ITTERATIVE METHODS IN
EIL.LECTROMAGNETIC SCATTERING
BASED ON THE MINIMIZATION OF
THE ROOT MEAN SOUARE ERROR

by

Pierre Steyn

April 1989

Assignment presented in partial fulfillment of the
requirements
for the degree of
MASTERS IN ELECTRONIC ENGINEERING
at the
UNIVERSITY OF STELLENBOSCH.

Supervisor:

D.B. Davidson

Stellenbosch University https://scholar.sun.ac.za

DECTARATTON

I the undersigned hereby declare that the work contained in
this thesis is my own original work and has not previously
in its entirety or in part been submitted at any university

for a degree.

Pierre Steyn April 1989

Stellenbosch University https://scholar.sun.ac.za

SUMMARY

Iterative schemes based on the minimization of the error in
scattering problems are presented. In particular,
scattering by impenetrable objects is considered. These
problems result in operator expressions of convolution type
which are solvable using spectral methods. The numeric
implementation involves the application of the discrete
Fourier transform. A description of the computer
implementation of these methods 1is followed by various
numeric results which include a study of the rate of
convergence of the schemes and the stability of the

solution.

OPSOMMING

Iteratiewe metodes gegrond op die vermindering van die fout
in verstrooiingsprobleme word voorgestel. Veral
verstrooiing deur ondeurdringbare voorwerpe word ondersoek.
Hierdie probleme lei tot operatoruitdrukkings wvan konvolusie
tipe wat deur middel van spektraalmetodes oplosbaar is. Dit
behels die toepassing van die diskreet Fourier transform in
die numeriese uitvoering. Die rekenaarimplementering van
hierdie metodes word beskryf en verskeie numeriese resultate
volg wat ’n bestudering van die tempo van konvergensie van

die metodes en die stabiliteit van die oplossing insluit.

Stellenbosch University https://scholar.sun.ac.za

ACKNOWL.LEDGEMENTS

Mr D.B. Davidson for his guidance, advice and encouragement.
Prof J.H. Cloete for his guidance and inspiration.

Mr C.F. du Toit for the use of his Pascal routines for

calculating Bessel functions and complex functions.

Miss J.M. Case for typing and for encouragement.

Stellenbosch University https://scholar.sun.ac.za

NOTATION AND SYMBOLS

D domain of observation

D’: complementary domain to D, ie. all points outside of D
f the Fourier transform of f (in bold type)

f{£f) Fourier transform of a function f

f_l(f) : inverse fourier transform of f

p*q convolution of the functions p and g

Lf operator L acting on the function £

<f,g> : the inner product of the functions f and g

I£

f*

£T

I

(o

[

I

Zg
¢

8

(pn)

X

-
-

-
.

: the norm of f

the complex conjugate of f

the transpose of f

underlined variable indicates a vector
unit vector in x-direction

unit vector normal to a surface

H : the vector product of vectors Jd and H

summation symbol
wavenumber of a medium and of free space respectively
intrinsic impedance of a medium
admittivity of a medium
complex permittivity of a medium

: an array or series of values Pn with n=1,2,3...

GR :

CGR

.

DFT
FET" 8

RMS

SDFFT

DCMoM

Stellenbosch University https://scholar.sun.ac.za

ABBREVIATIONS

gradient
conjugate gradient
contrast-source truncation
discrete Fourier transform
fast Fourier transform
root mean square

spectral domain FFT procedure

: discrete convolution Method of Moments

procedure

Stellenbosch University https://scholar.sun.ac.za

CONTENTS

page
1. Introduction 8
1.1 Electromagnetic Scattering 8
1.2 Integral Equation Formulation 9
1.3 Computational Methods 11
2. Iterative Minimization of the Root Mean Square
Error 13
2.1 Functional Equation and Root Mean Square
~ Error 13
2.2 An Iterative Approximation to the Solution of
the Functional Equation 15
2.3 Iterative Generation of the Variational
Functions 22
2.3.1 Gradient(GR) Technique) 22
2.3.2 Contrast Source Truncation(CST)
Technique 24
2.4 Initial Guess ' 25
3. Scattering by Perfectly Conducting Strip 28
3.1 Integral Equation Formulation 28
3.2 Discretization 30
3.3 Evaluation of Inner Products 31
3.4 Evaluation of Operator Expression 82
4. Numerical Results 43
4.1 Generation of Hankel Function by Spectral
Domain Sampling 43
4.2 Error Convergence 46
4.3 Solution Stability 53
4.4 The Effect of the Loss Factor 57
5. Conclusion 59
References > 61

Appendix A
Integral Equation Formulation of Electromagnetic
Scattering by a Perfectly Conducting
Strip 63
Appendix B
Program Listing 66

Stellenbosch University https://scholar.sun.ac.za

1. Introduction
1.1 Electromagnetic Scattering

Electromagnetic scattering encompasses a variety of physical
problems such as the interaction of radio waves with
aircraft, the effect of rain and hail on radar signals and
the biological effects of microwaves on the human body.
Many of these problems can be modelled as bounded structures
embedded in a relatively simple medium of infinite extent.
Such a configuration is 1illustrated in figure 1.1 which
consists of an object with spatial support Q being

illuminated by a electromagnetic field (E?',H!).

/i\njcjign: field
(E*, B*}
\
ﬂ "
embedding

scactered field
\/Z’\(xs‘xs)

[

Figure 1.1 : The scattering confiquration.(after [1

The electromagnetic properties of the object differ from
that of the medium in which it is embedded. The
electromagnetic properties are such that the radiation field
from a point source is known.

With the incident field and the properties of the object and
the medium known, the problem involves determining the
current distribution on the object. From this current the
scattered field can be determined. Here we are interested
in scattering by impenetrable objects, such as electrically
perfect conductors, in a homogeneous medium. The current of

interest is thus the surface current.

Stellenbosch University https://scholar.sun.ac.za

Exact analytical techniques of solution to these problems
are limited to simple geometries. Approximate analytical
methods and asymptotic approaches including geometric optics
and geometric theory of diffraction can be used to solve
many problems to which analytical techniques are not suited.
Asymptotic methods are usually limited to the analysis of
electrically large scatterers whose geometry can Dbe
described in terms of the few canonical shapes for which

diffraction coefficients are available.

In the past few decades many computer aided approaches have
been developed to solve these problems numerically.
Numerical solutions are not fundamentally restricted to
scatterers with certain canonical shapes or materials, and
in principle they can be carried out to obtain any level of
accuracy [8]. They are limited by computer resources such
as memory and speed and conventional numerical methods are

thus limited to electrically small scatterers.

1.2 Integral Equation Formulation

In this thesis the solution of integral equations arising
from integral equation based models in scattering are
considered. These have the form of Fredholm integral

equations of the first kind

g(x) =J K(x,x’")f(x’)dx’ X € D (1.1)
D

In this equation, f is the unknown field quantity in the
domain of observation D, g is the known quantity related to
the excitation and K is the kernel function of the integral

equation.

Further, frequency domain scattering is studied where D is
either the spatial domain occupied by the object 2 or the

boundary surface 602 of the object. In the former case

Stellenbosch University https://scholar.sun.ac.za

equation (1.1) 1is a domain integral equation and in the
latter a boundary integral equation. The variables x and x’

stand for the relevant spatial coordinate system (for

example the Cartesian coordinates x, y, 2z 1in a three
dinensional space). It is assumed that equation (1.1) has a
unique solution. Hence, f(x)=0, all xeD, if and only if

g(x)=0, all xeD.

For some scattering problems the kernel function is of the

form
K(x,x’") = K(x-x"). (1.2)

Then equation (1.1) has the form of a convolution integral
and can be solved using the Fourier transform. The Fourier

transform of a function is defined as

10

(e ¢}
f(a) = F(f(x)) = J £ (x)e I¥¥qax (1.3)
-0
where X 1s the spatial domain variable and a is the -

spectral domain variable. The inverse transform is

0

£(x) = /pn J f(a)e J%¥ax (1.4)
-0
The convolution, c(x), of two functions, p(x) and g(x), is
defined as
[o0]
c(x) = p*q = J p(x-x")q(x)dx’ (1.5)
—co

The Convolution Theorem states that the Fourier transform of

c(x), ie. c(x), is equal to the product of the transforms of

p(x) and g(x).

Stellenbosch University https://scholar.sun.ac.za

Thus,

c(a) pP(a)a(a)

therefore

F~i{p(a)a(a))

c(x)

With K as in equation (1.2), equation (1.1) can be written

as
[o0]
g(x) = K(x—x’)XD(x’)f(x')dx’
-0
= TR F{Xp(x)E(x))) (1.6)
where
XD = 1 xeD
0 XeD’ (1.7)
is the characteristic function. D’ is the complementary

domain to D.
When f(x) = 0, xeD’, then (1.6) simply becomes

g(x) = fTH{K(a)f(a)) (1.8)
1.3 Computational Methods

Once the physical scattering problem has been modelled by a
mathematical equation a discretization procedure must be
carried out in order to solve numerically. This wusually
involves replacing the original equation by a finite
dimensional matrix equation such as in the Method of
Moments. Matrix equations can be solved using direct
methods such as Gaussian elimination or iterative methods.
However, the larger the electrical size of the problems, the

larger the matrix equation becomes. Thus required computer

Stellenbosch University https://scholar.sun.ac.za

memory increases. For large systems out-of-core memory may
be required which slows down the solution time due to slower
accessing speeds. Also 1large matrices often cannot be
accurately solved by direct methods such a Gaussian

elimination.

Iterative algorithms have been developed which circumvent
the problem of excessive computer time and computer storage
for certain classes of problems. This thesis investigates
iterative schemes proposed by van den Berg [1,2] which are

based on the minimization of the error in field problems.

12

Stellenbosch University https://scholar.sun.ac.za

2. Iterative Minimization of the Root Mean Square Error

The chapter begins with the definition of the functional
equation and its related root mean square (RMS) error. An
iterative method based upon the minimization of the error is
then presented. Variational techniques that enforce a
monotonic decrease of the error in each iteration are

employed in the method.

The techniques discussed are derived by Peter M. van den
Berg [1, 2] and only the results are presented here. The

notation used is that of reference [2].
2.1 Functional Equation and Root Mean Square Error

The operator L acting on a function f is defined by
Lf = K(x,x’)f(x’)dx’ (2.1)
x’€eD

In this text the letter L is used for the operator and not K
as in [2]. This is to avoid confusion which may arise when
K is used to indicate the kernel function. Equation (1.1)

can then be written in operator equation form
Lf =g , XeD. (2.2)

The inner product of two functions f and g defined on D is

defined as

<f,g> = J £ (x)g(x)dx (2.3)
XeD

where the asterisk denotes complex conjugate. The norm of a

function f is defined as

Il = <€,£>% (2.4)

13

Stellenbosch University https://scholar.sun.ac.za

14

For an approximate solution £A of (2.2) the residual is

defined as
R® = Lfl-g (2.5)
and the root mean square error as

L
ERR = <R® RP>%

IR

It is seen that ERR > 0, the equality sign holding only when
A _

s Sl

T

The operator L~ which is adjoint to L is defined by the

relation

<Lg,f> = <g,LT f> (2.7)
The adjoint operator expression is

g =1T"f (2.8)

The notation used here for the adjoint operator follows that
of van den Berg. It should be noted that this is somewhat
different from other texts which define the adjoint operator

to L as L* (or some other superscript) where
*
<Lg,f> = <g,L f>.

The superscript * as used in this latter definition does not

indicate the complex conjugate but replaces Tx*.

Stellenbosch University https://scholar.sun.ac.za

2.2 An Iterative Approximation to the Solution of the

Functional Equation

This section presents an iterative minimization of the RMS
error which leads to the solution of the operator equation
(2.2). The method presented is general in that it does not
only apply to operator equations of convolution type. At

each step of the iterative procedure we write

£(M(x) = £ V(x) + £, (M (x), n=1,2,3...
(2.9)

where f(n)(x) is the approximate solution to f(x) at

iteration n and P () is a suitably constructed correction

r
function. The procedure begins with an initial guess £(0)
and the associated residual R(O). The residual at iteration
n is

R(M)(x) = Le(M) - g (2.10)

Substitution of (2.9) into (2.10) leads to
(n) _ n-1 n
R rR(M=1) 4 pe_ (M) (2.11)
The RMS error at iteration n is then
ERR(D) = |R(M)| (2.12)

The correction function fcor(n) must now be constructed.
Let.

fcor(n)(x) - al(n)w(n)(x) £2192.3)

where al(n) is a variational parameter and ¢ is a suitably
chosen variational function, the choice of which is

discussed in the next section.

