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Abstract

This work entails an analysis of two-dimensional Newtonian flow through a prismatic array

of squares. Both in-line and staggered configurations are investigated, as well as the very

low velocity Darcy regime, where Stokes' flow predominates, and the Forchheimer regime,

where interstitial inertial effects such as recirculation are present. As point of departure two

recently developed pore-scale models are discussed and their results compared to Stokes' flow

computational analysis for flow through regular arrays of rectangles. The commercial CFX

code is also used to analyse the problem and to determine the accuracy of the assumptions

used for the development of the pore-scale models. Finally an improvement is suggested to

the RRUC model towards more accurate prediction of permeabilities, especially for porosities

below 75%, and whereby its quantitative predictive capability is thus enhanced considerably.
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Opsomming

Hierdie werk behels 'n analise van twee-dimensionele vloei deur 'n prismatiese matriks van

reghoeke. Beide inlyn en verspringde konfigurasies word ondersoek sowel as Darcy-gebied

van baie lae vloeisnelheid, waar Stokes se Wet oorheersend is, en die Forchheimer-gebied

waar inersiële effekte soos interne hersirkulasie teenwoordig is. As uitgangspunt word twee

modelle bespreek wat onlangs ontwikkel is en hulle resultate word vergelyk met numeriese

voorspellings vir Stokes vloei deur 'n geordende matriks van reghoeke. Die kommersiële

numeriese pakket CFX is ook gebruik om die probleem te analiseer en om die toepaslikheid

van aannames van die onderskeie modelle te bepaal. 'n Verbetering tot die RRUC model word

voorgestel wat lei tot meer akkurate voorspelling van permeabiliteite, veral vir porositeite

laer as 75%, en waardeur die kwantitatiewe voorspellings-vermoë van die modelle aansienlik

verbeter word.
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Chapter 1

Introduction

Although significant theoretical advances have been made over the past few decades towards

the understanding and modelling of flow phenomena in porous media, surprisingly few funda-

mental pore-scale studies have been reported recently on simple geometries, although much

can still be learnt from such endeavours.

The study of fluid transport through two-dimensional porous structures has a wide variety

of practical applications. In nature a dendrite type of environment is frequently encountered

and to study and analyse the complex chemical and physical processes that take place a good

understanding of the underlying flow conditions in the porous environment is absolutely

necessary [12]. For heat and mass transfer the flow field needs to first be solved. For the

RTM (resin transfer moulding) process, where resin is injected into a closed mould filled with

dry fibre reinforcement [13], a two-dimensional fluid model which can realistically describe

the mould filling process, is necessary.

The study of air flow through cities and through wind breaks are other important applications

of two-dimensional fluid models.

1
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1.1 Published Literature

In the published literature there exist several analytical and empirical models for the mod-

elling of a two-dimensional prismatic porous medium.

Hasimoto [14], used a Fourier series method to obtain solutions of the Stokes equations of

motion for a viscous fluid past a periodic array of cylinders, as well as developing an equation

for the drag coefficient of a rod.

Sangani and Acrivos [18], determined solutions for slow flow past a square and a hexagonal

array of cylinders by using a somewhat non-conventional numerical method. The calculated

values of the drag on a cylinder as a function of c, the volume fraction of the solids, were

shown to be in excellent agreement with the corresponding asymtotic expressions for very

dilute arrays (c « 1) and for very concentrated arrays (c ----t cmax), where Cmax is the maxi-

mum volume fraction. These solutions were then used to calculate the average temperature

difference between the bulk and the cylinders which are heated uniformly under conditions

of small Reynolds and Péclet numbers.

Kolodziez [17], provides a survey of theoretical and experimental results given by various

authors concerning the resistance of a system of cylindrical bars under perpendicular creeping

flow. This system has the form of a bundle of parallel bars and is treated as an anisotropic

porous medium, with the flow through being described by the Darcy equation of filtration.

Jackson and James [16], provide a literature survey of experiments and theories related to

low Reynolds-number flow through highly porous fibrous porous media. Experimental data

was reported for a wide range of materials, from polymer chains to fibreglass.

Sangani and Yao [19], developed a numerical method that takes into account the many

particle interactions in a rigorous manner to determine the effective thermal conductivity of a

composite medium consisting of parallel circular cylinders of certain conductivity suspended

in a matrix. Sangani and Yao [20], then extended this method to treat the problem of

determining the permeability of random arrays of infinitely long cylinders. The results for

the transverse and longitudinal permeabilities averaged over several configurations of random

arrays of cylinders are presented as a function of the area fraction of the cylinders.

2
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Gebart [13], derives the permeability of an idealized unidirectional reinforcement consisting

of regularly ordered parallel cylindrical fibres from first principles both for flow along and

for flow perpendicular to the fibres.

Howells [15], studies the flow though beds of fixed cylindrical fibres with the aim of finding

the shielding radius and drag per unit length as a function of volume fraction occupied by

the fibres in the semi-dilute situation.

All the solutions given in the above mentioned literature, are however only applicable to the

Darcy flow regime.

An example of a theoretical solution that includes both the Darcy and the Forchheimer

regimes is the rectangular representative unit cell (RRUC) model of Du Plessis and Van

der Westhuizen [9]. An updated version of this solution was published by Du Plessis [5].

Diedericks [4] extended this updated model to be applicable to two-dimensional anisotropic

porous media.

1.2 This work

This study is directed at the close investigation of two pore-scale models for flow through a

regular array of square obstacles. The RRUC model was already mentioned and the other is

the results from an analytical model by Firdaouss and Du Plessis [12] used to tie together the

results of a numerical analysis of Stokes flow through periodic arrays done at CNRS-LIMSI

in 2001 [12].

Some discrepancies exist between the hydrodynamic permeability predictions of the two

models and one goal of the present work is to analyse the models and their assumptions

closely by means of the commercial code CFX. Particular attention will be paid to the

manner of subdivision of the void volume into sub-volumes, each with its predominant flow

conditions and also the effect of staggering and the tortuosity.

3
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1.3 Layout of thesis

Two proposed analytical models for the prediction of the hydrodynamic permeability, namely

the RRUC model of Du Plessis and Van der Westhuizen [9] and the FD (Firdaouss and Du

Plessis) model [12], are described in Chapter 2. The RRUC model provides a theoretical

model of a two-dimensional prismatic porous medium that includes both the Darcy regime,

where only viscous drag is present, and Forchheimer regime, where inertial drag effects

predominate, for an isotropic porous medium. The FD analytical model is used for the

prediction of dimensionless hydrodynamic permeabilities in a regular prismatic array, i.e. a

particular non-isotropic two-dimensional array of rectangles. Even though the FD analytical

model can be used for varying rectangular shaped fibres, only those configurations with

square cells have been analysed in this thesis. Numerical results [12], obtained using a

numerical code developed at LIMSI, in France, using the finite element method, for the

dimensionless permeability for a selection of porosities are also given in Chapter 2. In this

thesis these numerical results will be referred to as the FD numerical results.

Results for the dimensionless hydrodynamic permeability for non-staggered (Chapter 3) and

staggered (Chapter 4) configurations are presented using a commercial CFD (Computational

Fluid Dynamics) code CFX. These results are shown to closely match the FD numerical

results previously obtained. The numerical results are then compared to the results predicted

by the RRUC and the FD analytical models. The FD analytical model is shown to provide a

good prediction for the hydrodynamic permeability for configurations of low porosities, but

the RRUC is shown to not provide accurate enough predictions for models of any porosity.

Using CFX it is shown that the suggested compartementalization of the fluid section into

volumes by the FD analytical model is acceptable only for models of relatively low porosities.

In Chapter 6 the pressure averaging equation is analysed for both the non-staggered and

staggered configurations, using the pore-scale volumes that were introduced and discussed in

Chapter 5. Using the information obtained by this analysis, an alteration to the RRUC model

is suggested. The altered RRUC model is shown to provide a much better correspondence

with numerical results for the hydrodynamic permeability than the original RRUC model.

The 'RRUC model technique' is also applied to the FD staggered configuration and shown

4
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to give the same equation as the FD analytical model.

In Chapter 7 the analytical models that are discussed in this thesis are compared to results

found in other literature. The results obtained by the FD and RRUC non-staggered model

are compared to the results given by Sangani and Acrivos [18] for slow flow past a square

array of cylinders. It is shown that the calculated drag on the cylinders is higher than

the predicted drag on the rectangular fibres for all porosities. The results from both the

FD staggered and the RRUC staggered models are then compared to the results given by

Sangani and Acrivos [18] for slow flow past a hexagonal array of cylinders. A comparison is

also done between the staggered and non-staggered models considered in this work.

Appendix A provides a brief discussion of some aspects of the commercial CFD code CFX

which is used in this thesis. In Appendix B the actual calculations done to obtain the

numerical results for a non-staggered configuration with porosity E = 0.51, given by CFX,

are shown. The calculations that were used to analyze the compartementalization of the

fluid volume for the non-staggered configurations, as suggested by RRUC and FD analytical

models, are also given. In Appendix C the FD staggered configuration, with porosity E =

0.1164, is analysed and the actual calculations done to obtain the numerical results given by

CFX, as well as those used to analyse the assumptions of the FD analytical model, are shown.

The pressure averaging equation is analysed for the RRUC model with the FD staggered

configuration in Appendix D.

5
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Chapter 2

Existing theory

2.1 RRUC model

The RRUC model is a pore scale modelling procedure to provide closure to general volume

averaged transport equations and which is used for the prediction of flow through various

types of microstructure. It was first proposed by Du Plessis and Masliyah [8] and uses volume

averaged quantities to provide closure for the set of open averaged equations.

2.1.1 Interstitial momentum transport equations

The continuity equation for the interstitial conservation of mass, for incompressible flow,

may be expressed as

0, (2.1 )

where 1!. is the actual fluid velocity field within the channels of the porous domain. The

Navier-Stokes equation, governing the momentum transport within the interstitial fluid

phase, may be written as follows:

Q. (2.2)

6
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It is impractical to describe the full interstitial fluid velocity field 1!., and thus volume averaged

quantities, which may hopefully be measurable in practice, are used to describe the principle

dynamics of the flow through porous media.

2.1.2 Volume averaging

By applying volume averaging [22] to the interstitial variables and transport equations,

volume averaged quantities can be obtained. According to the phase averaging technique,

the interstitial transport variables and equations may be averaged over a Representative

Elementary Volume (REV), Ua, which includes both fluid UI and solid Us parts. An REV

should consist of enough solid and fluid parts so as to make it statistically representative of

the properties of the porous medium. It must also be small enough to be used as a differential

element in the calculus of volume averaged quantities. The porosity of the porous medium

is defined by the following volume ratio for the REV

(2.3)

where Ua is the total volume and UI is the total fluid volume. An REV is defined for each

and every point of the averaging domain and its size, shape and orientation are assumed to

remain constant at all times while under consideration.

The phase average ('IjJ) of any tensorial quantity 'IjJ of the fluid phase of the REV, is defined

as

('IjJ ) (2.4)

Similarly, the intrinsic phase average ('IjJ) I is defined as

(2.5)

7
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The deviation of any fluid phase quantity {'IjJ} at some point in Uf is defined as

(2.6)

Using equation (2.3) we have the following relationship between the phase and intrinsic phase

averages:

('IjJ ) (2.7)

The superficial velocity g_ is defined as the phase average of the interstitial velocity

~o JJJJl dU, (2.8)

and presents the average velocity which would occur in a section where no solids were present

within the particular macroscopic boundaries. The direction of g_ is referred to as the stream-

wise direction and any properties referring to this direction will be denoted by a subscript

II. The direction perpendicular to the streamwise one is denoted by a subscript .L.

The drift velocity 1£ is defined as the intrinsic phase average velocity

(2.9)

and represents the average velocity of any fluid particle in the streamwise direction. The

relationship between the superficial and drift velocities (g_ = é 1£) is known as the Dupuit

relationship [3J.

For an incompressible fluid the phase averaged continuity equation is as follows

v« o. (2.10)

8
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With no-slip boundary conditions on the fluid-solid interface, volume averaging of the Navier-

Stokes equation [5] leads to

oq
p ot + pV· (g_g_/E) - Ep[!_ + EVp! - V· (I) + pV· ({lL} {lL})

+ ~a JJ Tl{p}dS ~a JJ Tl· ~dS - Q. (2.11)

The average flow through a porous medium is time independent and uniform (9. is constant

in magnitude and direction) in many applications since curvature of the streamlines of the

average flow field 9. is to a large extent suppressed by the presence of the solid phase. Equation

(2.11) simplifies to

1
- p \l . ({lL} {lL}) + Ua JJ (Tl {p} - Tl . ~) ss, (2.12)

if the average field 9. is uniform. This equation is still 'open' in the sense that further

knowledge of the porous medium is needed to quantify the surface integral. A further

closure modelling procedure is thus needed to transform equation (2.12) to a closed form for

particular applications.

2.1.3 Closure with the RRUC model

A pore-scale closure modelling procedure, the RRUC model, was proposed by Du Plessis

and Masliyah [8]. It aimed at approximating the porous material by imbedding the average

geometric characteristics of the material as found in an REV within the smallest possible

hypothetical rectangular representative unit cell (RRU C). The description of the model below

follows closely that of [5].

Assuming uniform discharge through a homogeneous isotropic porous medium, the RRUC

simplifies into a cubic representative unit cell of side length d, yielding identical properties

9
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in each of its principle directions and equation (2.12) can be reduced further to

~o JJ (rr {p} - rr -z) dS. (2.13)

Due to the isotropy requirement the two surfaces of all parallel pairs will be an equal distance

dp apart. A possible cubic RRUC for a two-dimensional flow through an isotropic medium

is shown in Figure 2.1. Piecewise straight streamlines are assumed between and parallel

to the plates, as shown in Figure 2.1. It should be noted that, in this work, reference to

'volumes' must be interpreted as volume per unit depth, i.e. volumes may be expressed by

two-dimensional areal expressions.

