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Abstract

Engineering process model: Detection of cycles and determination of paths

M. Cronje

Department of Civil Engineering
University of Stellenbosch

Private Bag X1, 7602 Matieland, South Africa

Thesis: MScEng (Civil)

April 2006

In order to plan the engineering work of large construction projects efficiently, a model of the engineering
process is required. An engineering process can be modelled by sets of persons, tasks, datasets and tools,
as well as the relationships between the elements of these sets. Tasks are more often than not dependent
on other tasks in the engineering process. In large projects these dependencies are not easily recognised,
and if tasks are not executed in the correct sequence, costly delays may occur.

The homogeneous binary relation “has to be executed before” in the set of tasks can be used to
determine the logical sequence of tasks algebraically. The relation can be described by a directed graph
in the set of tasks, and the logical sequence of tasks can be determined by sorting the graph topologically,
if the graph is acyclic. However, in an engineering process, this graph is not necessarily acyclic since
certain tasks have to be executed in parallel, causing cycles in the graph. After generating the graph
in the set of tasks, it is important to fuse all the cycles. This is achieved by finding the strongly
connected components of the graph. The reduced graph, in which each strongly connected component
is represented by a vertex, is a directed acyclic graph. The strongly connected components may be
determined by different methods, including Kosaraju’s, Tarjan’s and Gabow’s methods.

Considering the “has to be executed before” graph in the set of tasks, elementary paths through the
graph, i.e. paths which do not contain any vertex more than once, are useful to investigate the influence
of tasks on other tasks. For example, the longest elementary path of the graph is the logical critical
path. The solution of such path problems in a network may be reduced to the solution of systems of
equations using path algebras. The solution of the system of equations may be determined directly, i.e.
through Gauss elimination, or iteratively, through Jacobi’s or Gauss-Seidel’s methods or the forward
and back substitution method. The vertex sequence of an acyclic graph can be assigned in such a way
that the coefficient matrix of the system of equations is reduced to staggered form, after which the
solution is found by a simple back substitution. Since an engineering process has a start and an end,
it is more acyclic than cyclic. Consequently we can usually reduce a substantial part of the coefficient
matrix to staggered form. Using this technique, modifications of the solution methods mentioned above
were implemented, and the efficiency of the technique is determined and compared between the various
methods.
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Ingenieursproses model: Opsporing van siklusse en bepaling van paaie

M. Cronje

Departement van Siviele Ingenieurswese
Universiteit van Stellenbosch

Privaatsak X1, 7602 Matieland, Suid-Afrika

Tesis: MScIng (Siviel)

April 2006

’n Model van ’n ingenieursproses word benodig om die ingenieurswerk van groot konstruksie projekte
effektief te beplan. ’n Ingenieursproses kan gemodelleer word deur versamelings van persone, take,
datastelle en gereedskap, sowel as die verwantskappe tussen die elemente van die versamelings. Take is
oor die algemeen afhanklik van ander take in die ingenieursproses. Hierdie afhanklikhede is nie altyd
opsigtelik in groot projekte nie en duur vertragings kan ontstaan indien hierdie take nie in die regte
volgorde uitgevoer word nie.

Die homogene binêre verwantskap “moet uitgevoer word voor”, in die versameling van take, kan
gebruik word om die logiese volgorde van take algebraïes te bepaal. Die verwantskap kan deur ’n gerigte
grafiek op die versameling van take beskryf word. Die logiese volgorde van take kan dan bepaal word
deur die grafiek topologies te sorteer, indien dit asiklies is. Die grafiek is egter nie noodwendig asiklies
in ’n ingenieursproses nie, aangesien sommige take parallel uitgevoer moet word. Dit lei tot siklusse in
die grafiek. Dit is belangrik om al die siklusse in die grafiek van die versameling van take te verwyder.
Dit word vermag deur al die sterkverbinde komponente van die grafiek te vind. Die gereduseerde grafiek,
waarin elkeen van die sterkverbinde komponente voorgestel word deur ’n nodus, is ’n gerigte asikliese
grafiek. Die sterkverbinde komponente kan deur verskillende metodes, o.a. Kosaraju, Tarjan en Gabow
se metodes bepaal word.

Elementêre paaie deur die grafiek, m.a.w. paaie waarin geen nodus meer as een keer voorkom nie,
kan bepaal word deur gebruik te maak van die “moet uitgevoer word voor” grafiek op die versameling
van take. Hierdie paaie is nuttig om die invloed van take op ander take te bestudeer. ’n Voorbeeld
hiervan is die langste elementêre pad deur die grafiek, ook die sogenaamde logiese kritiese pad. Die
oplossing van sulke pad-probleme in ’n netwerk kan vereenvoudig word tot die oplossing van ’n stelsel
van vergelykings deur die gebruik van pad-algebras. Die oplossing van die stelsel van vergelykings kan
direk bepaal word, deur byvoorbeeld Gauss eliminasie, of iteratief, deur Jacobi of Gauss-Seidel se metodes
of die voorwaardse- en terugwaardse substitusie metode. Die opeenvolging van nodusse van ’n asikliese
grafiek kan op so ’n wyse toegeken word dat die koëffisiënt matriks van die stelsel van vergelykings tot
’n trapsgewyse vorm vereenvoudig kan word. Daarna kan die oplossing gevind word deur ’n eenvoudige
terugsubstitusie. Aangesien die ingenieursproses ’n begin en ’n einde het, is dit meer asiklies as siklies.
Daaruit volg dat ons gewoonlik ’n aansienlike deel van die koëffisiënt matriks tot trapsgewyse vorm kan
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vereenvoudig. Hierdie tegniek kan gebruik word om aanpassings aan die bogenoemde oplossingsmetodes
aan te bring. Die effektiwiteit van die implementasies van hierdie aanpassings aan die verskeie metodes
is bepaal en onderling met mekaar vergelyk.
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Chapter 1

Introduction

1.1 The engineering process model

In order to plan the engineering work of large construction projects efficiently, a model of the engineering
process is required (see references [1, 2]). An engineering process can be modelled by sets (see Section
2.2.1) of persons, tasks, data-sets and tools, as well as the relationships between the elements of these
sets. There may be relationships between elements of different sets, heterogeneous binary relationships
(see Section 2.3.5) or between elements of the same set, homogeneous binary relationships (see Section
2.3.6).

Twelve types of heterogeneous binary relations are possible on the basis of the four sets, as shown in
Figure 1.1. The relation “access” includes relations such as “creates”, “reads” and “modifies”, similarly for
the relation “is accessed by”. The complete range of binary relations, the twelve types of heterogeneous
relations as well as the four types of homogeneous relations, can be determined on the basis of three
types of heterogeneous binary relations. These are shown in grey in Figure 1.1. Therefore, these are the
only relations that need to be specified along with the four sets.

executes access use

is executed
by

access requires

is
accessed

by

is
accessed

by

can be
edited by

is used by
is required

by
can edit

persons

persons

tasks

tasks

data-sets

data-sets

tools

tools

Figure 1.1: Binary relations

The remaining binary relations can be determined by either finding the inverse (see Section 2.3.11.2)
of a specified relation, the composition (see Section 2.3.11.3) of more than one of the specified relations
or by a combination of both operations.

1
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1.2 The “has to be executed before” relation in the set of tasks

Tasks are more often than not dependent on other tasks in the engineering process. In large projects
these dependencies are not easily recognised, and if tasks are not executed in the correct sequence, costly
delays may occur.

The homogeneous binary relation “has to be executed before” in the set of tasks can be determined,
given the heterogeneous binary relations “access” and “is accessed by” between the sets of tasks and
data-sets. As can be seen in Figure 1.2, task A has to be executed before task B, since dataA, which is
read by task B, has to be created first by task A.

task A
creates

data A task B
is read by

task A task B

⇒ task A has to be executed before task B

Figure 1.2: The “has to be executed before” relationship

The homogeneous binary relation “has to be executed before” can be described by a directed graph
in the set of tasks (see Section 3.2).

1.3 Directed graph of the “has to be executed before” relation

The homogeneous binary relation “has to be executed before” in the set of tasks can be used to deter-
mine the logical sequence of tasks (see Section 4.5) algebraically. The logical sequence of tasks can be
determined by sorting the graph topologically (see Section 3.4.3.3), if the graph is acyclic (see Section
3.4.3).

1.4 Logical sequence of tasks

In an engineering process, the task-task graph is not necessarily acyclic since certain tasks have to be
executed in parallel, causing cycles (see Section 3.4.1.6) in the graph.

task A

creates
data A

task B

is read by

data B
createsis read by

task A task B

⇒ task A and task B should be performed in parallel

Figure 1.3: Undirected edge in the directed graph

The creation of an undirected edge (i.e. a relationship in both directions between two tasks) in the
graph is shown in Figure 1.3, while the creation of a cycle is shown in Figure 1.4. After generating
the graph in the set of tasks, it is important to fuse all the cycles. This is achieved by finding the
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strongly connected components (see Section 3.4.2.8) of the graph. The reduced graph, in which each
strongly connected component is represented by a vertex, is a directed acyclic graph. All the tasks in
a strongly connected component have to be executed in parallel. The strongly connected components
may be determined by different methods, including Kosaraju’s (see Section 4.4.1), Tarjan’s (see Section
4.4.2) and Gabow’s (see Section 4.4.3) method.

task A

creates

data A task I

data N

creates

is read by

data I

task J

is read by

task A

task I

task J

task N

⇒ task A, . . . , task I, task J , . . . and task N should be performed in parallel

Figure 1.4: Cycle in the directed graph

1.5 Elementary paths and the logical critical path

Considering the “has to be executed before” graph in the set of tasks, elementary paths (see Section 1.1)
through the graph are useful to investigate the influence of tasks on other tasks. For example, the longest
elementary path is the logical critical path (see Section 5.4). The solution of such path problems in a
network may be reduced to the solution of systems of equations (see Section 1.1) using path algebras (see
Section 5.3.3). The solution of the system of equations may be determined directly, i.e. through Gauss
elimination (see Section 5.5.2.5), or iteratively, through Jacobi’s (see Section 5.5.3.4) or Gauss-Seidel’s
(see Section 5.5.3.5) method or through the forward and back substitution method (see Section 5.5.3.6).
The vertex sequence of an acyclic graph can be assigned in such a way that the coefficient matrix of
the system of equations is reduced to staggered form, after which the solution is found by a simple
backward sweep (see Section 5.5.2.3). Since an engineering process has a start and an end, it is more
acyclic than cyclic. Consequently a substantial part of the coefficient matrix can be reduced to staggered
form (see Section 5.6). Using this technique, modifications of the solution methods mentioned above
were implemented, and the efficiency of the technique is determined and compared between the various
methods (see Section 6.5).

1.6 Structure of the thesis

The engineering process model consists of sets of elements, as well as the relationships between the
elements of these sets. Set theory and relations will be discussed in detail in Chapter 2. This theory will
be applied to the set of tasks of the engineering process model, as well as the “has to be executed before”
relation in the set of tasks.

The “has to be executed before” relation in the set of tasks can be described by a directed graph.
The set of tasks is equipped with structure by the “has to be executed before” relation. Directed graphs,
as well as the structural properties of directed graphs will be discussed in detail in Chapter 3.
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The logical sequence of tasks can be determined by sorting the task-task graph topologically. However,
only acyclic graphs can be sorted topologically. Therefore, the task-task graph has to be reduced to an
acyclic graph, if it contains cycles. This is achieved by decomposing the graph into its strongly connected
components. A graph can be decomposed into its strongly connected components using the algorithms
of Kosaraju, Tarjan or Gabow. After this has been done, the reduced acyclic graph can be sorted
topologically to determine the logical sequence of tasks. The decomposition of a graph into its strongly
connected components, as well as determination of the logical sequence of tasks are discussed in detail
in Chapter 4.

Elementary paths, most importantly of which is the logical critical path, through the task-task graph
can be determined using the algebra of elementary paths. The use of the elementary path algebra reduces
this problem to a system of equations. This system of equations can be solved by direct methods, such
as Gauss elimination, followed by a back substitution, or through iterative methods, such as Jacobi’s,
Gauss-Seidel’s or the forward and back substitution method. The elementary path algebra, as well as
methods of solution of the systems of equations are discussed in detail in Chapter 5.

A computer model is developed and implemented for the graphs and graph algorithms. This is
discussed in Chapter 6. The performance of the implementation of the methods of solution is also
considered in this chapter.



Chapter 2

Set theory and relations

2.1 Introduction

A collection of the task elements of an engineering process as discussed in Section 1.1 is a set. Therefore,
set theory is considered in Section 2.2.

There may be relationships between the elements of sets, such as the “has to be executed before”
relation in the set of tasks as discussed in Section 1.2. The relevance of the properties of relations, as
well as the different types of relations, discussed in Section 2.3, will become apparent when we look at
the graph representation of the “has to be executed before” relation in Chapter 3. See reference [4] for a
detailed discussion of set theory and relations.

2.2 Set theory

2.2.1 Definition of a set

Objects which are separable and can be identified uniquely are called elements. A collection of elements
with similar properties is called a set. Each property of an element is described either by its value or
by rules for determining its value. The elements of a set are uniquely identified using a property of the
elements which takes different values for all elements. This property is called the name (label, identifier)
of the element.

2.2.2 Formation of sets

A set M is specified either by enumerating the names of the elements or by describing the properties of
the elements. The order of enumeration of the elements is irrelevant. If two elements in the enumeration
bear the same designation, they represent the same element. This element is contained in the set only
once. The set without elements is called the empty set and is designated by φ.

M = {a, b, c} set M consists of the elements a, b, c

M = {x | E (x)} set M contains every element for which the logical expression E (x) is true
φ := {x | x 6= x} empty set

(2.1)

5
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The membership of an element a in a set M is represented using the symbols ∈ and /∈:

a ∈ M a is an element of M

a /∈ M a is not an element of M

2.2.3 Quantifier

There are statements which are true for certain elements of a set M and false for other elements of M .

∧

x∈M

a (x) for every x in the set M , a (x) holds
∨

x∈M

a (x) there is an x in the set M for which a (x) holds
(2.2)

2.2.4 Equal sets

Two sets A and B are said to be equal if they contain the same elements. If the sets A and B are equal,
they contain the same elements. The statement A = B (A equals B) can either be true or false.

(A = B) :⇔
∧
x

(x ∈ A ⇔ x ∈ B) (2.3)

A = B sets A and B are equal
A 6= B sets A and B are not equal

2.2.5 Subset

A set A is called a subset of a set B if every element of A is also an element of B. If the set B contains
at least one element not contained in A, then A is called a proper subset of B.