15

Stellenbosch University https://scholar.sun.ac.za

Using van den Berg results, but generalizing to iteration n
with only one variational parameter, we can show that ERR(TM)

is minimized if [2, equation (4.6)]
a) (M = —<pp(M) R(M-1)5 /| Lp(n) 2, (2.14)
To achieve anything at all al(n) must not be zero, ie.
<Lp(M) r(N=1)5 1 g (2.15)

which is the improvement condition and places some

restriction on the choice of w(n)'

Thus, assuming the existence of a variational function,
w(n), we have an iterative method using one variational
parameter to minimize the RMS error. The algorithm is
presented in table 2.1. It is based on van den Berg’s table
V in [2] but with only one variational parameter and a free
choice of variational function. The algorithm is terminated
when the error is less than a specified maximum allowable
error ERR .. or when the number of iterations has reached a

X

specified maximum np...

16

Stellenbosch University https://scholar.sun.ac.za

Table 2.1 : The iteration scheme with one variational
parameter.

initial estimate: f£(9)
_ 1
residual error: R(Q) = r£(0) _ g

)
ERR(O) = "R(O)”
{
— —| n=n + 1
¢ yes
is B = Dgas ? - write :"error
i has not fully
no converged" - end
{
determine variational function w(n) and Lw(n)
1
al(n) = —<Lp(M) r(M=1)5 /)1 (N))2
!
n) _ n n n) _ n n
g(n) = ¢g(n-1) , fcor(n)' Le(n) = e(n-1) 4 Lfcor(n)

R(n) Lf(n) - g

)
B
ERR(n) = ”R(n) ”
1
<

es
err ? y*. end

o .
is ERR(M) .

For n > 1, f (N) can be constructed using more information

cor
from the previous iteration.

Let
n) _ n n n n-1 —
fcor() = al()w() 4+ a2()fcor(), n=2,3,...
(2.16)
It can be shown that ERR(n) is minimized if al(n) and az(n)

satisfy the system of two linear algebraic equations [2]:

Vy, V> <vp,Vy> al(n) = —<vl,R(n'1)>
n
Vo, V1> <Vy, Vo> az() 0

(2.17)

Stellenbosch University https://scholar.sun.ac.za

where

- n — n-1
vy = L@() and v, = Lfcor()

The improvement condition 1is also equation (2.15). The
algorithm based on two variational parameters is presented
in table 2.2. It is based on van den Berg’s table V in [2]
but with only two variational parameters and a free choice

of variational function.

18

Stellenbosch University https://scholar.sun.ac.za

Table 2.2 : The iteration scheme with two variational
parameters.

initial estimate: £(0)

1
residual error: R(Q) = p£(0) - g

i
Err(0) = ”R(O)”
1
[n=1]
1
determine variational function w(l) and Lw(l)
\:
o, (1) = —<o(1) ,R(O)>/|Le(1) 2
1
1y = 1),(1) 19y - (1)1,0(1)
fcor() = al()@(’lLfcor() = L | Le
£(1) = £(0) 4g (1)) pe(1) = 1e(0) 4 e (1)
1
rE1) = pe(1) - g, ERR(1) = ”R(l)”
\
>l n=n + 1
. ; : yes ;
16 I = Do ? - write :"error
i} has not fully
no | converged" -+ end
\:

determine variational function (M) and Le(M)
{

— n — n-1
¥ = Lw()’ Va I Lfcor()

solve equation (2.17)

{
£ (M) =) (MM 4 o (Mg (n-1)

{
Lfcor(n) = al(n)Lw(n) + az(n)Lfcor(n_l)

1
g(n) - g(n-1) 4 fcor(n)’ wetl) = pe(n-1) 4 Lfcor(n)

r(N) Le(n) — g

!
%
ERR(T) = |R(D)|
!
<

no es
err ? Yg end

g n
is ERR(M) -

For n > 2 van den Berg [2] introduces the possibility of a

third variational parameter.

Stellenbosch University https://scholar.sun.ac.za

Let

fogp(™ = oy (MM 4 o (Mg (n-1) 4 4 (n)g(n-1)
(2.18)

It is found that ERR(™) is minimized if al(n), az(n) and

a3(n) satisfy the system of three linear algebraic equations

<V ,V > <V ,V,> <V V3> al(n) = —<v1,R(n'1)>
. n
<V5,V> <V3,V,> <Vg,Vy> a3(n) 0
(2.19)
" = Lo(M) = (n-1) = Lg(n-1)
where vy Ly r Vo LfCor and V3 Lf 5

As before, the improvement condition is equation (2.15).
The algorithm based on three variational parameters is
presented in table 2.3. It is based on van den Berg’s table

V in [2] but with a free choice of variational function.

Stellenbosch University https://scholar.sun.ac.za

21

Table 2.3 : The iteration scheme with three variational

parameters.
initial estimate: £(0) —- R(0)ore(0)_g, grr(0) = |R(O)|
fn=1
determine variationai function (1) and re(1)
2y (1) = (1), ROV /p(2))2
e (1) = al(l)@(l),iLfcor(l) = 4y (Dgp(1)
(1) = £(0) g (1) pe(1) o ope(0) L ope (1)
R(1) = 1p(1) _ gz prr(1) = [r(D)]
[n=2]
{

determine variational function w(z) and Lw(z)
{

Vi T L@(z)i V2 T Lfcor(l)
solve equation (2.17) with n = 2
£ (2) = o (2)5(2) { o (2)g (1)
e (2) = a0 (D1p(2) {4 (2pe (1)
£(2) o £(1) 4 g (2) “re(2) 2 ope(l) 4 e (2)
r(2) = pg(2) _ g,lERR(z) = Ir(2)
{

——>| n=n + 1

)
is n =n

no !
determine variational function w(n) and Lw(n)

1
solve equation (2.19)

s
max ° w¥?te :"error not fully converged" - end

{
— n —
A Lw(), Vy = Lfcor

fopp(™ = oy (M) 4 a;(n)fcor(n—l) + ay (Mg(n-1)

cor
1
Lfcor(n) — al(n)LW(n) E3 a%(n)Lfcor(n_l) 3 a3(n)Lf(n‘1)
g(n) = ¢(n-1) fcor(n)' Le(M) = g(n-1) 4 Lfcor(n)

R Z'pe(m) _ g

ERR(n) ”R(n)”

IN « |l «

es
err ? y* end

o .
is ERR(M) .

Stellenbosch University https://scholar.sun.ac.za

2.3 Iterative Generation of the Variational Functions

In this section we 1look at the generation of variational
functions that can be used in the algorithms presented in
tables 2.1 to 2.3. Two techniques, namely the gradient and
the contrast source truncation techniques, are investigated.
The second technique .relies on the operator being of

convolution type.

2.3.1 Gradient(GR) Technique

In section 2.2 it was seen that the error at each iteration

is minimized only if
<Lp(M) r(N-1)5 js not zero.
This can be accomplished if we set [2, section 5]
(M) (x) = LT*r(N"1) (2.20)

T

where L~ is the adjoint operator to L.

Then, using equation (2.7)
- * - —
<np(M) r(M-1)5 = 1 T*gr(N-1) g(n-1),

= <pT*r(n-1) (T*g(n-1),

which will not be zero provided that R(N"1) is not zero.
(If R(nfl) is zero then ERR(M™1) yould be zero and the

solution would have been arrived at.)
With this choice of ©(M) it can be shown that

exhibiting the orthogonality of the gradients in two

successive iterations.

With a initial estimate £(0)=0 van den Berg shows that the

third variational parameter becomes =zero for the gradient

22

Stellenbosch University https://scholar.sun.ac.za

technique. Thus this technique is only used with up to two

variational parameters.

This choice of variational function used with the algorithm
presented in table 2.1, that 1is with one variational
parameter, is equivalent to the gradient method presented in
[1, table I]. With two variational parameters, as in table
2.2, it is equivalent to the gradient method of [1] with the
second minimization step which ‘results in the conjugate
gradient (CGR) method presented in [1, table I].

23

Stellenbosch University https://scholar.sun.ac.za

2.3.2 Contrast Source Truncation(CST) Technique

This technique can be used when the operator is of the
convolution type as defined in section 1.2. The Fourier
transform of the operator expression Lf can be written as

the product of the Fourier transforms K and f.
f{LEf} = Kf (2.21)

The variational function w(n) is determined as the
approximate "contrast source" at D that corresponds as
closely as possible to the "field function" r(M-1) a4t p. 1t
is then defined by

Ry("1) = Lp(M)
where

Ry ("71) = x r(n=1)
Then

Ry ("71) = gp(M)
thus

(M) = K-lRD(n-l) (2.22)

With (M) determined by equation (2.22), (M) is obtained by
carrying out the inverse Fourier transform. In order to
calculate Lw(n) the function w(n) must be windowed by

setting

e(M)(x) = 0, xeD’

24

Stellenbosch University https://scholar.sun.ac.za

The result is the contrast source truncation technique. The
determination of (M) and Le(M) is summarized in table 2.4.
[after 2, Table III]

Table 2.4 : T?e determinati?n of the variational functions
0o} n) and the Ly n) based on the contrast-source
truncation technique.

X domain spectral domain
R(M71) (x), xeD
jl—‘ - RD(n_l)
0, xeD’ |
1
tp(n) < [K]_lRD(n_l)

w(n), XeD, 1is the variational function
(conrast source)

(n)
P (x), xeD
}» - o(M)
0, xeD’ |
4
L (M) « Ko (1)

2.4 Initial Guess

A degree of freedom in using the iteration scheme is the
choice of the initial value f(o)(x). Any choice can be
taken and an obvious one is f(o)(x) = 0. Another obvious
choice for impenetrable objects 1is the physical optics
approximation [4, ppl27-128] otherwise known as the Kirchoff
approximation. In this approximation the surface current Jg
in the illuminated portion of the scatterer’s surface is
approximated by

J, ~ 24, X H' (2.23)

where H' is the incident magnetic field and G, is the normal

to the surface. The Kirchhoff approximation is not an
optimal initial estimate. For a non-zero initial estimate
£(0) (such as the Kirchhoff approximation) a modified

estimate [1]

Stellenbosch University https://scholar.sun.ac.za

26

£(0) (x) = r(0)£(0) (4 (2.24)

where T' is a parameter to be derived, may be determined in
such a way that ERR(®) is minimized. The residual in this

case is

R(0) — pF(0)_g

Thus
<§(0),§(0)> - J (r(O)pe(0) gy *(r(0) e (0) —gyax
D
= <g,g> - F(0)<g,Lf(O)>
- (0 *<p£(0) ,g> +|r(0)2c1£(0) pe(0)5
= <g,g>—F(0)A(O)*—I‘(O)*A(O)+|1"(0)|2B(O)
|a(0))2
= <9,9> =(0)
(0)p(0)* (0)*x(0) (0)2
. [|r(°)|2 _r A _ A N | A | }B(O)
B(O) B(O) IB(0)|2
|a(0) |2 a(0) |2
B T T " 5(0)
where a(0) = <1,¢(0) o> ana B(O) = ”Lf(o)[]2

This last equation is minimized if

Stellenbosch University https://scholar.sun.ac.za
27

The algorithm to determine the modified initial estimate is

shown in table 2.5.

Determination of modified initial estimate to
minimize ERR .

initial estimate f£(0) 1o TS
{

Table 2.5 :

evaluate Lf(o)
{

a(0)

<Lf(0),g>
B(Q) = <1£(0) 1¢(0),

r(0) = a(0) 5(0)

£(0) = p(0)£(0)

evaluate Lf(o)
{

ﬁ(O) = £(0) _ g

——————— ————
T e . o . . -—
————— v — ——— — o s s

Stellenbosch University https://scholar.sun.ac.za

3. Scattering by Perfectly Conducting Strip

In this chapter the numerical implementation of the
iterative algorithms presented in tables 2.1 to 2.5 in
chapter 2 is discussed. The specific problem to which the
alcorithm is applied is plane-wave scattering by a perfectly

coriducting strip.