I+----d )ol

r----
r--
r

__ ...J

---------(1-- Uf_________ ~ ...J

~
2

Figure 2.1: Unit cell geometry of a RRUC for 2D porous medium with piece-wise straight

streamlines.

The tortuosity [21] of streamlines in a porous medium can be considered as a measure of the

non-straightness of streamlines in the pore space. The most basic definition of tortuosity

is the path length tortuosity [3], which is defined as the ratio of the average length of the

tortuous flow path Le to the corresponding straight line length L in the streamwise direction

(2.14)

10

Stellenbosch University http://scholar.sun.ac.za



In this case, according to the rectangular geometry and associated assumptions all the

streamlines in an RRUC are of equal length Le = 2d - dp and the predefined displacement

is equal to d. Therefore, for the RRUC model the tortuosity X can be defined as

X (2.15)

where Uil is the effective streamwise volume. A third velocity variable, the streamwise average

pore velocity wil [1] can now be defined as

Wil
Ua X-q - -q,
UII- é-

(2.16)

and represents the average velocity of any particle in the streamwise volume Uil'

Darcy regime

In the Darcy regime of pure viscous drag at low Reynolds number (Rep < < 1), the pressure

deviation part of the surface integral term, in equation (2.13), is negligible in the streamwise

pore section. In the transverse pore sections the shear stresses have no streamwise com-

ponents. Although, due to the randomness of the medium, the transverse shear stresses of

neighbouring RRUCs will cancel vectorially, interstitial transverse pressure drops will still be

created. These pressure drops will then contribute to the surface integral term through the

pressure deviation part, when evaluated at the streamwisely up- and down- facing surfaces,

Sl_. It was assumed, however, that this contribution to the integral of the pressure deviation

term may be incorporated by integrating for the wall shear stress over the total solid-fluid

interface Sfs instead of only over the streamwise part SII' In the low Reynolds number limit

equation (2.13) is thus given by

(2.17)

Sl_

where ft. is the unit vector in the streamwise direction. If the wall shear stress is assumed to

be uniform and equal to a constant, Tw, over Sfs in all channel sections, for the low Reynolds
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number limit, equation (2.17) reduces to

ft ~o JJ Tw dS.

s..

(2.18)

For Newtonian flow between two parallel plates a distance dp apart and if the average trans-

verse velocity is ,L3wll it follows that

(2.19)

If we define

6 X SII + ,L3S.l
fdp' U; (2.20)

the momentum transport equation for uniform average flow becomes

(2.21)

in the limit of very slow flow. Comparing this equation with the definition of the hydrody-
!

namie permeability

k J-lq---
dpjdx'

(2.22)

yields the following for the model prediction of permeability

k (2.23)

Forchheimer regime

For the Forchheimer regime (when Rep> 100) inertial drag effects predominate. For purpose

of this study the 'high' Reynolds number limit refers to the laminar limit where interstitial

recirculation is developed but no turbulence is yet present. The predominance of the pressure
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gradient above the shear stresses becomes more enhanced with the increase in Reynolds

number, so that the contribution of shear stresses may be discarded, reducing equation

(2.13) to

~o JJ Jl {p} dS. (2.24)

It was proposed by Du Plessis [9] that the surface integral term may be modelled by an

internal drag condition as follows

(2.25)

(2.26)

(2.27)

where ce is the drag coefficient and Sface the surface exposed upstream relative to the stream-

wise direction. Therefore we have the definition:

X Cd Rep S.l
8f.dp • Ui;' (2.28)

where

(2.29)

is the interstitial Reynolds number.

Asymptote matching

Combining the above results found for the Darcy and Forchheimner regimes by using the

asymptote matching technique (Churchill and Usagi [2]), to produce a result valid for both,

we obtain

G (2.30)
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where s is the shifting parameter. Equation (2.13) can therefore be written as

(2.31)

The shifting parameter may provisionally be taken as unity, since this value produced ade-

quate correlation with experimental results in many cases of Newtonian flow through porous

media [9].

Unidirectional fibre bed

An appropriate RRUC for a unidirectional bundle of uniform fibre beds was introduced by

Du Plessis [6] and is schematically shown in Figure 2.2.

d

Figure 2.2: Rectangular prismatic RRUC for a unidirectional fibre bed.

Crossflow through this bundle of fibres presents a two-dimensional case of flow through a

porous media.

The tortuosity x, equation (2.15), can be written in terms of the porosity as follows

x= 1- yT=E' (2.32)

The frictional factor G for a unidirectional fibre bed can therefore be given as

G _ 12 (1 +,8) yT=E + pqCd . yT=E
- d2 (1 - yT=E)2 /-L d 2(1 - yT=E)2' (2.33)
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The hydrodynamic permeability for a unidirectional fibre bed is given as:

£d2(1- ~)2
12(1 + (3)~'

(2.34)

where (3 is the velocity ratio. Du Plessis and Diedericks [5], assumed the velocity ratio to be

unity, simplifying the equation to:

k
£d2(1- ~)2

24~
(2.35)

This equation was considered to be adequate for predicting the hydrodynamic permeabil-

ity through a two-dimensional case of flow through a porous medium. The dimensionless

permeability

K
£(1- ~)2

24~
(2.36)

is obtained by dividing the hydrodynamic permeability by the cross-sectional area of the

uni t cell d2.

2.2 FD analytical model

Another model for the prediction of Darcy permeabilities in a non-isotropic two-dimensional

porous medium is the FD analytical model proposed by Firdaouss and Du Plessis [12]. In

this model it is shown that it is necessary to introduce two other parameters, in addition to

porosity, for the prediction of Darcy permeabilities. These parameters are concerned with

the geometric properties of the solid microstructure in the streamwise direction, namely a

particular shape factor and the discrimination between non-staggered and staggered config-

urations in the streamwise direction.

2.2.1 Rectangular representation of the porous microstructure

As with the RRUC model, the FD analytical model uses rectangular unit cells to represent

the porous microstructure. The direction of <], as defined in equation (2.8), is also referred
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to as the streamwise direction, denoted by a subscript II and the direction perpendicular to

it is denoted by a subscript .L. A unit cell is considered here as a solid rectangle embedded

in a rectangular volume of dimensions dil and dj_, as shown in Figure 2.3. The solid par-

ticle is represented by a rectangle of length dsll in the streamwise direction and length dsj_

perpendicular to it, also shown in Figure 2.3.

Figure 2.3: Notation for unit cell with respect to streamwise direction.

For a porous structure with a fairly evenly spread of solid particles it seems reasonable that

the following assumption, (to which all of the examples that were computed adhere), could
~~:;

be made

A. (2.37)

Using the geometry, we obtain the following expression for the porosity for the rectangular

unit cell

dlldj_ - dslldsj_
dlldj_

(2.38)

and using assumption (2.37) it can be rewritten as

(2.39)
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This gives the following expression for the ratio of the cross-stream solid width to cell width

ratio:

(2.40)

The hydrodynamic permeability (equation (2.22)) for the streamwise direction, in the nota-

tion of the rectangular representation of the solid particles, can be written as

(2.41 )

where !::lp is the streamwise pressure drop per unit cell. The dimensionless permeability, K,

is defined as the hydrodynamic permeability divided by the cross-sectional area of a unit

cell, and is therefore given as

(2.42)

2.2.2 FD analytical model for non-staggered configuration

In the non-staggered configuration, solid rectangles are lined up in straight rows in the

streamwise direction. The fluid volume UI is considered as three distinct volumes, as indi-

cated in Figure 2.4, the streamwise volume Uil, the transfer volume Ut and the fluid volume

between the solids in the perpendicular direction, Ug 1.

The FD analytical model assumes that the fluid volume, Ug, is stagnant and that the solid

surfaces in this region create no shear stress which could be attributed to the pressure

gradient. Sets of parallel plate sections are formed between the solid rectangles in the

streamwise direction and between which shear stresses are created during Stokes flow. The

cross-stream distance between the plates is (dl_ - dSl_) so that the magnitude of the average

streamwise velocity, wil, between the plates of each section is related to the magnitude, q, of

the Darcy velocity, by the following:

q
(2.43)

1- J1=E'
IThe volume Ug is sometimes referred to as Us in other work [12].
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, dj_

Figure 2.4: Unit cell geometry in case of no streamwise staggering.

Assuming fully developed Stokes flow to be present in Uil, i.e. between all pairs of streamwise

parallel plates, the following streamwise pressure gradient between the parallel plates is

obtained:

dl (1 - vT=E)3'
(2.44)

The pressure drop in the transfer volume of the unit cell is assumed to be zero, due to the

absence of solid induced shear stresses, so that the volume, Ut, simply acts as a transfer

volume for the fluid between the two adjacent shear-inducing pairs of parallel plates. The

total pressure drop across the cell thus originates only in Uil and can be written as

(2.45)

From equations (2.42), (2.44) and (2.37) the dimensionless hydrodynamic permeability

(2.46)

for the case of regular arrays in the streamwise direction is obtained.

If streamwise staggering of some cross-stream columns occurs, there will be no net effect

on permeability since only the transfer volumes Ut, which have assumed to not contribute
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to the pressure gradient, will be influenced. Independent streamwise staggering of rows or

single solid parts will also only result in streamwise shifts between members of the parallel

pairs (i.e. the parallel plates do not face each other directly). At low porosities this influence

would be especially small and its effects could be neglected.

2.2.3 FD analytical model for staggered configuration

For the FD staggered configuration the solid rectangles are staggered cross-stream, forcing

the fluid to deviate and actively traverse all void areas. Therefore, unlike the non-staggered

model, no stagnant volumes exist. The upper half of a unit cell for such a case is shown in

Figure 2.5.

Uj_ B

.... .... .... .... .... ....
Ut ""............ ....

Figure 2.5: Geometry of top half of unit cell in case of streamwise staggering.

Unlike the FD analytical model for the non-staggered configuration, there are also flow and

shear stresses between the cross-stream pairs of parallel plates, i.e. those facing streamwise.

The streamwise flux is split into two perpendicular sections as shown in Figure 2.5, with the

average speed in each cross-stream section Uj_ being denoted by W .L: Using this fact and

equation (2.37), we obtain the following relation:

~ . dj_ - dsj_

2 dil - dsll
~A.
2
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The streamwise pressure drop resulting from shear stresses in the perpendicular sections,

now also contributes to the total pressure drop over the unit cell, so that

(2.48)

The transfer volumes are again considered stress free and as already mentioned there are

no stagnant volumes. The first term on the RHS of equation (2.48) follows identically to

the result of equation (2.45). For the contribution to 6:.p in the perpendicular sections, it

follows from equation (2.47) that the streamwise pressure drop between planes AA and BB

in Figure 2.5 is given by

-12 f.i W.l

(dil - dsll)2
-12f.iWIIA
(d.l - dS.l)2

Simplifying the above equation leads to

n dsll ,4- - vIIP-/\4 . (2.50)

The total pressure drop over the unit cell is therefore given by

(2.51)

The dimensionless permeability, K, for an array of which the solids are staggered in the

cross-stream direction is therefore

K- (2.52)

In order to combine equations (2.46) and (2.52) to obtain a single general equation for the

prediction of permeability, another coefficient 'Y 2, where

1
0 unstaggered

'Y -

1 cross-stream staggered

(2.53)

2The coefficient / is referred to as j3 in other work [12].
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is introduced. The following equation is then sufficient to predict all the Darcy permeabilities

for conditions covered in this work and should apply generally to porous media falling into

this class:

K
(1 - vT=E)3 A

12vT=E 1 + ')'A4/4·
(2.54)

Five different geometrical case studies were considered [12], namely: square cells aligned in

a square array (SCASA); rectangular cells aligned in a square array (RCASA); rectangular

cells staggered in a square array (RCSSA); square cells staggered in a rectangular array

(SCSRA) and rectangular cells staggered in a rectangular array (RCSRA). The values of the

coefficients used in equation (2.54) for these different geometrical cases are given in Table

2.1.

SCASA RCASA RCSSA SCSRA RCSRA

x y x y x y x y

')' 0 0 0 1 0 1 0 0 1

A 1 1/2 2 2 1/2 1 1 1/4 4

>. 1 1/2 2 2/5 1/2 4/5 1 ·1/4 4/651+)'>.4/4

Table 2.1: Geometric coefficients for the cases studied by Firdaouss and Du Plessis [12].

In this thesis we are only concerned with the geometries with square cells, therefore the three

geometries with rectangular cells, presented in Figure 2.6, were not analysed further.
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(c) RCSRA

I.· ..·

(a) RCASA

~ '---
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(b) RCSSA

'. :I I \:.v~.

I I

I I

Figure 2.6: Geometry of FD case studies [12]: (a) Rectangles in a square array, (b) Rectangles

in a staggered square array, (c) Rectangles in a staggered rectangular array.

The unit cell (dashed line) for the configuration of square cells aligned in a square array

(SCASA) is shown in Figure 2.7. For the remainder of this thesis, this configuration will be

referred to as the FD non-staggered configuration.
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Figure 2.7: A unit cell for the SCASA (square cells aligned in a square array) case.
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The unit cell (dashed line) for the configuration of square cells staggered in a rectangular

array (SCSRA) is shown in Figure 2.8. This configuration will be referred to as the FD

staggered configuration for the remainder of this thesis.

q---+

I_________ .J

I I
Figure 2.8: A unit cell for the SCSRA (square cells staggered in a rectangular array) case.