(A ⊆ B) :⇔
∧
x

(x ∈ A ⇒ x ∈ B)

(A ⊂ B) :⇔ (A ⊆ B) ∧ ¬ (A = B)
(2.4)

In addition to the symbols ⊆ (contained in) and ⊂ (properly contained in), the symbols ⊇ (includes)
and ⊃ (properly includes) are also used.

B ⊇ A set B includes set A

B ⊃ A set B properly includes set A

A ⊆ B A is a subset of B

A ⊂ B A is a proper subset of B

2.2.6 Power set

From a given set M of n elements, 2n subsets can be formed, including φ and M . The set of all subsets
of M , including φ and M , is called the power set of M and is designated by P (M). The set M is called
the reference set of the power set P (M).

M = {a, b, c} n = 3, 23 = 8
P (M) = {φ, {a} , {b} , {c} , {a, b} , {a, c} , {b, c} , {a, b, c}} (2.5)

2.2.7 Family of elements

Designating the elements of a set by different names is inconvenient for sets with a large number of ele-
ments. The elements of a set X are therefore often designated by x1, x2, x3, . . .. The common designation
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by the lowercase letter x symbolizes membership in the set X, while the index i ∈ {1, 2, 3, . . .} identifies
the element. The elements xi are called a family of elements. The family of elements is designated by
{xi}.

X = {xi | i ∈ I = {1, 2, 3, . . .}} (2.6)

2.3 Relations

2.3.1 Ordered pair

In a set, the order of elements is irrelevant, so that {a, b} = {b, a}. Two elements a and b whose order
is relevant are called an ordered pair. An ordered pair is enclosed in parentheses. The elements a and b

may be contained in different sets. Two ordered pairs (a, b) and (c, d) are equal if and only if a = c and
b = d.

ordered pair (a, b) := {{a} , {a, b}}
a first component of the ordered pair (a, b)
b second component of the ordered pair (a, b)

(2.7)

2.3.2 Cartesian product

Let the sets A and B be given. The set of all ordered pairs (a, b) that can be formed using elements
a ∈ A and b ∈ B is called the cartesian product (direct product) of the sets A and B. The cartesian
product is designated by A×B (A times B).

A×B := {(a, b) | a ∈ A ∧ b ∈ B} (2.8)

2.3.3 Unary relations

A unary relation is a subset of a set. Let a non-empty set M of elements and a unary operation on these
elements be given. The value of the unary operation Ra for an element a is true or false.

u := {a ∈ M | Ra} ⊆ M (2.9)

u ⊆ M

The empty relation φ and the universal relation e = M are special unary relations in the set M . They
are also called the null relation and the all (complete, total) relation. A unary relation with exactly one
element x ∈ M is called a point relation or a point. These are shown in Table 2.1.

Table 2.1: Special unary relations

null relation φ := {}
point relation x := {x}
all relation e := M
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2.3.4 Binary relations

A relation on two sets is called a binary relation. A binary relation is a set of ordered pairs of elements.
It is a subset of the cartesian product of two sets. A relation on two sets, or a heterogeneous binary
relation, is a subset of the cartesian product of two different sets. A relation in a set, or a homogeneous
binary relation, is a subset of the cartesian product, where the two factors of the product are equal.

2.3.5 Heterogeneous binary relation

Let two non-empty sets A and B be given, with a binary operation for a relation R on the elements
a ∈ A and b ∈ B whose value is a logical constant. The value of the operation for the ordered pair (a, b)
in the product A×B is designated by aRb (a is related to b) and is either true or false.

The subset R of pairs (a, b) for which aRb is true is called a relation on A and B, or a heterogeneous
binary relation. Thus the relation is a set containing the ordered pairs of elements for which the rela-
tionship specified by the operation holds. The order of the elements a and b in the operation is relevant
to the result of the operation. The relation R is a subset of the heterogeneous cartesian product A×B.

R := {(a, b) ∈ A×B | aRb} ⊆ A×B (2.10)

2.3.6 Homogeneous binary relation

Let a non-empty set M of elements be given, with a binary operation for a relation R on the elements
a ∈ M and b ∈ M whose value is a logical constant. The value of the operation for the ordered pair
(a, b) in the product A×A is designated by aRb and is either true or false.

The subset R of pairs (a, b) for which aRb is true is called a relation in M , or a homogeneous binary
relation. Thus the relation is a set containing pairs of elements for which the relationship specified by
the operation holds. The corresponding homogeneous relation is the set of all ordered pairs (a, b) for
which the binary operation aRb is true. It is a subset of the homogeneous cartesian product M ×M .

R := {(a, b) ∈ M ×M | aRb} ⊆ M ×M (2.11)

2.3.7 Properties of relations

The subset R ⊆ M × M of the cartesian product of a set with itself for which aRb is true is called a
relation in M . The relationships between the statement values aRb and bRa of the pairs (a, b) and (b, a)
determine the properties of the relation. These properties are defined in Tabel 2.2 for a, b, c ∈ M .

R := {(a, b) ∈ M ×M | aRb}
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Table 2.2: Properties of relations

R is reflexive :⇔
∧
a

(aRa)

R is antireflexive :⇔ ∧
a (¬aRa)

R is symmetric :⇔
∧
a

∧

b

(aRb ⇒ bRa)

R is asymmetric :⇔
∧
a

∧

b

(aRb ⇒ ¬bRa)

R is antisymmetric :⇔
∧
a

∧

b

(aRb ∧ bRa ⇒ a = b)

R is linear :⇔
∧
a

∧

b

(aRb ∨ bRa)

R is connex :⇔
∧
a

∧

b

(a 6= b ⇒ aRb ∨ bRa)

R is transitive :⇔
∧
a

∧

b

∧
c

(aRb ∧ bRc ⇒ aRc)

2.3.8 Totality of a relation on A and B

The subset R ⊆ A×B for which aRb is true is a relation on the sets A and B. The subset of A for which
there exists b ∈ B such that aRb is true is called the domain of R. The subset of B for which there exists
a ∈ A such that aRb is true is called the range of R. The relation is said to be left-total if its domain is
A. The relation is said to be right-total if its range is B. A relation which is left- and right-total is said
to be bitotal.

R is left-total :⇔
∧
a

∨

b

(aRb)

R is right-total :⇔
∧

b

∨
a

(aRb)

R is bitotal :⇔ R is left-total ∧R is right-total

(2.12)

2.3.9 Uniqueness of a relation on A and B

A relation on A and B is said to be left-unique if the statements aRb and cRb are true only for a = c.
The relation is said to be right-unique if the statements aRb and aRc are true only for b = c. A relation
which is left-unique and right-unique is said to be bi-unique.

R is left-unique :⇔
∧
a

∧

b

∧
c

(aRb ∧ cRb ⇒ a = c)

R is right-unique :⇔
∧
a

∧

b

∧
c

(aRb ∧ aRc ⇒ b = c)

R is bi-unique :⇔ R is left-unique ∧R is right-unique

(2.13)

2.3.10 Relational diagram

A relational diagram shows three sets: the sets A and B as well as the relation R. The elements of A

and B are represented by different symbols, for instance empty and filled circles. The elements of R are
represented by line segments. For R ⊆ A × B the elements a ∈ A and b ∈ B for which aRb is true are
joined by line segments. The following relational diagrams illustrate the uniqueness of R.
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R general R left-unique R right-unique R bi-unique
m : n relationship 1 : n relationship m : 1 relationship 1 : 1 relationship

A B

(a) general

A B

(b) left-unique

A B

(c) right-unique

A B

(d) bi-unique

Figure 2.1: Uniqueness of R

2.3.11 Types of relations

Every relation is a subset of a direct product. Relations often have additional properties. Relations with
common properties belong to a type of relations. Some types of relations are defined in the following.

2.3.11.1 Identity relation

The set of all ordered pairs (a, a) in the product A×A is called the identity relation IA in the set A.

IA := {(a, a) | a ∈ A} (2.14)

2.3.11.2 Inverse relation

The set R−1 is called the inverse (dual) relation of the relation R if the order of the elements in the
ordered pairs (a, b) of R is exchanged in R−1.

R−1 := {(b, a) | (a, b) ∈ R} (2.15)

2.3.11.3 Composition

Let a relation R on the sets A and B and a relation S on the sets B and C be given. The set of ordered
pairs (a, c) ∈ A×C for which there is a common element in B is called the composition of R and S. The
order of R and S is relevant, as b is the second element of R and the first element of S. The composition
is designated by R ◦ S.

R ◦ S :=

{
(a, c) ∈ A× C |

∨

b∈B

(aRb ∧ bSc)

}
(2.16)
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2.3.11.4 Equivalence relation

A relation E ⊆ M ×M is called an equivalence relation in the set M if it is reflexive, symmetric and
transitive. The elements x and y of the set M are said to be equivalent if the set E contains the pair
(x, y); this relationship is designated by x ∼ y or xEy.

E is reflexive x ∼ x

E is symmetric x ∼ y ⇒ y ∼ x

E is transitive x ∼ y ∧ y ∼ z ⇒ x ∼ z

(2.17)

2.3.11.5 Equivalence class

A subset of a set M is called an equivalence class in M if the elements of the subset are pairwise equivalent.
An equivalence class is designated by choosing an arbitrary element a of the class and enclosing it in
square brackets [a]. The selected element a is called a representative of its class.

[a] := {x ∈ M | (a, x) ∈ E} (2.18)

2.3.11.6 Partitioning by equivalence

The equivalence classes in a set M for a given equivalence relation E form a partition of M :

1. Every element x of the set M is contained in at least one equivalence class, since (x, x) is an element
of the reflexive relation E.

2. None of the equivalence classes [x] is empty, since (x, x) ∈ E and hence at least x itself is an element
of [x].

3. Every element z of the set M is contained in exactly one equivalence class. In fact, if z is an
element of the classes [x] and [y], then since E is symmetric and transitive z x and z y imply x z

and x y; hence [x] = [y].

2.3.11.7 Quotient set

The set of equivalence classes of a set M for an equivalence relation E is called a quotient set and is
designated by M/E (M modulo E). A subset R ⊆ M is called a system of representatives of the quotient
set M/E if it contains exactly one representative from each class of M/E.

M/E := {[x] | x ∈ M} (2.19)



Chapter 2. Set theory and relations 12

[8][6][4][1]

M

M/E

2

3
1

[1]
5

4
[4]

6

7

[6]

8

9
10

[8]

Figure 2.2: Quotient set

2.3.12 Connection

Consider the relation R ⊆ M ×M in the set M . An n-tuple (x1, x2, . . . , xn) ∈ Mn is called a connection
of the elements a anb b by R in M if all ordered pairs (xi, xi+1) are contained in the relation R and
x1 = a, xn = b. The number n − 1 of ordered pairs is called the length of the connection. For given
elements a, b in M , there may be several connections with equal or different lengths. The statement “The
elements a and b are connected by R” is designated by aVRb.

VR :=



(x1, x2, . . . , xn) |

∧

i∈{1,...,n−1}
((xi, xi+1) ∈ R)





aVRb :⇔
∨

(x1,...,xn)∈VR

(x1 = a ∧ xn = b)
(2.20)

2.3.13 Closure

An extension of a homogeneous binary relation R ⊆ M × M is called a closure and is designated by
< R > if the following conditions are satisfied:

inclusion : R v< R >

isotonicity : R v S ⇒< R >v< S >

idempotency : << R >>=< R >

(2.21)

The extension is performed such that the closure has special properties which the relation itself
does not necessarily possess. Reflexive, symmetric and transitive closures are defined in the following.
Closures may also have several of these properties.

2.3.13.1 Reflexive closure

The reflexive closure < R >r of a relation R ⊆ M ×M is formed by adding the elements (x, x) ∈ M ×M

to R. The closure < R >r satisfies the condition for reflexive relations.
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< R >r := {(x, y) | (x, y) ∈ R ∨ x = y ∈ M}
< R >r = R t I

I v < R >r⇒< R >r is reflexive
(2.22)

2.3.13.2 Symmetric closure

The symmetric closure < R >s of a relation R ⊆ M ×M is the union of R with its transpose RT . If
< R >s contains the element (x, y), then (y, x) is also an element of < R >s. The closure < R >s

satisfies the condition for symmetric relations.

< R >s := {(x, y) | (x, y) ∈ R ∨ (y, x) ∈ R}
< R >s = R tRT

< R >s = < R >T
s ⇒< R >s is symmetric

(2.23)

2.3.13.3 Powers of a relation

In the algebra of relations, connections are represented by products of the relation R with itself. For
example, if R contains the elements (a, b) and (b, c), then by definition the product R ◦ R contains the
element (a, c). The element (a, c) is a connection of length 2 in R. Each of the elements of R ◦ R is a
connection of length 2 in R. The power Rm = R ◦ . . . ◦R (m-fold) contains all connections of length m

between two elements of M . To determine all connections of length m ≤ q in M by R, the union of the
relations R tR2 t . . . tRq is formed.

2.3.13.4 Stability index

The least exponent s for which the union R t R2 t . . . t Rsis not changed by adding terms Rm with
m > s is called the stability index of the relation R. The union RtR2t . . .tRs contains all connections
by R in M .

The stability index s of a relation R may be interpreted as follows. If there are several connections
between two elements of M , then there is a shortest connection, of length q, which is contained in Rq.
Among all the shortest connections between pairs of elements, there is a shortest connection of maximal
length s, which is contained in the power Rs. Hence the union RtR2 t . . .tRs contains all connections
in M by R. For a set M with n elements, the stability index s of the relation R ⊆ M ×M is less than
n, since the maximal length of all shortest connections in M by R cannot be greater than n− 1.

2.3.13.5 Transitive closure

The transitive closure < R >t of a relation R ⊆ M ×M contains all elements (x, y) ∈ M ×M which are
connected in M by R. The closure < R >t satisfies the condition for transitive closures.

< R >t:= {(x, y) ∈ M ×M | x and y are connected in M by R}
< R >t:= R t . . . tRs

< R >t ◦ < R >tv< R >t⇒< R >t is transitive
s stability index of R with < R >t tRs+1 =< R >t

(2.24)

2.3.13.6 Reflexive transitive closure

The reflexive transitive closure < R >rt of a relation R ⊆ M ×M may alternatively be regarded as the
transitive closure << R >r>t of the reflexive closure < R >r or as the reflexive closure << R >t>r of the
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transitive closure < R >t. The two viewpoints lead to identical relations. The closure < R >rt=< R >

satisfies the condition for transitive relations in the special form of an equation, given in Equation 2.25.