The emphasis in this implementation is on investigating the
convergence of the schemes as well as the effect of factors
such as discretization, size of FFT and lossiness of the

embedding on the stability of the converged solution.
3.1 Integral Equation Formulation

The problem of electromagnetic scattering by an electrically
perfectly conducting strip has been given a fair amount of
attention in the available literature. [1,2,3] There is thus
data for comparison purposes, especially as far as ‘error

corivergence is concerned.

The geometry of the problem is illustrated in figure 3.1.
The strip is illuminated by a transverse magnetic(TM)-
polarized plane wave with electric field vector oriented

parallel to the edges of the strip.

ANY
§ E'= E';_CL-,_
- a

Figqure 3.1 : Plane-wave scattering by a strip.

28

Stellenbosch University https://scholar.sun.ac.za

The integral equation formulation (derived in appendix A)

for the problem is
a
i AR 1) ,
E, (x) = Hg (k|x=x*|JI,(x*)dx*, -asxsa (3.1)
4
—a

where k is the wavenumber of the mediunm, Zq is the intrinsic
impedance of the medium, and Ho(l)(x) is the =zero order
Hankel function of the first kind.

For convenience the current can be normalized to (kZO)_l

then a modified integral equation is obtained:
a
B, (x) = J 1aHo (D) (k| x-x7|)I,(x")dx, -asx<a (3.2)
-a
where I, (X) is the normalized current.
The kernel of this equation is
K(x,x’) = K(x-x") = 1/,H,(1) (k|x-x"|) (3.3)
The known function is
g(x) = E,1(x)
anc the unknown is
f(x) = I,(x)

The implementation of tables 2.1 to 2.5 to solve equation
(3.2) 1is discussed in the following sections of this

chapter.

The physical optics approximation for this case can be
derived wusing the theory in [4, pp 127-128]. The
illuminated surface S’ is the top surface of the strip which

is merely the surface (or domain) D shown in figure 3.1.

29

Stellenbosch University https://scholar.sun.ac.za

On S’ the surface current is approximated as

=2a xgl=2a xpgt

s n Y
With
Ei — ﬁz' gt = _1/20 ﬁx
thus
Jg = 2 0, X (-1/z4 0,) = 2/24 4,

Normalizing to 1/Zok we get
Iz(x) = 2k
3.2 Discretization

To solve for the integral equation numerically, the surface
current can only be calculated at a finite number of points
on the strip. The strip is thus divided into N intervals of
length h along the x-axis as shown in figure 3.2. The
current is evaluated at the center of each interval. These

points are marked 1 to N in the figure.

Figure 3.2 : Discretization of the strip.

30

Stellenbosch University https://scholar.sun.ac.za

The interval length is given by

2a
h = (3.4)
N

The normalized surface current is thus approximated as

N h .
I,(x) = nleiS(—a + 7/, + (i-1)h) (3.5)
where the coefficients Loy i =1...N, are to be evaluated.
All functions evaluated 1in executing the algorithm of

table 2.1 numerically are thus represented by vectors of N
elements except for the Kernel which also exists for values
of x off the strip. Successive samples contained in the

vectors are a distance h apart.
3.3 Evaluation of Inner Products

For computational simplicity all integrals of non-
convolution type are evaluated by approximating as sums.

Thus an integral of the form

»

a
U = J y(x)dx (3.6)
-a

where vy(x) 1s a function defined on the strip, is

approximated as

U = higlyi (3.7)

where h is the interval length as given in (3.4) and y; is
the value of y(x) at the centre of interval 1i. The

approximation is illustrated in figure 3.3.

31

Stellenbosch University https://scholar.sun.ac.za

Ht:r_)
f\
MR & 'Nq_7‘3°
Figure 3.3 : Inteqral as approximation of area beneath a
function.

The numerical approximation is thus the sum of the areas of

N pulses of width h and height y;, i = 1,2...N.

The inner-product is evaluated by applying equation (3.7) to

equation (2.3) and obtaining:

My *
<f.g> = hnglfi gl (3.8)

and the norm by applying equation (3.7) to equation (2.7)

and obtaining
1 N L
I£ll = <£,£>% = [n T |£5]2]7 (3.9)

where fi and g; are respectively the values of f(x) and g(x)

at the centre of interval 1i.
3.4 Evaluation of Operator Expression

In the generation of the variational functions as required
in the algorithms of tables 2.1 to 2.5, evaluation of the
operator and the adjoint operator expressions are required.
This is seen in section 2.3 where the generation of the
variational function is discribed. For the contrast source

truncation technique it is required to transform between the

32

Stellenbosch University https://scholar.sun.ac.za

spatial and spectral domains. These steps can Dbe
accomplished numerically using the fast Fourier transform

(FFT) as the operator is of convolution type.

The integral in the operator expression of equation (2.2)

has the form

[00]
C(x) = J K(x-x*)p(x")dx”’ (3.10)
-

which is a convolution. The function p(x) exists only over

the strip surface, ie. -a < x < a.

To evaluate -equation (3.10) numerically, the discrete
Fourier transforms(DFT) of the functions K(x) and p(x) must
be evaluated. The product of these transforms results in
the DFT of C(x) which can then be obtained by carrying out
the inverse transform. This is all done using the FFT.
Generally, the function p(x) already exists as a vector of N
elements. We use a M point FFT where M>N, and M is an
integer power of 2. To evaluate the FFT of p(x) we form an
array (pp} of M-elements by adding zeros to the N-element
array as shown in figure 3.4.

kpcma

IW’; I Tl\f\n\

;! e -
- O-
~1

N - lawenics

M- e le mandcs

Figqure 3.4 : Formation of an M point array by adding zeros
to a N point array representing a function defined on the

strip surface.

Stellenbosch University https://scholar.sun.ac.za

The DFT assumes periodicity in the spatial and spectral
domains. The problems is thus changed and now consists of
an infinite array of strips with a distance d = (M=N)h

between subsequent strips as shown in figure 3.5.

e Nh=2a LN : d
| P
- M4

Figure 3.5 : New geometry due to use of the FFT.

The kernel of the integral is defined for all x. Thus
aliasing will occur when using the DFT which can be seen as
coupling between the strips. However, as it contains the
Hankel function its ©real and imaginary parts decrease
monotonically with increasing x. Thus if M is chosen large
enough, the distance between the strips will be large and

aliasing, or coupling, will be small.

The kernel function K(x) must be sampled. This function is
not only defined on the strip surface and when sampled more
than N points can be obtained. Looking at equation (3.3) it
is seen that K(x) contains a Hankel function of type 1 and
order zero. The imaginary part of this function tends to
negative infinity when x is zero. The Fourier transform of

the Hankel function is simply [9, eqn.(43)]l

£l (M) (x[x])) = 2(k%-e?)7% (3.11)

1 Equation (43) in [8] 1is the Fourier transform of
%Ho(l)(k|x|) thus it is multiplied by a factor 2 to obtain

equation (3.11).

Stellenbosch University https://scholar.sun.ac.za

By multiplying (3.11) with the factor 1/4 the Fourier

transform of the kernel of (3.3) is obtained

-%

K(a) = [4(k%-a?)] (3.12)

This equation has a branch point at ¢ = k. This situation
can be avoided, however, if we assume that the medium
surrounding the strip is lossy. A complex wavenumber is

thus defined as
k = ko(l + jlf) (3.13)

where ko is the free space wavenumber and lg is a "loss

factor" which must be non zero.

The singularity at x = 0 in equation (3.3) can thus be
avoided if instead of sampling K(a) in the spatial domain
and obtaining the DFT via the FFT, we obtain the DFT by
sampling K(a) 1in the spectral domain. With the total
interval in the spatial domain being Mh the sample interval

in the spectral domain is an = 2W/Mh'

The relationship between an element of the DFT, K. and a

n
sample of the continuous transform K(ay), derived 1in
reference [6] on p389, is

K(a,) ® hK_, (3.14)
where h is as defined in equation (3.4)
Values of the DFT can thus be approximated as
K. ~ h™'K(a,) (3.15)
n n

35

Stellenbosch University https://scholar.sun.ac.za

36

However, because of the relationship in (3.14) the values
obtained when carrying out the convolution using the DFT
will be h times the actual value. This 1is proved as

follows. The convolution integral is

o0
c(x) = [K(x-x')p(x’)dx’

(o]

The Fourier transform of p(x) is

0 .
p(a) = J p(x)e” 1¥¥dx

o0

At a specified value of «a,a_, we can express p(«

m as an

m)
approximate summation:

M=1 ;
P(ay) ® 2 p(xp)exp(-jepxy)h
However, the DFT is defined as
M=1 :
P = Z P(%p)exp(-Jayxy)

Thus

M=1 .
P(ay) ® hpy = h_Z p(xy)exp(~Japxy)

In the same way

Q

M=1 :
K(ap) hngoK(xn)exp(—jamxn)

Ky,

Stellenbosch University https://scholar.sun.ac.za

Then,
K(ay)p(ay)
p —
Km m h2
1 c(ap)
h h
= h'lcm
Thus,

Cp = hKyPp

The factor h will cancel out if it is left out of equation
(3.15) when forming {Km}. Thus, we form {Km} as

K, = K(ap) (3.16)

Then c = Kpp, resulting in the correct values of the

convolution.

The kernel, K(x) = l/4HO(1)(k|x|) is an even function thus
its Fourier transform K(a) is even. The DFT will also be
even. However, as the DFT assumes periodicity the DFT
values at negative frequencies are repeated at positive

frequencies as illustrated in figure 3.6.

K
\ﬁi K\"\

M+

Q . ad Mg
“1

r

M Sa-MQ\u

Figqure 3.6 : Periodicity due to sampling.

37

Stellenbosch University https://scholar.sun.ac.za

If we make the sample at a = 0 our first DFT value K; =
K(0), then the remaining samples are symmetrical about
K%M+1' Thus, beginning at o = 0 we take 3M+1 samples. The
remaining %3M-1 samples are obtained according to the rule

If an inverse FFT were now carried out on the DFT of K(x)
obtained above the results will be an M element array
containing M approximate samples of K(x). However, in order
to carry out a linear convolution with a result M-elements
in 1length, the lengths N; and N, of the arrays being
convolved must be such that N;+N,-1=M [7, pll0-112]. Thus
with the array {pn} of length N,=N the array {Kn)
representing K(x) must be of length N,=M-N+1 or less. This
requires that {Kn} must have at least N-1 zeros at its end.
Thus, once the sampling has been carried out in the spectral
domain, an inverse FFT 1is carried out in the resulting
array. The last N values are set to zero. This array is
then transformed back to the spectral domain. The result is
modified values of K, which correspond to the kernel

truncated to M-N values in the spatial domain.
p, and K, are multiplied to form

c. = K

n = KaPy (3.18)

The inverse FFT carried out on c, to obtain an M-element
array contains the convolution values. However, only the
first N-elements of this array are used as the sampled

values of c(x).

Looking at figure 3.4 it appears that by placing the samples
of p(x) at negative x at the beginning of the array a
spatial shift has been carried out on p(x) while this shift
has not been executed on K(x). However, this merely means

that the array representing c(x) has also been shifted. The

38

Stellenbosch University https://scholar.sun.ac.za

effect of a shift by a distance Xg 1is as follows. The

convolution is

c(x) = J K(x-x’)p(x’)dx’

(o]

Let

I

x'+x0, then

c(x) = J K(x=-%1+Xg)pP(X1-%Xg)dx’

(o]
Let X, = x+x0’ then

[o0]

C(Xy=Xg) = J K(xX5=%1)p(xq-Xp)dx’

-0

or, replacing x, with x and x; with x’

(o 0]
c(x-xg) = J K(x-x")p(x’'—-xq5)dx"’.

)
Thus, 1if K(x) 1is not shifted then c(x) is shifted by the

sane amount as p(x).