2.2.4 FD numerical results

Using a numerical code developed at LIMSI in France [12], based on the finite element

technique, numerical results for the dimensionless permeability were obtained for the five

different geometrical case studies that were considered. However, as already stated, we are

only concerned with two of these, namely: square cells lined in a square array (SCASA)

and square cells staggered in a rectangular array (SCRSA). For the remainder of this thesis,

these numerical results will be referred to as the FD numerical results (F Dnum).

Table 2.2 lists the complete set of FD numerical results [12] obtained for the dimension-

less hydrodynamic permeability, K, for the non-staggered configuration (SCASA) and the

staggered configuration (SCRSA).

In following chapters the FD numerical results, listed in Table 2.2, for a selection of porosities,

will be used to validate the results obtained using the commercial CFD code CFX.
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Dimensionless permeability K

E SCASA SCRSA

0.0396 6.73 x10-7

0.0784 5.42 x 10-6

0.1164 1.85 x 10-5

0.1536 4.41 x 10-5

0.1900 8.69 xlO-5 6.92 x 10-5

0.2256 1.51 x 10-4 1.20 X 10-4

0.2604 2.43 x 10-4 1.93 X 10-4

0.2944 3.65 x 10-4 2.90 x10-4

0.3276 5.25 xlO-4 4.16 x10-4

0.3600 7.26 x 10-4 5.75 X 10-4

0.4224 1.28 x 10-3 1.01 X 10-3

0.5100 2.56 x 10-3 2.02 X 10-3

0.5644 3.80 x 10-3 2.99 X 10-3

0.6400 6.73 x 10-3 5.04 X 10-3

0.7500 1.31 x 10-2 1.06 X 10-2

0.8400 2.38 x 10-2 2.02 xlO-2

0.9100 4.05 x 10-2 3.63 X 10-2

0.9600 6.78 x 10-2 6.34 X 10-2

0.9900 1.20 x 10-1 1.16 X 10-1

Table 2.2: FD numerical results [12] of dimensionless hydrodynamic permeability, K, for

two of the geometric structures.
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Chapter 3

Non-staggered configurations

3.1 CFX model

In an attempt to model the non-staggered configuration, a model, as shown in Figure 3.1, was

constructed in CFX-5, for a selection of porosities E = 0.1164, 0.36, 0.51, 0.75, 0.91. Since

we did not succeed in constructing a repetitive boundary on the inlet (according to which the

outlet values would become the new inlet values after each iteration) using the CFX package,

more than one unit cell were constructed in line so as to obtain more realistic results. Since

the top and bottom halves of the unit cells are the same in a non-staggered case, a symmetry

plane was used and only the top halves of the unit cells were constructed. Less grid points

were therefore needed and the computational time was decreased considerably.

symmetry plane

symmetry plane

Figure 3.1: Construction used in CFX modelling for no streamwise staggering.
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The CFX-5 post processor was used to analyse the model. Planes (for numerical calculations)

were created at positions I, 2 and 3 as indicated in Figure 3.1. Numerical values for the

average velocity and pressure on these planes were obtained. These allowed us to calculate

the change in pressure through a unit cell. As predicted it was found that the average

velocities at the planes were all the same for the respective porosities. The numerical values

obtained using the CFX-5 model are listed in Table 3.1 for five cases of different porosities.

E 6.p [Pa] ás. [ml wil [mis] q [mis] K

0.1164 0.3374 0.005 5.19 x 10-4 3.11 x10-5 1.85 x 10-5

0.3600 0.3485 0.005 6.31 x 10-3 1.26 X 10-3 7.24 X 10-4

0.5100 0.03575 0.005 1.53 x 10-3 4.58 X 10-4 2.56 X 10-3

0.7500 0.03820 0.005 4.90 x 10-3 2.45 X 10-3 1.28 X 10-2

0.9100 0.00412 0.005 1.19 x10-3 8.30 x 10-4 4.05 X 10-2

Table 3.1: Numerical values (SI) obtained using CFX for the case of no staggering.

The velocity wil is the average velocity at the planes and therefore the average velocity in the

streamwise channels. The superficial velocity q used in the Darcy equation was calculated

as

(dSII)q = 1 - diï wil'

The dimensionless hydrodynamic permeability, K, was calculated using equation (2.42),

namely

K (3.1)

where J-L = 0.001 N· slm2 is the dynamic viscosity of the traversing fluid.

For a worked example, equations (B.1) to (B.3) in Appendix B can be referred to, which

show the actual calculations used for the model with porosity E = 0.51.
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3.2 Comparison of results

The values given by CFX for the dimensionless hydrodynamic permeability K (listed in Table

3.1), closely match those given, for the respective porosity, by the FD set of numerical results

(F Dnum) for a non-staggered configuration (SCASA), given in Table 2.2. However, the FD

set of numerical results were obtained using pure Stokes' flow with no inertial influence,

explaining the slight differences in the numerical values for some of the porosities. In Table

3.2 the results obtained by the FD analytical model (equation (2.54)) for a non-staggered

configuration, i.e. A = 1, '"Y = 0 and thus

K (3.2)

are compared to those obtained by these two sets of numerical values for varying porosities.

Dimensionless permeability K

E F Dan (Equation (3.2)) FDnum CFX

0.1164 l.91 x 10-5 l.85 X 10-5 l.85 X 10-5

0.3600 8.33 x 10-4 7.26 xlO-4 7.24 x 10-4

0.5100 3.21 x 10-3 2.56 xlO-3 2.56 x 10-3

0.7500 2.08 x 10-2 l.31 X 10-2 l.28 X 10-2

0.9100 9.53 x 10-2 4.05 X 10-2 4.05 X 10-2

Table 3.2: Predictions of dimensionless hydrodynamic permeability, K.

These values are shown in Figure 3.2 on a log-lin scale. According to the results presented

in Figure 3.2 the analytical model gives higher values than those obtained numerically, but

is also evident that the model performs better at low porosities than at higher porosities.

The reason for the discrepancies between the numerical results and the predictions of the

FD equations at high porosities, were presumed to be due to the different physical character

of the flow at high porosities, which is discussed in the following section.
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Figure 3.2: Predicted dimensionless permeability, K, for non-staggered configuration.

3.3 Analysing FD analytical model using CFX

In the FD analytical model the fluid volume is treated as three distinct volumes Uil, Ug and

Ut each with their own characteristics. Using the CFX post-processor we consider each fluid

volume, as shown in Figure 3.3, and attempt to verify the respective assumptions made on

each of them. The model constructed, with porosity t = 0.51, was analysed thoroughly and

the results for this specific case can be found from equations (B.4) to (B.7) in Appendix B.

Flow characteristics in streamwise channel

The FD analytical model assumes that plane Poiseuille flow is present in all the streamwise

channels Uil, so that spatially constant wall shear stresses

T (3.3)
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symmetry plane

I

~ c.

'jij}-r---------------~-------------~~----------~~A

symmetry plane

Figure 3.3: Top half of a unit cell constructed in CFX for a non-staggered configuration.

are created. The channel pressure gradient, -\lIIP, is therefore given by the equation

= (3.4)

and is constant for all streamwise channels. This is confirmed by using the numerical results

obtained by CFX-5 (given in Table B.1 for the model with f = 0.51). We find that the

channel pressure gradients are indeed constant in the all the streamwise volumes and from

equations (B.4) and (B.5) we know that this pressure gradient can be calculated by assuming

plane Poiseuille flow between the parallel plates as the FD analytical model does.

Flow characteristics in stagnant region

The model considers the volume Ug as a stagnant volume of fluid, where no shear stress,

which can be attributed to the pressure gradient, is created by the solid surfaces. This region

is assumed therefore not to contribute to the pressure gradient in the streamwise direction.

The model assumes that, although streamlines may appear in this stagnant volume, the

corresponding velocities will be very small and their lengths should therefore not contribute

to the tortuosity of the medium.

The numerical results, however, show that wall shear stresses are created by the walls very

close to the streamwise volume and that there exists a low pressure point at A in Figure

3.3 and a high pressure point at B in Figure 3.3 as can be seen in Figure B.3. Therefore
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the stagnant volume does contribute to the pressure gradient in the streamwise direction

(equation (B. 7)), but this is a relatively small contribution and therefore it seems reasonable

that it can be ignored, even for models of higher porosity.

Flow characteristics in transit region

The FD analytical model assumes the pressure drop to be zero in the transit region due to

the absence of solid induced shear stresses. It is therefore assumed to simply act as a transfer

volume for the fluid between the two adjacent shear-inducing pairs of parallel plates.

The CFX numerical results show however that there does in fact exist a pressure gradient

across the transit region (equation (B.6)), probably caused by the change in the velocity

profile on entering and exiting the parallel plate (streamwise) sections. This contribution

was assumed to be negligible by the FD analytical model. However, even though this pressure

gradient is smaller than the pressure gradient in the streamwise volume, for higher porosities

this contribution to the overall pressure gradient should perhaps be taken into consideration

in order to obtain more accurate predicted values.

Obviously for configurations of low porosities the transit region will be very small and will

not contribute much to the overall pressure drop.
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Chapter 4

Staggered configurations

4.1 Analysing FD analytical model using CFX

4.1.1 CFX modelling of FD analytical model

In an attempt to model the FD staggered configuration with a square array of solid blocks,

a model, as shown in Figure 4.1, was constructed in CFX-5, for the porosities e = 0.1164,

and 0.51. Once again it was chosen that more than one unit cell be constructed so as to

obtain more realistic results and since the top and bottom halves of the unit cells are the

same in this case, a symmetry plane was used and only the top halves of the unit cells were

constructed.

symmetry plane

ill 3 ~
~~ L- ~ ~ ~ ~~

symmetry plane

Figure 4.1: Construction used in CFX modelling for streamwise staggering.
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Using the CFX-5 post processor, planes were created at positions 1, 2 and 3 as indicated

in Figure 4.1. Numerical values for the average velocity and pressure on the planes were

obtained, allowing the change in pressure through a unit cell to be calculated. The average

velocities wil, at the planes were all the same for the respective porosities. The numerical

values obtained using the CFX-5 model are given in Table 4.1 for the two models. These

values are very similar to the previously attained numerical results and therefore there was no

need to construct models for a wider selection of porosities as the results obtained previously,

could be used.

E IIp [Pa] «. [ml wil [mis] q [mis] K

0.1164 3.612x 10-1 0.01 8.92x10-4 5.35x 10-5 1.48 x 10-5

0.5100 3.802x 10-3 0.01 2.57x 10-4 7.72x 10-5 2.03xlO-3

Table 4.1: Numerical values (SI) obtained using CFX for the staggered case.

4.1.2 Comparison of FD and CFX results

In the case of a staggered configuration with a square array of solid blocks (where .\ = 1,

and, = 1), equation (2.54), reduces to

K (4.1)

Table 4.2 shows the comparison between the results predicted by this equation and those

obtained numerically. As can be seen from the table, the CFX numerical results obtained

are very similar to the FD numerical results obtained, therefore there was no need to obtain

more numerical results for all selected porosities.

The values given in Table 4.2 are shown on a log-lin scale graph, Figure 4.2.
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Dimensionless permeability K

E F Dan (Equation (4.1)) FDnum CFX

0.1164 1.53 x 10-5 1.48 X 10-5

0.3600 6.67 x 10-4 5.75 x10-4

0.5100 2.57 xlO-3 2.02 xlO-3 2.03 x 10-3

0.7500 1.67 x 10-2 1.06 X 10-2

0.9100 7.62 x 10-2 3.63 x10-2

Table 4.2: Numerical predictions of the dimensionless permeability, K.

o

• FDan (Table 4.2)
o FDnum
+ CFX

- FDan (Equation (4.1))

0.1 0.2 0.3 0.4 0.5 0.6

Porosity,ë
0.7 0.8 0.9

Figure 4.2: Predicted dimensionless permeability, K, for staggered configuration.

Once again, it is evident that the model performs well at low porosities but at high porosities

there are discrepancies between the predictions of equation (2.54) and the numerical results.

This is assumed to be because of the distinct physical character of the flow at high porosities,

which is discussed later in the next section. The physics involved at higher porosities are

markedly different from the parallel plate Stokes flow which forms the basis of the present

predictive model.
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symmetry plane

Uj_

... ... ' ...............Ut
...................

.................. ~------~------~

symmetry plane

Figure 4.3: Top half of a unit cell constructed in CFX for a model with E = 0.51.

4.1.3 Analysing the fluid volumes using CFX

In the FD staggered model the fluid volume is treated as three distinct volumes Uil, Uj_

and Ut as shown in Figure 4.3. Using the CFX post-processor we attempt to verify the

assumptions made by the model by considering the three volumes separately. The model

constructed with porosity E = 0.1164 was analysed more thoroughly and the results for this

specific case can be found from equations (C.5) to (C.8) in Appendix C.

Flow characteristics in streamwise channel

In the streamwise channels, between all pairs of parallel plates, the FD analytical model

assumes that plane Poiseuille flow is present. Constant wall shear stresses

T (4.2)

are therefore assumed to be created in this region and the channel pressure gradient, -\lIIP,

is given by the equation

(4.3)

and is constant for all streamwise channels.
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Using the numerical results obtained by CFX-5 (given in Table C.1 for the model of E =

0.1164), we find that the channel pressure gradients are indeed constant in the all the stream-

wise volumes. From equations (C.5) and (C.6) we know that this pressure gradient can be

calculated by assuming plane Poiseuille flow between the parallel plates as in the case of the

FD analytical model.