< R >rt := << R >r>t < R >tr:=<< R >t>r

< R >rt = < R >tr

< R >rt ◦ < R >rt=< R >rt⇒ < R >rt is transitive
(2.25)

2.3.13.7 Reflexive symmetric transitive closure

The reflexive symmetric transitive closure < R >rst of a relation R ⊆ M ×M is the transitive closure of
the symmetric closure of the transitive closure of R . It coincides with the reflexive symmetric transitive
closure < R >rst. The closure < R >rst is of special importance, as it is an equivalence relation and
therefore yields a classification of the set M .

< R >rst := <<< R >r>s>t=<< R >s>rt=< R tRT >rt

< R >rst = < R t I tRT >t

(2.26)

2.3.14 Algebra of homogeneous binary relations

Directed graphs will be considered in the following sections. Since the edge set of a directed graph is a
homogeneous binary relation on the vertex set, the properties of homogeneous binary relations and their
rules of calculation may be directly transferred to directed graphs. Therefore the algebra of homogeneous
binary relations will now be explained in greater detail.

Since every relation is a set, the rules of the algebra of sets also hold for homogeneous binary relations.
Additional properties and rules result from the duality and composition of relations.

2.3.14.1 Graphical representation

A homogeneous binary relation R on a set M can be visually represented in a graph diagram. The
graph diagram consist of a point set which represents the set M of elements with their designations.
If an element x is related to an element y, an arrow is drawn from the point x to the point y. The
homogeneous relation R corresponds to the resulting set of arrows. The graph diagram shows the
elements of the set M and the relationships in a network-like structure. It is the representation used
in graph theory. The points used to represent the elements are called vertices, the arrows are called
directed edges.

Example

M = {a, b, c, d, e}
R = {(a, b) , (a, d) , (b, a) , (c, a) , (c, d) , (d, c) , (d, e) , (e, e)}

ba

c d

e

Figure 2.3: Homogeneous binary relations graph example
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2.3.14.2 Special relations

The null relation (empty relation) φ, the identity relation I and the all relation (universal relation) E

are special homogeneous binary relations on the set M .

null relation φ = {}
identity relation I = {(a, a) | a ∈ M}
all relation E = M ×M

(2.27)

2.3.14.3 Equality and inclusion

The operations of equality R = S and inclusion R v S on homogeneous relations R and S are equal. If
R v S is true, then R is contained in S.

equality R = S :⇔
∧
a

∧

b

((a, b) ∈ R ⇔ (a, b) ∈ S)

inclusion R v S :⇔
∧
a

∧

b

((a, b) ∈ R ⇒ (a, b) ∈ S)

equality R = S :⇔
∧

i

∧

j

(rij ⇔ sij)

inclusion R v S :⇔
∧

i

∧

j

(rij ⇒ sij)

(2.28)

2.3.14.4 Binary operations

The intersection RuS, the union RtS and the product R◦S are binary operations on the homogeneous
relations R and S. The intersection and the union are defined as in set theory. The product corresponds
to the composition of two relations; the operation of forming products is called multiplication. In the
algebra of relations it is convenient to define the composition R ◦ S of the relations in the order “first R,
then S”. This definition allows direct transfer to boolean matrix algebra.

intersection R u S := {(x, y)| (x, y) ∈ R ∧ (x, y) ∈ S}
union R t S := {(x, y)| (x, y) ∈ R ∨ (x, y) ∈ S}
product R ◦ S := {(x, y)|

∨
z

((x, z) ∈ R ∧ (z, y) ∈ S)}
(2.29)

intersection R u S := [rij ∧ sij ]
union R t S := [rij ∨ sij ]

product R ◦ S :=

[∨

k

rik ∧ skj

] (2.30)
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Directed graphs

3.1 Introduction

A directed graph (see Section 3.2) is suitable for describing relationships between the elements of a set
such as the “has to be executed before” relation in the set of tasks. The task elements of the set are
called vertices of the graph and are identified by their labels. The relationships between the vertices
are called edges of the graph and are identified by an ordered vertex pair. Therefore, the edge set is
a homogeneous binary relation on the vertex set. The properties of homogeneous binary relations and
their rules of calculation (see Section 2.3.6) may be directly transferred to directed graphs.

A directed graph is a structured set. It consists of the vertex set V and a homogeneous binary vertex
relation R which corresponds to a set of directed edges. The vertex set V is equipped with structure
by the vertex relation R. The structural properties of a directed graph are entirely determined by the
properties of the relation R.

A graph may be decomposed into subgraphs which have simple structural characteristics and yield
insight into the essential structural properties of the graph. Paths and cycles (see Section 3.4.1) are
examples of such subgraphs. The definition of paths and cycles in a directed graph forms the basis of
the structural analysis of directed graphs. The existence of paths and cycles between two vertices leads
to the formation of the transitive closure R+ of the relation R. The properties of the transitive closure
allow a classification into acyclic, anticyclic and cyclic graphs.

In a directed graph, a vertex may or may not be reachable from another vertex along the directed
edges. The concept of reachability forms the basis for a definition of the connectedness of vertices (see
Section 3.4.2). Different kinds of connectedness may be defined, such as strong and weak connectedness.
Directed graphs which are not strongly or weakly connected may be decomposed uniquely into strongly
or weakly connected subgraphs. These subgraphs are called strongly or weakly connected components,
respectively. The decomposition of a graph into its strongly connected components (see Section 3.4.2.8)
leads to an acyclic reduced graph.

It may be convenient to assign to each element of a set A exactly one element of a set Z. The same
element of Z may be assigned to different elements of A. Relations of this type are called mappings (see
Section 3.3). Each vertex can be mapped in this way to a vertex in its strongly connected component.

The acyclicity of a graph (see Section 3.4.3) leads to special structural properties of the graph.
Directed acyclic graphs possess an order structure. The vertex set is an ordered set. The directed edges
describe the order relation in the vertex set. Due to the order structure, the vertices can be sorted
topologically.

16
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See reference [4] for a detailed description of directed graphs, mappings and the structural properties
of directed graphs.

3.2 Directed graphs

3.2.1 Definition

G := (V ; R) is called a directed graph if V is the vertex set and R ⊆ V × V is the edge set of the graph.
An edge from the vertex x ∈ V to the vertex y ∈ V is designated by the ordered pair (x, y) ∈ R. The
edge (x, y) is said to be directed from x to y. The vertex x is called the start vertex of the edge. The
vertex y is called the end vertex of the edge.

G := (V ;R) R ⊆ V × V

V set of vertices
R set of ordered vertex pairs (edge set)

(3.1)

The graph G is called a null graph if the vertex set is empty. It is called an empty graph if the edge
set is empty. It is called a complete graph if the edge set R is the all relation E = V × V .

3.2.2 Properties

The properties of a directed graph (V ;R) are determined by the properties of the homogeneous binary
relation R. The properties of homogeneous relations described in Table 2.2 are therefore transferred
to directed graphs in Table 3.1. Antireflexive, symmetric, antisymmetric and asymmetrix graphs are
important in applications:

G = (V ; R)

Table 3.1: Properties of directed graphs

G is antireflexive :⇔ I v R̄
G is symmetric :⇔ R = RT

G is antisymmetric :⇔ R uRT v I
G is asymmetric :⇔ R uRT = ∅

For an antireflexive graph, the edge set does not contain vertex pairs of the form (x, x), and the graph
diagram is free of loops (see Section 3.4.1.6). Between two different vertices in the graph diagram, a
symmetric graph contains either no edge or a pair of edges with opposite directions, which are combined
into an undirected edge. An antisymmetric graph contains either no edges or only one directed edge
between two vertices in the graph diagram. Symmetric and antisymmetric graphs may contain loops.
An asymmetric graph is antisymmetric and antireflexive, and hence free of loops. The graphs we will be
considering are asymmetric.



Chapter 3. Directed graphs 18

(a) antireflexive

loop

undirected edge

(b) symmetric

(c) antisymmetric (d) asymmetric

Figure 3.1: Directed graph properties

3.2.3 Equality and inclusion

Let two directed graphs G1 and G2 be given. Using the algebra of relations, equality and inclusion are
defined as follows for these graphs:

equality G1 = G2 :⇔ V1 = V2 ∧ R1 = R2

partial graph G1 v G2 :⇔ V1 = V2 ∧ R1 v R2

subgraph G1 ⊆ G2 :⇔ V1 ⊆ V2 ∧ R1 v R2 u (V1 × V1)

(3.2)

A partial graph (spanning subgraph) G1 is generated from a graph G2 by removing edges from G2.
A subgraph G1 is generated from a graph G2 by first removing vertices together with the incident edges
and then removing further edges form G2.

3.2.4 Adjacency-matrix graph representation

Graphs can be represented using different data structures, one of which is the adjacency-matrix.
Let V be a set with n elements. The elements of V are indexed by a mapping Φ : N → V with

Φ(i) = xi and 1 ≤ i ≤ n, so that V = {x1, . . . , xn}. A homogeneous binary relation R ⊆ V × V is a
subset of V × V . The elements of V × V which belong to the relation are specified by a boolean matrix
R of dimension n× n. Every element (xi, xj) ∈ V × V is bijectively associated with an element rij ∈ R.
If the relation R contains the element (xi, xj), then rij has the value true (1); otherwise rij has the value
false (0).

A boolean matrix R of a homogeneous relation R is an n2-tuple of the truth values W = {0, 1},
and hence an element of the n2-fold cartesian product Wn·n. The elements of a matrix R are usually
arranged in a row and column scheme by regarding the indices i, j of the element rij as row and column
indices, respectively. In formulations of general properties and rules, a matrix R is represented by a
general element rij in square brackets.
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R = [rij ] =

r11 · · · r1j · · · r1n

...
...

...
ri1 · · · rij · · · rin

...
...

...
rn1 · · · rnj · · · rnn

W = {0, 1}
R ∈ Wn·n (3.3)

3.3 Mappings

3.3.1 Mapping notation

A relation Φ ⊆ A × Z is called a mapping if it is left-total and right-unique. The following notation is
used:

Φ : A → Z Φ is a mapping from A of Z

A domain of Φ
Z target of Φ

(3.4)

3.3.2 Image of an element

If the mapping Φ assigns the element z ∈ Z to the element a ∈ A, then z is called the image of a under
the mapping Φ. The element a is called a preimage (inverse image) of z. The following notation is used:

Φ : a → z or Φ(a) = z (3.5)

3.3.3 Arrow diagram

Mappings are depicted using arrow diagrams. Every element of the domain is the starting point of an
arrow. The arrow points to the image in the target.

domain A:

target Z:

a b c d

Φ(a) Φ (b) Φ (c) = Φ (d)

mapping Φ : A → Z

3.3.4 Types of mappings

All mappings are left-total and right-unique relations. Mappings often have additional properties. Map-
pings with common additional properties belong to a type of mappings.

3.3.4.1 Injective mapping

A mapping Φ : A → Z is said to be injective (an injection) if two different elements a 6= b of the set A

always possess two different images Φ(a) 6= Φ (b). An injection is a left-total, bi-unique relation. From
Φ(a) = Φ (b) it follows that a = b.
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injection

A

↓ Φ

Z

not an injection

A

↓ Φ

Z

3.3.4.2 Surjective mapping

A mapping Φ : A → Z is said to be surjective (a surjection) if each element of the target Z is the image
of at least one element of A. A surjection is a bitotal, right-unique relation. An element z ∈ Z may be
the image of more than one element in A.

surjection

A

↓ Φ

Z

not a surjection

A

↓ Φ

Z

3.3.4.3 Bijective mapping

A mapping Φ : A → Z is said to be bijective (a bijection) if every element of Z is the image of exactly
one element of A. A bijection if a bitotal, bi-unique relation. The number of elements in A and Z is the
same.

bijection

A

↓ Φ

Z

not a bijection

A

↓ Φ

Z

3.3.4.4 Canonical mapping

The surjection from a set M to its quotient set M/E for a given equivalence relation E is called a
canonical mapping of M . The image of the element a ∈ M is the equivalence class [a].

k : M → M/E with k (a) = [a] (3.6)

Example

The example in Section 2.3.11.7 will be used to show the canonical mapping between the set M and its
quotient set M/E.
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[8]
[6]

[4][1]

M

M/E

5
4

[4]

2
3

1

[1]
6

7
[6]

8

9
10

[8]

Figure 3.2: Canonical mapping

3.4 Structure of graphs

3.4.1 Paths and cycles in directed graphs

3.4.1.1 Predecessor and successor

A vertex x is called a predecessor of a vertex y if there is an edge from x to y in the graph, so that the
ordered vertex pair (x, y) is contained in the relation R. If x is a predecessor of y, then y is called a
successor of x.

x predecessor of y ⇔ (x, y) ∈ R

y successor of x ⇔ (x, y) ∈ RT
(3.7)

A vertex x in a vertex set V may be regarded as a unary point relation in V . In the following,
this unary point relation is also designated by x. The predecessorship and the successorship of vertices
x, y ∈ V are formulated as an inclusion using such unary relations:

x predecessor of y ⇔ xyT v R

y successor of x ⇔ yxT v RT

The set of all predecessors of a vertex x ∈ V is designated by tp (x) and the set of all successors of
x by ts (x). The sets tp (x) and ts (x) are unary relations in V and are determined as follows using the
edge relation R:

predecessors of x : tp (x) = Rx

successors of x : ts (x) = RT x

3.4.1.2 Indegree and outdegree

The number of predecessors of a vertex x is called the indegree of x and is designated by gp (x). The
indegree of gp (x) corresponds to the number of elements in the set tp (x) = |tp (x)| and hence to the
number of directed edges which end at the vertex x = |Rx|. The number of successors of a vertex x is
called the outdegree of x and is designated by gs (x). The outdegree gs (x) corresponds to the number
of elements in the set ts (x) = |ts (x)|, and hence to the number of directed edges which emanated from
the vertex x =

∣∣RT x
∣∣.

indegree gp (x) = |tp (x)| = |Rx|
outdegree gs (x) = |ts (x)| =

∣∣RT x
∣∣ (3.8)
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The sum of the indegrees of all vertices x ∈ V is equal to the number of directed edges of the directed
graph, and hence coincides with the number of elements of the relation R = |R|. The same is true for
the outdegrees.

sum
∑

x∈V

gp (x) =
∑

x∈V

gs (x) = |R|

3.4.1.3 Edge sequence

A chain of edges is called an edge sequence if the end vertex of each edge except for the last edge is the
start vertex of the following edge.