So far the evaluation of the operator expression of the form
of (2.2) has been investigated. However, evaluation of the
adjoint operator expression is also required. For the strip

the integral has the form

d(x) = K*(x'-x)p(x’)dx’

= | (1 H (P (x| x -x|)) p(x)ax’
J =00
r OO
= | (1,8) (k| x-x"|))*p(x)ax’

J —o0

39

Stellenbosch University https://scholar.sun.ac.za

Thus, d(x) = J K*(x—x’)p(x')dx’ (3.19)

0

This last integral is a convolution. The same procedure can
be followed as was for the evaluation of equation (3.10)
except that the Fourier transform of K*(x) must be used.
This can be easily found from the Fourier transform of K(x)

using the property
FIK" (%)) = K" (-a) (3.20)
where fF{K(x)} = K(a)

Thus, for the strip, using equation (3.12) in (3.20)

FIK*(x)} = [1/5(k2-(-a)2) 17"

1/, (x2-a?)711"

K*(a)

Thus, the adjoint operator expression is evaluated using the
complex conjugate of the array sampled in the spectral

domain for evaluation of the operator expression.
It is further required to evaluate the inverse expression,
c(x) = rFH{xp)

This is done numerically using the same procedure as for the
operator expression except that the inverse of each of the
values in the array obtained by sampling in the spectral

domain 1is used.

40

Stellenbosch University https://scholar.sun.ac.za

The above method of constructing the discrete kernel in the
spectral domain is similar to the method used in the
spectral domain FFT (SDFFT) procedure outlined by Peterson
and Mittra in Chapter 5 of [8, pp.l119-122]. They construct
a discrete, periodic "spectral domain Green’s function" of
the form [8, eqgn.(5.24)]

Gy(a) = S(a)*[P(a)W(a)K(a)] (3.20)

where
o0
S(a) = ag mg_wé(a—mas) (3.21)
‘4. = —
with ag = Map = /h and
- 2 3

P(a) = ap qg_wé(a qap) (3.22)

W(a) is a windowing function used to truncate K(a), in this

case, to one period in the spectral domain (length ag).
Multiplication by P(a) results in a discrete function

sampled at intervals « Convolution with S(a) produces a

o
periodic function with period Map.
Equation (3.20) can be inverse Fourier transformed to obtain

the discrete spatial Green’s function [8, eqgn.(5.25)]

S(x)[P(x)*W(x)*K(x)]

Gq(x)
P(x)*[S(x){W(x)*K(x)}] (3.23)

where

S(x) =m§_w5(x—mh) (3.24)

41

Stellenbosch University https://scholar.sun.ac.za

and
P(x) =q§_m5(x—th) (3.25)

If G,(x) is now windowed by a function U(x) to ensure that

the last N values are zero, i.e.

U(x,) =1 0 < x, £ (M-N)h
0 M-N+1 < Xn < Mh
we obtain
Gy (x) = U(x)S(x)[P(x)*W(x)*K(X)]

U(X)P(x)*[S(x){(W(x)*K(x)}] (3.26)

Equation (3.26) is then Fourier transformed to obtain [8,

egn. (5.30)]

U(a)*S(a)*[P(a)W(a)K(a)]

Gl(a)
S(a)*[U(a)*P(a)W(a)K(a)] (3.27)

The discrete kernel in the spectral domain generated here is
the same as the "spectral Green’s function" of the SDFFT

procedure with specific choices of W(a) and U(x).

Peterson and Mittra show that the SDFFT is equivalent to the
discrete-convolution Method of Moments (DCMoM) procedure if
the basis and testing functions of the latter procedure are
suitably chosen [8, chapter 5]. As the MoM procedure
involves setting up and solving a matrix equation the SDFFT,
and thus the methods used in this thesis, can be given an

equivalent matrix interpretation.

Stellenbosch University https://scholar.sun.ac.za

4. Numerical Results

The algorithms of figures 2.1 to 2.3 were implemented
numerically using Turbo Pascal version 4 on IBM-PC
compatibles. The 8087 numeric coprocessor was used with the
real type, double. In Turbo Pascal the double type has a
precision of 15 to 16 decimal digits and a range of
5 X 107324 to 1.7 x 10308,

The results pertain to the problem of scattering by the
perfectly conducting strip. The data includes an
investigation of the Hankel function obtained through
sampling in spectral domains, error convergence of the
various techniques for various strip widths, the current
obtained by the techniques, the stability of the solution as
a function of strip discretization and FFT size and

stability of solution as a function of the loss factor.

4.1 Generation of Hankel Function by Spectral Domain

Sampling

The Hankel function was generated by sampling the Fourier

transform N
£ (D) (x|x])) = 2(k2-a?)7*

in the spectral domain according to the method of section
3.4. The inverse FFT was carried out to obtain the spatial
domain values. These values can then be compared with
values obtained from a computer program for calculating
Bessel functions. The results for kgy=1, a=1, N=16 and
=1024 and k=k0(l+0.01j) are shown in figure 4.1. The real
conponent is plotted in 4.1(a) and the imaginary in 4.1(b).
The difference between the real component calculated by
spectral domain sampling and by direct calculation is
plotted in 4.1(c). The difference for the imaginary
component is plotted in 4.1(d). The direct calculation was

done using Pascal procedures for calculating Bessel

43

Stellenbosch University https://scholar.sun.ac.za

functions with complex arguments [10]. In terms of Bessel

functions
Ho(1) (%) = J5(%) + 3¥q(x)

where J0 is the Bessel function of the first kind of order
zero and Y, is the Bessel function of the second kind of

order zero.

At x=0 there is a relatively large difference, especially
for Im{Ho(l)(O)} as this should be minus infinity.
Otherwise the difference is small in the region of the strip

but increases far from the strip.

44

nolﬂo(l}(x]xi)]

difference

Stellenbosch University https://scholar.sun.ac.za

08 } 1 | s 4
08 :
i e
0.4 | X
X
! s
02 i-— &
o
i x
i =
o : A
-0.2 -2
i 1
-0.4 i I i i A N ;
0 10 15 20 26 30 as 40 s 50
x
. x
== spectral domain sampling
«- direct calculation -~ spectral domain sampling
(a) real component > «= direct calculation
I (b) imaginary component
0.1 v . r - v v 0.1 r v T T v v v
: ; } | ' | ! 1 i | ! i !
0.08 - by | i t ! 1 0.08 ' . ool : t }- | i 1
| I ! 0.08 { 5] H] | I
0.06 - = ! i H 4 i H i i snh i 1
; |] i ! : ! [i !
0.04 } - i | | | 1 0.04 i ! i : !
H | . i |
0.02 - 3 : 8 o002 4 \ |
i . & | !
: | ‘.‘ 0 : l :
ok .
{ : & I i !
-0.02] , ! 3 -o02 | ! »
g — i 3 -0
i v
-0.04} 1 ! l : -0.04
-0.00 i i~ ' ! | !] ! g ~0.06
| \
-0.08 | : . . -0.08
-0 > ; H - —o.t A i H
o 18 20 25 30 s 40 45 60 0 6 10 15 20 25 30 as 40 46 50
x ‘ . x
(c) difference between real components (d) difference between imaginary components
plotted in (a) | plotted {n (b

Figure 4 l_._gmgéziin_g.f_ugnk_el_f_un_;Qn__mgin__Q_ug
spectral domain sampling with direct results (kg=1, a=l.

N=16, M=1024 and k=kg[1+30.01)),

Stellenbosch University https://scholar.sun.ac.za

4.2 Error Convergence

In order to compare results with those in references [1] and
[2], the error convergence was investigated for the cases
kga = 10 (figure 4.2), kpa = 1 (figure 4.3) and kga = 0.1
(figure 4.4). The error presented is the normalized RMS

error defined as

S ERR (D)
ERR =
Il

where ERR(M) is as defined in equation (2.12) and g is the

source related function of equation (1.1).

The values of koa correspond to strip widths of about 3.18,

0.318 and 0.0318 wavelengths. The number of sample points

at the strip amounts to 41, 16 and 6, when
kpa = 10, 1 and 0.1 respectively. A 1024-point FFT was
used. A complex wawvenumber, Kk = k0(1+0.01j) was used to

avoid the branch point in the Fourier transform of the
kernel function. The numerical convergence of the gradient
method (GR) and the contrast sourée truncation technique
(CST) are considered. The number following the
abbreviations GR and CST indicate the number of variational

parameters used.

In figures 4.2(a) ,4.3(a) and 4.4(a) the initial estimate is
taken as £(9) = 0 while in 4.2(b), 4.3(b) and 4.4(b) the
initial estimate is the ©physical optics (Kirchhoff)
approximation with the minimization presented in section

2.4.

From these figures it can be observed that the choice of a
non-zero initial estimate shows hardly any influence on the
rate of convergence for the various schemes except for the
CST3. It appears to cause numerical instabilities in CST3
which cause the scheme to diverge. An increase in the

number of variational parameters for a particular method (GR

46

Stellenbosch University https://scholar.sun.ac.za

or CST) shows a marked improvement in the convergence rate.
In all cases the initial convergence of the CST3 is the
fastest, however once the error reaches very small values
(about 10_16) the scheme tends to diverge. Thus, when this
scheme is implemented one must ensure that it is terminated
before divergences occur. An error of 10716 is extremely
small and the scheme would normally be terminated at a

larger error such as 1072

For smaller strip widths the GR2 scheme shows good
convergence, almost equaling that of the CST3. However, the
CST3 scheme with zero initial guess is the optimum choice
for all koa. The current magnitude over the strip after 10
iterations, achieved by the scheme with the smallest error,
is shown in figures 4.5, 4.6 and 4.7 respectively. The
error in these cases was less than 10—17, 10710 ang 1071°
respectively. The physical optics approximation is included
in these figures for comparison purposes. It is seen that
as the strip increases in width the current at the centre

approaches the physical optics approximation.

47

Stellenbosch University https://scholar.sun.ac.za

10?
101
1
[o]
I
N
L
02}
]
g 10-%
3
g
Q
=
10-1t¢ L
tomt7s z r 5 B 10
iteration number
- GR1 + GR2 * CST1 o CST2 X CST3
(a) Zero initial estimate.
107
101
I
Q
iY
N
Q
0l
2 1o-s
°
v
N
o
=
B
Q
S 10-11
10-.70 .‘.l' l‘ (; {; 10

iteration number

- GR1 + GR2 * CST1 o CST2 X CST3
(b) Kirchhoff approximation with initial minimization.

Figqure 4.2 : The normalized RMS error as a function of the
number of iterations (kea=10l N=41, M=1024).

48

Stellenbosch University https://scholar.sun.ac.za

1014

10e

102

10-+

normalized RMS error

10-10

T 6 8 1o

5] S,

10-10
o

iteration number

- GR1 + GR2 * CST1 o CST2 x CST3
(a) Zero initial estimate.

10124

10e

10=

10—+

normalized RMS error

P 3 5y 1o

O,
s =

iteration number

- GR1 + GR2 * CST1 o CST2 x CST3
(b) Kirchhoff approximation with initial minimization.

Figure 4.3 : The normalized RMS error as a function of the
number of iterations (k0a=1, N=16, M=1024).

Stellenbosch University https://scholar.sun.ac.za

10¢°

foe

"o=le

normalized RMS error

10-t=

1.,

-10 : E I
He, o 2 4 6 3 10
iteration number

- GR1 + GR2 * CST1 o CST2 X CST3
(a) Zero initial estimate.

10¢

100

1052

normalized RMS error

10-t2 L

10-te
0

iteration number

- GR1 + GR2 * CST1 o CST2 X CST3
(b) Kirchhoff approximation with initial minimization.

Figure 4.4 : The normalized RMS error as a function of the
number of iterations (kga=0.1, N=6, M=1024).

50

current magnitude

current magnitude

1

Stellenbosch University https://scholar.sun.ac.za

3z : M
30 _.”,”.”.”.“.”.”.ug ... ;
28 L “,“.“,_.“._AH.HE .. ;
26 L _._._."._."."."5 ... ;
Pooc JY) 1 SRR S E .. g
SO, ; DN [S, TR
20 5 ‘_',—ff’"“mzx__,r/;/ﬁ\\
v - .. e\
16 i : i

—1 -0.5) 0.5

x/a

* Kirchhoff approximation

51

: Magnitude of equivalent surface current densit

Figure 4.5 o] gq \'4
distribution normalized to (kze)_ with kga=10, N=41,

M=1024.

