− 1

2
× PE × π ×

τstrg
zmax

)
+ 1

]
,

I4 = C4 ×
z2

R2
CSDA

×
[
1 + erf

(
RCSDA − z

τstrg

)]
,

I5 =

[
− Clin ×

(
1− z

RCSDA

)]
×
[
1 + erf

(
RCSDA − z

τstrg

)]



.

(4.3.3)

The parameters Ci (i = 1, .., 4), PE (calculated using Eq. (4.1.10) and Table

4.4), Clin ≈ 0.02, which describes the Landau tail and was (when deriving these

functions) �xed to �t an energy of about 150 MeV, zmax, and τstrg were determined

theoretically, checked by MC (Geant4) simulations (i.e., yield deviations of 2-4%)

and then adjusted to agree with MC results [70].

It must be mentioned here that these dose distribution formulae are taken from

the April 2007 �Proton Algorithm Reference Guide-EclipseTM� edition of the Varian

medical systems. The more recent version may have implemented the improvements

that Ulmer et al. has made to this model in the papers, e.g., improved treatment of

the Landau tails, the inclusion of nonelastic nuclear interactions [57], etc. Unfortu-

nately we did not have a more recent copy of the manual at the time of this work.

The term zmax in Eq. (4.3.3) is given by

zmax = RCSDA + τRange, (4.3.4)

where

τRange = RCSDA

(
2.1179× 10−5E0 + 0.919× 10−7E2

0

)
. (4.3.5)

The lateral scattering is modelled by the sum of two Gaussian: (1) the Gaussian

approximation for the small-angle MSC, and (2) a wide tail to account for the large-

angle scattering events. The scatter kernel is given by

kl,p(r, z) = C0

(
1

πτ 2
0

)
× exp

(
− r2

τ 2
0

)
+ (1− C0)× 1

πτ 2
1

× exp

(
− r2

τ 2
1

)
, (4.3.6)

where C0 = 0.96. The scatter kernel kl,p(r, z) describes the scattered intensity

at a radius r from the central axis of the beamlet, at a depth z [70]. The scatter
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parameters τ0 and τ1 of the scatter kernel kl,p are functions of depth z, they represent

the root mean square (RMS) or the half-width of the beamlet. They are given by

τ0 =

τmax × (0.205s+ 0.795s2) for z < RCSDA,

τmax for z ≥ RCSDA

, (4.3.7)

and

τ1 = 0.90563

(
1

176.58

)p
exp

(
− (s− 1)2

0.252

)
, (4.3.8)

where

p =

1.5 + 0.0015× (176.576− E0) if E0 ≤ 176.5876,

1.5 + 0.03104×
√
E0 − 176.576 if E0 > 176.576

, (4.3.9)

τmax = 0.626×
(

E0

176.576

)p
, (4.3.10)

τ0 =

f × τmax × (e−Q(1−s)−e−Q)
(1−e−Q)

if s ≤ 1,

f × τmax if s > 1
, (4.3.11)

s = z/RCSDA, Q = 2.887, and f = 0.9236. All the constants were determined by

�tting the above formulas to MC simulation results [70].

4.4 The dose distributions of secondary protons

The generation and transport of secondary protons and recoil particles is another

topic that was thoroughly investigated leading to the development of the beamlet

analytical model. In [35], [32], and [57], Ulmer et al. de�nes secondary protons as

those protons that undergo nuclear interactions with the nucleus (see Eq. 2.3.1).

They further separate them (secondary protons) into nonreaction protons (spn) and

reaction protons (spr). Nonreaction secondary protons result from elastic scatter-

ing due to strong interaction potential in the environment of the nucleus and the

resonant inelastic scattering due the proton/nucleus interaction, thereby inducing

transitions between di�erent states of the nucleus. On the other hand reaction sec-

ondary protons emanate from inelastic nuclear scattering due to high energy incident

protons, yielding heavy recoil fragments and recoil protons. The dose distribution of

the nonreaction secondary protons is modelled in a similar manner as the primary

protons. The contribution of the reaction protons is largely based on MC simula-

tions because of its dependency on the �uence reduction of primary protons and the

generation of heavy recoils [35]. Fig. 4.1 shows the depth dose curve of secondary

reaction protons (spr) for given therapeutic proton energies in water.
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Figure 4.1: The dose distribution (generalized stopping power that incorporates the par-
ticle �uence) of the secondary/tertiary reaction protons for the initial proton energies 100
MeV, 160 MeV, 200 MeV, and 250 MeV in water. The RCSDA ranges are indicated by the
perpendicular straight lines [35].

The �uence of secondary protons Φsp (Φsp,n and Φsp,r) and recoil protons (Φrp) put

together is approximately equal to the �uence decrease of primary protons due to

nuclear interactions [35]. Ulmer et al. gave the �uence of secondary nonreaction

(sp,n) and recoil protons as

Φsp,n = υ(1− 2Cheavy)

(
Φ0

uq · z
RCSDA

)
Φrp = 0.042

(
Φ0

uq · z
RCSDA

)
 , (4.4.1)

where

Cheavy =

3.46× 10−3 + 7.81× 10−5E0 if E0 ≥ 7 MeV,

0 else
. (4.4.2)

The parameter υ represents the fraction of secondary protons reaching the water

phantom. It can therefore vary depending on the beam line characteristics. Gen-

erally, the assumption is made that some percentage of secondary protons are lost

along the beam line as they scatter broader than the primary protons, in which

case υ can be set to 1 for scanning beam lines. Alternatively, Ulmer et al. suggests

using a speci�c Monte Carlo code to simulate the beam line characteristics and to

determine the associated phase space [35]. However, in the current work, the value

0.958 given in the April 2007 Proton Algorithm Reference Guide was used.

Overall, modelling the dose contribution of secondary non-reaction protons and re-

coil protons was largely guided by MC simulations. It was realized that they basically

show the same physical behaviour as the primary protons Eq. (4.3.3) [35], except

Stellenbosch University  https://scholar.sun.ac.za



4.4. The dose distributions of secondary protons 39

their Bragg peak is much broader and shifted to a lower z-value. The depth dose

distribution for secondary protons is given by

Ssp(E0, τstrg,sp, zs) = β × uq ×
(

z

RCSDA

)[
I1(E0, τstrg,sp, zs) + I2(E0, τstrg,sp, zs)

+ I3(E0, τstrg,sp, zs) + I4(E0, τstrg,sp, zs) + I5(E0, τstrg,sp, zs)

] ,

(4.4.3)

where

zs = z + zshift, (4.4.4)

τstrg,sp =
√
τ 2
strg + τ 2

heavy,

τheavy = 0.5541− 5.85× 10−4 × (E0 − Epmax)

 , (4.4.5)

zshift = 0.255


exp

(
− 2π2 (Epmax−E0)2

Epmax

)
(if E0 ≤ Epmax),

exp

(
−(Epmax−E0)2

Esig

)
(if E0 > Epmax)

, (4.4.6)

β = υ(1 − 2Cheavy) ≈ 0.958, ETh = 7.0 (MeV), Epmax = 20.12 (MeV), and Esig =

106.875 (MeV) [70]. Note that the I-terms of Eq. (4.3.3) are used here too only

with z and τstrg replaced by zs and τstrg,sp respectively.