< (x0, x1) , (x1, x2) , . . . , (xn−1, xn) >
n∧

j=1

((xj−1, xj) ∈ R)
(3.9)

The start vertex x0 of the first edge and the end vertex xn of the last edge are called the start vertex
and the end vertex of the edge sequence, respectively. The vertices x1 to xn−1 are called intermediate
vertices of the edge sequence. The number n of edges is called the length of the edge sequence. An edge
may occur more than once in an edge sequence.

3.4.1.4 Ancestors and descendents

A vertex x is called an nth ancestor of a vertex y if there is an edge sequence of length n from x to y

in the graph. If x is an nth ancestor of y, then y is called an nth descendant of x. A 1st ancestor or
1st descendant of x is a predecessor or successor of x, respectively. The nth ancestors and descendants
of x are determined recursively from the relationships for predecessors and successors according to the
following rule:

nth ancestors of x:

t
(k)
p (x) = Rt

(k−1)
p (x) for k = 1, . . . , n with t

(0)
p (x) = x

t
(n)
p (x) = Rnx for n > 0

(3.10)

nth descendants of x:

t
(k)
s (x) = RT t

(k−1)
s (x) for k = 1, . . . , n with t

(0)
s (x) = x

t
(n)
s (x) = (Rn)T

x for n > 0
(3.11)

The set of all ancestors of a vertex x is designated by t+p (x); it is determined as the union of the sets
of nth ancestors of x. The set t+s (x) of all descendants of x is determined analogously. The transitive
closure R+ of a relation R with stability index s, may be used to determine these sets:

ancestors of x:

t+p (x) = t(1)p (x) t . . . t t(s)p (x) = Rx t . . . tRsx = R+x

descendants of x:

t+s (x) = t(1)s (x) t . . . t t(s)s (x) = Rx t . . . tRsT x = R+T x
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3.4.1.5 Path

A path from a start vertex x via intermediate vertices to an end vertex y is an edge sequence. In a
directed graph, a path may be uniquely represented as a vertex sequence < x, . . . , y >. A path < x >

with the same start and end vertex x contains no edges and is called an empty path. The length of
an empty path is 0. There is an empty path for every vertex of a directed graph. The existence of
non-empty paths in a directed graph is established as follows:

there is a path of length n from x to y ⇔ xyT v Rn

there is a non-empty path from x to y ⇔ xyT v R+
(3.12)

3.4.1.6 Cycle

A non-empty path whose start vertex and end vertex coincide is called a cycle. A loop at a vertex is a
cycle of length 1. A cycle which contains no loops is called a proper cycle. If there is a non-empty path
from x to y and a non-empty path from y to x, then the concatenation of the two paths yields a cycle
through x and y. The existence of cycles in a directed graph is established as follows:

there is a cycle of length n > 0 through x ⇔ xxT v Rn

there is a cycle through x ⇔ xxT v R+

there is a cycle through x and y ⇔ xyT v R+ uR+T

(3.13)

3.4.1.7 Acyclic graph

A directed graph G = (V ; R) is said to be acyclic if it does not contain any cycles. The transitive
closure R+ of an acyclic graph is asymmetric. If there is a non-empty path from x to y, then there is no
non-empty path from y to x, since otherwise the concatenation of the two paths would yield a cycle.

R+ uR+T = 0 (3.14)

3.4.1.8 Anticyclic graph

A directed graph G = (V ; R) is said to be anticyclic if it does not contain any proper cycles. In contrast
to acyclic graphs, an anticylic graph may contain loops at the vertices. The transitive closure R+ of an
anticyclic graph is antisymmetric.

R+ uR+T v I (3.15)

3.4.1.9 Cyclic graph

A directed graph G = (V ; R) is said to be cyclic if every non-empty path in G belongs to a cycle. The
transitive closure R+ of a cyclic graph is symmetric. If there is a non-empty path from x to y, then there
is also a non-empty path from y to x, so that the concatenation of the two paths yields a cycle.

R+ = R+T (3.16)

3.4.1.10 Properties

The following relationships hold between the properties of a relation R and of its transitive closure
R+. If the transitive closure R+ is asymmetric or antisymmetric, then the relation R is asymmetric or
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antisymmetric, respectively. If the relation R is symmetric, then the transitive closure R+ is symmetric.
These relationships lead to the following implications:

acyclic graph ⇒ asymmetric graph
anticyclic graph ⇒ antisymmetric graph
cyclic graph ⇐ symmetric graph

3.4.1.11 Simple path

A non-empty path is said to be simple if it does not contain any edge more than once. The vertices and
the edges of a simple path form a subgraph of the directed graph. If the start vertex and end edge of a
simple path are different, the following relationships hold between the indegrees and the outdegrees of
the vertices of the corresponding subgraph:

subgraph for a simple path < x, . . . , z, . . . , y > with x 6= y

start vertex gs (x) = gp (x) + 1
intermediate vertex gs (z) = gp (z)
end vertex gp (y)− 1

(3.17)

3.4.1.12 Simple cycle

A simple path whose start vertex and end vertex coincide is called a simple cycle. In the subgraph for a
simple cycle, the indegree and the outdegree of each vertex are equal.

subgraph for a simple cycle with vertex z

vertex gs (z) = gp (z) (3.18)

3.4.1.13 Elementary path

A non-empty path is said to be elementary if it does not contain any vertex more than once. The
vertices and the edges of an elementary path form a subgraph. If the start vertex and the end vertex
of an elementary path are different, then the vertices of the corresponding subgraph have the following
indegrees and outdegrees:

subgraph for an elementary path < x, . . . , z, . . . , y > with x 6= y

start vertex gs (x) = 1 gp (x) = 0
intermediate vertex gs (z) = 1 gp (z) = 1
end vertex gs (y) = 0 gp (y) = 1

(3.19)

3.4.1.14 Elementary cycle

An elementary path whose start vertex and end vertex coincide is called an elementary cycle. In the
subgraph of an elementary cycle, the indegree and the outdegree of every vertex are equal to 1. Note
that the identical start and end vertex is counted once, not twice.

subgraph for an elementary cycle with vertex z

vertex gs (z) = gp (z) = 1 (3.20)
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3.4.2 Connectedness of directed graphs

3.4.2.1 Reachability

In a directed graph G = (V ;R), a vertex y ∈ V is said to be reachable from a vertex x ∈ V if there is
an empty or non-empty path from x to y. Vertex y is reachable from vertex x if and only if the product
xyT of the associated point relations x and y is contained in the reflexive transitive closure R∗.

y is reachable from x :⇔ xyT v R∗ R∗ = I tR+ (3.21)

3.4.2.2 Strong connectedness

Two vertices x and y of a directed graph are said to be strongly connected if x is reachable from y and y

is reachable from x. A directed graph is said to be strongly connected if all vertices are pairwise strongly
connected.

x and y are strongly connected :⇔ xyT v R∗ tR∗T

the graph is strongly connected :⇔ R∗ uR∗T = E ⇔ R∗ = E
(3.22)

3.4.2.3 Unilateral connectedness

Two vertices x and y of a directed graph are said to be unilaterally connected if x is reachable from y or
y is reachable from x. A directed graph is said to be unilaterally connected if all vertices are pairwise
unilaterally connected.

x and y are unilaterally connected :⇔ xyT v R∗ tR∗T

the graph is unilaterally connected :⇔ R∗ uR∗T = E
(3.23)

3.4.2.4 Weak connectedness

Two vertices x and y of a directed graph (V ;R) are said to be weakly connected if they are strongly
connected in the symmetric graph G =

(
V ;R tRT

)
. A directed graph is said to be weakly connected

if all vertices are pairwise weakly connected. Since the transitive closure of a symmetric relation is
symmetric, this definition may be expressed as follows:

x and y are weakly connected :⇔ xyT v (
R tRT

)∗
the graph is weakly connected :⇔ (

R tRT
)∗ = E

(3.24)

3.4.2.5 Connectedness relations

The relation R of a directed graph G = (V ;R) generally contains strong, unilateral and weak connections.
A relation which contains only connections of the same type is called a connectedness relation. The
connectedness relations for a directed graph G are derived from the relation R and its reflexive transitive
closure R∗:

strong connectedness relation S = R∗ uR∗T

unilateral connectedness relation P = R∗ tR∗T

weak connectedness relation C =
(
R tRT

)∗
(3.25)

A strongly connected vertex pair is also unilaterally connected; a unilaterally connected vertex pair
is also weakly connected. Hence a strongly connected graph is also unilaterally connected, and a uni-
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laterally connected graph is also weakly connected. For a symmetric graph, the three different kinds of
connectedness coincide.

inclusion : R∗ uR∗T v R∗ tR∗T v (
R tRT

)∗
connectedness : strong ⇒ unilateral ⇒ weak

Two different vertices which are strongly connected lie on a cycle. A strongly connected graph is
therefore cyclic. The converse is not true in the general case.

strongly connected graph ⇒ cyclic graph

3.4.2.6 Properties of the connectedness relations

The strong connectedness relation S is reflexive, symmetric and transitive. Reflexivity and symmetry
follow directly from the definition. Transitivity follows from the following consideration. If (x, y) and
(y, z) are strongly connected vertex pairs, then z is reachable from x via y and x is reachable from z via
y. Hence (x, z) is also a strongly connected vertex pair.

The unilateral connectedness relation P is reflexive and symmetric, but generally not transitive. This
follows from the following consideration. If (x, y) and (y, z) are unilaterally connected vertex pairs, then
it is possible that x is only reachable from y and z is only reachable from y. In this case, neither is x

reachable from z, nor is z reachable from x. Thus (x, z) is not a unilaterally connected vertex pair.
The weak connectedness relation C is by definition the strong connectedness relation of an associated

symmetric graph. This is reflexive, symmetric and transitive.
A reflexive, symmetric and transitive relation is an equivalence relation. Hence the strong and weak

connectedness relations are equivalence relations. The unilateral connectedness relation is generally not
an equivalence relation.

3.4.2.7 Decomposition into connected components

The strong connectedness relation S =
(
R tRT

)∗of a directed graph G = (V ; R) is an equivalence
relation. The graph (V ; R) is connected if the equivalence relation S is the all relation E. If the graph
(V ;R) is disconnected, then it may be uniquely decomposed into connected subgraphs. The subgraphs
are called the connected components of the graph. The decomposition is carried out in the following
steps, independent of the kind of connectedness being considered:

1. Connectedness class: The vertex set V of the graph is partitioned into connected classes, using the
relation S. A connected class [x] with the vertex x as a representative contains all vertices of V

which are connected with x. The class [x] is a unary relation and is determined as follows:

[x] = Sx (3.26)

2. Mapping: The set K of all connected classes is the quotient set V/S. Each vertex x ∈ V is mapped
to exactly one connected class, yielding a canonical mapping Φ:

Φ : V → K with K = V/S (3.27)

3. Reduced graph: The mapping Φ from the vertex set V of the directed graph G = (V ;R) to the set



Chapter 3. Directed graphs 27

K of connected classes induces the reduced graph GK = (K; RK).

GK = (K; RK) with RK = ΦT RΦ (3.28)

4. Connected component: A connected component is a connected subgraph Gk := (Vk, Rk) of a
directed graph G = (V ; R). The vertex set Vk contains all vertices of a connected class K of the
graph (V ; R). The edge set Rk = R u (Vk × Vk) contains the edges from R whose vertices belong
to Vk. The union of all connected components Gk is generally a partial graph of G, since the union
of all vertex sets Vk is the vertex set V and the union of all edge sets Rk is only a subset of the
edge set R. ⊔

k∈K

Gk v G (3.29)

3.4.2.8 Decomposition into strongly connected components

The vertex set V of a directed graph G = (V ; R) may be decomposed into strongly connected classes
using its strong connectedness relation S = R∗uR∗T . Two different classes cannot be strongly connected
in the reduced graph GK = (K; RK), since strongly connected vertices belong to the same class. Each
connected component Gk = (Vk;Rk) has a symmetric transitive closure R+

k and is therefore a cyclic
graph. The reduced graph GK = (K; RK) has an antisymmetric transitive closure R+

K and is therefore
an anticyclic graph.

3.4.2.9 Decomposition into weakly connected components

The vertex set V of a directed graph G = (V ; R) may be decomposed into weakly connected classes using
its weak connectedness relation C =

(
R tRT

)∗. Two different classes cannot be weakly connected in
the reduced graph GK = (K;RK), since weakly connected vertices belong to the same class and the two
vertices of an edge are at least weakly connected. Hence every directed graph is the union of its weakly
connected components.

G =
⊔

k∈K

Gk (3.30)

3.4.2.10 Strongly connected components example

Graph

The directed graph in Figure 3.3 will be used to demonstrate the decomposition of a directed graph into
its strongly connected components.
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Figure 3.3: Strongly connected components graph example

Strongly connectedness classes

1 6 7

8
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13

1211
2 3

4
5

[1] [2] [6] [9] [10] [11]

[x] = Sx

[1] = {1}
[2] = {2, 3, 4, 5}
[6] = {6, 7, 8}
[9] = {9}

[10] = {10}
[11] = {11, 12, 13}

Mapping

2

3 4

5

6

7

8
9 10

11 12

13
1

Vertex set (V)

1 6 7

8
9 10

13

1211
2 3

4 5

Quotient set (V/S)

[1]

[2] [6]
[9] [10]

[11]

Φ : V → V/S

1 → {1}
2 → {2, 3, 4, 5}
3 → {2, 3, 4, 5}
4 → {2, 3, 4, 5}
5 → {2, 3, 4, 5}
6 → {6, 7, 8}
7 → {6, 7, 8}
8 → {6, 7, 8}
9 → {9}

10 → {10}
11 → {11, 12, 13}
12 → {11, 12, 13}
13 → {11, 12, 13}

Reduced graph

GK = (K; RK)

Vertex set (K) {[1] , [2] , [6] , [9] , [10] , [11]}
Edge set (RK) {([1] , [2]) , ([2] , [6]) , ([2] , [11]) , ([6] , [9]) , ([9] , [10])}
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Figure 3.4: Reduced graph

Strongly connected components
⊔

k∈K

Gk v G

Table 3.2: Strongly connected components

Strongly connected component Vertex set Edge set
[1] {1} -
[2] {2, 3, 4, 5} {(2, 3) , (2, 4) , (3, 4) , (4, 5) , (5, 2)}
[6] {6, 7, 8} {(6, 7) , (7, 8) , (8, 6)}
[9] {9} -
[10] {10} -
[11] {11, 12, 13} {(11, 12) , (12, 13) , (13, 11)}

1
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4

32

5
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13
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Figure 3.5: Strongly connected components

3.4.3 Acyclic graphs

3.4.3.1 Directed acyclic graph

A directed acyclic graph G = (V ; R) is asymmetric and does not contain cycles. Every path from a
vertex x to a vertex y is elementary. The closure R+ is asymmetric and transitive. Hence it is a strict
order relation. The theoretical foundations of strict order relations may therefore be applied to directed
acyclic graphs.