Xfa

* Kirchhoff approximation

: Magnitude of equivalent surface current densit

Figure 4.6 a a le 4
distribution normalized to (kZy) ~_with kga=1l, N=16, M=1024.

Figure 4.7 : Magnitude of equivalent surface current density
distribution normalized to (kZe)- with kga=0.1, N=6,

Stellenbosch University https://scholar.sun.ac.za

current magnitude
o

0.
0.
0. 2 |eereres T -
0 J. H l
vy 0. 5 0 0.5 1
x
"ﬂ

* Kirchhoff approximation

M=1024.

52

Stellenbosch University https://scholar.sun.ac.za

4.3 Solution Stability

The stability of the solution as a function of the number of
sample points N on the strip and the FFT size, M, was
investigated. For various values of M the current at the
centre of the strip was determined using CST3 as a function
of N. The results for koa = 10, 1 and 0.1 are shown in

figures 4.8, 4.9 and 4.10 respectively.

At each value of N the scheme was terminated once the

normalized error was less than 10—6.

For kga = 10 it is
seen that even for smaller values of M there is a reasonably
large range of N for which the current converges to a
constant value. For M = 512 this range is N = 20 to 60. As
N increases however, the physical distance between the
fictitious copies, discussed in section 3.4, decreases due
to decreasing h which 1leads to an increase in coupling
between them. Thus for values of N larger than 60 in the

M=512 case the solution becomes unstable.

For smaller strip widths the interval size h is,smaller for
a given value of N, thus the distance, (M-N)h between
fictitious copies is smaller. Thus the maximum N for stable

solution decreases.

It is seen from figures 4.8 (c) and 4.9(c) that the decrease
in this maximum N is roughly a factor 10 for a factor 10

decrease in width.

For kpa = 0.1, shown in figure 4.10, even for large M(4096)
the distance, (M-N)h between copies is small. Thus a stable

region is barely perceptible.

For smaller values of N the solution 1is unstable in all
cases. This 1is probably due to insufficient number of

matching points on the strip.

53

current magnituds AT centrs

Current magnitude at cantras

Stellenbosch Unive-rsity https://scholar.sun.ac.za

22
.
N
I
€
3
o
-
.
°
8
g
i
u
]
:
i H i 1 1 i i
50 100 1Lo Loa « 50 100 150 00
number of intervals on strip nusber of Intervals on strip
(a) M = 512 (b) M = 1024
na
.
1
o
£
s
s -
"
-
v o
3
n
“
I3
o o
1
o
€
E
i 3 " g i ¥
50 100 150 00 1463 56 100 50 F00
nuaber of lntarvale on strlp nusber of intervels on strip-

(c) M = 2048 (d) M = 4096

Figure 4.8 : Magnitude of current at centre of strip as a
function_of the number of intervals taken over the strip
(Kpa=10, 1g=0,01).

14°)

Current magnitude 4t centra

Curresnt magnituds at cantre

0.

Stellenbosch University https://scholar.sun.ac.za

current magnitude at centre

number of Lntervals on strlp

(a) M = 512

i H i
L0 100 tho

1 i
100 150 200

numsber of intervsls on strip

(b) M = 1024

CurTent magnitude at centre

i
100

number of Intervals on strip

(c) M = 2048

H H
100 150 “do

number of Intervals on strip

(d) M = 4096

E:jgn:g 512 H Mggnls!]gg Qf gg[[gn; QL ge“t";g Qf ﬁt"IiQ as a
function of the number of intervals taken over the strip

{kpa=1l, 1g=0.01).

SS

current magnitude at centre

current magnitude at centre

Stellenbosch University https://scholar.sun.ac.za

40 [}

"o

current magnituds &t centra

H i i I
« 20 40 [100 10

nuaber of Intervsels on strip

A = 5l2

nuaber of intervals on steip

(b) M = 1024

Current magnitude at centre

i
60

nusber of Intervals on strip

(c) M =

]

2048

1 H H H
u 20 40 [yo 100 10
numher of intervals on strip

(d) M = 4096

function of the number of intervals taken over the strip

t
(kK 0 a=0,1, 1 fEQLQl,-)..J.

9SS

Stellenbosch University https://scholar.sun.ac.za

4.4 The Effect of the Loss Factor

Figure 4.11 shows the effect on solution stability of
varying the loss factor 1y of equation (3.13) for M = 4096
and kgpa = 10. A higher 1loss appears to improve the
stability. However it 1is far removed from the physical
situation. It is uncertain whether the problem being solved
with a high loss factor is a satisfactory approximation to

the original one.

57

current magnitude at centre

current magnitude at centre

Stellenbosch University https://scholar.sun.ac.za

.
]
£
H
-
-
.
:
6
i
“
g
H i i i i
5‘0 li;“ 1L0 —0o0 1"(5‘0 100 160 wd
nuaber of Intervale on etrip nuaber of Intervele on etrip
(a) 1g = 1 (b) 1p = 0.1
34
.
&
§
u
-
.
3
... o
-
6
1
u
g
i i 8 i i i
50 100 150 “uo 50 100 150 20

nuaber of Intervele on etrip

(C) lf = 0.01

nuaber of Intervale on akrip

(d) 1g = 0.001

89

Stellenbosch University https://scholar.sun.ac.za

5. Conclusion

Iterative schemes for the solution of scattering by
impenetrable objects have been presented. These schemes are
based on the minimization of the RMS error. The operator
equation arising from the integral equation formulation of
the scattering problem involves a Fredholm equation of type
one. For some problems the kernel of the integral equation
is of one dimensional convolution type. These integrals can
be evaluated efficiently using the FFT. The singularity in
the kernel function in the spatial domain can be avoided by
sampling its Fourier transform in the spectral domain when

forming its DFT.

The schemes were applied to the problem of scattering by a
perfectly conducting strip. The kernel for this problem is
not limited to the domain of observation, thus use of the
FFT, which assumes periodicity, results in aliasing. The
convergence of the schemes was'investigated and of those
studied it was found that the CST technique had the fastest
convergence when used with three variational parameters.
The convergence of the GR technique with two variational

parameters approached that of the CST3 for the narrow strip.

The stability of the solution as a function of the number of
intervals over the strip and the size of the FFT was studied
usiing CST3- When the distance (M-N)h between fictitious
copies of the strip 1is small coupling between them

(aliasing) causes instabilities in the solution.

Thus when these techniques are implemented one must ensure
that the choice of N and M produce a solution in a stable
region where aliasing is small. For the case of kpa=0.1 the
value of M=4096 did not prove large enough to produce a

reasonably large stable region.

An increase 1in the 1loss improves the stability of the

solution. However, it 1is uncertain whether the original

59

Stellenbosch University https://scholar.sun.ac.za

problem is being satisfactorily approximated by the problem

with a high loss factor.

60

Stellenbosch University https://scholar.sun.ac.za

References

[1] P.M. van den Berg, "Iterative computational techniques
in scattering based upon the integrated square error
criterion," IEEE Trans. Antennas Propagat., vol. AP-32,
pp.1063-1071, October 1984.

[2] P.M. van den Berg, "Iterative schemes based on the
minimization of the error in field problems," Electromagn.,

vol. 5, pp.237-262, 1985

[3] W.L. Ko and R. Mittra, "A new approach based on a
combination of integral equation and asymptotic techniques
for solving electromagnetic scattering problems," IEEE
Trans. Antennas Propagat., vol. AP-25, pp.187-197, March
077

[4] R.F. Harrington, Time-Harmonic Electromagnetic Fields,
|
McGraw-Hill, New York, 1968.

[5] A. Erdélyi (Ed.), W. Magus, F. Oberhettinger and F.G.
Tricomi (Research Associates), Tables of Integral

Transforms, vol.l, McGraw-Hill, New York, 1954.

[6] W.H Press, B.P. Flannery, S.A. Teukolsky and W.T.
Vetterling, Numerical Recipes, Cambridge University Press,
New York, 1987.

[7] A.V. Oppenheim and R.W. Schafer, Digital Signal
Processing, Prentice Hall, Englewood Cliffs, New Jersey,
1975.

[8] A.F. Peterson and R. Mittra, "On the implementation of
iterative methods for computational electromagnetics,"
Electromagnetics Lab. Tech. Rep. 85-9, Department of
Electrical and Computer Engineering, University of Illinois,

Urkan, Illinois, December 1985.

61

Stellenbosch University https://scholar.sun.ac.za

[9] P.M. van den Berg and R.E. Kleinman, "The conjugate
gradient spectral iterative technique for planar
structures," IEEE Trans. Antennas Propagat., vol. AP-36,
pp.1418-1423, October 1988. '

[10] C.F. du Toit, "The numerical computation of Bessel

functions of the first and second kind for integer orders

and complex arguments," to appear in IEEE Trans. Antennas

Propagat.

62

Stellenbosch University https://scholar.sun.ac.za

Appendix A: Integral Equation Formulation of Electromagnetic
Scattering by a Perfectly Conducting Strip

The equivalent surface current Jdg(x) on the strip as

illustrated in figure 3.1 will be entirely z-directed.
Thus,

The electric field produced by this current, ie. the
scattered field of the problem is now derived. To begin we

look at a infinitely long z-directed current filament shown

in figure A-1. From symmetry the fields should be
independent of z. We thus study the problem in the xy-
plane.
Z
T‘L 3!\
-
= ¢
TL(_C'G,.)LC
e \:} ,
) oGy 9
: r
2 il
(a) (b)
Fiqure A-1 : An infinite filament of constant a-c current

a) along the z axis and (b) displaced parallel to the z
axis [after 4].

The source point is at r’d_. and the observation point at

r
rd,. The magnetic vector potential produced at ra, by the

filament at r’aG,. is [4, p.225]

J,(r’4..)
Ay (ra,) = ——= Hy(Y) (x|ra-rra) (A.2)

47

Stellenbosch University https://scholar.sun.ac.za

64

where Ho(l)(x) is the Hankel function type 1 order O. A
time dependence of e”J¥t jis assumed thus Ho(l) represents

outward travelling waves.

The resultant electric field is.

2
Ep = 1y (3 /pz2 + k*)2,
k2 J,(r’d,)
z r 5 4
= — _ Ho (1) (k|ra -rra,|) (A.3)
y 4]
where ¥ is the admittivity of the medium.
For a dielectric medium, ¥ = jwé where é& is the complex

permittivity of the medium [4, p.19].

For the strip problem the current filaments only lie in the
y=0 plane. The source point is then

r’'a,. = x’ﬁx -a £ ’'x £ a.