The lateral scattering for the secondary protons is described by a single Gaussian,

which is less accurate but acceptable since their dose contribution does not exceed

20% (for E0 = 250 MeV). However, the depth dependent scatter parameter τ2 is

di�erent from that of primary protons because secondary protons already have an

initial angular spread (due to nuclear interactions) as they begin to be transported

in the medium [70]. The lateral scatter kernel for secondary protons is therefore

given by

kl,sp(r, z) =
1

πτ 2
2

exp

(
− r2

τ 2
2

)
, (4.4.7)

where

τ2 =
√
τ 2

2.0 + τ 2
heavy, (4.4.8)

and

τ2.0 =

τmax

(
e−Q(1−s)−e−Q

(1−e−Q)/0.626

)
(if s ≤ 1),

τmax
0.626

(if s > 1)

. (4.4.9)

The quantities Q, s, τheavy, and τmax are as given earlier.
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4.5 The dose distributions of heavy recoil particles

According to [70] [35] [67], nuclear fragments resulting from inelastic scattering of the

primary and secondary protons as well as protons that lose most of their energy in

nuclear collisions such that they subsequently emerge as slow protons are regarded as

recoil particles (heavy recoils and recoil protons) which deposit their energy locally

(i.e., at the point where they su�er interactions) [70]. In the Proton Algorithm

Reference Guide-Eclipse of the Varian medical systems, recoil energy loss is modelled

using similar equations (Eq. 4.3.3) as the primary protons except z is replaced by

zs.

Src(E0, τstrg, zs) = 0.042× uq ×
(

z

RCSDA

)[
I1(E0, τstrg, zs) + I2(E0, τstrg, zs)

+ I3(E0, τstrg, zs) + I4(E0, τstrg, zs) + I5(E0, τstrg, zs)

] .

(4.5.1)

The lateral dose distribution for recoil particles is taken to be identical to that of

primary protons. This assumption was made based on the fact that recoil particles

are mainly produced by the primary protons and mainly deposit their energy locally

[70].

4.6 The total dose distribution

The total 3D dose distribution of the beamlet at any point in the homogeneous

medium is the sum of energy loss by primary protons, secondary protons and recoil

particles (heavy recoils and recoil protons):

Dtotal(r, z) = (Spp(z) + Src(z))× kl,p(r, z) + Ssp(z)× kl,sp(r, z). (4.6.1)

4.7 Implementation of the beamlet model

Comparisons of the dose pro�les of the two methods were done using Mathematica

(version 10.2) [71]. The analytical beamlet functions were coded in Mathemat-

ica and integrated as described in Appendix D. The results were further analysed,

the normalization factors and other parameters calculated (e.g., FWHM, R80 shift,

entrance-to-peak dose ratio), and ultimately the dose distribution curves (in Sec. 6.2)

were generated.
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Chapter 5

Geant4 simulations

This chapter gives detailed description of the simulation of the transport of protons

in the clinical energy range through a homogeneous phantom of water, undertaken

using the Geant4 (version 10.1) MC toolkit. The geometry, medium material, choice

of physics models and processes, and control parameters (step size, range cuts, etc.),

particle tracking and tallying of dose deposited as a result of the interaction of

particles with the target medium (water) will be discussed here.

5.1 Detector geometry and material

The simulation geometry comprises of a 50×50×50 cm3 cube1 built using a concrete

class G4DetectorConstruction of Geant4's G4VuserDetectorConstruction base

class. The cube is �lled uniformly with the medium material which in our case

is liquid water, de�ned using the internal Geant4 material database through the

G4Material class. By deriving a concrete detector class from the abstract base class

G4VSensitiveDetector, and assigning it to the logical volume (G4LogicalVolume

objects) of the cube geometry in the G4VUserDetectorConstruction::Construct-

SDandField() method, the whole cube is made sensitive (i.e. `readout' detector).

The ProcessHits() method constructs hits (snapshots of the physical interaction

of tracks in the sensitive region of a detector) using information from steps along

the particle track (G4Step objects) as input, or in the case of `readout' geometry,

objects of the G4TouchableHistory class are used as optional input [39].

A concrete class derived from G4VuserPrimaryGeneratorAction is used to place

the source of primary protons on the inner wall of the the phantom at (0, 0, 0),

with the proton beam directed into the phantom of water, z> 0, along the z-axis

1A plane geometry was opted for over a voxelized one due to slower simulation speed with the
latter. Besides, dose tallying was done outside of the Geant4 program.

41
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Point source

Primary proton beam

Creation of a secondary particle

Water phantom

y

z

−x

Figure 5.1: A beam of source protons (blue) is directed into the phantom of water. Arrows
(associated with their length) represent steps of particle tracks. The colour (Geant4 simu-
lations) codes: blue is used for proton tracks (or +1 charged particles), green for gammas
(or neutral particles), and red electrons (or -1 charged particles).

(Fig. 5.1), while the actual generation of primary protons is done by the concrete

class G4ParticleGun (one of the three concrete classes of G4VPrimaryGenerator

base class). The particle generator, G4ParticleGun, is used in its simplest form:

no randomizing of any sort, generates particles with the same kinematics, hence

the source beam is assumed to be mono-energetic and mono-directional, apart from

being a point source.

At the core of the Geant4 kernel (central unit) is the G4RunManager (or G4MTRunMan-

ager if the simulation code is multi-threaded) class responsible for controlling the

�ow of the program and managing event loops within a run. It also manages initial-

ization procedures, including methods in the initialization classes. As such, the user

must, through the initialization classes, provide the run manager with all the infor-

mation necessary to build and run the simulation, for example, how the detector

should be constructed, all the particles and physics processes to be simulated, how

the primary particles in an event should be generated, etc. [39]. Because it plays

such a central role, the run manager is the only manager class that must be explic-

itly constructed within the central part of the program that links all classes and

subprograms, commonly referred to as the main() program. Other manager classes

are created and destroyed when the run manager class is created and destroyed,

respectively.
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Figure 5.2: Incident protons (blue) from a point source located at the origin and initially
along the positive z-axis scatter laterally and generate secondary particles (e.g., electrons
(red), gammas or neutrons (green), etc.) as they interact with water.

5.2 Physics lists

Given the complexity of Geant4, a single modelling algorithm cannot accurately

describe all possible interaction processes for the entire energy domain and for all

particles. For instance, some models are valid only over �nite energy ranges, and

there may be competing models in a given energy range. Besides, some models

may perform better with a speci�c group of particles, while others may do better

with other species. The need to use a combination of physics processes (models and

cross sections) is therefore inevitable if a comprehensive simulation is to be achieved.

Geant4 provides a wide variety of physics components for simulating particle inter-

action with matter. These are coded as processes (a process is a class that describes

how a particle interacts with a given medium), and are classi�ed into electromag-

netic, hadronic, decay, parameterized, or transport [72] [41]. To put the programs

describing these processes together in a way that they can be invoked �exibly at

given stages of the simulation, Geant4 uses the concept of physics lists. A physics

list is a collection of physics processes (cross sections and models), particles, sec-

ondary particle production thresholds and step sizes required to, successfully and

accurately, carry out a particular set of simulations [73]. It is therefore the responsi-

bility of the user to de�ne all the particles and processes they would like to simulate.
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This is done through the mandatory user class G4VUserPhysicsList. The user de-

rives a concrete class and invokes the ConstructParticle(), ConstructProcess(),

and SetCuts() methods of this class (G4VUserPhysicsList).

5.2.1 Physics models in Geant4

Generally, a physics list for proton interaction with matter (e.g., water) would consist

of at least three modules (sets of physics models and processes) that account for

the following types of interactions: (a) electromagnetic, (b) elastic scattering, and

(c) inelastic scattering of protons, neutrons, and heavier ions. Physics models are

usually a mixture of theory-driven, parameterized, and, for cases where su�cient

experimental data are available (e.g., inelastic nuclear interaction cross section),

data-driven formulae [37]. Detailed discussions of various models for proton therapy

simulations, their build structure, and their successes or limitations are given in

[48] [62] [47] [40], and many other Geant4 hadron therapy related studies [74] [72]

[58]. Variations do arise in the choice of models and control parameters (e.g., step

size, range cuts) depending on the use-case or results the user is trying to achieve.