3.4.3.2 Rank

Every vertex x of a directed acyclic graph G = (V ; R) is assigned a rank r (x), which is a natural number
with the following properties:

1. A vertex x has the rank r (x) = 0 if it does not have any ancestors.

2. A vertex x has the rank r (x) = k > 0 if it has a kth ancestor and no (k + 1)th ancestors.
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It is only possible to assign ranks if the directed graph G is acyclic. If there is a cycle through the vertex
x, then for every kth ancestor of x in the cycle there is a predecessor in the cycle, and hence also a
(k + 1)th ancestor of x. The directed graph must therefore be free of cycles.

If the rank r (x) of a vertex x is k, then by definition the vertex x has a kth ancestor but no (k + 1)th

ancestor. Thus there must be a path of length k but no path of length k + 1 from a vertex without
predecessor in G to x. Hence the rank r (x) is the length k of a longest path from a vertex without
predecessor in G to x.

3.4.3.3 Topological Sorting

The determination of the ranks of the vertices of a directed graph G = (V ;R) is called topological
sorting. The vertex set V = V0 is topologically sorted by iteratively reducing it to the empty vertex set
∅. In step k, the vertex set Vk is determined whose vertices x ∈ Vk have a kth ancestor in G and are
therefore of rank r (x) ≥ k. The vertex set Vk contains all predecessors of the vertices in the vertex set
Vk−1. This iterative reduction is formulated as follows using unary relations:

initial values : v0 = e all relation
reduction : vk = RT vk−1 k = 1, ..., n

termination : vn = ∅ null relation
(3.31)

A vertex x of the vertex set Vk is of degree r (x) = k if it does not belong to the vertex set Vk+1.
The set Wk of all vertices of rank k is therefore of rank k is therefore the difference Vk − Vk+1, which is
calculated as the intersection of Vk and the complement of Vk+1. It is called the kth vertex class and is
determined as a unary relation as follows:

wk = vk u vk+1 k = 0, ..., n− 1 (3.32)

3.4.3.4 Order structure

Topologically sorting a directed acyclic graph G = (V ; R) yields a partition of the vertex set into disjoint
vertex classes Wk with k = 0, ..., n− 1. The partition has the following ordinal properties:

• The vertex class W0 contains all vertices of the lowest rank 0. These vertices have no ancestors
in G, and hence no predecessors. They are therefore minimal. Since there are no other vertices
without predecessors, W0 contains all minimal vertices.

• The vertex class Wn−1 contains all vertices of the highest rank n − 1. These vertices have no
descendants in G, and hence no successors. They are therefore maximal. Since there may generally
also be other vertices without successor, Wn−1 generally does not contain all maximal vertices.

• Every vertex x in the vertex class Wk with k > 0 has at least one predecessor y in the vertex class
Wk−1. If x ∈ Wk did not have a predecessor y ∈ Wk−1, then x would not have any kth ancestors,
and would therefore not belong to Wk.

• A vertex has neither a predecessor nor a successor in its own vertex class. If y were a predecessor
of x and hence x a successor of y, then the rank of y would have to be less than the rank of x and
x, y could not belong to the same vertex class.
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3.4.3.5 Basic edges and chords

A directed acyclic graph G = (V ;R) has basic edges and chords. An edge (x, y) in the directed graph G

is called a basic edge if y is reachable from x only via this edge. If the basic edge is removed, then y is
no longer reachable from x.

An edge (x, y) in the directed graph G is called a chord if the vertex y is also reachable from the
vertex x via other edges. The chord (x, y) is the shortest path from x to y.

Since a directed acyclic graph does not contain cycles, an edge from x to y is a chord if and only if
there is a path of length n > 1 from x to y.

path from x to y with n > 1 ⇔ xyT v ⊔
n>1

Rn = R
⊔

n>0
Rn = RR+

chord (x, y) ⇔ xyT v R uRR+

basic arc (x, y) ⇔ xyT v R uRR+

(3.33)

3.4.3.6 Basic path

A directed acyclic graph G = (V ; R) does not contain cycles. If there are one or more paths from x to
y, then there is at least one path of maximal length. A path of maximal length is called a basic path. A
basic path contains only basic edges.

3.4.3.7 Basic graph

The graph B = (V ;Q) is a basic graph of a directed acyclic graph G = (V ; R) if Q contains only the
basic edges in R. The basic graph B is constructed by removing all chords from R. The basic graph B

is unique. The transitive closures R+and Q+ are equal.

B = (V ; Q) with Q = R uRR+ (3.34)

3.4.3.8 Order diagram

In the topological sorting of a directed acyclic graph G = (V ;R), the rank r (x) of a vertex x ∈ V is
equal to the length of a longest path from a vertex without predecessor to x. This path is a basic path
consisting only of basic edges. Hence removing chords from R does not change the rank r (x) of a vertex
x, so that topologically sorting the graph G = (V ; R) and its basic graph B = (V ; Q) leads to the same
result. The representation of the order structure of the basic graph with its vertex classes is an order
diagram. This will be discussed further and demonstrated in Section 4.5.
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Strongly connected components and
the logical sequence of tasks

4.1 Introduction

In order to determine the logical sequence of tasks (see Section 4.5), we need to sort the set of tasks
topologically with the relation “has to be executed before”. Only acyclic directed graphs can be sorted
topologically. Since the graph of the “has to be executed before” relation in the set of tasks is not
necessarily acyclic, we need to decompose it into its strongly connected components. The decomposition
of a directed graph into its strongly connected components leads to the reduced graph, which is acyclic
and can be sorted topologically. The algorithm for decomposing a graph into its strongly connected
components described in Section 3.4.2.8 requires the calculation of the transitive closure of the graph.
This is a very expensive exercise. Therefore, we need to find a more efficient way of determining strongly
connected components.

A depth-first search can be used to find more information about the structure of the graph, such
as the strongly connected components of a directed graph. Each vertex and edge in a directed graph
is visited once during a depth-first search (see Section 4.3). This leads to a forest of rooted trees (see
Section 4.2). Algorithms for finding the strongly connected components such as Kosaraju’s (see Section
4.4.1), Tarjan’s (see Section 4.4.2) and Gabow’s (see Section 4.4.3) algorithms are based on the depth-first
search algorithm. Each strongly connected component is a rooted graph.

The goal of topological sorting is to be able to process the vertices of a directed acyclic graph in such
a way that each vertex is processed before all its successors. Vertices can be sorted into steps, where all
the vertices in one step have to be processed before the vertices in the next step. The topological sorting
algorithm described in Section 3.4.3.3 is very expensive. Therefore, we will be considering an alternative
algorithm in Section 4.5.

See reference [5] for a description of the depth-first search and topological sorting algorithms. Kosaraju’s,
Tarjan’s and Gabow’s algorithms are also described in reference [5].

32
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4.2 Rooted graphs and rooted trees

4.2.1 Introduction

A vertex of a graph from which all remaining vertices are reachable is called a root of the graph. All
hierarchical structures are regarded as rooted trees. Searching for all vertices of a graph which are
reachable from a given vertex leads to a search tree which corresponds to a rooted tree and forms a
skeleton of the graph.

4.2.2 Root

A vertex w is called a root (root vertex) of a directed graph G = (V ; R) if all vertices of the graph are
reachable from the vertex w. If a directed graph is not weakly connected, then it has no root. If it is
strongly connected, then every vertex of the graph is a root.

w is a root :⇔ weT v R∗ (4.1)

where e is the all relation and R∗ the reflexive transitive closure.

4.2.3 Rooted graph

A directed graph G = (V ; R) is called a rooted graph if it contains at least one root. In a rooted graph,
there is a special form of connectedness between pairs of vertices, called quasi-strong connectedness. Two
vertices x and y are quasi-strongly connected if there is a vertex z from which the vertices x and y are
both reachable. In this case, there is a path from x to z in the dual graph GT and a path from z to y

in the graph G, so that (x, z) ∈ R∗T and (z, y) ∈ R∗, and hence (x, y) ∈ R∗T R∗. In a rooted graph, all
vertices are pairwise quasi-strongly connected via a root, so that R∗T R = E holds.

x and y are quasi-strongly connected :⇔ xyT v R∗T R∗

G = (V ; R) is a rooted graph :⇔ R∗T R∗ = E
(4.2)

where E is the all relation and R∗ is the reflexive transitive closure.

4.2.4 Acyclic rooted graph

A directed graph G = (V ; R) is acyclic if R+ u R+T = φ holds. It is a rooted graph if R∗T R∗ = E

holds. An acyclic rooted graph has exactly one root. The existence of several roots would contradict the
absence of cycles.

G = (V ;R) is an acyclic rooted graph ⇔ R+ uR+T = φ ∧R∗T R∗ = E (4.3)

where E is the all relation and R+ is the transitive closure.

4.2.5 Rooted tree

An acyclic rooted graph G = (V ; R) is called a rooted tree if R is left-unique, so that RRT v I holds.

G = (V ; R) is a rooted tree :⇔ RRT v I ∧R+ uR+T = φ ∧R∗T R∗ = E (4.4)

where E is the all relation, R+ the transitive closure, R∗ the reflexive transitive closure and I the
identity relation.
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A rooted tree with the root w has the following properties:

• The root w has no predecessor.

• Every vertex x 6= w has exactly one predecessor.

• Every vertex x 6= w is reachable along exactly one path from w to x.

• A rooted tree with n vertices has exactly n− 1 edges.

4.2.6 Forest of rooted trees

A directed graph is called a forest of rooted trees if every weakly connected component is a rooted tree.

4.2.7 Search tree

Let a vertex a in a directed graph G be given. A rooted tree with root a which contains all descendants
of a in G is called a search tree at the vertex a. A search tree is constructed by an iterative search,
starting from the vertex a. Breadth-first search and depth-first search are distinguished.

4.3 Depth-first search

4.3.1 Trees and forests

The vertices and some of the edges of a directed graph form a depth-first search tree during the depth-first
search. The depth-first search tree is a representation of the order in which the vertices had been visited.
Only edges pointing to previously unvisited vertices are part of a depth-first search tree. Therefore, each
depth-first search tree is a directed acyclic subgraph of the directed graph. Depth-first search trees for
directed graphs are rooted trees. The number of depth-first search trees formed during a depth-first
search depends on the order in which the vertices are visited, as well as the structure of the graph. If
more than one depth-first search tree is formed, we have a depth-first search forest. Different depth-first
searches, with different depth-first search forests can be done on the same graph, depending on the order
in which vertices are visited.

4.3.2 Pre- and post-order numbering

During the depth-first search, pre- and post-order numbers are assigned to each vertex. The pre-order
numbers indicate the order in which the vertices are first visited, while the post-order numbers indicate
the order in which vertices are finished with in the depth-first search.

4.3.3 Classification of edges

The edges of a directed graph can be classified into four groups during a depth-first search. The classifi-
cation of an edge is a property of both the structure of the graph and the dynamics of the search. Since
there is more than one depth-first search forest for each graph, different classifications may be given to
an edge of a graph for different depth-first searches. The pre- and post-order numbers are used to classify
the edges.
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Tree edges correspond to a recursive call in the depth-first search, i.e. the start vertex has been visited,
but the end vertex has not been visited before. Tree edges are the edges of the depth-first search
trees. The other types of edges are not part of the depth-first search tree. (Start vertex pre-order
number = −1.)

Back edges indicate that the directed graph contains at least one cycle. The number of back edges
does not necessarily correspond to the number of cycles in the directed graph. The start vertex
of a back edge has been visited previously. The end vertex has also been visited previously, and
is also an ancestor of the start vertex in the depth-first search tree. The removal of all the back
edges results in a directed acyclic graph. (End vertex pre-order number = −1.)

Down edges The start vertex of a down edge points to a previously visited end vertex, which is a
descendent of the start vertex in the depth-first search tree. Down edges are also known as chords
(see Section 3.4.3.5) in the directed graph. (Start vertex pre-order number > end vertex pre-order
number.)

Cross edges The start vertex of a cross edge, points to a previously visited end vertex, which is neither
an ancestor nor a descendent of the start vertex in the depth-first search tree. Cross edges connect
vertices in different depth-first search trees (If it is not a tree, back or down edge.)

Example

tree tree tree

tree
tree

tree
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1
cycle

cord

cross
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Figure 4.1: Edge classifications

The edge classifications can be seen visually in Figure 4.1. The back edge (3, 1) is an indication of a
cycle in the graph, in this case cycle (1, 2) , (2, 3) , (3, 1). A down edge is an indication of a chord in the
graph, in this case, if the chord (2, 5) is cut, vertex 5 will still be reachable from vertex 2, via vertex 4. A
cross edge points from a vertex in one depth-first search tree, vertex 7, to a vertex in another depth-first
search tree, vertex 6.
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4.3.4 Depth-first search algorithm

In a depth-first search, a vertex sequence F is maintained. As long as the vertex sequence F is not
empty, the following steps are carried out in a loop:

• If the vertex at the end of F has a successor which has not been visited yet, such a successor is
appended to the end of the sequence F .

• If the vertex at the end of F has no successor which has not been visited yet, it is removed from
the sequence F .

The vertices visited and the edges used in the course of the depth-first search form the depth-first search
tree. An unvisited vertex is chosen as the start vertex. If all the vertices have not been visited at the
end of the process, a remaining unvisited vertex is chosen and a new vertex sequence is maintained. The
process is repeated until all the vertices have been visited. A depth-first search tree is formed for each
sequence. The depth-first search trees form a depth-first search forest.

4.3.5 Depth-first search example

The graph in Figure 4.2 will be used to demonstrate a depth-first search.