Flow characteristics in transverse channel

In the transverse channel the model again assumes that plane Poiseuille flow is present

between all pairs of parallel plates. Using the numerical values obtained by CFX-5 (equation

(C.8) for the model of porosity E = 0.1164), we know that, for configurations of low porosities,

parallel plate flow does occur in the transverse region, with the average flow being half the

value ofsthe average flow velocity in the streamwise region, as assumed by the model.

However at high porosities these parallel plates will not be opposite to one other, resulting

in parallel plate flow not necessarily being present. This probably contributes greatly to the

deviation of the predictions of the model from the numerical results at high porosities.

We can conclude therefore, that the physics involved at higher porosities are different from

the parallel plate Stokes flow which forms the basis of the FD analytical model and therefore

an alternative model should be considered for configurations of high porosity.

4.2 Analysing the RRUC model using CFX

4.2.1 CFX modelling for RRUC model

In an attempt to model the maximally streamwise staggered configuration used in the RRUC

model, models similar to the one shown in Figure 4.4 were constructed in CFX-5, for a

selection of porosities E = 0.1164, 0.36, 0.51 and 0.75. Since, as already mentioned, we did

not succeed in constructing a repetitive boundary on the inlet using the CFX package, it was

chosen that a few unit cells be constructed in line so as to obtain more realistic results for
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infinitely long arrays of obstacles. Since for the RRUC model we assumed there are parallel

plates in the streamwise direction, it was chosen to position the opposite plates as shown in

Figure 4.4.

,:' ,0' : I:~ ~'" .,' I
I I
I I

~", ' ':': 1 .i 3

f" .'}
,. , '2III :.;.:.. I" out

~ I [" ~_, I IiI
, i i, <, '} "L

Figure 4.4: Construction used in CFX modelling for maximal streamwise staggering.

As with the analytical model, all walls are assumed to be no-slip walls. The CFX-5 post

. processor was used to analyse the model. Planes were created at positions I, 2 and 3 as

indicated in Figure 4.4. Numerical values for the average velocity and pressure on the planes

were obtained. These allowed us to calculate the change in pressure through a unit cell. As

predicted it was found that the average velocities at the planes were all the same for the

respective porosities. The numerical values obtained using the CFX-5 model are given in

Table 4.3 for models with varying porosities.

€ X 6.p [Pa] dl. [ml wil [mis] q [mis] K

0.1164 1.94 0.2227 0.005 1.81 x 10-4 1.09 x10-5 9.75 x 10-6

0.3600 1.8 0.2240 0.005 2.33 x1O-3 4.66 x1O-4 4.16 x 10-4

0.5100 1.7 0.0222 0.005 5.93 x1O-4 1.78 x 10-4 1.60 X 10-3

0.7500 1.5 0.0228 0.005 2.20 x1O-3 1.10 x 10-3 9.62 x1O-3

Table 4.3: Numerical values (SI) obtained using CFX for the RRUC staggered configuration.

4.2.2 Comparison of RRUC and CFX Results

In Table 4.4 the predicted values for the dimensionless permeability, K, obtained using

the RRUC equation (equation (2.36)) and the numerical values obtained from CFX-5 are
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compared. The results given in Table 4.4 are plotted on a lin-log graph, shown in Figure

4.5.

Dimensionless permeability K

E RRUC (Equation (2.36)) CFX

0.1164 1.86 x 10-5 9.75 x10-6

0.3600 7.50 xlO-4 4.16 x 10-4

0.5100 2.73 x10-3 1.60 x 10-3

0.7500 1.56 x 10-2 9.62 X 10-3

0.9100 6.19 x10-2

Table 4.4: Numerical predictions of the dimensionless permeability, K.

As can be seen from Table 4.4 and Figure 4.5, the RRUC model does not give very accurate

predictions for the dimensionless permeability, since the predicted values differ by almost

a factor of two to the CFX numerical results. On further analysis it was found that the

difference is actually a factor of the respective tortuosity. This is discussed further in the

following chapters.

• RRUC (Table 4.4)
X CFX

- RRUC (Equation (2 36))

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Porosity,E

Figure 4.5: Dimensionless predicted permeability, K, for the RRUC staggered configuration.
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Chapter 5

Modelling with pore-scale volumes

5.1 Definition of volumes

The RRUC and FD analytical models are defined using different 'volumes' and so, in an at-

tempt to compare these two models, it is necessary to first define volumes that are applicable

to both models.

For both the non-staggered and staggered configurations, the volumes can be defined as

follows: U; is the total volume including all fluid Uf and solid Us volumes, so that

(5.1)

The fluid volume Uf is comprised of four volumes, namely the streamwise volume Uil, the

fluid volume between the solids where the flow is in the perpendicular direction Uj_, the

transfer volume Ut and the stagnant fluid volume Ug, i.e.

(5.2)

We now consider a two-dimensional situation, where Us = dsll dsj_ is the volume of the solid

rectangle embedded in a total volume U; = dil dj_, for both the non-staggered and staggered

configurations.
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5.1.1 Non-staggered Configuration

~----- dil ------~

Figure 5.1: Unit cell geometry in case of no streamwise staggering.

We first consider a two-dimensional non-staggered configuration, as shown in Figure 5.1.

Since the fluid only moves in the streamwise direction, there are no Uj_ volumes, but there

do exist stagnant volumes between the solids in the streamwise direction. In terms of the

lengths as shown in Figure 5.1 the volumes for a non-staggered configuration can be expressed

as listed in Table 5.1.

Ua dil «.
Us dsll dsj_

Uf dil dj_ - dsll «.;

Uil dsll (dj_ - dsj_)

Ut (dj_ - dsj_) (dil - dsll)

Ug dsj_ (dil - dsll)'

Table 5.1: Expressions for volumes in a non-staggered configuration.
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5.1.2 Staggered Configuration

We now consider the two-dimensional RRUC staggered configuration, as shown in Figure

5.2, and the two-dimensional FD staggered configuration, as shown in Figure 5.3.

In both the staggered configurations there are no stagnant volumes Ug however the fluid

flows perpendicularly between the solids in the streamwise direction and so Uj_ exists. The

total of the respective volumes are the same for both configurations and can be expressed in

terms of the lengths given in Figure 5.2 and in Figure 5.3, as listed in Table 5.2.

Uj_

Figure 5.2: Unit cell geometry in case of RRUC streamwise staggering.
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Wil
dl.

Figure 5.3: Unit cell geometry in case of FD streamwise staggering.

Ua dil dl.

Us dsll«,
Uf dil dl. - dsll dsl.

Uil dsll (dl. - dsl.)

Ul. dsl. (dil - dsll)

Ut (dl. - dsl.) (dil - dsll)

Table 5.2: Expressions for volumes in a staggered configuration.

The volumes that have been defined here are very similar to those defined in the rectangular

representation of the FD analytical model, in Section 2.2.1.
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5.1.3 Tortuosity

The tortuosity of streamlines in a porous medium can be considered as a measure of the non-

straightness of streamlines in the pore space, as stated in Section 2.1.3. Piecewise straight

streamlines between and parallel to the plates, as shown in Figure 2.1, are assumed for the

staggered configuration and piecewise straight streamlines in the streamwise direction are

assumed in the volumes Uil and Ut for the non-staggered configurations.

The most basic definition of tortuosity is the path length tortuosity [3], which is defined as

the ratio of the average length of the tortuous flow path Le to the straight line length L in

the streamwise direction, namely

(5.3)

According to the rectangular geometry and associated assumptions all the streamlines in

the staggered configuration are of equal length Le. For the RRUC model Le = dil + ds.l

and for the FD analytical model Le = dil + ¥. The straight line length is L = dil for

both configurations. Therefore, in terms of the volumes defined in the previous section, the

tortuosity can be given as

(5.4)

for the RRUC staggered configuration and

Uil + Ut + ~U.l
Uil +Ut

(5.5)

for the FD staggered configuration.

The tortuosity for the non-staggered configuration is

x = 1, (5.6)

since the streamlines are straight lines in the streamwise direction. Figure 5.4 shows graphi-

cally the comparison between the tortuosity of the staggered configurations and non-staggered

configuration for the respective porosity.
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2 - - - - RRUC staggered (Equation (5.4))- - - - - non-staggered (Equation (5.6))- - .- FD staggered (Equation (5.5))- - - , ,
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Porosity,E

Figure 5.4: The comparison of tortuosity for staggered and non-staggered configurations.

In order to obtain a general equation for the tortuosity, we introduce a velocity ratio (3, so

that Wl_ = (3wil' The following equation can thus be used to calculate the tortuosity of all

the configurations mentioned in this work:

x Uil + Ut + (3 Ul_

Uil «u, (5.7)

If equation (5.7) is used for the tortuosity, it should be noted that equation (2.16) will not

hold, unless (3 = 1.
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Chapter 6

Analysis of pressure averaging

equation

The volume averaging equation [22] applied to the pressure variable is as follows:

(\lp) v (p) + ~o JJ!lP dS.

s..

(6.1)

In this chapter this equation will be closely analysed towards the discrepancy encountered

with the predictions of the RRUC model.

6.1 Non-staggered configuration

We now look at each term in equation (6.1) by considering the rectangular representation of

a porous medium for a non-staggered configuration shown in Figure 6.1. Each term of this

equation can be written in terms of symbols, where ~ P is the total change in pressure in

the streamwise volume, as indicated in Figure 6.1.
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RRUC 1
:.0(- dil

RRUC 2

p +'6.p P p p - 6.p
Figure 6.1: Unit cell geometry in case of no streamwise staggering (first case).

First case

We first consider a unit cell, where the boundaries in the perpendicular direction of the

unit cell go through the solid region, as indicated by RRUC 1 (RRUC 2 is therefore the

neighbouring unit cell in this case) in Figure 6.1. In terms of symbols, the first term in

equation (6.1) can be expressed as follows:

(\lp) ~o jjj\lpdU
Uf

jjj\lpdU + jjj\lpdU + jjj\lpdU (6.2)

Since the pressure is constant in both the transfer and the stagnant volumes, the pressure

gradient will be zero here. Therefore we have
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(\Jp)

(6.3)

The second term in equation (6.1) can be expressed as:

\J (p) (6.4)

If we consider two streamwisely adjacent RRUCs, as shown in Figure 6.1, and take the

gradient of their two pressure averages we obtain the following

\J (p)
_2_ (Up - ¥)UII + (p - 6p) Ut + (p - 6p) Ug]

u, dil

_ [(p + ¥) Uil + P Ut + P Ug])

dil

_ _2_ (6PUII + 6pUt + 6PUg)

u, dil

UI [6P]
U; dil .

(6.5)

(6.6)

The surface integral term is zero in this case,

~o JJ TlpdS 0, (6.7)

since the pressure at the walls will cancel out.

The above results for the three terms will be true for all RRUCs whose boundaries cut

through the solid rectangle (i.e. for dsll/ dil of the possible RRUCs if shifted in the streamwise

direction) .
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Second case

If we now shift the unit cell in the streamwise direction so that its boundaries do not pass

through the solid region (i.e. consider the unit cell to be as shown in Figure 6.2), the surface

integral term will not be zero, but the other two terms in the pressure averaging equation

will be the same, as shown below. This will be true for all RRUCs whose boundaries do not

cut through the solid rectangle (i.e. for 1 - dsll/dll of the cases).

RRUC 1
:-E dll---~

I I
I I

:UII:

dj_

p+~p p p p-~p p-~p
Figure 6.2: Unit cell geometry in case of no streamwise staggering (second case).

In this case the first term of equation (6.1) will be the same as for the first case, as shown

below:

(\lp) ~o jjj\lpdU

jjj\lpdU + jjj\lpdU + jjj\lpdU (6.8)
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Since the pressure is constant in both the transfer and the stagnant volumes, the pressure

gradient will be zero here. Therefore we have

('lp)

(6.9)

The second term of equation (6.1) is given by:

v (p) (6.10)

If we consider two streamwisely adjacent RRUCs, similar to the one shown in Figure 6.2,

and take the gradient of their two pressure averages we obtain the following

v (p)

(6.11)

This can be shown by considering each component of the volumes separately and realising

that they all differ by !:1p to the corresponding component in the neighbouring RRUC.

The surface integral term is not zero, yielding

i: JJ TlpdS

(6.12)

in this case.
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Combination of Cases 1 and 2

Combining cases 1 and 2 we obtain the overall value for each term in equation (6.1) for a

non-staggered configuration:

(\Jp) = (6.13)

\J (p) (6.14)

~o JJ rrpdS

(6.15)

Checking equation (6.1), with the help of Table 5.1, we obtain the following:

(\Jp) - \J (p) + ~o JJ rrp dS

(6.16)

which agrees with equation (6.13). Comparing equation (6.13) with equation (6.14) we find

that
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- ('lp)

,

(6.17)

Therefore from equation (6.14) and equation (6.17) we can conclude that

(6.18)

This is an important result as it provides us with a connection between the average pressure

gradient and the gradient of the pressure average for a non-staggered configuration.

Combining equations (6.1) and (6.18) we have

(6.19)

and therefore

~o JJ TlpdS

(6.20)

Equation (6.20) can now be used to express the surface integral, in the pressure averaging

equation (equation (6.1)) for a non-staggered configuration, in terms of pore-scale volumes

and the gradient of the pressure average.
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6.2 Non-staggered RRUC model

It is now proposed to generalise the RRUC model to also fit a configuration where no stagger-

ing takes place in the streamwise direction (as in the configuration for the FD non-staggered

model), i.e. where the solid rectangles are lined up in straight rows in the streamwise direc-

tion, as shown in Figure 6.3.

q~
d

~---d

Figure 6.3: Unit cell geometry of an RRUC for a non-staggered configuration.