The level of �ne-tuning, hence the accuracy of the generated results may also di�er

among such studies as it depends mainly on available computational power [75].

In order to optimize our Geant4 simulations, that is, to obtain as accurate dose dis-

tributions as possible while allowing the simulations to be relatively fast, given the

limited computational power at our disposal (i.e., IntelR CoreTM i7-4710HQ CPU

(8) @ 2.50GHz, DDR3L 1600 MHz SDRAM, 16 GB), a thorough review of previous

studies on the choice of models and control parameter values used in Geant4 proton

therapy simulations was done. The in�uence of a few physics models on the dose

distributions were compared (Fig. 6.1) and used to come up with optimized physics

models and a parameter list (see Table 5.3). Speci�cally, the standard electromag-

netic model, EmStandard_Opt3, which is highly recommended for medical proton

therapy simulations by [76] and others, was adopted. The simulation of the nonelas-

tic nuclear interactions is done using the binary cascade model, together with its

back-end pre-equilibrium (G4PreCompoundModel) and equilibrium models (see Sec.

2.3.1), while for MSC Geant4 uses the Urbàn MSC model [50]: (G4UrbanMscModel),

which is not only computationally competitive but also relatively accurate. The

Urbàn model is based on the Lewis model of MSC [31] (see Sec. 2.2.1).

It turns out that some `reference physics lists' (released within Geant4 toolkit) imple-

ment combinations of physics components or models appropriate for the simulation

of clinical energy range (e.g., 50-250 MeV) protons in water, while others may require
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only minor modi�cations to meet speci�c user requirements. One such example is

the QGSP_BIC_EMY physics list [47]. In fact, the QGSP_BIC_EMY reference physics list

is highly recommended for clinical proton therapy simulations, not only because it is

built specially for this purpose by a group of individuals specializing on this compo-

nent of Geant4 [74], but because it is also tested and validated regularly (improved

in every new Geant4 release) [74] [47] [40] [41]. A summary of its building blocks

is given in Table 5.1, while a breakdown of models activated for distinct phases are

tabulated in Table 5.2. This physics list was therefore used in our simulations, fol-

lowing comparisons with models implemented in alternative reference physics lists

(e.g., QGSP_BERT, QGSP_FTFP_BERT, FTFP_BERT (see Sec. 6.1)).

Hadron Particle Geant4 Process Geant4 Models Geant4 data sets Energy
Process range

Elastic Generic Ion G4HadronElastic G4LElastic G4HadronElastic -
scattering Process DataSet -

All Other G4UHandronElastic G4HadronElastic G4HadronElastic -
particles Process DataSet -

Inelastic Process Protons G4ProtonInelastic G4BinaryCascade G4ProtonInelastic
for protons Process CrossSection 0-20 GeV

Inelastic process Generic Ion G4IonInelastic G4BinaryLightIon G4IonsShen 0-20 GeV
for Ions Process Reaction CrossSection

Deuteron, G4IonInelastic G4LEInelastic G4TripathiLight 0-80 MeV
Triton, Process CrossSection
Alpha G4BinaryLightIon 80 MeV-

Reaction 20 GeV

Radiative Neutron G4HadronCapture G4LCapture G4HadronCapture 14 MeV-
capture Process DataSet 20 GeV

Inelastic Neutron G4NeutronInelastic G4BinaryCascade G4NeutronInelastic
Scattering Process CrossSection 14 MeV-
for neutrons 20 MeV

Table 5.1: Hadron physics models and processes implemented in the QGSP_BIC_EMY
reference physics list (original table by [77]).

5.3 Step size and range cut value

Another set of important input information that signi�cantly a�ects dose distri-

butions has to do with the so-called simulation control parameters (or simulation

transport parameters), that is the maximum step size, de�ned as the distance to

the next interaction, and the range cut value, de�ned as the production threshold
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EM Physics

EmStandard_Opt3:
Analytical model⇒treats photons & all charged particles down to 1 keV.
Bethe-Bloch⇒Hadron energy loss ≥ 2 MeV.
ICRU parameterized stopping power < 2 MeV.

Multiple Scattering

G4UrbanMScModel:
⇒Calculates spatial & angular distribution of scattered particles.

Nuclear Interactions

G4BinaryCascadeModel⇒Intranuclear cascade models (phase).

G4PreCompoundModel⇒Pre-equilibrium models (phase).

G4VEvaporation, G4VFission, G4VFermiBreakUp,
G4VMultiFragmentation, G4VPhotonEvaporation⇒Equilibrium models (phase).

Elastic Interactions

G4LElasticModel, G4HadronElasticModel,
Cross-section modules: UHElastic + G4HadronElastic = G4UHadronElasticProcess.

Table 5.2: Models implemented in the QGSP_BIC_EMY reference physics list.

for secondary particles such as the electrons, positrons, gammas, and protons [47]

[40]. These are crucial in MC simulations as they do not only in�uence the speed

of the simulation but the accuracy of the results as well. Generally in Geant4, each

process has intrinsic limits to produce secondary particles, all particles produced

are tracked down to zero energy, and each particle has a suggested cut in range

which is internally converted to energy for all material [39]. One therefore needs

to �nd a balance between simulating all the physics processes they are interested

in (i.e., at what energy to stop tracking a particle) and the CPU time, as some

processes can lead to exponential increase in the simulation time at low energies.

This requires setting a cut-o� in energy, so that particles stop being tracked when

they reach a speci�c threshold in energy, and the remaining energy can be assumed

to be deposited locally. In Geant4, the production threshold for secondary particles

(range cut value) is given via the SetCUts() method of the G4UserPhysicsList

in the form of distance, which is internally converted to threshold energies for each

particle in a given medium material [39] [47].

In trying to gain full control of secondary particle production, hence secondary

particle energy loss in the medium (water), we had to implement `special cuts' (using

the /run/SetCutForAGivenParticle UI commands), that is allocate a unique range

cut value of 1.0 mm (≈ 350 keV) to electrons, positrons, and gammas, while protons

were allocated a range cut of 0.001 mm (≈ 0.080 MeV). In principle, this undertaking

was meant to address two issues: (1) the unphysical case in which heavy recoils (rc

group) produced higher dose pro�les than secondary protons (sp group) when a

single small (say, 0.001 mm) cut-o� value was used for all particles, and (2) the
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lack of convergence in the dose pro�les. Ideally, convergence in the dose pro�les is

expected at lower cut-o� values (i.e., < 1.0 mm). Appendix E brie�y discusses how

convergence was attained.

(a) Simulation speed. (b) E�ects of step size on dose distribution.

Figure 5.3: Simulation speed versus step size (a), and e�ects of step size on the dose
distributions (b): at smaller step sizes, Bragg curves converge. Above 1.0 mm, artefacts
manifest.

Besides the other (discrete) processes, the continuous energy loss imposes a limit on

the step size too, because of the dependence of the cross section of di�erent processes

on the energy of the particle. It is generally assumed in some MC programs (e.g.,

EGS, Geant3) that the cross sections are approximately constant along a step, i.e.,

the step size is so small that the change in energy, and hence in cross section,

along the step is also small [47]. In principle, very small steps should be used to

ensure accurate simulations, however the CPU time increases with decreasing step

size (Fig. 5.3a). Alternatively, step limiting can be controlled by the StepFunction

(Eq. (5.3.1)) or a user de�ned maximum allowed step. The maximum allowed step

limits the step length according to the user-given value in competition with intrinsic

limits of the process. The StepFunction is a dynamic step limiting function which

decreases the particle step limit (∆Slim) in parallel with the particle's decreasing

range.