1

(1,5)

(1,2)

(5,2)

(2,4)

(2,3)

(3,4)

(5,7)

(4,6)

(6,7)

(8,6)
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8 9 10

Figure 4.2: Graph example

The directed graph consists of ten vertices, labelled 1, . . . , 10 and 14 edges, labelled (1, 2) , (1, 5) , (2, 3) , . . ..
Vertex 7 is chosen as the first unvisited vertex, giving it a pre-order number of 1. Vertex 7 has only

one successor, vertex 8. Vertex 8 is still unvisited and is chosen as the next unvisited vertex. It is given
a pre-order number of 2 and the edge (7, 8) is classified as a tree edge. Vertex 8 has two successors,
vertices 6 and 9. Vertex 6 is randomly chosen as the next unvisited vertex and given a pre-order number
of 3 and edge (8, 6) classified as a tree edge. Vertex 9 will be considered at a later stadium. The
successors of vertex 6 will be considered first. Vertex 6 has only one successor, vertex 7, which has been
visited previously. Vertex 7 still has no post-order number, which indicates it as an ancestor of vertex 6.
Therefore, edge (6, 7) is classified as a back edge. The presence of a back edge is an indication of a cycle.
Therefore, the directed graph under consideration is not a directed acyclic graph. Since vertex 6 has no
other successors, we leave it, giving it a post-order number of 1. Vertex 9, the remaining successor of
vertex 8, is considered next.

After vertex 7 and all its ancestors had been processed, a new random unvisited vertex, vertex 2,
is chosen. Vertex 2 is the root of the second tree in the depth-first search forest. After the depth-first
search has been completed, the pre-order and post-order numbers shown in Table 4.1 were given to the
vertices.
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Table 4.1: Pre-order and post-order numbers

1 2 3 4 5 6 7 8 9 10
pre-order no. 10 6 7 8 9 3 1 2 4 5
post-order no. 10 9 8 7 6 1 5 4 3 2

The depth-first search forest, edge classifications, as well as the search path, can be seen in Figure
4.3.

7

6

72

5

4

3 4

2

52

1

10

9

7

6

8

tree

tree

back

tree

tree

cross cross

tree

tree

tree

back cross

cross

down

7
7,8
7,8,6
7,8,6,(7)
7,8,6
7,8
7,8,9
7,8,9,10
7,8,9
7,8
7

2
2,3
2,3,4
2,3,4,5
2,3,4,5,(2)
2,3,4,5
2,3,4,5,(7)
2,3,4,5
2,3,4
2,3,4,(6)
2,3,4
2,3
2
2,(4)
2
-
1
1,(2)
1
1,(5)
1

Figure 4.3: Depth-first search forest

The black vertices and edges indicate the depth-first trees. The vertices and edges in broken lines are
not a part of the depth-first search trees and are only indicated to display the detection of back, down
and cross edges. The first tree consists of vertices 6, 7, 8, 9 and 10. The second tree consists of vertices
2, 3, 4 and 5, while the third tree consists only of one vertex, vertex 1.

One of the many other depth-first search forests for the graph and its search path is shown in Figure
4.4. The pre-order and post-order numbers for this search shown in Table 4.2.

Table 4.2: Pre-order and post-order numbers for alternative depth-first search

1 2 3 4 5 6 7 8 9 10
pre-order no. 6 7 8 9 10 3 1 2 4 5
post-order no. 10 9 8 7 6 1 5 4 3 2
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Figure 4.4: Depth-first search forest for alternative depth-first search

The first tree consists of vertices 6, 7, 8, 9 and 10, the second tree consists of vertices 1, 2, 3, 4 and 5.

4.4 Decomposition into strongly connected components

4.4.1 Kosaraju’s algorithm

4.4.1.1 Description

Kosaraju’s algorithm is the simplest to explain and implement. To find the strongly connected compo-
nents of a directed graph, first do a depth-first search on its inverse. The inverse of a directed graph is
the graph in which the directions of the edges have been reversed. Then do depth-first searches on the
graph, each time starting at the next unvisited vertex with the highest post-order number.

The trees in the resulting depth-first search forest define the strongly connected components of the
directed graph, since two vertices belong to the same strongly connected component if and only if they
belong to the same tree in the depth-first search forest.

This is proved as follows:

If two vertices s and t are mutually reachable, they will be in the same depth-first search tree because
when the first of the two is visited, the second is unvisited and is reachable from the first and so will be
visited before the recursive call for the root terminates. To prove the converse, we assume that s and
t are in the same tree, and let r be the root of the tree. The fact that s is reachable from r, through
a directed path of tree edges, implies that there is a directed path from s to r in the inverse directed
graph. Now, the key to the proof is that there must also be a path from r to s in the inverse directed
graph, because r has a higher post-order number than s, since r was chosen first in the second depth-first
search at a time when both were unvisited, and there is a path from s to r. If there were no path from r

to s, then the path from s to r in the inverse would leave s with a higher post-order number. Therefore,
there are directed paths from s to r and from r to s in the directed graph and its inverse: s and r are
strongly connected. The same argument proves that t and r are strongly connected, and therefore s and
t are strongly connected
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4.4.1.2 Implementation

Essentially, the depth-first search implementation described in Section 4.3 is used for Kosaraju’s algo-
rithm. A few minor changes are made, however;

(1) to do a depth-first search on the inverse of the graph, instead of the graph,
(2) to use a list of sorted vertices to choose the next unvisited vertex in the depth-first searches, and
(3) to allocate strongly connected component numbers to the vertices during the depth-first searches.

4.4.1.3 Example

The graph in Figure 4.2 will now be used to demonstrate the decomposition of a directed graph into its
strongly connected components.

First, a depth-first search is done on the inverse of the graph, shown in Figure 4.5. The post-order
numbers in Table 4.3 were determined for the depth-first search shown in the Figure 4.6.

Table 4.3: Post-order numbers

1 2 3 4 5 6 7 8 9 10
post-order no. 1 2 3 4 5 6 7 8 9 10

1

(5,1)

(2,1)

(2,5)

(4,2)

(3,2)

(4,3)

(7,5)

(6,4)

(7,6)

(6,8)

(8,7)

(9,8) (10,9)

(5,4)

2 3

4

5 7

6

8 9 10

Figure 4.5: Inverse of graph example

5

1 4

2 3

1 5 2

10

9

8

7

5 6

4 8

Figure 4.6: Depth-first search forest of inverse graph

Next, a depth-first search is done on the original graph, choosing the next unvisited vertices in the
inverse post-order numbering, i.e. starting with vertex 10.
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109 7

28

6

7

3

5

4

6 5

7 2

1

10

2

Figure 4.7: Depth-first search forest of graph

Each depth-first search tree of the depth-first search forest represents a strongly connected component.
Therefore, this graph can be decomposed into five strongly connected components, three of which are
single vertices.

1

2 3

4

5 7

6

8 9 10

Figure 4.8: Strongly connected components

4.4.2 Tarjan’s algorithm

4.4.2.1 Description

Tarjan’s algorithm is based on two observations.

• First, we consider the vertices in the reverse order in which they are discovered, since we know we
will not encounter any more vertices in the same strongly connected component, because all the
vertices that can be reached from a given vertex has been processed already.

• Second, the back edges of the graph provide a second path from one vertex to another and bind
together the strongly connected components.

An augmented depth-first search algorithm is used in the sense that a different vertex sequence is main-
tained. The vertices are enqueued as they are reached by tree edges. The vertices belonging to the same
strongly connected component are removed and assigned a strongly connected component number after
the final member of the strongly connected component has been enqueued.
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The algorithm is based on our ability to identify the moment a strongly connected component has
been found with a simple test. The depth-first search method finds the highest vertex reachable, via a
back edge, from any descendant of each vertex. The pre-order numbers of these vertices are assigned as
the low numbers for each vertex.

The pre-order and low numbers of the vertices are used to identify a strongly connected component.
If a vertex’s pre-order and low numbers are equal at the end of the recursive procedure, that tells us that
all vertices encountered since entry (except those already assigned to a component) belong to the same
strongly connected component.

4.4.2.2 Example

The graph used in Section 4.4.1 is also used to demonstrate Tarjan’s algorithm. The main vertex sequence
is shown in Figure 4.9.

Main vertex
sequence:
-
9
9,10
9
-
7
7,8
7,8,6
7,8,6
-
1
1,2
1,2,3
1,2,3,4
1,2,3,4
1,2,3,4
1,2,3,4
1,2,3,4,5
1,2,3,4,5
1
-

Secondary vertex
sequence:
-
9
9,10
9
-
7
7,8
7,8,6
7
-
1
1,2
1,2,3
1,2,3,4
1,2,3,4
1,2
1,2,5
1,2,5
1,2
1
-

Figure 4.9: Main and secondary vertex sequences

The pre-order and low numbers used to determine the strongly connected components for Tarjan’s
algorithm are shown in Table 4.4.

Table 4.4: Pre-order and low numbers

1 2 3 4 5 6 7 8 9 10
pre-order number 6 7 8 9 10 5 3 4 1 2

low number 6 7 7 7 7 3 3 3 1 2
strongly connected component 5 4 4 4 4 3 3 3 1 2

4.4.3 Gabow’s algorithm

4.4.3.1 Description

Gabow’s algorithm enqueues the vertices in the same way as Tarjan’s algorithm does, but it uses a second
vertex sequence, instead of the pre-order and low numbers, to decide when to remove all the vertices in
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each strongly connected component from the main sequence.
The second vertex sequence contains vertices on the search path. When a back edge shows that a

sequence of such vertices all belong to the same strongly connected component, we remove that vertex
sequence from the secondary vertex sequence to leave only the destination vertex of the back edge, which
is nearer the root of the tree than are any of the other vertices. After processing all the edges for each
vertex (making recursive calls for the tree edges, removing vertices from the secondary vertex sequence
for the back edges, and ignoring the down edges), we check to see whether the current vertex is at the top
of the secondary vertex sequence. If the current vertex is at the top of the secondary vertex sequence,
the current vertex and all the vertices above it on the main vertex sequence make a strongly connected
component, and we remove them and assign the next strongly connected component number to them,
as we did in Tarjan’s algorithm.

4.4.3.2 Example

The graph used in Section 4.4.1 is also used to demonstrate Gabow’s algorithm. The main and secondary
vertex sequences is shown in Figure 4.9. The coinciding vertices on the main and secondary vertex
sequences, used to determine the strongly connected components for Gabow’s algorithm are shown in
bold on the vertex sequences.

4.5 Logical sequence of tasks through topological sorting

4.5.1 Topologically sorting a directed acyclic graph by removing sources

The goal of topological sorting is to be able to process the vertices of a directed acyclic graph in such
a way that each vertex is processed before all its successors. Vertices can be sorted into logical steps,
where all the vertices in one logical step have to be processed before the vertices in the next logical step.

This topological sorting algorithm is based on the property that a directed acyclic graph has at least
one source and one sink. A source is a vertex with an in-degree (see Section 3.4.1.2) of 0, i.e. with no
entering edges or predecessor vertices. A sink is a vertex with an out-degree of 0, i.e. with no leaving
edges or successor vertices.

There may be multiple sources, so we need to keep track of them. A set of sources will be used for
this purpose. The logical steps into which the vertices are sorted can be labelled with positive integers.

4.5.1.1 Algorithm

• Find all the sources in the directed acyclic graph. All the sources are added to the sources set.
These vertices are all part of the next smallest unused logical step in the topological sorting. After
a source has been processed, it is marked and removed from the sources set.

• Find all the successors of the sources and process them next. Decrement their in-degree. All the
successors whose predecessors have all been processed already, i.e. their in-degree is now 0, become
the new sources.

• Repeat the previous steps until all vertices have been processed.

This algorithm adds each vertex to the earliest possible logical step. It is possible for the vertices to be
added to a later logical step, while still respecting the requirements for a topological sorting. Therefore,
there may be different topological sorts for the same directed acyclic graph.
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4.5.1.2 Topological sorting example

The graph in Figure 4.10 will be used to demonstrate the topological sorting algorithm.

5 7

3 1

6 4 2

Figure 4.10: Topological sorting graph example

The graph is a directed acyclic graph and can therefore be sorted topologically. It has two sources,
vertices 5 and 6, which have no entering edges or predecessors. These vertices are identified and added
to the set of sources. After these vertices had been added to the first step, they are marked as processed
and removed from the set of sources.

The successors of these sources are vertices 3, 4 and 7. Since vertices 5 and 6, which have already been
processed, are the only predecessors of vertex 3, vertex 3 becomes a source, similarly vertex 7. However,
for vertex 4, only one of its predecessors, vertex 6, has already been processed. Its other predecessor,
vertex 3, has not been processed, and therefore vertex 4 is not a source yet. The new sources (vertices 3
and 7) are added to step 2, marked as processed and removed from the set of sources. This process has
to be continued until all the vertices have been processed.

After doing a topological sort, four steps have been identified. These are shown in Figure 4.11, along
with another possible topological sort. Vertex 7 could also have been added to step 3.

Step 1 Step 2 Step 3 Step 4

Step 1 Step 2 Step 3 Step 4

5

6

7

3
4

1

2

5

6

7

3
4

1

2

Figure 4.11: Graph, rearranged after topological sorting
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4.5.2 Graphical representation of the logical sequence of tasks

The topologically sorted set of vertices of the example in Section 4.5.1.2 can be displayed graphically as
shown in Figure 4.12.

7

6

5

4

1

2

3

Figure 4.12: Graphical representation of the sequence of tasks



Chapter 5

Path algebras and methods of solution

5.1 Introduction

Tasks in the engineering process are dependent on other tasks. Some tasks have to be finished before
other tasks can be started. The “has to be execute before” relation in the set of tasks can be used to
determine task sequences. Such task sequences are paths (see Section 3.4.1.5) in the task-task graph.
The question of determining all the elementary paths (see Section 3.4.1.13) in the graph leads to a literal
path algebra for elementary paths (see Section 5.3.3).

Critical path analysis identifies tasks which must be completed on time for the whole project to be
completed on time, and also which tasks can be delayed for a while if resources need to be reallocated to
catch up on missed tasks. The logical critical path (see Section 5.4) is a longest elementary path through
a directed acyclic graph.

The use of path algebras reduces the solution of path problems, such as the literal path algebra
for elementary paths, to the solution of systems of equations (see Section 5.2.12). Therefore, we need
methods to solve these systems of equations. The bigger the graphs, the more complex the structure
becomes and the number of possible paths grows very fast. A great number of calculations has to be
done during the solution of the systems of equations.

Different methods of solution (see Section 5.5) will be considered and compared to ultimately find
the most efficient one. The solution of the system of equations may be determined directly, i.e. through
Gauss elimination (see Section 5.5.2.5), or iteratively, through Jacobi (see Section 5.5.3.4) or Gauss-
Seidel’s (see Section 5.5.3.5) methods or through the forward and back substitution method (see Section
5.5.3.6). Due to the sequential structure of our graphs, we can reduce the number of calculations that
has to be done. A topological sorting (see Section 3.4.3.3) of the graph can lead to the relabelling of
the vertices (see Section 5.6) in order to change the adjacency matrix into a partially upper triangular
matrix. Knowledge of the upper triangular part of the adjacency-matrix can be used to reduce the
number of calculations for the methods of solutions of path algebras (see Section 5.5).