We start with the simplified volume averaged Navier-Stokes equation (equation (2.13))

~o JJ (rr {p} - rr'~) dS, (6.21)

which assumes uniform discharge through a homogeneous isotropic porous medium. From

equation (2.6) we have

~o JJ rr {p} dS
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and since (p)! is assumed to be constant over the RRUC, the last term in equation (6.22) is

zero and the simplified volume averaged Navier-Stokes equation can be rewritten as

(6.23)

We consider just the Darcy regime of pure viscous drag at low Reynolds number (Rep < < 1).

No flow is assumed in the transverse pore sections, hence no shear stresses are developed in

these sections. The transverse pore sections can thus be considered as stagnant volumes Ugo

Therefore equation (6.23) can be written as

(6.24)

Substituting equation (6.20) into this equation we obtain

~o JJ (-n . b) dS + (UII~ Ut - 1) . V (p) ,

SII

(6.25)

which can be rewritten as

- (UII~ Ut) EVP! = ~o JJ (-n . b) dS,

SII

(6.26)

since, for constant E,

V (p). (6.27)
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If the wall shear stress is assumed to be uniform and equal to a constant, Tw, over SIIequation

(6.26) reduces further to

ft ~o JJ Tw dS.

SII

(6.28)

For Newtonian flow between parallel plates a distance dp apart and, if the average velocity

in the streamwise area is wil' it follows that

(6.29)

If we then define

(6.30)

the momentum transport equation for uniform average flow for a non-staggered configuration

becomes

(6.31)

in the limit of very slow flow. Comparing this equation with the definition of hydrodynamic

permeability (equation (2.22)) yields:

k (6.32)

For a unidirectional fibre bed [5J SII = 2 d ~ and dp = d (1 -~) so that equation

(6.30) becomes

2ds 6
d2 . d(l- ~)2

12~

(6.33)
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The hydrodynamic permeability for a unidirectional fibre bed is therefore given as:

k
(Uil + Ut) lUo

Go
(1 - dsld) d2 (1 - J!="E)2

12J!="E
d2 (1 - J!="E)3

12 J!="E
(6.34)

since from equation (2.3) we know that dsl d = J!="E.

The dimensionless hydrodynamic permeability K, is defined as the hydrodynamic perme-

ability divided by the cross-sectional area of a unit cell, so that

K
(1 - J!="E)3
12J!="E '

(6.35)

which is identical to the equation given by the FD analytical model for the dimensionless

permeability of a non-staggered configuration (equation (3.2)). The same assumptions were

used here as for the FD non-staggered model, and therefore the analysis and conclusions that

were made in Section 3.3, can be repeated here. The model performs well at low porosities,

but the different physical character of the flow at high porosities leads to discrepancies in

the results for the models of high porosity.

6.3 Staggered configuration

We now address each term in the pressure averaging equation (equation (6.1)) by considering

the rectangular representation of a porous medium for a staggered configuration as shown in

Figure 6.4. In the figure the relative size of the transverse sections is exaggerated to better

illustrate the various volumetric regimes present.
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RRUC 1
*---- dil ---~~_--.ppr- p - f:j.p :p - f:j.p~~~---------------4.~--+---------------~';81:1 ............ I: 1 ",,,,'"

<, Ut I: 1 ",'"........ r 1 ",'"
.... '"<, I: 1 .>

.... I: 1 ",'"A ........ '"....................... pi"1,.......__,_"".r;p_ f:j.p

RRUC 2

Uj_

- p - f:j.p- bp

dj_
........---u-' + bp.... .... .... .... .... .... ....

Ut ................
.... ....

p+bp: p - f:j.p - bp p - f:j.p- bp

Figure 6.4: Unit cell geometry in case of streamwise staggering (first case).

First case

We first consider a unit cell, where the boundaries in the perpendicular direction of the

unit cell go through the solid region, as indicated by RRUC 1 (RRUC 2 is therefore the

neighbouring unit cell in this case). In terms of symbols, where .6.p is the total change in

pressure in the streamwise volume and 6p is the total change of pressure in the transverse

volume, as indicated in Figure 6.4, the first term in equation (6.1) can be written as

(Vp) ~o fffVpdU

Uj_

(6.36)fffVpdU + fffVpdU + fffVpdU
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The pressure is constant in the transfer volumes so the pressure gradient will be zero here.

In the transverse volume, however, even though the flow is in the perpendicular direction,

we assume that there is a pressure gradient in the streamwise direction. The pressure at A,

in Figure 6.4, is given by p + [(d..L - ds..L) / ds..L]o p. Therefore, for the first term we have

(\lp) =

(6.37)

The second term in equation (6.1) is

v (p) (6.38)

The average pressure in the total transfer region of the unit cell is equal to the average

pressure in the perpendicular region. Therefore if we consider two different RRUCs, as

shown in Figure 6.4, and take the gradient of their two pressure averages we obtain the

following

v (p)
2_ ([ (p + 0P + ~) Uil + (p + 9f) Ut + (p + 9f) U..L]
u. dil

_ [(p - ~) Uil + (p - .6 p - 9f) Ut + (p - .6 p - 9f) U..L] )

dil

_ _ 2_ ((.6 p + 0 p) Uil + (.6 p + 0 p) (Ut + U..L))
u, dil

_ UI (.6P+OP).u, dil

(6.39)

(6.40)
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The surface integral term is zero in this case,

~o jj TlpdS 0, (6.41)

since it is assumed that the pressure at the walls cancel out. In a more realistic situation, the

surface term here would not be zero, since the pressures at the streamwisely up and down

facing surfaces would not cancel out. However, for the pressure averaging equation this has

been compensated for by including a pressure gradient in the transverse region.

The above results for the three terms will be true for all RRUCs whose boundaries cut

through the solid rectangle (i.e. for dsll/ dil of the possible RRUCs if shifted in the streamwise

direction) .

Second case

If we now shift the unit cell in the streamwise direction so that its boundaries do not pass

through the solid region (i.e. consider the unit cell to be as shown in Figure 6.5), the surface

integral term will not be zero, but the other two terms in the pressure averaging equation

will be the same, as shown below. This will be true for all RRUCs whose boundaries do not

cut through the solid rectangle (i.e. for a proportion of 1 - dsll/dll of the cases).

In terms of symbols, as indicated in Figure 6.4, the first term in equation (6.1) is

(\lp) ~o ffj\lpdU

Ul_

(6.42)fjj\lpdU + jjj\lpdU + jJ/\lpdU
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Figure 6.5: Unit cell geometry in case of streamwise staggering (second case).

The pressure is constant in the transfer volumes so the pressure gradient will be zero here, but

in the transverse volumes there is a pressure gradient in the streamwise direction. Therefore

we have

(\lp)

The second term can be written as

v (p)
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If we consider two neighbouring RRUCs, similar to the one shown in Figure 6.5, and take

the gradient of their two pressure averages we obtain the following

\7 (p) =

(6.46)

This can be shown by considering each component of the volumes separately and realising

that they all differ by (.6.p+ó p) to the corresponding component in the neighbouring RRUC.

The surface integral in this case is not zero and is given by:

U
lo { { _n p dS _ ~ (lP + (p + Óp) J d _ [(p _ .6.p) + (p _ .6.p _ ó p) Jd)}} _ u; 2 s..L 2 s..L

ds..L (2P+ óp _ 2p _ 2.6.p _ Óp)
u, 2 2

ds..L (2.6.P+2ÓP)
o, 2

ds..L )u;:(.6.P + ÓP . (6.47)

Combination of Cases 1 and 2

Combining cases 1 and 2 we obtain the overall value for each term in equation (6.1):

(\7p) = _ Uil [.6.P + Óp]
U; dsll '

(6.48)

\7 (p) = _ Uf [.6.P + Óp] )
U; dil

(6.49)

~o JJ TlpdS

(6.50)
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Checking equation (6.1), with the help of Table 5.2, we obtain the following:

(\lp) = v (p) + ~a JJ TlpdS

s..
_ Uf. (~p + 8p) + (dil - dsll). (dsj_ (~p + 8p))u, dil dil ti,

__ ~P+8P.(Uf-Uj_)
o. dil

_ ~p + 8P. (Uil + Ut)
o. dil

_ ~p + 8p. ((dj_ - dsj_) dsll + (dil - dsll) (dj_ - dSj_))
U; dil

_~P+8P. ((dj_-dsj_)dll.~)
U; dil dsll

Us ~p+8p
o. dsll

(6.51)

(6.52)

which agrees with equation (6.48). From equation (6.1) and (6.51) we can write the surface

term as follows

~a JJ TlpdS (\lp) - \l (p)

(6.53)

Since, from equation (5.4), the tortuosity is defined as X = UJI(UII + Ut) for the RRUC

staggered configuration, equation (6.53) can be written as:

~a JJ TlpdS = (~- 1) .v (p). (6.54)
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Equation (6.54) provides us with an expression for the surface integral, in the pressure

averaging equation (equation (6.1)) for a staggered configuration, in terms of pore-scale

volumes and the gradient of the pressure average.

6.4 The Revised RRUC model for a staggered config-

uration

The results obtained from using the RRUC model proposed by Du Plessis and Masliyah

[8], given in Table 4.4, clearly show that something is awry with the model. Analysing the

RRUC model it was noticed that the model only considers the first case (section before) of

the RRUC, and not the second case where the RRUC is shifted so that its perpendicular

boundaries do not pass through the solid.

The model is now adjusted slightly so as to include the entire pressure part of the integral.

q~
d

I+----d

r "'

Figure 6.6: Unit cell geometry of a RRUC.

We will consider only the Darcy Regime of pure viscous drag at low Reynolds number

(Rep < < 1). Assuming uniform discharge through a homogeneous isotropic porous medium,
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we start with equation (6.23),

(6.55)

In the transverse pores, the shear stresses have no streamwise components. Although, due

to the randomness of the medium the transverse shear stresses will cancel vectorially, they

will still create interstitial transverse pressure drops. These pressure drops should however

contribute to the integral through the pressure part, when evaluated at the streamwisely up-

and down- facing surfaces, S1..

The pressure integral term can be rewritten in terms of equation (6.54), but as mentioned

earlier it does not include the pressure drop in the transverse section, created by the trans-

verse shear stresses, and this must be taken into account separately. It was assumed that

this contribution of the pressure integral term may be incorporated by integrating for the

wall shear stress over the total solid-fluid interface Sfs instead of only over the streamwise

part SII' Therefore, in the low Reynolds number limit, equation (6.55) yields:

(6.56)

S1.

This can be rewritten as

(6.57)

If the wall shear stress is assumed to be uniform and equal to a constant, Tw, over Sfs in all

channel sections, for the low Reynolds number limit, we can reduce equation (6.57) to

(6.58)
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Equation (6.58) can be considered as the modified version of equation (2.18). The remainder

of this section now follows exactly that of Section 2.1.3. For Newtonian flow between two

parallel plates a distance dp apart and if the average transverse velocity is ,6wllit follows

that

(6.59)

If we define

(6.60)

the momentum transport equation for uniform average flow becomes

(6.61)

in the limit of very slow flow. Comparing this equation with the definition of hydrodynamic

permeability (equation (2.22)) yields:

k (6.62)

This is the prime result of this work and presents a crucial correction to the original RRUC

model to allow better quantitative predictions for fluid transport in two-dimensional porous

structures.

Unidirectional fibre bed

An appropriate RRUC for a unidirectional bundle of uniform fibres was introduced by Du

Plessis [6]. Crossflow through this bundle of fibres presents a two-dimensional case of flow

through a porous medium.

For a unidirectional fibre bed 511 = 5j_ = 2 d J1=E and dp = d (1 - J1=E), so that we

have

12(1 + ,6)J1=E
d2(1 - J1=E)2 . (6.63)
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The tortuosity X, defined as

x (6.64)

for the RRUC model, can now be written in terms of the porosity as follows

E
(6.65)x = ---==

1- JI=E'

The hydrodynamic permeability for a unidirectional fibre bed is given as:

k
d2(1 - JI=E)3
12(1 + ,B)JI=E'

(6.66)

where ,B is the velocity ratio. Du Plessis and Diedericks [5], assumed the velocity ratio to be

unity, simplifying the equation to:

k
d2(1 - JI=E)3

24JI=E
(6.67)

This equation is a modification of the RRUC equation (2.35) and should be adequate for pre-

dicting the hydrodynamic permeability for flow perpendicularly through a two-dimensional

prismatic porous medium. The dimensionless hydrodynamic permeability

K
(1 - JI=E)3
24JI=E '

(6.68)

is obtained by dividing the hydrodynamic permeability (equation (6.67)) by the cross-

sectional area of the unit cell d2, as was done to get equation (2.36).

6.4.1 Comparison of revised RRUC and CFX results

Table 6.1 shows us the comparison between the predicted values for the hydrodynamic perme-

ability obtained using the RRUC equation (equation (2.36)) and the revised RRUC equation

(equation (6.68)) in comparison to the numerical values obtained from CFX-5.
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Dimensionless permeability K

E RRUC (Equation (2.36)) RRUC (Equation (6.68)) CFX

0.1164 1.86 x 10-5 9.57 X 10-6 9.75 x10-6

0.3600 7.50 x 10-3 4.17 X 10-4 4.16 X 10-4

0.5100 2.73 x 10-3 1.61 X 10-3 1.60 xlO-3

0.7500 1.56 x 10-2 1.04 X 10-2 9.62 X 10-3

Table 6.1 : Numerical predictions of the dimensionless permeability, K.

The graph in Figure 6.7 clearly shows that the values obtained from the revised RRUC

model can be used as a good prediction for the dimensionless permeability, K, for a porous

medium with a staggered configuration, since they almost match exactly the numerical

results obtained by CFX.