∆Slim = αR ·R + ρR(1− αR)(2− ρR
R

), (5.3.1)

where αR ∼ Step/Range (referred to as the `dRoverRange') de�nes the maximum

step size allowed (default αR = 0.2). As the particle travels the maximum step

size decreases gradually until the range becomes lower than ρR (referred to as the

`�nalRange', default ρR = 1.0 mm) [47]. The parameters of the StepFunction can be

overwritten using the UI command: /process/eLoss/StepFunction 0.2 1.0 mm.
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Physics List Step size (mm) e−/e+/γ range cut (mm) p range cut (mm)

QGSP_BIC_EMY 0.1 1.0 0.001

Table 5.3: The table lists the simulation control parameters: step size and range cuts used
in the Geant4 simulations.

e−/e+ Proton Generic Ion

StepFunction-�nalRange 0.1 mm 0.05 mm 0.02 mm

I (mean ionization potential of water) Bins/decade

75.0 eV 20

Table 5.4: The table lists the values for the stepping function �nal range, the I-value and
the number of bins used in option 3 of the EmStandard physics component.

The maximum allowed step size is related to the range cut and is primarily intended

for limiting the step of the particle being tracked. In Geant4, step limiting is done

arti�cially by assigning G4UserLimits to the intended volume2 (see Fig. 5.3a) in

addition to attaching the process G4StepLimiter to the intended particle's process

manager. Limiting the step of a particle during tracking increases the frequency

of dose deposition along the track, thereby limiting propagation of inaccurate data

sampling to the maximum allowed step size [40]. As shown in Fig. 5.3b, larger

step sizes cause discontinuities in the dose distribution. On the other hand, dose

distributions converge at smaller step sizes.

5.3.1 Ionization potential and number of bins

It has been shown by Grevillot et al. [40] [42] that the proton range also depends

on the mean ionization potential (I ) of the medium (I was brie�y discussed in Sec.

2.1). The I values of water and human tissue are of signi�cant concern in proton

therapy simulations as they are highly susceptible to error. For example, Grevillot

et al. [40] found that the I values: 70.9 eV, 75.0 eV, and 80.0 eV moved the proton

range to 324.9 mm, 329.2 mm, and 330.8 mm respectively, while the RCSDA given

by NIST is 329.4 mm. The I value recommended by ICRU reports 37 and 49 [44],

75.0 eV, was used in the present work.

2A step size less than or equal to half the smallest voxel is recommended.
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As stated in Sec. 2.1.1, in order to speed up the simulation, Geant4 pre-calculates

quantities related to the EM processes, i.e., the range and the inverse of the range,

the mean free path (simply cross sections), and the stopping power dE/dz tables,

according to the user-de�ned simulation parameters. The number of bins/decade

in these pre-calculated EM tables need to be su�ciently high (>15 bins/decade)

in order to accurately describe EM interactions [40]. For the present work, this

issue was taken care of by the Standard EM_Opt3 in which 20 bins/decade are

implemented [47].

R

Pencil beam

dr

dz

z

x

y

Figure 5.4: Dose deposition geometry.

5.4 Dose deposition geometry

The energy deposited in the water phantom was tallied into voxels in a cylindrical

geometry (Fig. 5.4). The dose deposition cylinder is divided into M smaller slices

(i = 1, ...,M) of thickness 4z = 1.0 mm, with each slice divided further into N

concentric rings (j = 1, ..., N) of radial thickness 4r = 0.5 mm. For E0 = 50 MeV

results, the same geometry with slice and radial thickness of 4z = 0.1 mm and

4r = 0.05 mm respectively, was used. In this setup, the source of primary protons

is taken to be placed at (0,0,0) and coincident with the z-axis (z> 0), r =
√
x2 + y2

is the radius. The energy lost by each particle traversing the medium is therefore
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5.4. Dose deposition geometry 50

deposited at any point (ri,zj) within the 3D space. Clearly, beam scattering is

radially symmetric to the beam direction (+z-axis). This geometry gives a good

description of both lateral and longitudinal dose distributions in the medium, and

at any given depth (z1,z2, ..., zM) the integral dose in a given slice can be calculated

by simply summing up dose deposited in individual rings.
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Chapter 6

Results and discussion

This chapter summarizes important Geant4 simulation results and compares the

dose distribution pro�les with those of the analytical Ulmer beamlet model discussed

in Chapter 4.

6.1 Choosing physics models

The preliminary task was to come up with the best combination of physics mod-

els and settings for a feasible and accurate simulation. To help check the sen-

sitivity of dose distribution to di�erent models, four reference physics lists (i.e.,

QGSP_BIC_EMY, QGSP_BERT, QGSP_FTFP_BERT, and FTFP_BERT (See

the naming convention in Tables C.1 and C.2)) were compared. Notice that the

outstanding di�erences in these physics lists are as given by the acronyms. Us-

ing the step size and range cut value of 1 mm for each one of these physics lists,

106 histories were simulated for incident proton beams of 200 MeV. As shown in

Fig. 6.1, three reference physics lists: QGSP_BERT, QGSP_FTFP_BERT, and

FTFP_BERT give similar dose pro�les (both longitudinally and radially), implying

that the physics models implemented in these physics lists di�er only slightly and/or

in ways that least in�uence the energy loss processes of the particles at this energy

(i.e., E0 = 200 MeV). On the other hand QGSP_BIC_EMY reference physics list

produce dose pro�les that are signi�cantly di�erent from the rest. For instance, the

QGSP_BIC_EMY physics lists exhibit a Bragg peak for the (rc) group, whereas

the rest do not (see Fig. 6.1e). As seen in Fig. 6.1, di�erent physics models used in

physics lists a�ects the dose pro�les di�erently. One must therefore ensure the right

combination of physics models and processes is established in order to achieve the

intended result.

Note that the QGSP_BIC_EMY reference physics list is recommended [47] [74]

51

Stellenbosch University  https://scholar.sun.ac.za



6.1. Choosing physics models 52

(a) pp depth dose curves. (b) pp depth dose curves.

(c) sp depth dose curves. (d) sp radial dose curves.

(e) rc depth dose curves. (f) rc radial dose curves.

Figure 6.1: Sensitivity of dose distributions (energy deposited in water) to di�erent physics
models. Dose pro�les due to the indicated reference physics lists are compared. The number
of source particles is 106, incident energy, E0 = 200 MeV, and step size and range cut
values of 1.0 mm. Primary proton dose is shown in 6.1a and 6.1b, secondary protons
in 6.1c and 6.1d, and recoils dose in 6.1e and 6.1f. Radial dose distributions are taken at
depth, z = 26.0 cm.

for the simulation of proton beams in the energy range of clinical interest, and was

used in the current work. The other three reference physics lists are not quite ideal

since they are recommended for high energy physics (HEP). They were used here to

merely check the sensitivity of the dose distribution to di�erent physics models.

As already mentioned in Sec. 5.2.1, the choice of physics lists in the current work is

based on previous studies on this topic. For instance Jarlskog et al. investigated the

in�uence of various Geant4 (version 8.1) models used to simulate electromagnetic
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and nonelastic nuclear interactions, and validated them against measurements in

water and with a multi-layer Faraday cup (MLFC). The MLFC is a device used to

measure charge distribution of primary and secondary particles along the path of

the beam. As the beam penetrates the detector, charge distribution on the plateau

is mainly due to nonelastic nuclear interactions, whereas the Bragg peak near the

end of the range is a result of primary protons that have only su�ered EM interac-

tions. Comparing Geant4 simulation results with longitudinal charge distributions

measured using the MLFC is therefore a reliable way of validating EM and nonelas-

tic models used in the simulation. In their study, Jarlskog et al. found that the

standard EM model, the binary cascade model, and the uni�ed hadron elastic scat-

tering module UHElastic give results that agree closely with the measured data [48].