See reference [4] for a detailed description of the elementary path algebra, as well as the methods of
solution of Gauss, Jacobi, Gauss-Seidel and the forward and back substitution method.

45
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5.2 Path algebras

5.2.1 Network

Let a directed graph be given. Let a weight be associated with each edge of the directed graph. A
directed graph with edge weights is called a weighted graph or a network. The form and meaning of the
edge weights depends on the application. For example, every edge in a network may be weighted by a
real number which represents a length or by a character serving as a label.

5.2.2 Path problem

The determination of paths with specific properties in networks is called a path problem. Different path
problems can be formulated for different applications. A general distinction is made between structure
problems and extreme value problems.

Structure problems, specific structural properties of paths between two vertices in a network are de-
termined. Examples include determining the existence of paths, determining simple or elementary
paths and determining common edges or intermediate vertices of all paths between two given ver-
tices. In the problem under consideration, determining the logical critical path in the task-task
graph is a structural problem.

Extreme value problems, minimal or maximal properties of paths between two vertices in a network
are determined. An example of a path problem with maximal properties include determining the
length of the longest or shortest path between vertices in a road network.

5.2.3 Path and weights

A path from i to k is an edge sequence with start vertex i and end vertex k. The path is said to be
weighted if it is associated with a weight determined from the weights of its edges according to a given
rule. Different path problems involve different rules for assigning weights to paths. For example, the
length of a path may be determined as the sum of the lengths of its edges, while the label of a path may
be determined as the concatenation of the labels of its edges.

On the basis of the algebra of sets and the literal algebra, the binary operations of union (symbol
t) and concatenation (symbol ◦) are defined for the set of weights. The operations for the weights are
generally different from the operations for the path sets and depend on the path problem considered.

5.2.3.1 Alphabet and words

A finite character set is called an alphabet and is designated by A. A finite character string with zero,
one or several characters is called a word. The character string without characters is called the empty
word and is designated by λ. The set of all words including the empty word λ is designated by A∗.

Two words a, b ∈ A∗ are concatenated to form a single word by appending the character string of the
second word to the character string of the first word. The concatenation ◦ is an associative operation in
the set A∗ with the empty word λ acting as the unit element.

associative a ◦ (b ◦ c) = (a ◦ b) ◦ c

unit element a ◦ λ = a = λ ◦ a
(5.1)
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5.2.3.2 Edge and path labels

Every edge of a graph is labeled by a character from an alphabet A. The literal labeling of the edges
is said to be unique if any two different edges are labeled by different characters. If the edge labels are
unique, the character for an edge also serves as an edge identifier. Edge labels are assumed to be unique
in the formulation of path algebras.

Every path in a graph is an edge sequence and is labeled by a character string, which is a word in
the set A∗ of words. If the edges are labeled uniquely, then the paths are also labeled uniquely. A path
without edges from a vertex k to the same vertex k is labeled by the empty word λ.

5.2.4 Path set and weighted path set

5.2.4.1 Path sets

A set of paths with common start vertex i and common end vertex k is called a path set.
Let a directed graph with unique edge labels be given. A set of paths for a vertex pair (i, k) in the

graph is called a complete path set and is designated by Wik if it contains all paths from vertex i to
vertex k. A subset aik of the complete path set Wik is called a path set. The set of all possible subsets
aik of Wik is the power set of the complete path set and is designated by P (Wik). Every path set aik is
an element of the power set P (Wik), that is aik ∈ P (Wik).

The zero set, the unit set and the elementary path set are special path sets. The path set which
contains no path is called the zero set and is designated by 0W = {}. The path set which contains only
the empty path without edges from a vertex i to the same vertex i is called the unit set and is designated
by 1W = {λ}. A path set aik is said to be elementary if it contains exactly one path which consists only
of the edge from vertex i to vertex k.

zero set 0W = {}
unit set 1W = {λ}
elementary path set aik = {< i, k >}

(5.2)

The path set is said to be weighted if it is associated with a weight determined from the weights of
its paths according to a given rule. Different path problems involve different rules for assigning weights
to path sets. For example, in a minimum length problem the length of the shortest path in the path set
is the weight of the path set.

5.2.4.2 Weighted path set

Every path set aik ∈ P (Wik) is assigned a unique weight zik ∈ Z from a weight set Z. The zero set 0W

is assigned the zero element 0Z , and the unit set 1W is assigned the unit element 1Z . Associating the
path set aik with the weight zik defines a mapping as shown below.

mapping f (aik) = zik ∈ Z

zero element f (0W ) = 0Z ∈ Z

unit element f (1W ) = 1Z ∈ Z

(5.3)

As for path sets, the binary operations t and ◦ are defined for the weights. The operations for weights
and the operations for path sets are generally different and depends on the path problem considered.
The mapping f is said to be homomorphic if the following statements hold:
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f (aik t bik) = f (aik) t f (bik)
f (aik ◦ bkm) = f (aik) ◦ (bkm)

(5.4)

If the mapping f is homomorphic, the weights of path sets may be determined without explicitly
determining the path sets, since the following implications hold for xij = f (aij), yij = f (bij) and
zij = f (cij):

cik = aik t bik ⇒ zik = xik t yik

cim = aik ◦ bkm ⇒ zim = xik ◦ ykm

(5.5)

Using these implications, the properties of path sets with the operations t and ◦ may be transferred
to the properties of weights with the operations t and ◦. The homomorphism condition is therefore of
fundamental importance for a path algebra.

5.2.5 Elementary path set matrix

Let a directed graph with n vertices be given. The path sets for all vertex pairs of the graph are arranged
in an n× n matrix. An n× n matrix is called a complete path set matrix and is designated by W if it
contains the complete path set Wik for every vertex pair (i, k) of the graph. An n × n matrix is called
a path set matrix A with A ⊆ W if it contains a path set aik ⊆ Wik for every vertex pair (i, k) in the
graph. The set of all possible path set matrices A ⊆ W is called the power set of the complete path set
matrix and is designated by P (W). A path set matrix A is an element of the power set P (W), that is
A ∈ P (W).

The zero matrix, the identity matrix and the elementary path set matrix are special path set matrices.
A path set matrix is called a zero matrix and is designated by 0W if it contains the zero set 0W for every
vertex pair (i, k). A path set matrix is called an identity matrix and is designated by IW if it contains
the unit set 1W for every vertex pair (k, k) and the zero set 0W for all remaining vertex pairs. A path
set matrix is said to be elementary if it contains the elementary path set aik for every vertex pair (i, k)
with an edge from vertex i to vertex k and the zero set 0W for all remaining vertex pairs. A directed
graph with unique edge labels is uniquely described by the elementary path set matrix.

5.2.6 Elementary path weight matrix

Let a directed graph with n vertices, a weight set Z and a homomorphic mapping f be given. Then
every path set matrix A may be mapped homomorphically to a weight matrix Z. Every path set aik of
A is mapped to the weight zik = f (aik) ∈ Z of Z. As in the case of path set matrices, the zero matrix
0Z , the identity matrix IZ and the elementary weight matrix are special weight matrices.

5.2.7 Operations in the path set

Let the path sets aik ∈ P (Wik) and bik ∈ P (Wik) be given. The path set cik ∈ P (Wik) which contains
all paths which are contained in aik or in bik is called the union of aik and bik.



Chapter 5. Path algebras and methods of solution 49

union t cik = aik t bik := {x | x ∈ aik ∨ x ∈ bik} (5.6)

i k i k i k

aik bik cik = aik t bik

Let the path sets aik ∈ P (Wik) and bkm ∈ P (Wkm) be given. The path set cim ∈ P (Wim) which
contains the paths which are formed by concatenating a path x ∈ aik and a path y ∈ bkm is called the
concatenation of aik and bkm.

concatenation ◦ cim = aik ◦ bkm := {x ◦ y | x ∈ aik ∧ y ∈ bkm} (5.7)

k mi k i m

aik bkm cim = aik ◦ bkm

5.2.8 Algebraic structure

5.2.8.1 Path sets

The operations on path sets have the following properties shown in Table 5.1:

Table 5.1: Algebraic structure of path sets

Property Union t Concatenation ◦
idempotent aik t aik = aik

associative aik t (bik t cik) = (aik t bik) t cik aik ◦ (bkm ◦ cmj) = (aik ◦ bkm) ◦ cmj

commutative aik t bik = bik t aik

distributive aik ◦ (bkm t ckm) = (aik ◦ bkm) t (aik ◦ ckm) (aik t bik) ◦ ckm = (aik ◦ ckm) t (bik ◦ ckm)
zero element 0W t aik = aik = aik t 0W 0W ◦ aik = 0W = aik ◦ 0W

unit element 1W ◦ aik = aik = aik ◦ 1W

5.2.8.2 Weighted path sets

Let the path sets of a directed graph be homomorphically mapped to weights. The the domain (Z;t, ◦)
with the weight set Z and the binary operations t and ◦ is a path algebra. It has the properties shown
in table 5.2 for the elements x, y, z ∈ Z:
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Table 5.2: Algebraic structure of weighted path sets

Property Union t Concatenation ◦
idempotent x t x = x
associative (x t y) t z = x t (y t z) (x ◦ y) ◦ z = x ◦ (y ◦ z)
distributive x ◦ (y t z) = (x ◦ y) t (x ◦ z) (x t y) ◦ z = (x ◦ y) t (y ◦ z)
commutative x t y = y t x
zero element 0Z t x = x = x t 0Z 0Z ◦ x = 0Z = x ◦ 0Z

unit element 1Z ◦ x = x = x ◦ 1Z

5.2.9 Operations

5.2.9.1 Path set matrices

Let the path set matrices A,B ∈ P (W) for a directed graph with n vertices be given. In analogy
with the algebra of relations, the binary operations of union t and concatenation ◦ are defined. The
operations t and ◦ already defined for path sets are used for the matrix elements.

union t C = A tB := [aik t bik]

concatenation ◦ C = A ◦B :=

[
n⊔

m=1

(aim ◦ bmk)

]
(5.8)

For every vertex pair (i, k), the path set matrix AtB contains the paths which are contained in the
path set aik or in the path set bik. For every vertex pair (i, k), the path set matrix A ◦B contains the
paths formed by concatenating all paths in aim with all paths bmk for all vertices m. The concatenation
of two path set matrices is also called their product.

5.2.9.2 Weight matrices

Let weight matrices X, Y for the path set matrices A, B of a directed graph be given. As in the case
of path set matrices, the binary operations of t and ◦ are defined by applying the operations t and ◦
defined for weights to the matrix elements.

union t Z = X tY := [xik t yik]

concatenation ◦ Z = X ◦Y :=

[
n⊔

m=1

(xim ◦ ymk)

]
(5.9)

5.2.10 Algebraic structure

5.2.10.1 Path set matrices

The algebraic structure of path sets is directly transferred to path set matrices. The domain (P (W) ;t, ◦)
with the power set P (W) of the complete path set matrix and the binary operations t and ◦ is called
a path algebra. The properties are shown in Table 5.3 for the path set matrices A,B,C ∈ P (W):
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Table 5.3: Algebraic structure of path set matrices

Property Union t Concatenation ◦
idempotent A tA = A
associative (A tB) tC = A t (B tC) (A ◦B) ◦C = A ◦ (B ◦C)
distributive A ◦ (B tC) = (A ◦B) t (A ◦C) (A tB) ◦C = (A ◦B) t (B ◦C)
commutative A tB = B tA
zero element 0W tA = A = A t 0W 0W ◦A = 0W = A ◦ 0W

unit element 1W ◦A = A = A ◦ 1W

5.2.10.2 Weight matrix

Since path set matrices are homomorphically mapped to weight matrices, the algebraic structures of
path set matrices and weight matrices and their operations t and ◦ are compatible. In the set of all
possible weight matrices for a directed graph, the zero matrix 0Z is the identity element for the union
and the identity matrix IZ is the identity element for the concatenation.

5.2.11 Closure

5.2.11.1 Elementary path set matrix

Let an elementary path set matrix A for a directed graph with n vertices be given. In analogy with the
algebra of relations, the closure A∗ is defined as the union of the powers Am with m ≥ 0. For every
vertex pair (i, k), the power Am contains all paths which lead from vertex i to vertex k and consist of
exactly m edges. The power A0 is the identity matrix IW . For every vertex pair (i, k), the closure A∗

contains all paths which lead from vertex i to vertex k. It therefore coincides with the complete path set
matrix W.

A∗ := IW tA tA2 tA3 t . . . = W (5.10)

If the power expression for the closure A∗ does not change beyond a certain finite exponent q, the
path set matrix A is said to be stable and the exponent q is called its stability index. For every vertex
pair (i, k), the closure A∗ of a stable path set matrix A with stability index q contains all paths which
lead from vertex i to vertex k and consist of at most q edges. The elementary path set matrix for an
acyclic graph with n vertices is stable with a stability index q < n, since a path in this graph consists of
at most n − 1 edges. The elementary path set matrix of a graph containing a cycle is not stable, since
a path in this graph can traverse the cycle an arbitrary number of times and may hence consist of an
arbitrary number of edges.

5.2.11.2 Elementary weight matrix

Let an elementary path set matrix A for a directed graph with n vertices be given. The elementary
path set matrix A is assigned the elementary weight matrix Z, which contains the weights of the edges
of the graph. Since the weighting is a homomorphic mapping, the closure Z∗ of the weight matrix may
be determined directly from the union of the powers of Z without explicitly calculating A∗. For every
vertex pair (i, k), the closure Z∗ contains the weight for the set of all paths which lead from vertex i to
vertex k.

Z∗ = IZ t Z t Z2 t Z3 t . . . (5.11)
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If the power expression of the closure Z∗ does not change beyond a certain exponent s, then the
weight matrix Z is said to be stable and the exponent s is called the stability index. The weight matrix
Z may be stable even if the path set matrix A is not stable.

5.2.12 Path algebra

The union t and the concatenation ◦ are defined as binary operations for path sets and their weights.
The rules for the union and concatenation of weighted path sets are formulated such that the weights
are determined directly without explicitly constructing the path sets. This leads to path algebras for
networks. A path algebra is said to be either boolean, real or literal if the weights of the path sets are
respectively boolean, real or literal.