For the remainder of this thesis, the 'RRUC model' will refer to the revised RRUC model.

Figure 6.7: Predicted dimensionless permeabilities, K, for the RRUC staggered configura-

tion.
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6.5 The RRUC model for the FD staggered configura-

tion

For staggered configurations the FD and RRUC models use different staggering configura-

tions. In a practical situation, the FD configuration is actually maximally staggered and the

configuration of the RRUC is not realistic. We now apply the 'RRUC model technique' to

. the FD staggered configuration, shown in Figure 6.8.

~.
4

Figure 6.8: Unit cell geometry in case of FD streamwise staggering.

We will consider only the Darcy Regime of pure viscous drag at low Reynolds number

(Rep « 1). Assuming uniform discharge through a homogeneous isotropic porous medium,

we start with equation (6.23),

(6.69)

In the transverse pores, the shear stresses have no streamwise components. Although, due

to the randomness of the medium the transverse shear stresses will cancel vectorially, they
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will still create interstitial transverse pressure drops. These pressure drops should however

contribute to the integral through the pressure part, when evaluated at the streamwisely up-

and down- facing surfaces, S1..

The pressure integral term can be rewritten in terms of equation (6.53) (refer to Appendix

D), but as mentioned earlier it does not include the pressure drop in the transverse section,

created by the transverse shear stresses, and this must be taken into account separately. It

was assumed that this contribution of the pressure integral term may be incorporated by

integrating for the wall shear stress over the total solid-fluid interface Sfs instead of only

over the streamwise part SII' However in the transverse region the flow splits in two and

therefore we only need to include half the transverse part S1.. Therefore, in the low Reynolds

number limit equation (6.69) is given by

Sl.

which can be rewritten as

E 'V
(1+ J1=E) Pf

(6.71)

If the wall shear stress is assumed to be uniform and equal to a constant, Tw, over Sfs in all

channel sections, for the low Reynolds number limit, we reduce equation (6.71) to

E 'V
(1+ J1=E) Pf

(6.72)

For Newtonian flow between two parallel plates a distance dp apart and if the average trans-

verse velocity is ,BwII, where ,B is the velocity ratio, it follows that

E 'V
(1+ J1=E) Pf -

(6.73)
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since

1
(6.74)r:;--: q.

1-YJ.-t-

If we define

(6.75)

the momentum transport equation for uniform average flow becomes

E \7 - G
(1+ JI=E) PJ - 0 u lJ. (6.76)

in the limit of very slow flow. Comparing this equation with the definition of hydrodynamic

permeability (equation (2.22)) yields:

k = E
- (1+ JI=E) Go

(1 - JI=E)
Go

(6.77)

Unidirectional fibre bed

An appropriate RRUC for a unidirectional bundle of uniform fibres was introduced by Du

Plessis [6]. Crossflow through this bundle of fibres presents a two-dimensional case of flow

through a porous medium.

For a unidirectional fibre bed 511= 5.1 = 2d JI=E and dp = d (1 - JI=E), so that we

have

G = 12(1+ 13/2)JI=E
o d2(1 _ JI=E)2 (6.78)

The hydrodynamic permeability for a unidirectional fibre bed is given as:

d2(1 - JI=E)3
k =

- 12(1+ !3/2)JI=E'
(6.79)

where 13is the velocity ratio. For the FD staggered configuration W.1 = iWII, so the velocity

ratio is 1/2. Therefore

(6.80)
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The dimensionless hydrodynamic permeability

K
(1 - vT="f)3

15vT="f '
(6.81)

is obtained by dividing the hydrodynamic permeability (equation (6.80)) by the cross-

sectional area of the unit cell d2. Equation (6.81) is identical to the FD equation for the

prediction of the dimensionless permeability for a staggered configuration (equation (4.1)).

This shows that the RRUC model and the FD analytical model obtain the same equations

for the prediction of the hydrodynamic permeability for configurations of similar staggering.

6.5.1 Simplified expression for permeability

Equation (6.81) may be rewritten as follows:

K =
(1 - vT="f)3
15vT="f

1 - 3vT="f + 3(1 - E) - (vT="f)3
15vT="f

2_ ( 1 _ 3 + 3vT="f - (1 - E))
15 vT="f

115(E - 4 + (4 - 3E)(I- E)-1/2).

The factor (I-E)-1/2 may now be approximated by a binomial series expansion [10], yielding

K (6.82)

(6.83)

If this series is truncated to a linear expression, we obtain

E
3

[ 5]K = 120 1 + "4 E = 0.00833 E3+ 0.0104 E4
, (6.84)

and further truncating to a constant expression yields

(6.85)
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It is evident that the truncation will have less effect as E ~ O. The higher the porosity the

less accurate the truncated expression for K will be.

The error introduced by truncation of the binomial series expansion at non-zero E, as shown

above, can be lessened at any porosity by introducing a throwback method [10], [11]. In

this method the coefficient of the highest retained power of E is changed to incorporate

the neglected higher-order terms of the series. This is accomplished through the difference

between the original equation and the approximation, at the particular porosity.

Linear (Equation (6.84)) Constant (Equation (6.85))

0.1

0.2

0.3

0.4 _£_ [1+ 8.481 E] = 0.00833 E3 + 0.0177 E4120 4

0.5 _£_ [1+ 10.19 E] = 0.00833 E3 + 0.0212 E4120 4

0.6

0.7 _£_ [1+ 16.80 E] = 0.00833 E3 + 0.0350 E4120 4

0.8

Table 6.2: Resulting equations for, K, after the throwback method has been applied at the

particular porosity.
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Table 6.2 shows the resulting equations if the throwback method is applied to equations

(6.84) and (6.85) for the respective porosities. For models with very low porosity truncation

without any throwback, as shown in equations (6.84) and (6.85), seems appropriate since

applying the throwback method does not alter the equations much.

In figure 6.9 the result of throwback at E = 0.4 as given in Table 6.2 compared to the RRUC

equation for the FD staggered configuration (equation (6.81)) is shown graphically. The

10-1 r------,----.------,---,-----,----,----,---------,

:0ro
Ol
E.....
Ol 10-3
0.
(IJ
(IJ
Ol
Co
'w 10-4
C
Ol
Eo

- Equation (6.81)
. Constant, Table 6.2 (E = 0.4)

- - Linear, Table 6.2 (E = 0.4)

~.'

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9

Porosity,E

Figure 6.9: Dimensionless permeability, K, with throwback at E = 0.4.

truncated expression, supplemented by throwback, thus yields an accurate value of K at the

particular porosity and is also reasonably accurate in a small range of porosities around the

particular porosity.
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Chapter 7

Summary and comparisons

In this chapter we give a summary of the models presented in this thesis and consider their

percentage errors in comparison to the FD and CFX numerical results. The results given

by the analytical models discussed in this thesis are also compared to other results found in

the literature for two-dimensional prismatic porous medium.

7.1 Non-staggered configurations

For a non-staggered configuration of square cells, we have shown that both the FD analytical

model (equation (3.2)) and the RRUC non-staggered model (equation (6.35)) obtain the same

equation for the prediction of the dimensionless permeability

K
(1- vr=E)3
12vr=E . (7.1 )

As discussed in previous chapters, this equation performs well at low porosities, but at 'high'

porosities the predictions for the dimensionless hydrodynamic permeability differ consider-

ably from the numerical values obtained.
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7.1.1 Percentage errors of the non-staggered analytical model

In Table 7.1 we compare the predictions of the dimensionless permeabilities (equation (7.1)),

to the complete set of FD numerical results, listed in Table 2.2, for the non-staggered case

(SCASA). As shown in Table 3.2, the results given by CFX for the dimensionless permeability

for a non-staggered configuration were almost the same as the FD numerical results and are

therefore not shown in Table 7.1. The percentage error is calculated as the percentage of

the difference between the two results over the numerically obtained value, i.e.

100(KRRuc - KpD m)Percentage error = nu
K 'ro;«:

(7.2)

and is also given in Table 7.1. The percentage error given in Table 7.1 is plotted against the

porosity on a graph, shown in Figure 7.1.
450r.=:=:::::J=====::==:::::::r::::;---,------,----,---,-----.-------,

--- Percentage error (Table 7.1)

400

350

.... 3000........
Ol
Ol 250
Ol
(Ij

ë 200
Ol
U....
Ol 150n,

100

50

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Porosity, £

Figure 7.1: Percentage error of RRUC equation (7.1) versus the FD numerical results.

From Figure 7.1 it can be seen that at low porosities the percentage error is very small,

but extremely large at very high porosities. As discussed in Chapter 3 this is assumed to

be due to the different physical character of the flow at high porosities. For any model

with a porosity higher than E = 0.75 one can expect more than a 50% error. It is therefore

suggested that an alternative model be used for configurations of E > 0.75 in order to obtain
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more accurate predictions.

E FDnum RRUC (Equation (7.1)) RRUC - FDnum Percentage Error

0.0396 6.73 x10-7 6.80 xlO-7 7.27 x 10-9 1.08

0.0784 5.42 xlO-6 5.56 x 10-6 1.36 xlO-7 2.50

0.1164 1.85 x 10-5 1.91 X 10-5 6.49 X 10-7 3.51

0.1536 4.41 xlO-5 4.64 xlO-5 2.28 x 10-6 5.16

0.1900 8.69 x 10-5 9.26 xlO-5 5.69 x 10-6 6.55

0.2256 1.51 x 10-4 1.64 X 10-4 1.26 X 10-5 8.37

0.2604 2.43 xlO-4 2.66 xlO-4 2.29 xlO-5 9.42

0.2944 3.65 xlO-4 4.06 xlO-4 4.13 x10-5 11.3

0.3276 5.25 xlO-4 5.93 xlO-4 6.77 x 10-5 12.9

0.3600 7.26 x 10-4 8.33 X 10-4 1.07 X 10-4 14.8

0.4224 1.28 x 10-3 1.52 X 10-3 2.36 X 10-4 18.4

0.5100 2.56 x 10-3 3.21 X 10-3 6.54 X 10-4 25.6

0.5644 3.80 x 10-3 4.96 x10-3 1.16 x 10-3 30.6

0.6400 6.73 x 10-3 8.89 X 10-3 2.52 X 10-3 39.5

0.7500 1.31 x 10-2 2.08 X 10-2 7.73 X 10-3 59.0

0.8400 2.38 x 10-2 4.50 xlO-2 2.12 xlO-2 89.1

0.9100 4.05 x 10-2 9.53 xlO-2 5.48 x 10-2 135

0.9600 6.78 x 10-2 2.13 X 10-1 1.46 X 10-1 214

0.9900 1.20 x 10-1 6.08 xlO-1 4.87 x 10-1 406

Table 7.1: Percentage error (equation (7.2)) of the RRUC model predictions of the dimen-

sionless hydrodynamic permeability, K, compared to the FD numerical results.
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7.1.2 Comparison with other literature

As mentioned in Section 1.1, Sangani and Acrivos [18] determined solutions for flow past a

square array of cylinders by using a somewhat non-conventional numerical method. They

obtained numerical results for the dimensionless drag .E..., where F is the force per unit length
!-Lq

on a cylinder. Their results were shown to be in excellent agreement with two analytical

expressions, the one, which applies to dilute arrays, being derived by extending the earlier

analysis of Hasimoto [14].

The results Sangani and Acrivos [18] obtained for the dimensionless drag are now compared

to the predictions for the dimensionless drag 1/ K, where K is the dimensionless permeability

obtained using equation (7.1), for a selection of porosities. Both the results are plotted on a

graph, shown in Figure 7.2.

lO·E----r-----r---.~;==:::::::::::===========:::;_J
-+- RRUC non-staggered (Equation (7.1))
--~-- Sangani & Acrivos. [18]

lO'

~ lO',_
0;
~
"C
UI
UI lO'III
C
0
"iiic
III
E lO'
0

io'

10°'--_--' __ --'-__ --'-__ -'---__ .J..._ _ __jL- _ _..J. __ --'

0.2 0.3 0.5 0.90.6

Porosity,£

0.7 0.80.4

Figure 7.2: Predictions for the dimensionless drag of flow past a square array of cylinders

[18] and the corresponding drag on a square array of rectangular fibres predicted by equation

(7.1).

From Figure 7.2 it is clear that the predicted drag on the cylinders is higher than the predicted
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drag on the rectangular fibres for all porosities. This is most likely due to the absence of a

shape factor to account for the difference in drag-inducing geometries. Equation (7.1) has

already been shown to not give accurate results for higher porosities, which is probably the

reason for the increased difference between the sets of results at higher porosities. At low

porosities there exists a minimum porosity for when the cylinders are touching each other

and this would be the cause of the sudden high dimensionless drag at low porosities for the

Sangani results.

7.2 Staggered configurations

For the staggered configurations we have two different models for the prediction of the

dimensionless hydrodynamic permeability, K, the FD analytical model (equation (4.1)) and

the RRUC staggered model (equation (6.68)). Even though it has been shown that the RRUC

model predicts the same equation as the FD analytical model for the 'FD staggering,' for

clarity this equation will be referred to as the FD staggered equation in this chapter.

7.2.1 Staggered FD analytical model

For a staggered configuration of square cells (SCSRA) the FD analytical model is given by

equation (4.1)

K (7.3)

for the predictions of the dimensionless hydrodynamic permeability. In Table 7.2 the per-

centage errors of the FD analytical model predictions for the dimensionless permeability

for the staggered case compared to the complete set of FD numerical results, listed in Ta-

ble 2.2, for the staggered case (SCSRA). The percentage errors are again calculated as the

percentage of the difference between the two results over the numerically obtained value.