Several other authors e.g., Quesada et al. [62], Cirrone et al. [74], Ivanchenko et al.

[78], have conducted similar studies and make similar recommendations.

6.2 Comparison of the Geant4 results with that of

beamlet model

The Geant4 results were compared with that of the Ulmer beamlet model (see Ch. 4)

for corresponding particle categories and respective primary proton energies (see

Figs. 6.2-6.7) using Mathematica (version 10.2) [71]. Unless stated otherwise, the

Geant4 simulations were based on the optimized parameter list and physics settings

in Table 5.3. The comparisons were done for three incident proton energies: 50

MeV, 160 MeV and 230 MeV, which involved the simulation of 106 source protons.

The results given here have been adjusted according to the procedure described in

Appendix D.

The total dose distributions by the two methods compare relatively well as can be

seen in Figs. 6.2a, 6.2b, 6.4a, 6.4b, 6.6a, and 6.6b, as well as Table 6.1. The in�uence

of the build-up e�ect is observed to push the plateau region of the total depth dose

distributions obtained by the simulations slightly above that associated with the

analytical formula, Fig. 6.2a. This is caused by the (sp) and (rc) particle groups

(see Figs. 6.3a and 6.3c), which are products of nuclear collisions. Moreover, the

peak-diminishing e�ect of nuclear reactions is apparent in the Geant4 total depth

dose pro�le (Fig. 6.2a). It must immediately be pointed out that the formulation1 of

the analytical beamlet model used here does not include the dose contribution from

the reaction secondary protons (spr), which could explain the lack of the build-up

1The April 2007 Proton Algorithm Reference Guide-EclipseTM.
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(a) Total depth dose curves. (b) Total radial dose curves.

(c) pp depth dose curves. (d) pp radial dose curves.

Figure 6.2: Comparison of Geant4 simulation dose pro�les against that of the beamlet
model for incident proton pencil beam of E0 = 230 MeV. Total dose distribution (longitu-
dinal and lateral) is shown in 6.2a and 6.2b, while the primary proton dose distribution is
shown in panes 6.2c and 6.2d. The radial dose distributions were taken at depth z = 32.0
cm.

e�ect in their total depth dose distribution. Looking at Figs. 6.2a, 6.4a, and 6.6a,

one can immediately see the dependence of the build-up e�ect on the incident pro-

ton energy. Basically, as protons impinge on water secondaries begin to be created.

They rapidly increase to what is known as the longitudinal equilibrium within about

two centimeters (approximately the characteristic range of secondary protons) for

secondary protons and a few millimeters (�1.0 mm) for electrons [1]. This phe-

nomenon also explains the almost non-zero entrance dose observed for the (rc) and

(sp) particle categories in the simulations results (see Figs. 6.3a, 6.3c, 6.5c, etc.).

By de�nition, the range cut controls the generation and tracking of secondary par-

ticles. The smaller the cut-o� value, the more secondaries are tracked. The e�ect

of the range cut on the dose distribution also depends on the incident proton beam

energy. In relation to the build-up e�ect, the e�ect of a smaller range cut value

begins to be more apparent at incident energies of about 200 MeV and above. As

can be seen in Figs. 6.3c, 6.5c and 6.7c, the range cut value of 1.0 mm (for e−, e+ and

γ) yields di�erent (rc) dose pro�les at 230 MeV, 160 MeV and 50 MeV, respectively.
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(a) sp depth dose curves. (b) sp lateral dose curves.

(c) rc depth dose distributions. (d) rc radial dose curves.

Figure 6.3: Comparisons of Geant4 simulation dose pro�les against that of the Ulmer
beamlet model for incident proton energy of 230 MeV. Radial dose distributions taken at
depth z = 32.0 cm. Secondary proton dose pro�les are shown in 6.3a and 6.3b, while the
the heavy recoil ions and secondaries other than protons are shown in 6.3c and 6.3d.

Another physical manifestation worth discussing is the lack of a Bragg peak in the

(sp) depth dose distribution (Figs. 6.3a, 6.5a, and 6.7a) of the simulations. It has

been shown by some authors, e.g., Tung et al. [60] (see Fig. 2.3), Paganetti et al.

[58], Fippel et al. [79], Medin et al. [59], etc., using di�erent Monte Carlo packages

that dose pro�les of secondary protons do not exhibit a Bragg peak. However, the

authors of the beamlet model categorized secondary protons into reaction (spr) and

nonreaction (spn) as discussed in Sec. 4.4, and showed that the dose distribution for

reaction secondary protons (spr) from their Geant4 simulation is without a Bragg

peak (see Fig. 4.1), whereas nonreaction secondary protons (spn) exhibit a Bragg

peak, albeit broader and shifted to a lower depth [35].

The lack of a Bragg peak can partly be attributed to the booking or tallying of

energy deposited by individual particles. In our simulations, particle tracking and

categorization was done using the particle name tags in conjunction with the particle

ID. This means that only the energy deposited by primary protons and secondary
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(a) Total depth dose curves. (b) Total radial dose curves.

(c) pp depth dose curves. (d) pp radial dose curves.

Figure 6.4: Comparisons of Geant4 simulation dose pro�les against that of the Ulmer
beamlet model for incident proton energy of 160 MeV. The radial dose pro�les are taken
at depth z = 17.0 cm. Total dose pro�les are shown in 6.4a and 6.4b, while the primary
proton dose pro�les are shown in panes 6.4c and 6.4d.

protons is allocated to (pp) and (sp) groups, respectively, the energy deposited by

the rest of the particles is booked into the (rc) group. Thus, other processes that

ideally should be contributing to the protons groups, e.g., electrons produced by

secondary protons, have their resulting dose assigned to the (rc) group. Moreover,

in Geant4 simulation secondary protons are purely a result of nonelastic nuclear

collisions, whereas in the beamlet model primary protons that su�er elastic nuclear

scattering are booked as nonreaction secondary protons (spn) [35].

Under the conditions set in Appendix D, major discrepancies between the simulation

results and the Ulmer beamlet-dose functions are observed, especially for individual

particle categories (pp, sp, and rc), Figs. 6.2c, 6.3a, 6.3b, 6.3c, 6.5b, 6.7a, 6.7b, 6.7c,

6.7d, etc. These discrepancies can partly be attributed to the dose tallying procedure

explained above. The di�erences in the hadronic physics (or the nonelastic interac-

tion cross-section data) and multiple scattering models used in the two versions of

Geant4 (i.e., version 7.1 in the beamlet model and version 10.1 in the current work)

could also explain the discrepancies in these plots. For instance, authors of the
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(a) sp depth dose curves. (b) sp radial dose curves.

(c) rc depth dose curves. (d) rc radial dose curves.

Figure 6.5: Comparisons of Geant4 simulation dose distributions with that of the Ulmer
beamlet model for E0 = 160 MeV. The radial dose pro�les are taken at depth z = 17.0
cm. The secondary proton dose is shown in panes 6.5a and 6.5b, while heavy recoils dose
is shown in panes 6.5c and 6.5d.

beamlet model replaced the default nonelastic nuclear cross-section data of Berger

[80], that was implemented in Geant4 version 7.1, by the 16O nuclear cross-section

data of Chadwick and Young [69]. For the same purpose, version 10.1 of Geant4

uses the data driven G4ProtonInelastic CrossSection (see Table 5.1). Similarly,

the authors of the beamlet model used Molière's theory to model MSC, whereas in

the current version of Geant4 the Urbàn model is implemented (see Sec. 2.2.2). Fur-

thermore, the di�erences in the secondary proton (sp) radial dose distributions (see

Figs. 6.3b and 6.5b) can be attributed to the fact that a single Gaussian (Eq. 4.4.7)

is used to approximate the radial dose distribution of secondary protons (sp) in the

beamlet model. However, the radial dose distributions of primary protons (pp) is

approximated by the sum of two Gaussians (Eq. 4.3.6): one to account for the cen-

tral part and the other for the large angle single scattering. This explains why the

beamlet model (pp) radial dose pro�les compares closely with that of the simulations

(Figs. 6.2d, 6.4d, etc.).