We wish to calculate the scattered component of the
tangential electric field on the strip, thus the observation

point becomes

Py = Xl -a < x £ a
Then equation (A3) becomes
k2
E, = — I, (x"YHo (1) (k| x-x"1]) (A.4)
4]y

The tangential scattered field on the strip surface is then

a k?
EZS(X) = J — Jz(x’)HO(l)(k|x—x’|)dx’, -a<x<a (A.5)
-a 43]Y

Stellenbosch University https://scholar.sun.ac.za

65

On the strip surface the total tangential electric field

must be zero, thus

£, (x)

s
-E,S(x)
a k2
= - — Ho (D) (k|x-x"])J,(x’)ax’, -asx<a
-a 43¢

But [4, p.48],

where Z, is the intrinsic impedance of the medium. Thus

2 =
k ~ zOk2 Zok
49y -4k 4
Therefore
. a Zok
B l(x) = — Hy (1) (k|x-x"])J,(x")dx’, -asx<a .(A.6)
-a 4

Stellenbosch University https://scholar.sun.ac.za

Appendix B: Program Listing

The program listed here was used to determine the rate of
convergence for the various schemes. Data generated by the

program was used to create figures 4.2 to 4.7.

program iterative techniques(input,output);

{$m 32768,0,655360)
{Sn+)

{solution of scattering by perfectly conducting strip)}
{by iterative minimization of rms error)

{methods implemented:GR1,GR2 = gradient)
{ CST1,CST2,CST3 = contrast source truncation }
uses
dos;
type
real = double;
const
{TNNearlyZero = 1le-38;)} {single)
TNNearlyZero = 1e-308; {double)
{TNNearlyZero = 1e-4932;) {extended)
const
re = 0;
im = 1;
mag = 0;
arg = 1;
maxi = 4096;
mini = 205;
veclen = 4;
type
complex = array [re..im] of real;
polar = array [mag..arg] of real;
scarray = array [l..mini] of complex;
lrarray = array [l..maxi] of real;
srarray = array [l..mini] of real;
vector = array [l..veclen] of complex;
matrix = array [l..veclen] of vector;
cmplxptr = “~complex;
plrptr = “polar;
scarrayptr = “scarray:;
lrarrayptr = ~lrarray:

filename = string[8]:;

Stellenbosch University https://scholar.sun.ac.za

const
zero:complex = (0,0);
one:complex = (1,0):
two:complex = (2,0);
mone:complex = (-1,0);

function magnitude(z:complex;
square:boolean):real;

{calculates magnitude of complex number)}
(if square is true the result is the magnitude squared)

var
r:real;

begin (function magnitude}
r:=sqr(z[re])+sqr(z[im]);
if not square then r:=sqrt(r);
magnitude:=r

end; {function magnitude})

procedure cneg(z:complex;
var mz:complex);

begin
mz[re]:=-z[re];
mz[im]:=-2z[im]
end;

procedure émult(zl,zzzcomplex;
var zp:complex);

{calculates the product of two complex numbers)

begin (procedure cmult)
zp[rel:=zl[rel]*z2[re]-zl[im]*z2[im];
zp(im]:=zl[rel]*z2[im]+zl[im]*z2[re]
end; {procedure cmult)

procedure cadd(zl,z2:complex;
var zs:complex);

{calculates sum of two complex numbers)

begin (procedure cadd}
zs[re]:=zl[rel+z2[re];
zs[im]:=zl[im]+z2[im]

end; {procedure cadd)

procedure csub(zl,z2:complex;
var zd:complex);

{calculates difference between two complex numbers}

Stellenbosch University https://scholar.sun.ac.za

68

begin ({procedure csub)
zd[re]:=zl([re]-z2[re];
zd[im]:=2z1[im]-2z2[im]

end; {procedure csub)

procedure cdiv(zn,zd:complex;
var zq:complex);

{calculates the ratio of two complex numbers)

var
f:real;

begin ({procedure cdiv)
f:=sqr(zd[re])+sqr(zd[im]);

zq[re]l:=(zn[rel*zd[re]+zn[im]*zd[im])/£f;
zq[im]:=(zn[im]*zd[re]-zn[re]*zd[im])/f
end; {procedure cdiv)

procedure conj(z:complex;
var zc:complex);

{calculates conjugate of a complex number)

begin (procedure conj)
zc[re]:=z[re];

zc[im]:==-2[im]
end; {procedure conj}
function sumint(lolim:real; ({lower integration limit)
uplim:real; ({upper integration limit)
. number:integer; (number of values)

y:srarray):real; {function values)

{numerical integration using area summation)}
({NB : number of values = number of intervals)
({ie, samples lie at centre of corresponding interval}

var
ans:real;
i:integer;

begin
ans:=0;
for i:=1 to number do
ans:=ans+y[i]:
ans:=ans+* (uplim-lolim)/number;
sumint:=ans

end; \
procedure comint(lolim:real; {lower integration limit)
uplim:real; ({upper integration limit)
number:integer; {number of values)

z:scarray: {complex function values)

Stellenbosch University https://scholar.sun.ac.za

69

var za:complex); (complex result)

{numerical integration of a complex function)
{calculates the real and imaginary parts seperatly)
{using sumint}.

var
X,y:srarray;
i:integer;

begin
for i:=1 to number do
begin
X[i]:=2z[1i,re]:;
y[i]:=2z[1i,im]
end;
za[re]:=sumint(lolim,uplim,number,x);
za[im]:=sumint(lolim,uplim,number,y)
end;

procedure FFT(NumPoints:integer;
datar:lrarrayptr;
datai:lrarrayptr);

var
ii,jj,n,mmax,i,j,k : integer;
wtemp,wr ,wpr,wpi,wi,theta : real:;
tempr, tempi : real;
begin ({procedure FFT)
n := NumPoints div 2;
j = 1;
for ii := 2 to NumPoints-1 do
begin
K := NumPoints div 2;
while j > k do
begin
j = j-k;
k := k div 2;
end;
j = J+k;
if j > ii then
begin
tempr := datar~[j]:
tempi := datai~[]j]:
datar~[j] := datar~[ii]:;
datai~[j] := datai~[ii]:;

datar~[ii] := tempr;
datai~[ii] := tempi
end;
end;
mmax := 1;
while (n >= mmax) do
begin

Stellenbosch University https://scholar.sun.ac.za

theta := -pi/mmax;
wpr := -2*sqr(sin(0.5*theta));
wpli := sin(theta);
wr = 1;
wi = 0;
for ii := 1 to mmax do
begin
for jj := 0 to ((n-ii) div mmax) do
begin
i 1= ii+jj*mmax*2;
j := i+mmax;
tempr := wr*datar~[j] - wi*datai~[j];
tempi := wr*datai~[j] + wi*datar~[]]:

datar~[Jj] := datar~[i] - tempr;
datai~[j] := datai~[i] - tempi;
datar~[i] := datar~[i] + tempr;
datai~[i] := datai~[i] + tempi;

end;
wtemp := wr;
Wr = Wr*wpr - wi*wpi + wr;
wi := wi*wpr + wtemp*wpi + wi;
end;
mmax := 2*mmax;
end;
end; {procedure FFT)}

procedure IFFT(NumPoints:integer;
datar:lrarrayptr;
datai:lrarrayptr);

var
ii,jj,n,mmax,1i,j,k : integer;
wtemp,wr,wpr,wpi,wi,theta : real;
tempr,tempi : real;
mult : real;

begin ({procedure IFFT)
n := NumPoints div 2;
J = 1;
for ii := 2 to NumPoints-1 do
begin
kK := NumPoints div 2;
while j > k do -

end;
j o= j+k;
if j > ii then
begin
tempr := datar~[j];
tempi := datai~[7J]:
datar~[j] := datar~[ii];
datai~[j] := datai~[ii];

Stellenbosch University https://scholar.sun.ac.za

datar~[ii] := tempr;
datai~[ii] := tempi
end;
end;
mmax := 1;
while (n >= mmax) do
begin
theta := pi/mmax;
wpr := -2*sqr(sin(0.5*theta));
wpi := sin(theta);
wr = 1;
wi := 0;
for ii := 1 to mmax do
begin
for jj := 0 to ((n=-ii) div mmax) do
begin
i = ii+jj*mmax*2;
j := i+mmax;
tempr := wr*datar~[j] - wi*datai~[3j]:
tempi := wr*datai”[j] + wi*datar~[j]:
datar~[j] := datar~[i] - tempr;
datai~[j] := datai~[i] - tempi;
datar~[i] := datar~[i] + tempr;
datai~[i] := datai~[i] + tempi;
end;
wtemp := wr;
Wr = Wr*wpr - wi*wpi + wr;
wi := wi*wpr + wtemp*wpi + wi;
end;
mmax := 2*mmax;
end;

mult:=1/NumPoints;
for ii:=1 to NumPoints do
begin
datar~[ii]:=mult*datar~[ii];
datai~[ii]:=mult*datai~[ii]:

end;
end; {procedure IFFT)
procedure Gaussian Elimination/(

Dimen:integer; {(Dimension of the square matrix)
Coefficients:matrix; {Square matrix)
Constants:vector; {Constants of each equation)

var Solution:vector; (Unique solution to the set of

equations}
var Error:integer); (Flags if something goes wrong)

{origin:Turbo Pascal Numerical Methods Toolbox)

{(C) Copyright 1986 Borland International}

{(version date:4 Sep 87))

{modified for complex coefficients)

{Purpose : Calculate the solution of a linear set of)
{ equations using Gaussian elimination and)}
{ backwards substitution.)

Stellenbosch University https://scholar.sun.ac.za

72

{- User-defined Types:

{= complex = array [re..im] of real;)

{- vector = array [l..veclen] of complex;)
{- matrix = array [1l..veclen] of vector;)}
{- Errors: No errors;)

O:
(- 1: Dimen < 1)
2: no solution exists)

var {dummy vars)
pig:complex;

procedure Initial(Dimen : integer;
var Coefficients : matrix;
' var Constants : vector;
var Solution : vector;
var Error : integer);

{- This procedure test for errorsin the value
of Dimen. This procedure also finds the
solution for the trivial case Dimen = 1. -)

begin
Error :=
if Dimen
Error :
else
if Dimen = 1 then
if magnitude(Coefficients[1,1],false) <
TNNearlyZero then

1 then
1

A O

Error := 2
else
cdiv(Constants[1],
Coefficients[1,1],Solution[1])
end; { procedure Initial)

~

procedure EROswitch(var Rowl : vector;
var Row2 : vector);

{- elementary row operation - switching two rows -}

var
DummyRow : vector;

begin
DummyRow := Rowl;
Rowl := Row2;
Row2 := DummyRow;

end; { procedure EROswitch)}

procedure EROmultAdd(Multiplier : complex;
Dimen : integer;

var ReferenceRow : vector;
var ChangingRow : vector);

Stellenbosch University https://scholar.sun.ac.za

{- row operation - adding a multiple of one row
to another -}

var
Term : integer;

begin
for Term := 1 to Dimen do

begin
cmult(Multiplier,ReferenceRow[Term],piqg):;
cadd(ChangingRow[Term],pig,ChangingRow[Term])
end
end; { procedure EROmultAdd)}

procedure UpperTriangular (Dimen integer;
var Coefficients : matrix;
var Constants : vector;
var Error : integer);

{- This procedure makes the coefficient matrix
upper triangular. The operations which
perform this are also performed on the
Constants vector. If one of the main
diagonal elements of the upper triangular
matrix is zero, then the Coefficients
matrix is singular and no solution exists

(Error = 2 is returned). -)
var
Multiplier : complex;
Row, ReferenceRow : integer;

v:complex;

procedure Pivot(Dimen integer;
ReferenceRow : integer;

var Coefficients : matrix;
var Constants : vector;
var Error : integer);

{- This procedure searches the ReferenceRow
column of the Coefficients matrix for
the first non-zero element below the
diagonal. If it finds one, then the
procedure switches rows so that the
non-zero element is on the diagonal. -)

{- It also switches the corresponding elements
in the Constants vector. If it doesn’t
find one, the matrix is singular and no
solution exists (Error = 2 is returned). -}

var
NewRow : integer;
Dummy : complex;

Stellenbosch University https://scholar.sun.ac.za

74

begin
Error := 2; { No solution exists }
NewRow := ReferenceRow;
while (Error > 0) and (NewRow < Dimen) do
{ Try to find a row with a non-zero)

{ diagonal element }
begin
NewRow := Succ(NewRow) ;

if magnitude(Coefficients[NewRow,
ReferenceRow],false) >
TNNearlyZero then
begin
EROswitch(Coefficients[NewRow],
Coefficients[ReferenceRow]) ;
{ Switch these two rows }
Dummy := Constants[NewRow];
Constants[NewRow] :=
Constants[ReferenceRow];

Constants[ReferenceRow] := Dummy;
Error := 0; { Solution may exist)}
end;
end;
end; { procedure Pivot)

begin { procedure UpperTriangular }

ReferenceRow := 0;
while (Error = 0) and (ReferenceRow < Dimen - 1) do
begin
ReferenceRow := Succ(ReferenceRow) ;
{ Check to see if the main diagonal element is
zero }

if magnitude(Coefficients[ReferenceRow,
ReferenceRow],false) < TNNearlyZero then
Pivot(Dimen, ReferenceRow, Coefficients,
Constants, Error);
if Error = 0 then
for Row := ReferenceRow + 1 to Dimen do
{ Make the ReferenceRow element of this row
zero }
if magnitude(Coefficients[Row,

ReferenceRow] ,false) > TNNearlyZero then

begin

cneg(Coefficients[Row,ReferenceRow],

pig);

cdiv(pig,

Coefficients[ReferenceRow,ReferenceRow],

Multiplier);