The percentage error given in Table 7.2 is plotted against the porosity on a graph shown in

Figure 7.3. As with the FD non-staggered model, the percentage error is small for the cases
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E FDnum F Dan (Equation (7.3)) FDan - FDnum Percentage Error

0.1900 6.92 x 10-5 7.41 xlO-5 4.87 x 10-6 7.04

0.2256 1.20 x 10-4 1.31 X 10-4 1.09 X 10-5 9.09

0.2604 1.93 x 10-4 2.13 xlO-4 1.97 x 10-5 10.2

0.2944 2.90 x 10-4 3.25 x10-4 3.51 x 10-5 12.1

0.3276 4.16 x 10-4 4.74 X 10-4 5.82 X 10-5 14.0

0.3600 5.75 x10-4 6.67 x10-4 9.17 x10-4 15.9

0.4224 1.01 x 10-3 1.21 X 10-3 2.03 X 10-4 20.1

0.5100 2.02 x 10-3 2.57 X 10-3 5.51 X 10-4 27.3

0.5644 2.99 x 10-3 3.97 x10-3 9.80 x 10-4 32.8

0.6400 5.04 x 10-3 7.11 x10-3 2.07 x 10-3 41.1

0.7500 1.06 x 10-2 1.67 X 10-2 6.07 X 10-3 57.2

0.8400 2.02 x 10-2 3.60 x10-2 1.58 x 10-2 78.2

0.9100 3.63 x 10-2 7.62 xlO-2 3.99 x 10-2 110

0.9600 6.34 x 10-2 1.71 X 10-1 1.07 X 10-1 169

0.9900 1.16 x 10-1 4.86 X 10-1 3.70 x irr ' 319

Table 7.2: Percentage error of the FD staggered model predictions of the dimensionless

hydrodynamic permeability compared to the FD numerical results.

of low porosities, but very high for the high porosity cases. This is assumed to be due to the

different physical character of the flow at high porosities, as discussed in Chapter 4.

From Figure 7.3 it can be seen that more than a 50% error can be expected for any model

with a porosity higher than E = 0.75. An alternative model should therefore be used when

considering models of high porosities in order to obtain more accurate results.
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Figure 7.3: Percentage error of FD analytical versus the FD numerical results.

7.2.2 Comparison with other literature

Sangani and Acrivos [18] determined solutions for flow past a hexagonal array of cylinders, as

well as for a square array of cylinders. They obtained numerical results for the dimensionless

drag .E_, where F is the force per unit length on a cylinder.
I-'q

The RRUC analytical model for a staggered configuration, for the prediction of the dimen-

sionless permeability K, is given by equation (6.68)

K (7.4)

As shown in Section 6.4.1 these predicted values match very closely to the numerical results

obtained from CFX. The results obtained by Sangani and Acrivos [18] for flow past a hexag-

onal array of cylinders are now compared to the predictions for the dimensionless drag 1/ K,

where K is the dimensionless permeability obtained by first using the FD staggered model

(equation (7.3)) and then using the RRUC staggered model (equation (7.4)), for a selection

of porosities. The results are plotted on a graph, shown in Figure 7.4.
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Figure 7.4: Predictions for the dimensionless drag of flow past a hexagonal array of cylinders

[18], and FD (equation (7.3)) and RRUC (equation (7.4)) staggered models.

0.1 0.2 0.3 0.5 0.6 0.80.4 0.7 0.9

From Figure 7.4 it can be seen that the calculated drag on the cylinders for an hexagonal array

as defined by Sangani and Acrivos [18J, matches very closely to the predicted drag on the FD

staggered configuration of rectangular fibres. The predicted drag is highest for the RRUC

staggered configuration, which is understandable, since the RRUC staggered configuration

is considered as being 'over staggered'. Equation (7.3) has already been shown not to give

accurate results for higher porosities, which is probably the reason for the increased difference

between the sets of results at higher porosities. At low porosities there exists a minimum

porosity for when the cylinders are touching each other and this would be the cause of the

high dimensionless drag at low porosities for the Sangani and Acrivos results.

Porosity,£
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7.3 Comparison of models

The RRUC (equation (7.4)) and FD (equation (7.3)) staggered models and the non-staggered

model (equation (7.1)) given by both the FD and the RRUC models, as well as the FD

numerical results are plotted on a graph, shown in figure 7.5.

,.
./
/. /

/
.. /

./

: I
: I

x FO~m, non-staggered (Table 7.1)
• FD~m, staggered (Table 7.2)

- - RRUC staggered (Equation (7.4))
.. FO" & RRUC, non-staggered (Equation (7.1))

- FO.n, staggered (Equation (7.3))

0.1 0.2 0.3 0.4 0.5 0.6

Porosity, E
0.7 0.8 0.9

Figure 7.5: Predictions for the dimensionless permeability of the RRUC and FD non-

staggered model, the RRUC staggered model, the FD staggered model and the FD numerical

results.

From the graph it can be seen that the permeability is higher for the non-staggered model

than for both the staggered models. The permeability is however higher for the FD staggered

model than for the RRUC staggered model, which makes sense since, as mentioned already,

the RRUC staggered configuration is considered as 'over staggered' because while flowing

around the block the fluid is forced to flow perpendicular to the entire upstream face of the

block, where as the FD staggered model only forces the fluid to flow perpendicular to half

the upstream face of the block.
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Chapter 8

Conclusions and Recommendations

This study was directed at the numerical verification, by the commercial code CFX, of two

geometric models used for the prediction of flow through two-dimensional porous media.

Both models utilize a rectangular geometric representation of the two-dimensional porous

matrix coupled with simplistic assumptions regarding the flow conditions, namely the as-

sumption of laminar plane Poiseuille flow between solid parts and the remaining void sections

acting only as passive transfer sections. In this respect the fluid volume is compartemen-

talized into sub-volumes pertaining to each of the predominant flow conditions, namely the

streamwise motion between parallel plates, transverse flow between parallel plates and pas-

sive streamwise transfer.

The FD analytical model is a direct method, capturing the relation between the pressure

drop over and the resulting discharge through a rectangular unit cell of the porous matrix.

In the RRUC model the porous medium transport equations are volumetrically averaged

and closure is obtained by a secondary pore-scale modelling of flow through a rectangular

representative unit cell orientated streamwise. Although philosophically different, the two

methods appear to have a lot in common and one purpose of this thesis was to investigate

closely the similarities and differences between the two approaches.

Numerically it was established that the FD analytical model is indeed substantiated espe-

cially in the lower porosity range. A need for better modelling in the higher porosity range,

however, is evident from present results.
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In the case of the RRUC model the discrepancy between its results and that of the FD

analytical model for non-staggered porous arrays was shown to originate in an incorrect

treatment on the closure for the pressure deviation term. The correction resulted in a

new formulation for the RRUC model which yields the same correct predictions as the FD

analytical model, for similar staggering.

The concept of maximum staggering proposed in the original RRUC model tends to 'over

stagger' the solid particles and thus yielded a different tortuosity and subsequently different

results than the FD analytical model. If this staggering is adjusted to the same level as

that of the staggering in the FD case, the two sets of results were shown to be identical. It

was shown that the tortuosity can be defined generically in terms of the different volumes

weighted according to the average fluid velocities in the respective volumes.

For future work it is thus not necessary to discriminate between the RRUC and FD pore-scale

models as they both obtain the same equation

K
1 (8.1)1+,/4'

for the prediction of the dimensionless permeability for flow through a regular array of square

obstacles. As was done previously in the FD case [12], the work may also be adapted to

include rectangles.

In addition to the high porosity case, this study could be complemented by a similar analysis

for the Forchheimer regime. This may then lead to a more general predictive tool of which

the results shown here will be the limit of low porosity and low Reynolds number.
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Appendix A

Technical notes on CFX package

The CFX-5 package

CFX-5 is a general purpose CFD code, comprising of four software modules, CFX-Build

(pre-processor), CFX-Solver Manager, CFX-Solver (solver) and CFX-Post (post-processor).

These are linked by the flow of information required to perform a CFD analysis.

CFX-Build is where you 'build' your model and create the input for the solver. This is done

by specifying the geometry, flow physics, boundary conditions, mesh parameters, initial

values and solver parameters of the model.

The CFX-Solver is the component which solves the CFD problem, specified in CFX-Build,

for all the solution variables in the particular simulation. The solution method which CFX-5

uses is based on the finite volume technique. The CFX-Solver Manager provides a graphical

user interface to the CFX-Solver, in order to give information about the emerging solution

and to provide an easy way to control the CFX-Solver. The CFX-Solver produces a file of

results which is then passed to the post-processor.

CFX-Post provides interactive post-processing graphics tools with which to analyse and

present the results obtained from the CFX-5 simulations.
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Problems experienced with the CFX-5 package

Two-dimensional models, which were needed for this work, could not easily be constructed

in CFX-5. CFX-4 build was therefore used to construct and 'mesh' the models, since here

a single grid space in z-direction could be defined, so the models could be considered as

two-dimensional. These models were then imported into CFX-5 build where the boundary

conditions, initial values etc. were defined.

We did not succeed in creating a repetitive boundary (where after each iteration the outlet

values could be set to become the new inlet values) using CFX-5. As already mentioned,

this was compensated for by constructing a few unit cells instead of just one, so that more

accurate results could be obtained.
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Appendix B

CFX non-staggered configuration for

E == 0.51

In CFX-build we constructed models with non-staggered configurations for a selection of

porosities, as mentioned in Chapter 3, similar to the model shown in Figure B.l. In this

appendix we examine closely the CFX non-staggered model of porosity E = 0.51.

First we calculate the value given by CFX for the dimensionless hydrodynamic permeability

K, which can be compared to the FD numerical value and to the predicted value of the FD

analytical model. Then we consider the fluid volume as three different fluid volumes Uil,

Ug and Ut, to attempt to verify the assumptions made for each of these volumes by the FD

analytical model.

symmetrYI plane
.~ I

~ I
I I
I I
j' I
I I

III I, lout
I I~~ ~J ~ ~~

symmetry' plane

Figure B.1: Construction used in CFX modelling for no streamwise staggering.
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We consider the top half of the second unit cell (area bordered by dashed lines in Figure B.1)

constructed in CFX-build as shown in Figure B.2. The pressure was set as 0.1 Pa at the inlet

and 0 Pa at the outlet, to assure very slow flow in the Darcy regime. The fluid was chosen

to be water, with density p = 1000 kglm3 and dynamic viscosity f..L = 0.001 N· 81m2. For

simplification the unit cells were chosen to be square with d = dil = dl.. = 0.005 m, so that

Ua = 2.5 X 10-5 m2. Therefore for a porosity of 0.51, we must have ds = dsll= ds.l.. = 0.0035 m,

as shown in Figure B.2.

0.0025

lw,,~: Uil, :"----------------1 2

symmetry plane
~---------- 0.005

~-- O.OOl:J--iIo-I

I
I
I
I-------------~--------~-------~

456
symmetry plane

Figure B.2: Top half of a unit cell constructed in CFX for a non-staggered model with

E = 0.51 (All measurements in meters).

In the CFX post-processor, planes were created at positions 1 to 6, as indicated in Figure

B.2. The numerical values for the average velocity and the average pressure given at these

planes are given in Table B.l.

Dimensionless Permeability K

The change in pressure across the entire unit cell is given by

!:lp PI - P6 0.03575 Pa, (B.1)

where PI and P6 indicate the average pressure at planes 1 and 6 respectively.

86

Stellenbosch University http://scholar.sun.ac.za



Plane Average pressure [Pa] Average velocity [mis]
1 0.05000 1.5262 x 10-3

2 0.04288 1.5262 x 10-3

3 0.03514 1.5249 x 10-3

4 0.02950 1.5247 x 10-3

5 0.02137 1.5262 x 10-3

6 0.01425 1.5262 x 10-3

Table B.1: Numerical values obtained using CFX for the case of no staggering.

The superficial velocity q was calculated as

q = (1 - ~) wil = (1 - 3~5) 1.5262 x 10-3 = 4.5787 X 10-4 m] s, (B.2)

where wil is the average velocity at planes in the streamwise channel (planes 1, 2, 5 and 6).

The dimensionless hydrodynamic permeability K, could then be calculated using the Darcy

equation (equation (2.42))

K = _.!!}J_
d.l..!:lp

0.001 (4.5787 x 10-4)
0.005 (0.03575)

2.5613 X 10-3. (B.3)

The numerical value obtained by FD is K = 2.56 X 10-3 which is almost the same as the

result given here by CFX. However the predicted value given by the FD analytical model

(equation (3.2)) is K = 3.2143 X 10-3 which is higher than both the numerical results.

Assumptions

Figure B.3 shows contours of constant pressure across the unit cell shown in Figure B.2. The

24th contour represents a pressure of 0.049 Pa (kg m-1 S-2) and the 2nd contour represents

the pressure of 0.014 Pa (kg m-1 S-2). The adjacent contours differ by a value of 0.0015 Pa.

From Figure B.3 it is obvious that there are constant pressure gradients in the streamwise

channels, but there also exist pressure gradients in the other volumes.

87

Stellenbosch University http://scholar.sun.ac.za



CFX

Figure B.3: Isobars for the non-staggered CFX model of é = 0.51, with flow in the positive

x-direction.

We now consider the three different fluid volumes Uil, Ug and Ut, shown in Figure B.2,

separately. The pressure gradient in the streamwise volume Uil according to the model

(equation (2.44)) is

12 u q
-V'IIP = dl(l _ JI"=E)3 = 8.13995 Pa, (B.4)

which is almost exactly the same as the pressure gradient given by CFX for the streamwise

channel

PI - P2
-V'IIP =

ds/4
0.0712

0.000875
8.1371 Pa, (B.5)

as expected.