Finally, the analytical dose distribution functions of the Ulmer beamlet model that
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(a) Total depth dose curves. (b) Total radial dose curves.

(c) pp depth dose curves. (d) pp radial dose curves.

Figure 6.6: Comparisons of Geant4 simulation dose distributions with that of the Ulmer
beamlet model for E0 = 50 MeV. The radial dose pro�le is taken at depth z = 2.0 cm. The
total dose pro�les are shown in panes 6.6a and 6.6b, and the dose pro�les for the primary
protons is shown in panes 6.6c and 6.6d.

are implemented in the April 2007 Varian medical systems manual2 for proton treat-

ment planning have been compared with Geant4 MC simulations. A good corre-

spondence was found between the total depth dose distributions of the two methods.

It has been observed that the analytical functions do not exhibit the build-up e�ect

which is expected at higher energies (see 6.2a). This could be because the improve-

E0 (MeV) R100 (cm) R80 (cm) R50 (cm) FWHM (cm) Entrance dose to BP ratio ICRU (49) RCSDA (cm)

Geant4 230 32.82 33.14 33.35 3.35 0.35 32.95
160 17.61 17.79 17.90 1.31 0.21 17.65
50 2.22 2.24 2.26 0.17 0.16 2.227

Beamlet 230 32.61 32.90 33.11 2.38 0.24 32.95
model 160 17.51 17.68 17.79 1.25 0.19 17.65

50 2.22 2.24 2.26 0.15 0.13 2.227

Table 6.1: Values for the total dose distributions obtained from the Geant4 simulations and
the beamlet model. The range values stated here were obtained before the shift (discussed
in Appendix D) was applied.

ments Ulmer et al. made to the model in the publications [35] [32] [57] may have

2Proton Algorithm Reference Guide-EclipseTM, April 2007
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(a) sp depth dose curves. (b) sp radial dose curves.

(c) rc depth dose curves. (d) rc radial dose curves.

Figure 6.7: Comparisons of Geant4 simulation dose distributions with that of the Ulmer
beamlet model for E0 = 50 MeV. The radial dose distribution is taken at depth z=2.0 cm.
The secondary dose pro�les are shown in 6.7a and 6.7b, while the recoil ion dose pro�les
are shown in 6.7c and 6.7d.

only been implemented in the latter versions of the Eclipse proton treatment plan-

ning system (TPS). The Ulmer et al. papers also cater for the reaction secondary

protons (spr), which is not treated in the Eclipse implementation used here. The

(a) pp, sp, rc depth dose contributions-
simulations.

(b) pp, sp, rc depth dose contributions-
beamlet model.

Figure 6.8: Dose contributions of the pp, sp, and rc at E0 = 230 MeV for (a) Geant4
simulations and (b) Ulmer beamlet model.
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full-width at half maximum (FWHM) and the entrance-to-peak ratio of the total

depth dose distributions for the two cases were also compared and the values are

given in Table 6.1. The percentage di�erences in the entrance-to-peak ratio between

simulations and the formulae are 11%, 2%, and 3% for the 230 MeV, 160 MeV, and

50 MeV respectively. Di�erences of up to about 1 cm are seen in the FWHM of

the two cases (for E0 = 230 MeV). Except for 230 MeV simulation result, both the

simulated and the analytical model R80 ranges compare favourably with the RCSDA

values as given by the ICRU report 49 [44].

Fig. 6.8 gives a summary of the di�erent ways the particle groups (pp), (sp), and (rc)

contribute to the total depth dose distribution (at E0 = 230 MeV) in the simulations

and the Ulmer beamlet model. Clearly, the entrance dose for these three particle

groups di�er signi�cantly between the two cases, which as already mentioned, can

partially be explained by the slightly di�erent approaches taken in tallying their

dose in the two methods.
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Chapter 7

Conclusion

7.1 Summary

The Geant4 Monte Carlo simulation toolkit is a complete open source code for sim-

ulating passage of particles or radiation through matter. It o�ers the user a wide

range of options for building the detector geometry, material, physics processes and

models, particles, and data analysis tools, in addition to allowing the user to take

full control of the simulation. In this work, Geant4 (version 10.1) has been used

to assess the contribution of primary protons, secondary protons, heavy recoils and

other secondaries to the total energy deposited in water when a proton pencil beam

in the clinical energy range passes through it (water). A list of parameters (step

sizes, range cuts, etc.) and physics settings that enabled a balance between the accu-

racy and the feasibility of the simulation (given the computational constraints) was

proposed. Because it is validated and is highly recommended for simulation of pro-

tons traversing water in the clinical energy range, the QGSP_BIC_EMY reference

physics list was adopted after comparisons with alternative physics lists. Besides,

this physics list mostly makes use of the physics components that are known to yield

best results (e.g., the binary cascade model of nucleon and heavy ion interactions,

the Urbàn MSC model, standard EM option 3, etc.). In order to control the accumu-

lation of dose for secondary particles and to achieve convergence in the dose pro�les,

it was necessary to introduce individual range cuts for protons and electrons.

Overall, the total dose distributions (both depth dependent and lateral) of the sim-

ulations and the analytical model show some good correspondence, except for some

deviations which are likely related to the build-up e�ect by secondary particles in

the plateau region. We may not have seen the build-up e�ect in the analytical model

because the functions used here ignores the dose contribution of the reaction protons.

61
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However, major discrepancies are manifest in the dose pro�les of individual particle

categories, especially at 50 MeV. These discrepancies could be as a result of the

di�erences in the energy tallying procedure, hadronic physics models (or nonelastic

nuclear cross-section data), and multiple Coulomb scattering models between the

two methods.

Finally, the dose contribution of primary protons, secondary protons, and generally,

heavy recoil ions to the total dose has been successfully investigated and compared

to the analytical Ulmer beamlet model.

7.2 Possible further work

Future work should focus on the dose deposited by electrons and how to assign

it correctly to the (pp), (sp), (rc) particle groups. It would also be interesting

to distinguish the (sp) particle group into �reaction� and �non-reaction� secondary

protons, like Ulmer et al. did, and investigate their dose contributions separately.

Furthermore, it would be sensible to validate the Geant4 simulation results with

measured data from machines that produce nearly monoenergetic pencil beams.

The formulae for the analytical beamlet model used here are from the April 2007

Varian Eclipse Proton Algorithm Reference Guide. It would be necessary in future to

compare the Geant4 results with the more recent version of the manual, in which the

improvements done on the beamlet model by Ulmer et al. in the latter publications

[35] [32] [57] [68] are implemented.
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Appendix A

Proton kinematics

In the stopping and scattering theories of proton energy loss, it sometimes becomes

useful to calculate the proton's speed v or momentum p, given its kinetic energy.

The following equations can be used:

β ≡ v

c
=

pc

E +mc2
, (A.0.1)

(E +mc2)2 = (pc)2 + (mc2)2. (A.0.2)

If we de�ne a reduced kinetic energy,

τ ≡ E

mc2
(A.0.3)

the following derivations whose relativistic (τ � 1) and non-relativistic (τ � 1)

limits are obvious can be made:

β2 =
τ + 2

(τ + 1)2
τ, (A.0.4)

(pc)2 = (τ + 2)mc2E, (A.0.5)

and

pv =
τ + 2

τ + 1
E, (A.0.6)

pv appears frequently in MCS theory.
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Appendix B

Basic beam con�gurations

This appendix gives a brief introduction to the mathematical de�nitions and con-

cepts of simple beam con�gurations.