EROmultAdd(Multiplier, Dimen,
Coefficients[ReferenceRow],
Coefficients[Row]);

cmult(Multiplier,

Constants[ReferenceRow],piqg);
cadd(Constants[Row],pig,Constants[Row])

Stellenbosch University https://scholar.sun.ac.za

75

end;
end; { while)
if magnitude(Coefficients[Dimen, Dimen], false) <
TNNearlyZero then
Error := 2; { No solution)}
end; { procedure UpperTriangular)

procedure BackwardsSub(Dimen : integer;
var Coefficients : matrix;
var Constants : vector;
var Solution : vector);

{- This procedure applies backwards substitution
to the upper triangular Coefficients matrix
and Constants vector. The resulting vector
is the solution to the set of equations and
is returned in the vector Solution. -)

var
Term, Row : integer;
Sum : complex;

begin
Term := Dimen;
while Term >= 1 do
begin
Sum:=zero;
for Row := Term + 1 to Dimen do
begin
cmult(Coefficients[Term,Row],
Solution[Row],piqg);
cadd(Sum,pig, Sum)
end;
csub(Constants[Term],Sum,piqg);
cdiv(pig,Coefficients[Term, Term],
Solution[Term]);
Term := Pred(Term)
end;
end; { procedure BackwardsSub }

begin { procedure Gaussian Elimination)}
Initial(Dimen, Coefficients, Constants,
Solution, Error):;
if Dimen > 1 then
begin
UpperTriangular(Dimen, Coefficients,
Constants, Error);
if Error = 0 then
BackwardsSub(Dimen, Coefficients,
Constants, Solution)
end
end; { procedure Gaussian Elimination)

const

Stellenbosch University https://scholar.sun.ac.za

vlen=410; {must be 2*mini)

type

matvec=array [l..vlen] of double;

matmat=record
typ:longint;
nrows:longint;
ncols:longint;
imagf:longint;
namlen:longint;
name:array [1..9] of char;
values:matvec

end;
matname=string[8];

procedure setvec(n:integer;
mname :matname;

vec:matvec;

var mat:matmat);

{This procedure creates a .mat column vector of real
values.)

var
i:integer;

begin (procedure setvec)
with mat do

begin
for i:=1 to vlen do values[i]:=0;
typ:=0;
nrows:=n;
ncols:=1;
imagf:=0;

namlen:=9;
name[l]:=mname(l];
name[2]:=mname[2];
name[3]:=mname[3];
name(4]:=mname(4];
name[5]:=mname[5];
name[6]:=mnamef[6];
name[7] :=mnamel[7];
name[8]:=mname([8];
name[9]:=chr(0);
for i:=1 to n do values[i]:=vec[i];
end
end; {procedure setvec)

procedure setmat(n:integer;
mname:matname;

x:matvec;

y:matvec;

var mat:matmat);

76

Stellenbosch University https://scholar.sun.ac.za

{This procedure creates a .mat matrix consisting
of two columns of real values. Each column
is input as a vector)

var
i:integer;

begin ({procedure setmat)
with mat do

begin
for i:=1 to vlen do values[i]:=0;
typ:=0;
nrows:=n;
ncols:=2;
imagf:=0;

namlen:=9;
name[l]:=mname[l];
name[2]:=mnamef[2];
name[3]:=mname[3];
name[4]:=mname[4];
name([5]:=mname[5];
name[6] :=mname(6];
name[7]:=mnamel[7];
name[8] :=mname[8];
name[9]:=chr(0);

for i:=1 to nrows do values[i]:=x[1i]:
for i:=1 to nrows do values[i+nrows]:=y[1i]
end
end; {procedure setmat)

procedure savemat(mname:matname;
mat:matmat) ;

var
filel:file of matmat;

begin ({procedure savemat)
assign(filel,mname+’.mat’);
rewrite(filel);
write(filel,mat);
close(filel)

end; {procedure savemat)

const
a=1;
epsilon0 = 8.854e-12;

var {global variables)
intrinO:real; {intrinsic impedance of free space)

M:integer; {no. of points used in FFT)
N:integer; {no. of intervals over strip)

Stellenbosch University https://scholar.sun.ac.za

kO:real;) {free space wavenumber)
kc:complex; {complex wavenumber)
h:real; {interval length)

fkernelr:lrarrayptr; {(real part of Fourier
transform of Kernel)
fkerneli:lrarrayptr; {(imag part of Fourier
transform of Kernel)

{fkernelc:lcarrayptr;)} (Fourier transform of
conj. of Kernel)

procedure kernel init;

{(*** sample Kernel in spectral domain ***)
(*¥** zero padding in spatial domain **%*)

var
i,j,k,1l,mm:integer;
alpha,dalpha,b,ba,xtot:real;
kc2:complex;
numre,numim:real;
den:complex;
dvar:complex;
r2:real;
aa,bb:real;

F,G,sr,si:extended;
zr:complex;

function sqgt_1(x:extended):extended;

{this function written by C.F. du Toit)
{ J(l14+x)-1 for x<0.0578 lose 1.2 digits)

var
sc:real;

begin
sc:=(0.0109100341796875%*%x~—
0.013092041015625)*x+0.01611328125;
sc:=(sc*x-0.0205078125)*x+0.02734375;
sCc:=(sc*x-0.0390625)*x+0.0625;
sqt_1:=((sc*x-0.125)*x+0.5)*x
end;

begin (procedure kernel init)

xtot:=M*h;
dalpha:=2*pi/xtot;

alpha:=0;

mm:=M div 2;

numre:=0.5; {kc[rel/2:)
numim:=0; {kc[im]/2;)

aa:=kc[re]; bb:=kc[im];

78

Stellenbosch University https://scholar.sun.ac.za

kc2[re]:=sqgr(aa)+sqr(bb);
kc2[im]:=2*aa*bb; (kc*kc)
for i:=1 to mm+l do
begin
den[re]:=kc2[re]-sqr(alpha);
den[im]:=kc2[im];

{csgrt(den,den) ;)
{calculate sqrt of den)

sr:=Sqr(den[re]);
si:=Sqgr(den[im]);
if sr*0.0578<=si then
begin
f:=(Sqgrt(sr+si)+den[re])*0.5;
if den[im]<0 then
zr[im]:=-sqrt(F-den[re])
else
zr[im]:=sqrt(F-den[0]);
zr[re]:=sqrt(F)
end
else
begin
F:=Abs(den[0])*0.5;
G:=sqrt(sqt _1(si/sr)*F);
zr[re]:=sqrt(sqrt(sr+si)*0.5+F);
if den[re]<0 Then
begin
if den[im]<0 then zr[im]:=
-zr[re] else zr[im]
zr(re]:=G
end
else if den[im]<0 then zr[im]:=
-G Else zr[im]:=G;
end;
den:=zr;

r2:=sqr(den[re])+sqr(den[im]);
aa:=den[re]; bb:=den[im];
fkernelr~[i]:=(numre*aa+numim*bb)/r2;
fkerneli~[i]:=(numim*aa-numre*bb)/r2;
alpha:=alpha+dalpha
end;
ji=mm;
for i:=mm+2 to M do
begin
fkernelr~[i]:=fkernelr~[j]:;
fkerneli~[i]:=fkerneli~[]];
ji=j-1
end;
ifft (M, fkernelr,fkerneli);
K:=mm+1;
1:=N div 2;
j:=mm;

t=zr[rej;

79

Stellenbosch University https://scholar.sun.ac.za

80

fkernelr~[k]:=0;
fkerneli~[k]:=0;
for i:=k+1 to k+1 do
begin
fkernelr~[i]:=0;
fkernelr~[j]:=0;
fkerneli~[i]:=0;
fkerneli~[j]:=0;
j:=3-1;
end;
fft (M, fkernelr, fkerneli);

end; {procedure kernel init)
function loglO(x:real):real;
{calculates the logarithm of x to the base 10)

begin (function logl0)
logl0:=1n(x)/1n(10)
end; {function logl0)

procedure inprod(limit:real; numsam:integer; f,g:scarray;
var zip:complex);

{calculates the inner product of the functions f and g)

var
ii:integer;
intfun:scarray;
hog:complex;
2r,zi,wr,wi:real;

begin ({procedure inprod)
for ii:=1 to numsam do
begin
zr:=f[ii,re]; zi:==-f[1i;im]; {conjugate)
wr:=g[ii,re]; wi:=g[ii,im];
intfun([ii,re]:=zr*wr-zi*wi;
intfun[ii,im]:=zr*wi+zi*wr
end;
comint(-limit,limit,numsam,intfun,zip);
end; {procedure inprod)

function norm(limit:real;
numsam: integer;
f:scarray:
square:boolean) :real;

{calculates norm of the function f)
{if square is true the result is the norm squared)

var

Stellenbosch University https://scholar.sun.ac.za
81

ii:integer;
magf2:srarray;
r:real;

begin ({function norm)
for ii:=1 to numsam do magf2[ii]:= -
sqr(f[ii,re])+sqr(f[ii,im]);
r:=sumint(-limit,limit,numsam,magf2);
if not square then r:=sqrt(r):
norm:=r
end; {function norm)

procedure s _to 1l(llength:integer;
slength:integer;
short:scarray;

longr:lrarrayptr;

longi:lrarrayptr):;

{*** zero padding of short array to obtain
long array ***}

var
i:integer;

begin ({procedure s_to 1}
for i:=1 to slength do
begin
longr~[i]:=short[i,re];
longi~[i]:=short[i,im]
end;
for i:=slength+l to llength do
begin
longr~[i]:=0;
longi~[1i]:=0
end
end; {procedure s to_1)

procedure 1 to_s(slength:integer;
longr:lrarrayptr;
longi:lrarrayptr;
var short:scarray):

{*** obtain short array from long array *%*%*}

var
i:integer;

begin (procedure 1 to_s)
for i:=1 to slength do
begin
short[i,re]:=longr~[i];
short[i,im]:=longi”[1i]
end
end; {procedure 1 to_s)

Stellenbosch University https://scholar.sun.ac.za

procedure conv(lenfft:integer;
numsam: integer;

f:scarray:

var g:scarray):;

var
fftargr,fftargi:lrarrayptr;
i:integer;
aa,bb,cc,dd:real;

begin {procedure conv)
new(fftargr);
new(fftargi);
s_to 1l(lenfft,numsam,f,fftargr,fftargi);
fft(lenfft,fftargr,fftargi);
for i:=1 to lenfft do
begin
aa:=fftargr~[i]; bb:=fftargi~[i];
cc:=fkernelr~[1i]; dd:=fkerneli~[i];
fftargr~[i]:=aa*cc-bb*dd;
fftargi~[i]:=aa*dd+bb*cc
end;
ifft(lenfft,fftargr,fftargi);
1 to_ s(numsam,fftargr,fftargi,g);
dispose(fftargr);
dispose(fftargi);
fftargr:=nil;
fftargi:=nil
end; {procedure conv)

procedure convc(lenfft:integer;
numsam: integer;

f:scarray;

var g:scarray);

var
i:integer;
fftargr,fftargi:lrarrayptr;
aa,bb,cc,dd:real;

begin (procedure convc)
new(fftargr):
new(fftargi);
s _to 1(lenfft,numsam,f,fftargr,fftargi);
fft(lenfft,fftargr,fftargi);
for i:=1 to lenfft do
begin
aa:=fftargr~[i]; bb:=fftargi~[i];
cc:=fkernelr~[i]; dd:=-fkerneli~[i];
fftargr~[i]:=aa*cc-bb*dd;
fftargi~[i]:=aa*dd+bb*cc
end;
ifft(lenfft,fftargr,fftargi);

{ CONJUGATE)

82

Stellenbosch University https://scholar.sun.ac.za

83

1 to_s(numsam,fftargr,fftargi,qg);

dispose(fftargr);
dispose(fftargi);

fftargr:=nil;
fftargi:=nil

end; {procedure convc)

var

mulO:real;
dum:real;

fin, fout:text;
res:string[5];
tech:integer;
novar:integer;
ka:real;
losfac:real;
noit:integer;
ig:integer;

methstr:string[3];

lamda:real;
rms:matvec;

rmsmat:matmat;
rmsname:matname;

xval :matvec;
cur:matvec;

curmat:matmat;
curname:matname;

g:scarray;
normg:real;
fn:scarray;
rhon:scarray;
phin:scarray;