The pressure gradient in the transfer volumes Ut is zero according to the model, however the

pressure gradient given by CFX for this volume is

-V' - P3 - P4
tP - d - ds

0.0351382 - 0.0295041
0.0015

3.75607 Pa. (B.6)
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The assumption in the model that the pressure gradient is zero in the transfer volume Ut,

may therefore contribute greatly to the reason why the numerical and predicted values for

K differ.

To calculate the pressure gradient in the stagnant volume, average pressure values of the

opposing walls in this region were also calculated. The pressure gradient in this region is

zero according to the assumptions of the model, however the result of the pressure gradient

given across the stagnant volume according to CFX is as follows:

0.03408 - 0.031878
0.0015

1.468 Pa. (B.7)

We assume that the pressure gradient in the transfer and stagnant volumes are caused by the

change in the velocity profile on entering and exiting the streamwise (parallel plates) sections.

This contribution was assumed to be negligible by the FD analytical model. Obviously at

low porosities these volumes are going to be very small and may be neglected, but for

higher porosities their contribution should perhaps be considered, to obtain more accurate

predictions.
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Appendix C

CFX. staggered configuration for

E == 0.1164

In CFX-build models with staggered configurations, similar to the model shown in Figure

C,l, for porosities 0,1164 and 0,51 were constructed as mentioned in Section 4,1. In this

appendix we examine closely the CFX staggered model of porosity E = 0,1164, in an attempt

to verify the assumptions made in the analytical model.

First we calculate the value given by CFX for the dimensionless hydrodynamic permeability

K, which can be compared to the predicted value of the FD analytical model.
o,Ol7g1-i
(

=; symmetry p~ane I
-1- ~

IlY ",0469 '" I I
, I. II,; l I

0' I I
, , I I

-cc ": ,,2.:; i !:',
,

' , I;
t " W I

.. ,
out

~

symmetry plane

Figure Ci l: Construction used in CFX modelling for streamwise staggering,

We consider the top half of the second unit cell (area bordered by dashed lines in Figure

C,l) constructed in CFX-build, as shown in Figure C,2. The pressure was set as 0,1 Pa at
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the inlet and 0 Pa at the outlet, to assure slow flow in the Darcy regime. As with the models

for the non-staggered case, the fluid was chosen to be water, with density p = 1000 kglm3

and dynamic viscosity IL = 0.001 N· 81m2. For simplification the unit cells were chosen to

be square with d = dil = d..l = 0.01 m, so that Uo = 1 X 10-4 m2. Therefore, for a porosity of

f = 0.1164, we must have ds = dsll = ds..l = 0.0094m as shown in Figure C.2.

0.005

synanaetry plane
1~----2------ 0.01
r . -. ..--...--=-...,..........---.....,..----",-,,-----,

wll----+: Uil ~ :.,

··········3Uj_ ..
........... ,fr

...... ; : Uil :~WII~ ~~---lo,_ • ..

5 6synanaetry plane

Figure C.2: Top half of a unit cell constructed in CFX for a model with f = 0.1164 (All

measurements in meters).

In the CFX post-processor, planes were created at positions 1 to 6, as indicated in Figure

C.2. The numerical values for the average velocity and the average pressure given at these

planes are given in Table C.l.

Dimensionless Permeability K

The change in pressure across the entire unit cell is given by

PI - P6 - 0.0361 Pa, (C.1)
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Plane Average pressure [Pa] Average velocity [mis]

1 0.05000 8.918 x 10-5 1\

2 0.04305 8.918 x 10-5 II

3 0.03269 4.459 x 10-5 ..L

4 0.03121 4.459 x 10-5 ..L

5 0.02084 8.918 x 10-5 II

6 0.01390 8.918 x 10-5 II

Table C.1: Numerical values obtained using CFX for the case of streamwise staggering.

where PI and P6 indicate the average pressure at planes 1 and 6 respectively.

The superficial velocity q was calculated as

q = (1 - d) wil = (1 - 0~~~~4) 8.918 x 10-5 = 5.3508 X 10-6 ml s, (C.2)

where wil is the average velocity at planes in the streamwise channel (planes 1, 2, 3 and 4).

The dimensionless hydrodynamic permeability K, could then be calculated using the Darcy

equation (equation (2.42))

K = __!!_!j_ = 0.001 (5.3508 x 10-
6
) = 1.4822 X 10-5.

d..Lb.p 0.01 (0.361)
(C.3)

The value predicted by the model (equation (2.54)) for the dimensionless permeability of a

model of porosity E = 0.1164 is

K = (1 - v!f=E)3 = 1.531915 X 10-5.
12 Jl - E

(C.4)

This predicted value is very similar to the value obtained numerically by CFX (equation

(C.3)).

Assumptions in the Fluid Volumes

Figure C.3 shows contours of constant pressure across the unit cell shown in Figure C.2,

for a model of porosity E = 0.1164. The 36th contour represents a pressure of 0.046 Pa
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(kgm-18-2) and the 8th contour represents the pressure of 0.02 Pa (kgm-18-2). The

adjacent contours differ by a value of 0.001 Pa. From Figure C.3 it can be seen that constant

r

Figure C.3: Isobars for the staggered CFX model of E = 0.1164, with flow in the positive

z-direction.

pressure gradients are found in both the streamwise and transverse regions, but the pressure

gradient in the transverse region is half the pressure gradient in the streamwise region, as

assumed by the model.

The pressure gradient in the streamwise volume Uil, according to the model (equation (2.44))

is

2.972 Pa, (C.5)

which is almost the same as the pressure gradient given by CFX for the streamwise channel

6.946 X 10-3

2.35 X 10-3
2.956 Pa, (C.6)
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as expected. The pressure gradient in the transverse volume U.l according to the model

(equation (2.49)) is

-\7.lP - -~IIP = 1.486 Pa, (C.7)

which is almost the same as the pressure gradient given by CFX for the transverse channel

_ \7.lP _ P3 - P4
0.001

1.478 Pa. (C.8)

However both these results (equation (C.6) and (C.8)) are found in the middle regions of

their respective volumes. At the 'edges' of the volumes the results are not quite the same.

Around the corners of the solid rectangles, shown by A and B in Figure C.2, the flow is more

complex, but the approximation made by the model by assuming a transfer volume, where

the pressure remains constant, seems reasonable. For low porosities these transfer volumes

are going to be very small and will not have much effect on the model.

Figure C.4 shows contours of constant pressure across the unit cell shown in Figure C.2, for

a model of porosity é = 0.51. The 29th contour represents a pressure of 4.462 x 10-3 Pa

(kgm-18-2) and the 7th contour represents the pressure of 1.577 xlO-3 Pa (kgm-1 8-2).

The adjacent contours differ by a value of 1.5 x 10-4 Pa. From the model it can be seen that

constant pressure gradients are found in the streamwise regions, however in the transverse

regions the flow cannot necessarily be ~dered as parallel plate flow. This is most likely

because at high porosities only a small section (if any) of the parallel plates in the transverse

regions are opposite each other.

We can conclude therefore that the physics involved at higher porosities are different from the

parallel plate Stokes flow which forms the basis of the FD analytical model and therefore,

for configurations of very high porosity this model will not give accurate results and an

alternative model should be considered for these configurations.
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CFX

Figure C.4: Isobars for the staggered CFX model of E - 0.51, with flow in the positive

x-direction.
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Appendix D

Pressure averaging equation for FD

staggering

In this appendix we address each term in the pressure averaging equation (equation (6.1))

(Vp) v (p) + ~o jj TlpdS. (D.1)

by considering the rectangular representation of a porous medium for the FD staggered

configuration as shown in Figure D.I.

We first consider a unit cell, where the boundaries in the perpendicular direction of the

unit cell go through the solid region, as indicated by RRUC 1 (RRUC 2 is therefore the

neighbouring unit cell in this case). In terms of symbols, where 6. p is the total change in

pressure in the streamwise volume and 8p is the change of pressure in the transverse volume,

as indicated in Figure D.1, the first term in equation (D.1) can be written as

(Vp)
~o jjjVpdU jjjvpdU + jjjVpdU + jjjVpdU

Uj_

(D.2)
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RRUC 1
'+----djj ----.

p p

RRUC 2

jJ -!::"pr-~~~--~~-----.~,-----'------------------'------~~ei II . , U I I ~~
." ·8, , .:. A ' , " , t I I ~~~

ri8ik', "1-' ,"""p""'" .,.--------,.......".------.,....,-,."....
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~~~~~
":u; _·./ll"IJ.- áp ~

",.'
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p :p p -!::"p p- !::"p

Figure D.l: Unit cell geometry in case of FD streamwise staggering (first case).

The pressure is constant in the transfer volumes so the pressure gradient will be zero here,

However, even though the flow is in the perpendicular direction, we assume that there is a

pressure gradient in the streamwise direction. The pressure at A, in Figure D.1, is given by

p + [~(d..i - ds..i)/(~ds..i)l8 p. Therefore, for the first term we have

(\lp) =

(D.3)

The second term in equation (D.1) is

\l (p) (D.4)
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The average pressure in the total transfer region of the unit cell is equal to the average

pressure in the perpendicular region. Therefore if we consider two different RRUCs, as

shown in Figure D.I, and take the gradient of their two averages we obtain the following

"V (p)
2_ ([ (p + 6p + ¥) Uil + (p + ¥) Ut + (p + ¥) U j_ ]

u: dil

_ [(p - ¥) Uil + (p - ~ p - ~) Ut + (p - ~ p - ~) U j_ ] )

dil

_ 2_ (( ~ p + 6p) Uil + (~p + 6p) (Ut + U j_) )

o, dil

_ Uf (~p + 6p) .
u, dil

(D.5)

(D.6)

This can be shown by considering each component of the volumes separately and realising

that they all differ by (~p+6p) to the corresponding component in the neighbouring RRUC.

The surface integral term is zero in this case,

~o JJ TlpdS 0, (D.7)

since the pressure at the walls is assumed to cancel out. In a more realistic situation, the

surface term here would not be zero, since the pressures at the streamwisely up and down

facing surfaces would not cancel out. However, for the pressure averaging equation this has

been compensated for by including a pressure gradient in the transverse region.

The above results for the three terms will be true for all RRUCs whose boundaries cut

through the solid rectangle (i.e. for dsll/ dil of the possible RRUCs if shifted in the streamwise

direction) .
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Second case

If we now shift the unit cell in the streamwise direction so that its boundaries do not pass

through the solid region (i.e. consider the unit cell to be as shown in Figure D.2), the surface

integral term will not be zero, but the other two terms in the pressure averaging equation

will be the same, as shown below. This will be true for all RRUCs whose boundaries do not

cut through the solid rectangle (i.e. for 1 - dsll/dll of the cases).

RRUC 1
:~----dll ----~

p p - b.p p - b.pp

p - b.p - 8p................. .:Ut:..... .............. ..... ..... p - b.p - 8p

.....I .
I Ut ~...............

p+Ap+8p

p p- b.p

p p p- b.p p - b.p

Figure D.2: Unit cell geometry in case of FD streamwise staggering (second case).

In terms of symbols, as indicated in Figure D.2, the first term in equation (D.l) is

("Vp) ~o JJJ"V pdU JJJ"VpdU + JJJ"VpdU + fJJ"VpdU
Uj_

(D.8)

The pressure is constant in the transfer volumes so the pressure gradient will be zero here, but

in the transverse volumes there is a pressure gradient in the streamwise direction. Therefore
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we have

(\lp) (Dog)

(DolO)

The second term can be written as

v (p) = ~o v jjjpdU. (Do11)

If we consider two neighbouring RRUCs, similar to the one shown in Figure Do2, and take

the gradient of their two averages we obtain the following

v (p) = _ ~ (( ~ p + Ó p) Uil + (~p + Ó p) Ut + (~p + ó p) U1. )

u, dil

__ UJ (~p+óp) 0

U; dil
(Do12)

This can be shown by considering each component of the volumes separately and realising

that they all differ by (~p+ó p) to the corresponding component in the neighbouring RRUCo

The surface integral in this case is not zero and is given by:

dsl. (2 P + ó P _ 2p - 2 ~ p - ó p)
u, 2 2

«,(U
o

~p+8p)o (Do13)
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Combination of Cases 1 and 2

Combining cases 1 and 2 we obtain the overall value for each term in equation (D.l):

(\lp) = - Uil [6.P + 0Pj
U; dsll '

(D.14)

\l (p) (D.15)

~o JJ TlpdS

(D.16)

Checking equation (D.l), with the help of Table 5.2, we obtain the following:

(\lp) - v (p) + ~o JJ TlP dS

Sfs

_ _ Uf. (6.P + 0 p) + (dil - dsll). (ds_L (6.p + 0P))u. dil dil u,
_ _ 6.p + op. (Uf _ (dil - dsll) dS_L)

c, dil dil

_ 6.p + oP. (Uil + Ut)
U; dil

_ _ 6.p + 0 p. ((d_L - dS_L) dsll + (dil - dsll) (d_L - dS_L))
i: dil

_ 6.p + 0 t: ((d_L - dS_L)dil. ~)
u, dil dsll

U_L 6.p+op
u, dsil

(D.17)

(D.18)
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which agrees with equation (D.14). From equation (D.1) and equation (D.17) we can write

the surface term as follow

( Uil~ Ut ) S7 (p) _ \7 (p)

(UII~Ut _ 1).\7 (p). (D.19)

This equation is identical to the equation obtained when considering the rectangular repre-

sentation of a porous medium for the RRUC staggered configuration, equation (6.53).
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