B.1 Beam coordinate system

Let B be a three-dimensional, right-handed Cartesian beam coordinate system. A

point ~r in space has Cartesian coordinates (x, y, z) relative to B. This beam co-

ordinate system will be used to give a geometrical description of all quantities of

interest. The Euclidean norm of ~r will be given by | ~r |. In cylindrical coordinates

~r = (r, φ, z), with

x = r cosφ, y = r sinφ, r =
√
x2 + y2, φ = arctan2 (x, y) (B.1.1)

The arctangent function arctan2 gives a principal value of the argument of the non-

zero complex number (x, y).

B.2 Mathematical notation

Let f(~r) = f(x, y, z) = f(x, φ, z) be a function representing the spatial dependency

of some arbitrary quantity f . Here (r, φ, z) represents the cylindrical coordinates of

the point ~r = (x, y, z) as given in (B.1.1).

A function f(~r) is said to be radially symmetric about the z-axis of the coordinate

system B if

f(r, φ, z) = f(r, 0, z) ∀φ ∈ (0, 2π] and ∀z ∈ R. (B.2.1)

Since f does not depend on radial direction φ, the notation f(~r) = f(r, z) will be

used henceforth.
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B.2. Mathematical notation 65

The radial integral of a function f(~r) over an arbitrary area A(z) of a planar surface

that intersects the z-axis at (0, 0, z), and which is orthogonal to the z-axis is given

by

F [A](z) =

∫ ∫
A(z)

f(x, y, z)dxdy. (B.2.2)

If the z-axis passes through the interior of A(z) for all z, then eq. B.2.2 can be

written as

F [A](z) =

∫ 2π

0

dφ

∫ R(φ,z)

0

f(r, φ, z)rdr, (B.2.3)

with R(φ, z) being the distance to the perimeter of the area A(z) as a function of

radial distance φ.

If A(z) is circular and centred around the z-axis, and if radius R of A(z) is constant

for all z, then equation B.2.3 can be written as

F [A](z) = F (R; z), (B.2.4)

with

F (R; z) =

∫ 2π

0

dφ

∫ R

0

f(r, φ, z)rdr (B.2.5)

and, if f is radially symmetric, B.2.5 reduces to

F (R; z) = 2π

∫ R

0

f(r, φ, z)rdr. (B.2.6)

We de�ne radial convolution of two functions g and f , g⊗ f as the two-dimensional

integral

(g ⊗ f)(z;~r) =

∫ ∞
−∞

∫ ∞
−∞

g(x
′
, y
′
, z)f(x− x′ , y − y′ , z)dx′dy′ . (B.2.7)

In equation B.2.7, the function f is referred to as the "kernel" of the convolution.

Since the dependency of g, and g ⊗ f on the z will most of the time be implicit, we

can write g(x, y, z0) = g(x, y), and (g ⊗ f)(z, ~r) = (g ⊗ f)(~r).

The conditions under which the convolution exists is beyond the scope of this work.

For our case, it is su�cient to note that (g ⊗ f) exists if g(x, y) is bounded in R2

(or g(x, y) has a compact support in R2 ), and f(r, φ, z) decays rapidly to zero as

r →∞ for all φ ∈ [0, 2π]. If f is radially symmetric, then

(g ⊗ f)(~r) =

∫ ∞
−∞

∫ ∞
−∞

g(x
′
, y
′
)f(%, z)dx

′
dy
′

=

∫ 2π

0

dφ
′
∫ ∞

0

g(r
′
, φ
′
)f(%, z)r

′
dr
′
, (B.2.8)
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where
x = r cosφ, x

′
= r

′
cosφ

′
,

y = r sinφ, y
′
= r

′
sinφ

′
,

% =
√

(x− x′)2 + (y − y′)2

=
√
r2 + r′2 − 2rr′ cos(φ− φ′)


. (B.2.9)

B.3 Simple beam con�gurations

If we de�ne a semi-in�nite medium as a medium made of some material of density

ρ (g/cm3) occupying the region R × R × [0,∞) ⊂ R3. The dose deposited at an

arbitrary point ~r = (x, y, z) in the semi-in�nite medium by a monoenergetic pencil

beam assumed to be incident at the point ~rs = (0, 0, 0) (in this work, the incident

point is the same as the source point of primary protons) with an initial direction

of ~k = (0, 0, z) can be expressed as

D(E0;~r) = NspDpb(E0;~r), (B.3.1)

where Dpb(E0;~r) is the absorbed dose, per source proton, at ~r in the medium, and

Nsp is the number of source protons. Dpb is radially symmetric in the x − y plane,

hence can be expressed as

Dpb(E0;~r) = Dpb(E0; r, z), (B.3.2)

where r =
√
x2 + y2. For a given medium material (e.g., water), Dpb(E0; r, z) is

referred to as the pencil kernel, given in units of MeV/g [63]. It is a three-dimensional

distribution of the dose due to a pencil beam.

If we now consider a number protons emerging parallel from a source plane Ps ⊂ R3,

on the x−y plane at z = 0 and directed into (parallel to the z-axis) the homogeneous

semi-in�nite medium, the dose deposited at a given point ~r in the medium is a

convolution of energy deposited by each of these narrow proton beams:

Dpp(~r) =

∫ ∞
0

(Φ
′

pp(E)⊗Dpb(E))(~r)dE

=

∫ ∞
0

dE

∫ ∞
−∞

∫ ∞
−∞

Φ
′

pp(x
′
, y
′
, E)Dpb(E;x− x′ , y − y′ , z)dx′dy′ , (B.3.3)

where Φ
′
pp(E;x

′
, y
′
) denotes the initial energy spectrum of the protons at ~r =

(x, y, 0), and Dpb(E;~r) the dose deposited at the point ~r, per source proton, by

a pencil beam of energy E. Using results of Eqs. (B.2.7-B.2.8), Eq. (B.3.3) can be

expressed as

Dpp(~r) =

∫ ∞
0

dE

∫ 2π

0

dφ

∫ ∞
0

Φ
′

pp(E; r
′
, φ
′
)Dpb(E; %, z)r

′
dr
′
, (B.3.4)
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where r
′
, φ
′
, and % are given by Eq. (B.2.9).

For a circular plane-parallel proton beam of radius R with uniform energy spectrum

inside the �eld centred around the z-axis, then

Φ
′

pp(E; r
′
, φ
′
) =

Φ
′
pp(E) if r

′ ≤ R

0 if r
′
> R

. (B.3.5)

Eq. (B.3.4) can therefore be re-de�ned to express the dose on the central axis of the

beam as

Dpp(R; z) = 2πΦpp

∫ R

0

Dpb(r, z)rdr, (B.3.6)

where

Dpb(~r) =

∫ ∞
0

ψpp(E)Dpb(E;~r)dE, (B.3.7)

and

ψpp(E) = Φ
′

pp(E)/Φpp. (B.3.8)

Here, Φpp is the uniform �uence inside the �eld, while ψpp(E) is the energy distri-

bution of the plane-parallel beam, normalized to 1:∫ ∞
0

ψpp(E)dE = 1. (B.3.9)

The quantity Dpb(~r) is the dose deposited, per source proton, at the point ~r by the

polyenergetic pencil beam with energy distribution ψpp(E).