Lphin:scarray;
itno:integer;
errn:real;
normerr:real;
Lfn:scarray;
fcorn:scarray;

Lfcorn:scarray;

{permeability of free space}
{2/intrino0}

{output and input files)
{output file name)
{technique:1=GR, 2=CST)}

{no. of variational constants}

{wavenumber * half strip width}

{kc[re]l/kc[im]}

{no. of iterations)

{initial guess, if ig=0 then
zero init. guess else
Kirchhoff approx. with
initial minimization step}

{method abreviation)
{free space wavelength)

{store normerr at each iteration
to create .mat file)

{matrix created from rms})

{name for .mat file containing
error)

(X values at sample points}

{current magnitude at sample
points)

{matrix created from cur)

{name for .mat file containing
current)

{incident field)

{norm of g}

{current after iteration n}

{residual after iteration n}

(variational function in iteration
nj

{convolution of phin and kernel)

{iteration number)

{rms error after iteration n)

{normalized rms error)

{convolution of fn and Kernel)

{correction factor of current
during iteration n)

{convolution of fcorn and Kernel)

Stellenbosch University https://scholar.sun.ac.za

v:array [1l..3] of scarray; ({iteration variables)

aa:matrix; {iteration matrix}
b:vector; {iteration variable}
cl:vector; {cofactors of a}
d:complex; {determinant of a})
bod:complex; {b[1]/d)

alpha:vector; {variational constants)

gerr:integer;

Xl:real; {value of x at centre of
interval 1)

Xi:real; {value of x at centre of
interval i)

vr:real; {magnitude of current at

interval centre}
dog,cat,rat:complex; {(dummy vars}
procedure write heading_fout;

begin

WRITELN(fout, ‘method:’ ,methstr,novar:2,’” M = ' ,M:4);

WRITELN(fout,’ka = ’,ka,” N = ',N:4,
* loss factor = ’,losfac)
end;

procedure write_ error fout;

begin)
WRITELN(fout,itno:3,’ ! ,normerr,
’ ’,1logl0(normerr))
end;

procedure write current fout;
begin
WRITELN(fout,xi,’ ’,vr)
end;

procedure cst_ technique;

{generates variational parameters for CST ttechnique)

var
argfftr,argffti:lrarrayptr; {argument of FFT)
ii:integer; {loop counter)

num,den:complex;
aa,bb,cc,dd,r2:real;

begin ({procedure cst_technique)
new(argfftr);
new(argffti):;
s to 1(M,N,rhon,argfftr,argffti);

84

Stellenbosch University https://scholar.sun.ac.za

85

fft(M,argfftr,argffti);
for ii:=1 to M do
begin
aa:=argfftr~(ii]; bb:=argffti~[ii];
cc:=fkernelr~[ii]; dd:=fkerneli~[ii];
r2:=sqr(cc)+sqr(dd);
argfftr~[ii]:=(aa*cc+bb*dd)/r2;
argffti~[ii]:=(bb*cc-aa*dd)/r2
end;
ifft(M,argfftr,argffti);
1l to_s(N,argfftr,argffti,phin);
dispose(argfftr);
dispose(argffti);
argfftr:=nil;
argffti:=nil;
conv(M,N,phin,Lphin)
end; {procedure cst_technique)

procedure gr_technique;
{generates variational parameters for GR technique}

begin ({procedure gr_ technique}
convc(M,N,rhon,phin);
conv(M,N,phin,Lphin);

end; {procedure gr_technique}

procedure newfunc;

{calculates values at the end of an iteration)
var
ii:integer; (loop counter}

begin (procedure newfunc)}
for ii:=1 to N do
begin
cadd(fn[ii],fcorn[ii],fn([ii]);
cadd(Lfn([ii],Lfcorn(ii],Lfn(ii]);
csub(Lfn[ii],g[ii],rhon[ii])
end;
errn:=norm(a,N,rhon,false);
normerr:=errn/normg
end; {procedure newfunc}

procedure novarl;

var
ii:integer; (loop counter)

begin ({procedure novarl)
v(1]}:=Lphin:;
inprod(a,N,v[1],v[1],aa[l,1]);
inprod(a,N,v[1],rhon,dog):

Stellenbosch University https://scholar.sun.ac.za

cneg(dog,b[1]);
cdiv(b[l],aa[l,1],alpha[l]);
for ii:=1 to N do
begin
cmult(alpha[l],phin[ii],fcorn[ii]);
cmult(alpha[l],Lphin[ii],Lfcorn[ii])
end;
newfunc
end; {procedure novarl)

procedure novar2;

var
ii,Jjj:integer; (loop counters)

begin ({procedure novar?2)
v[1l]:=Lphin;
v[2]:=Lfcorn;
for ii:=1 to 2 do

for jj:=1 to 2 do inprod(a,N,v([ii],v[]JJj]l,aa[ii,ji]):

inprod(a,N,v[1],rhon,doqg);
cneg(dog,b[l1]); b[2]:=zero;

Gaussian_ Elimination(2,aa,b,alpha,gerr);
if gerr <> 0 then writeln(fout,’GAUSS ERROR !’);

for ii:=1 to N do
begin
cmult(alpha[l],phin[ii],dog):;
cmult(alpha[2],fcorn[ii],cat);
cadd(dog,cat,fcorn[ii]):
cmult(alpha[l],Lphin[ii],dog);
cmult(alpha[2],Lfcorn[ii],cat);
cadd(dog,cat,Lfcorn[ii])
end;
newfunc
end; {procedure novar?z2)

var {STRICTLY NOT GLOBALS)
i,Jj:integer; {loop counters)

onecarray,twocarray, zcarray:scarray;
AO,BO,etal0:complex;
hrs,mins,sex,sexlOO:word;.
stime,ftime,ttime:single;

begin (PROGRAM)
WRITELN(“RUNNING....");

for i:=1 to mini do onecarray[i]:=one;

86

Stellenbosch University https://scholar.sun.ac.za

for i:=1 to mini do zcarray[i]:=zero;
mul:=pi*d4e-7;
intrinO:=sqrt(mu0/epsilono0);
dum:=2/intrino;

assign(fin, ‘input.dat’);
reset(fin);

repeat

gettime(hrs,mins, sex,sex100);
stime:=3600.0*hrs+60.0*mins+sex+sex100/100.0;

READLN(fin,res,tech,novar,M,ka,N,losfac,noit,iqg);
WRITELN('***’ res);

rmsname:=res+’rms’;

if tech=1 then methstr:=’gr’ else methstr:=’cst’;
assign(fout,rmsname+’.prn’);

rewrite(fout);

write heading fout;

kO:=ka/a;

lamda:=2*pi/k0;

kc[re]:=k0;

kc[im]:=losfac*k0;

h:=2*a/N;

new(fkernelr):;
new(fkerneli);

{new(fkernelc);)
kernel init;
{incident field)
g:=onecarray:

normg:=norm(a,N,qg,false);

if ig = 0 then
begin

{zero initial guess)
fn:=zcarray;

Lfn:=zcarray:; {conv(M,N,fn,Lfn);)
for i:=1 to N do csub(Lfn[i],g[i],rhon[i]);
end
else

begin

87

Stellenbosch University https://scholar.sun.ac.za

{initial guess : physical optics approximation)
for i:=1 to N do
begin
fn[i,re]:=2%kc[re];
fn[(i,im]:=2*kc[im]
end;
conv(M,N,fn,Lfn);
inprod(a,N,Lfn,qg,a0);
inprod(a,N,Lfn,Lfn,B0);
cdiv(A0,BO,etal);
for i:=1 to N do cmult(etaO,fn[i],fn[i]):
conv(M,N,fn,Lfn);
for i:=1 to N do csub(Lfn[i],g[i],rhon[i]);
end;

itno:=0;
errn:=norm(a,N,rhon,false);
normerr:=errn/normg;

write error fout;
rms[itno+l]:=normerr;

if tech = 1 then
begin {tech=1}
if novar > 2 then novar:=2;
case novar of
l:begin ({novar=1l)
itno:=1;
while itno<=noit do
begin
gr_technique;
novarl;
write error fout;
rms[itno+l]:=normerr;
itno:=succ(itno)
end
end; {novar=1)
2:begin ({novar=2}
itno:=1;
gr_technique;
novarl;
write error fout;
rms[itno+l]:=normerr;
itno:=2;
while itno<=noit do
begin
gr_technique;
novarz2;
write error fout;
rms[itno+1]:=normerr;
itno:=succ(itno)
end
end {novar=2}

88

Stellenbosch University https://scholar.sun.ac.za

end {case novar of)

end {tech=1)

begin ({tech=2)

if novar > 3 then novar:=3;
case novar of
l:begin ({novar=1}
itno:=1;
while itno<=noit do
begin
cst_technique;
novarl;
write error fout;
rms[itno+l]:=normerr;
itno:=succ(itno)
end
end; {novar=1}
2:begin ({novar=2}
itno:=1;
cst_technique;
novarl;
write error fout;
rms[itno+l]:=normerr;
itno:=2;
while itno<=noit do
begin ,
cst_technique;
novarz2;
write error fout;
rms[itno+l]:=normerr;
itno:=succ(itno)
end
end; {novar=2})
3:begin {novar=3)
itno:=1;
cst_technique;
novarl;
write_error fout;
rms[itno+l]:=normerr;
itnes=27%
cst _technique;
novarz2;
write error fout;
rms[itno+l]:=normerr;
itno:=3;
while itno<=noit do
begin
cst technique;
v[1l]:=Lphin;
v[2]:=Lfcorn;
v[3]:=Lfn;
for i:=1 to 3 do
for js=1 to 3 do
inprod(a,N,v[i],v[j]l,aa[i,]]):

89

Stellenbosch University https://scholar.sun.ac.za

inprod(a,N,v[1],rhon,doqg):
cneg(dog,b[1]);
b[2]:=zero; Db[3]:=zero;

Gaussian Elimination(3,aa,b,

alpha,gerr):;

if gerr <> 0 then
writeln(fout, /GAUSS ERROR !’);

for i:=1 to N do
begin

cmult(alpha[l],phin[i],dog);
cmult(alpha[2],fcorn[i],cat)
cmult(alpha([3],fn[i],rat);
cadd(cat,rat,cat);
cadd(dog,cat,fcorn[i]);
cmult(alpha[l],Lphin[i],doqg)

.
’

.
’

cmult(alpha[2],Lfcorn[i],cat);

cmult(alpha(3],Lfn[i],rat);
cadd(cat,rat,cat);
cadd(dog,cat,Lfcorn[i])
end;
newfunc;
write error_ fout;
rms[itno+1]:=normerr;
itno:=succ(itno)
end
end {novar=3}
end {case novar of}
end; {tech=2)

gettime(hrs,mins,sex,sex100);
ftime:=3600.0*hrs+60.0*mins+sex+sex100/100.0;
if ftime < stime then
ttime:=24*%3600-stime+ftime
else
ttime:=ftime-stime;
hrs:=trunc(ttime/3600);
ttime:=ttime-3600*hrs;
mins:=trunc(ttime/60);
ttime:=ttime-60*mins;
sex:=trunc(ttime);
ttime:=ttime-sex;
sex100:=round(ttime*100);
writeln(fout,’*** Execution Time = /,
hrs:2,’:’,mins:2,’:’ ,sex:2,’,’ ,sex100,’

close(fout);

setvec(succ(noit),rmsname,rms,rmsmat) ;
savemat (rmsname,rmsmat) ;

xl:=-a+h/2;
curname:=res+’cur’;

***');

90

Stellenbosch University https://scholar.sun.ac.za

assign(fout,curname+’.prn’);
rewrite(fout);
write_heading_fout;

for i:=1 to N do

begin
Xi:=x1+(1i-1)*h;
vr:=magnitude(fn[i],false);
write current_fout;
xval[i]:=xi;
cur[i]:=vr

end;

close(fout);

setmat (N, curname,xval,cur,curmat);
savemat (curname,curmat);

dispose(fkernelr);
dispose(fkerneli);
fkernelr:=nil;
fkerneli:=nil;

{dispose(fkernelc);
< fkernelc:=nil}

until eof(fin);
close(fin);

end.

91