Eq. (B.3.6) can be re-written as

Dpp(R; z) = 2π

∫ R

0

Dpb(r, z)rdr, (B.3.10)

where Dpp = Dpp/Φpp is the dose deposited, per source proton, by the plane-parallel

beam (or broad beam). Eq. (B.3.10) gives a simple but very important mathematical

relation between pencil beams and broad beams, known as the reciprocity principle

[59] [63]. The reciprocity relationship has been used to obtain the properties of

broad electron beams from experiments or calculations based on pencil beams [81].
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Appendix C

Reference physics list naming

convention

Acronym Description

QGS: Quark Gluon String model (>∼20 GeV)
FTF: Fritiof string model (>∼5 GeV)
BIC: Binary Intra-nuclear Cascade (<∼10 GeV)
BERT: Bertini-style Intra-nuclear Cascade (<∼10 GeV)
HP: High Precision neutron transport models (<20 MeV)
P: G4Precompound model used for nuclear de-excitation

Table C.1: Acronyms used to refer to various hadronic options.

No Su�x: Standard EM physics
_EMV: (Option 1) older but faster EM processes
_EMY or _EMZ: (Option 3 or Option 4) suitable for low energy EM
LIV: Uses Livermore data bases
PEN: Penelope-bases EM models

Table C.2: Su�xes used to refer to EM options.

C.1 A brief description of the reference physics

lists

In this appendix we brie�y discuss the reference physics lists that were used to check

the sensitivity of dose pro�les on di�erent physics models. A detailed description of

reference physics lists can be found in [82].
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C.1. A brief description of the reference physics lists 69

C.1.1 QGSP_BIC_EMY

� Applies the quark gluon string model to describe high energy interactions of

protons and neutrons with nuclei.

� High energy interactions create an excited nucleus, which is passed to the

Precompound model which is responsible for the nuclear de-excitation.

� It uses the Geant4 binary cascade model to describe the production of sec-

ondary particles during the interaction of protons and neutrons with nuclei.

� It also uses the binary light-ion cascade to model inelastic interaction of ions

(see Tables 5.1 and 5.2).

C.1.2 QGSP_BERT

� Like the QGSP but uses the Geant4 Bertini cascade model for inelastic inter-

action of protons and neutrons with the nuclei.

� The Bertini uses its own Pre-equilibrium and equilibrium models to describe

de-excitation of the residual nuclei (see Sec. 2.3.1).

C.1.3 FTFP_BERT

� Uses the Fritiof string model to describe the excitation and fragmentation of

the nucleus.

� Also uses the Bertini cascade model for inelastic nuclear interactions of protons

and neutrons with nuclei.

C.1.4 QGSP_FTFP_BERT

� Uses both the quark gluon and Fritiof string models to describe the excitation

of the nucleus during the interaction of high energy protons and neutrons with

the nuclei.

� Also uses the Bertini cascade model to describe the de-excitation of the nu-

cleus.
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Appendix D

Normalization of the dose

distributions

Since the dose distribution obtained from Geant4 simulations are integrals of the

dose deposited in each slice or ring (see Sec. 5.4 and Fig. 5.4), the dose functions

of the analytical beamlet model had to be integrated using the same slice/ring

thicknesses (zi and rj) as the ones used in the Geant4 simulation. That is, the dose

functions of the analytical beamlet model were integrated from zi to zi+1 and rj

to rj+1 for the depth dose and the radial dose distributions respectively. It is also

worth noting that the radial dose distribution curves of the Geant4 simulations are

obtained using the function of the form 2π
∫ rj+1

rj
f(r, z)rdr whereas the underlying

radial dose distribution function in the beamlet model is simply f(r, z), hence the

di�erence observed in Fig. D.1a. In order to properly compare the radial dose

curves by these two methods, it was necessary to integrate the analytical radial dose

formulae as stipulated here (see Fig. D.1b).

(a) Un-normalized. (b) Normalized.

Figure D.1: In D.1a the radial dose curve for the beamlet model is given by f(r, z), whereas
in D.1b it is given by 2πf(r, z)r, which is the same function used in the simulations.
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Owing to the fact that even slight di�erences in the energy-range tables used to

obtain the dose curves (formulae vs simulations) can readily cause di�erences in the

range, there was need to take corrective measures. In this case, comparing the R80

ranges (i.e., the depth at 80% of the maximum dose in the distal fall-o� region of the

Bragg peak) of the total depth dose distributions from the two methods was good

enough. Whenever there was a di�erence the total dose curve of the simulations was

shifted accordingly so that it matches the R80 range as given by the beamlet model.

The same shift was also applied to the dose distributions of the particle categories

(pp, sp, and rc). The R80 closely matches the CSDA range RCSDA for monoenergetic

protons.

(a) Depth dose curves. (b) Radial dose curves.

Figure D.2: Un-normalized dose distributions.

In some cases, the dose distribution by one method were found to be much lower

than that of the other when put on the same scale (see Fig. D.2). In our attempt to

make proper comparisons, it became necessary to normalize the dose curves for the

two methods. Particularly for the depth dose distributions, a normalization factor

was computed using the requirement that the total dose, as obtained by integrating

the total depth-dose distributions over all depths, are the same for the two cases

(i.e., simulation and the beamlet model). The same factor was also applied to depth

dose distributions of particle categories: (pp), (sp), and (rc). This undertaking

is justi�able as it is in line with the requirement that the total energy must be

conserved, i.e., Eq. (3.2.7). To normalize the radial dose distributions we initially

applied the sum rule Eq. (3.2.8), that is divide the dose in each ring by the sum of the

dose in all the rings (entire slice) at that depth zi. However, this undertaking could

not get the radial dose peaks of the two methods to properly match as the simulation

radial pro�les have longer tails. As such, the respective radial dose distributions of

the two methods were simply normalized by forcing their peak values to be equal.
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Appendix E

Convergence of dose curves due to

the range cut

In trying to �nd the range cut that meets our requirements, several values were

tested. Convergence in the dose distributions could not be achieved when all the

particles were assigned the same range cut value (Fig. E.1). It was however achieved

when electrons and protons were assigned individual cut-o� values. Fig. E.2 shows

the dose distributions when the range cuts for protons are compared (0.01 mm,

0.1 mm, and 1.0 mm) while that of the electrons is �xed at 1.0 mm. As can be

seen, the dose distributions converge almost immediately. The lack of convergence

when only one cut value is applied to all particles should be expected since the

purpose of the cut-o� value is to control the tracking of generated secondary particles

(e.g., electrons, gammas, positrons, and protons). As can be seen in Fig. E.1a, the

smaller the range cut value the lower the plateau region for primary protons. This

is expected as a smaller range cut value leads to creation of more secondaries even

at lower energies (see Figs. E.1e and E.1f).
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(a) pp depth dose curves. (b) pp radial dose curves.

(c) sp depth dose curves. (d) sp radial dose curves.

(e) rc depth dose curves. (f) rc radial dose curves.

Figure E.1: Plots illustrating lack of convergence in the dose pro�les when a single cut-o�
value is used for all particles. Simulation settings: QGSP_BIC_EMY reference physics
list, E0 = 200 MeV, 106 source protons. The primary proton dose is shown in panes E.1a
and E.1b, secondary protons in panes E.1c and E.1d, and recoils in panes E.1e and E.1f.
Radial dose pro�les taken at depth z = 26.0 cm.
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(a) pp depth dose curves. (b) pp radial dose curves.

(c) sp depth dose curves. (d) sp radial dose curves.

(e) rc depth dose curves. (f) rc radial dose curves.

Figure E.2: Convergence in the dose distribution is achieved when a special range cut
is assigned to electrons (1.0 mm), protons are given range cuts of 0.01 mm, 0.1 mm, and
1.0 mm. Simulation settings: QGSP_BIC_EMY reference physics list, E0 = 200 MeV,
106 source protons. The primary proton dose is shown in panes E.2a and E.2b, secondary
protons in panes E.2c and E.2d, and recoils in panes E.2e and E.2f. Radial dose pro�les
taken at depth z = 26.0 cm.
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