The path algebras for the different path problems may be generalized by abstraction. They are
conveniently formulated in matrix and vector notation. Using path algebras reduces the solution of path
problems to the solution of systems of equations.

5.2.12.1 System of equations for path sets

For a given vertex k, the path sets whose paths lead from each of the vertices i = 1, . . . , n to k may be
read off in column k of the closure A∗. The kth column of the closure A∗ is designated by x, the unit
vector with the unit set 1W in row k by ek. If the closure A∗ is known, then x is calculated as follows:

x = A∗ ◦ ek

By substituting the calculational rule for the closure A∗, the following relationship between the
elementary path set matrix A and the vector x is obtained:

A∗ = IW tA tA2 t . . . ⇒ A∗ = A ◦A∗ t IW

x = (A ◦A∗ t IW ) ◦ ek = A ◦ (A∗ ◦ ek) t (IW ◦ ek)

x = A ◦ x t ek (5.12)

For a given vertex i, the path sets whose paths lead from i to each of the vertices k = 1, . . . , n may
be read off in row i of the closure A∗. The transpose of row i of the closure A∗ is designated by y, the
unit vector with the unit set 1W in row i by ei. In analogy with the result for column k of A∗, row i

satisfies the following equation:

y = AT ◦ y t ei (5.13)

5.2.12.2 System of equations for weights

For a given vertex k, the weights of the path sets whose paths lead from each of the vertices i = 1, . . . , n

to k may be read off in column k of the closure Z∗. Column k of the closure Z∗ is designated by x, the
unit vector with the unit element 1Z in row k by ek. If the closure Z∗ is known, then x is calculated as
follows:

x = Z∗ ◦ ek

By analogy with the equations for path sets, the vector x is the solution of the following system of
equations:
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x = Z ◦ x t ek (5.14)

For a given vertex i, the path sets whose paths lead from i to each of the vertices k = 1 . . . , n may
be read off in row i of the closure Z∗ is designated by y, the unit vector with the unit element 1Z in row
i by ei. By analogy with the result for column k of Z∗, row i satisfies:

y = ZT ◦ y t ei (5.15)

General methods for the solution of systems of equations in a path algebra are treated later.

5.3 Literal path algebra

5.3.1 Introduction

The literal labelling of graphs is treated above. It forms the basis for literal path algebras. Literal path
algebras for different path problems differ in the definition of the literal weight set and the definitions
of the operations. The literal path algebras are particularly important for structure problems in graph
theory, such as:

• determination of the simple paths and cycles

• determination of the elementary paths and cycles

• determination of the separating edges and vertices

• determination of the shortest or the longest paths and cycles

We are interested in finding the elementary paths in a graph. This literal path algebra will therefore be
treated in detail in the next secion. Literal vertex labels are necessary in this case.

5.3.2 Literal vertex labels

Let every vertex of a directed graph be labeled by a character from an alphabet A. Let any two vertices
be labeled by different characters, so that the vertex labels are unique. Every edge of the directed graph
is labeled by the characters of the start and end vertex

5.3.3 Elementary paths

5.3.3.1 Problem

Every path in the directed graph with literal vertex labels is associated with a word. In this word, the
characters occur in the order in which the associated vertices occur in the path. An elementary path
does not contain any vertex more than once and is therefore designated by a simple word. Let two
paths in the directed graph be labeled by the words a and b. The word a can be concatenated with
the word b to form a word c = a ◦ b only if the last character of a and the first character of b coincide.
The concatenated word c is formed by appending the word b without its first character to the word a.
Elementary cycles through a vertex k cannot be determined using this path algebra, since the word for
such a cycle contains the character for the vertex k at the beginning and at the end and is therefore not
simple. If the set of simple words is extended to include words with identical first and last characters,
elementary paths including elementary cycles may be determined using this extended set of words.
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5.3.3.2 Weights

Let the path set aik containing paths from vertex i to vertex k be given. Let the path set aik containing
paths from vertex i to vertex k be given. The set of simple words for the elementary paths contained
in aik is chosen as the weight zik of the path set aik. If the path set aik is the zero set 0W , then
zik = 0Z = {}. If the path set aik is the unit set 1W , then zik = 1W = {λ} with the empty word λ. If
the path set aik is neither the zero set 0W nor the unit set 1W , then zik is a set of simple words. Let the
set of all simple words over the alphabet A including the empty word λ be S. Then zik is a subset of S,
and hence an element of the power set P (S). Thus the weight mapping is defined as follows:

f (0W ) = 0Z = {}
f (1W ) = 1Z = {λ}
f (aik) = zik ∈ P (S) for aik /∈ {0W , 1W }

(5.16)

5.3.3.3 Operations

The operations t and ◦ are defined for the weight set Z = P (S). Let the path sets aik, bik be weighted
with sets xik, yik of simple words. The weight xik t yik of the union aik t bik is the union xik ∪ yik or
the two sets of simple words. The weight xik ◦ ykm of the concatenation aik ◦ bkm is the set of all simple
words formed by concatenating a simple word from xik with a simple word from ykm.

union xik t yik := xik ∪ yik

concatenation xik ◦ ykm := {x ◦ y ∈ S | x ∈ xik ∧ y ∈ ykm}
(5.17)

The domain (P (S) ;t; ◦) is a literal path algebra with the zero element 0Z = {} and the unit element
1Z = {λ}. The operations have the required properties.

5.3.3.4 Weight matrices

Let a directed graph be given. If the graph contains an edge from vertex i to vertex k 6= i, then the
element zik of the elementary weight matrix Z is a one-element set containing the simple word with the
characters of the vertices i and k. Otherwise, zik is the zero element. The matrix Z is stable. If the
graph contains paths from vertex i to vertex k 6= i, then the element z∗ik of the closure Z∗ is equal to
the set of words for the elementary paths from i to k. Otherwise, z∗ik is the zero element. If the graph
contains cycles through the vertex k, then the element z∗kk of the closure Z∗ contains the empty word λ

as well as all words for the elementary cycles through k. Otherwise z∗kk is the unit element.

5.3.4 Extreme elementary paths

The path algebra for the shortest or longest elementary paths is defined on the basis of the path algebra
for elementary paths.

5.3.4.1 Problem

Let the vertices of a directed graph be uniquely labeled by the characters of an alphabet A. A simple
path from vertex i to vertex k does not contain any vertex more than once. It is called a shortest path
from vertex i to vertex k if it does not contain more vertices than any other path from vertex i to vertex
k. It is called a longest path from vertex i to vertex k if it does not contain fewer vertices than any other
path from vertex i to vertex k. The words for all shortest or all longest paths from vertex i to vertex k

are to be determined.
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5.3.4.2 Weights

Let the path set aik containing paths from vertex i to vertex k be given. The set of all extreme simple
words for the shortest or longest paths contained in aik is chosen as the weight zik of the path set aik.
The weight mapping has the same form as for simple paths:

f (0W ) = 0Z = {}
f (1Z) = 1Z = {λ}
f (zik) = zik ∈ P (S) for aik /∈ {0W , 1W }

(5.18)

5.3.4.3 Operations

The operations t and ◦ are defined for the weight set P (S). Let the path sets aik, bik be weighted by
the sets xik, yik of extreme simple words. The weight xik t yik of the union aik t bik is the reduction
extr (xik ∪ yik) of the union xik ∪ yik to the set of extreme simple words. The concatenation ◦ is defined
as for simple paths:

union xik t yik := extr (xik ∪ yik)
concatenation xik ◦ ykm := {x ◦ y ∈ S | x ∈ xik ∧ y ∈ ykm}

(5.19)

As in the case of simple paths, the domain (P (S) ;t, ◦) is a literal path algebra with the zero element
0Z = {} and the unit element 1Z = {λ}.

5.3.4.4 Weight matrices

The elementary weight matrices Z of the literal path algebra for simple paths and for extreme simple
paths coincide. The matrix Z is stable both for shortest and for longest simple paths. If the graph
contains paths from vertex i to vertex k, then the element z∗ik of the closure Z∗ is equal to the set of
words for the extreme simple paths from i to k. Otherwise z∗ik is the zero element. If the graph contains
cycles through the vertex k, then the element z∗kk of the closure Z∗ contains all words for the extreme
simple cycles through k. Otherwise z∗kk is the unit element. Since the shortest cycle through a vertex k

is always the empty path λ, z∗kk is always the unit element in the case of shortest simple paths.

5.3.5 Properties of elementary path algebra

5.3.5.1 Powers of an element

The 0th power x0 of an element x ∈ Z of the weight set Z is defined to be the unit element 1Z . The mth

power xm is defined as the concatenation of in Section , xm−1 and x.

x0 := 1Z xm := xm−1 ◦ x (5.20)

An element x is said to be idempotent if x2 = x. Every power xm of an idempotent element is equal
to x for m ≥ 1. An element x is said to be nilpotent of degree q if xq = 0Z . Every power xm of a
nilpotent element is equal to 0Z for m ≥ q. Every power xm of a nilpotent element x is equal to 0Z for
m ≥ q.

idempotent x2 = x

nilpotent xq = 0Z

(5.21)
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5.3.5.2 Closure of an element

The reflexive transitive closure x̂ of an element x ∈ Z of a weight set Z is calculated as the union of the
powers of x. If the union does not change beyond a certain power xp, then the element x is stable and
the closure x̂ exists. The positive integer p is called the stability index of the element.

x̂ = 1Z t x t x2 t . . . =
⊔

m≥0

xm =
p⊔

m=0

xm (5.22)

If an element is nilpotent, idempotent or subunitary, then it is stable.

nilpotent x̂ = 1Z t x t x2 t . . . t xq−1

idempotent x̂ = 1Z t x

subunitary x̂ = 1Z

(5.23)

5.3.5.3 Stability

Path algebras are classified with respect to stability. A path algebra is said to be conditionally stable if
at least one element of the weight set is not stable. It is said to be unconditionally stable if every element
of the weight set is stable. It is said to be unitarily stable if the reflexive transitive closure of every
element of the weight set is the unit element. The elementary path algebra is unconditionally stable with
a closure x̂ = 1Z .

5.3.6 Elementary paths example

The graph shown in Figure 5.1 will be used as an example to show all the elementary paths in a graph
to a given vertex.
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Figure 5.1: Elementary paths example graph

After the graph has been decomposed into its strongly connected components, reduced to an acyclic
directed graph and sorted topologically, the sequence of tasks shown in Figure 5.2 is found. All the
possible elementary paths to vertex 4 is listed in Appendix A. It is also shown on the sequence of tasks
in Figure 5.2. However, since some paths are extensions of others, each individiual path is not that
distinct on the sequence of tasks. Different filters can be used to display only a subset of the total set of
calculated paths.
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Figure 5.2: Elementary paths example sequence of tasks

5.4 Logical critical path

A logical critical path is a longest elementary path, from a source vertex to a sink vertex (see Section
4.5.1), through a directed acyclic graph. Such paths correspond to the longest time to perform an ordered
sequence of tasks. Tasks that lie along the logical critical path cannot be delayed without delaying the
finish time for the entire project. Therefore, it is critical for these tasks to be identified in order to avoid
costly delays to the whole project. A project can have several, parallel logical critical paths. Similarly, to
accelerate a project, it is necessary to reduce the total time required for the tasks on the logical critical
path.

5.5 Systems of equations

5.5.1 Solution of systems of equations

5.5.1.1 Introduction

Let a directed graph with n vertices be given. The edge weights of the graph are arranged in the
elementary weight matrix A. A path algebra for a path problem in this graph leads to a system of n

equations with the solution vector x depending on the vector b on the right-hand side. The system of n

equations with n variables is formulated as follows:

x = A ◦ x t b

xi = ai1 ◦ x1 t ai2 ◦ x2 t ... t ain ◦ xn t bi i = 1, ..., n
(5.24)

5.5.1.2 Solutions

Let the matrix A of a system of equations x = A ◦ x t b be stable. Then the system of equations has a
solution x = A∗ ◦ b in which A∗ is the closure of A. If the matrix A is nilpotent, then the solution x

is unique. If the matrix A is not nilpotent, several solutions may exist. If several solutions exist, then
x = A∗ ◦ b is the least solution.
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5.5.1.3 Staggered system of equations

A system of equations x = A ◦ xt b is said to be staggered if the matrix A is a lower triangular matrix
with zero elements on and above the diagonal or an upper triangular matrix with zero elements on and
below the diagonal. The solution x of a staggered system of equations is unique.

5.5.1.4 Equivalent systems of equations

Two systems of equations x = A ◦ xt b and x = C ◦ xt d with stable matrices A and C are said to be
equivalent if their least solutions A∗ ◦ b and C∗ ◦ d are identical.

5.5.2 Direct methods of solution

5.5.2.1 Introduction

The least solution of a system of equations may be determined directly if the system of equations is
staggered. The solution of the staggered system of equations is determined by forward or back substitu-
tion. If the system of equations is not staggered, it is transformed into an equivalent staggered system
of equations by elimination. The best-known elimination method is the one due to Gauss.

5.5.2.2 Forward substitution

Let the matrix A of the system of equations be a staggered lower triangular matrix: it contains only
zero elements on and above the diagonal, as seen in Figure 5.3. The system of equations is solved by
forward substiution. The variables are calculated as follows:

x1 = b1 xk =
k−1⊔
j=1

akj ◦ xj t bk k = 2, ..., n (5.25)

(a) lower (b) upper

Figure 5.3: Triangular matrices

5.5.2.3 Back substitution

Let the matrix A of the system of equations be a staggered upper triangular matrix: it contains only
zero elements on and below the diagonal, as seen in Figure 5.3. The system of equations is solved by
back substitution. The variables are calculated as follows:

xn = bn xk =
n⊔

j=k+1

akj ◦ xj t bk k = n− 1, ..., 1 (5.26)



Chapter 5. Path algebras and methods of solution 59

5.5.2.4 Elimination

In order to eliminate a variable xk from the system x = A ◦xtb, the kth equation is first solved for xk.
Then xk is eliminated in the other equations by substitution. To solve the kth equation xk, the terms
which do not involve xk are combined into a value ck.

xk =
⊔

j

akj ◦ xj t bk

xk = akk ◦ xk t ck with ck =
⊔

j 6=k

akj ◦ xj t bk

(5.27)

The equation xk = akk ◦ xk t ck has a least solution if the element akk is stable, so that the closure
âkk exists. The least solution is:

xk = âkk ◦ ck

xk =
⊔

j 6=k

âkk ◦ akj ◦ xj t âkk ◦ bk
(5.28)

To eliminate the variable xk in the ith equation, the terms which do not involve xk are combined into
a value ci:

xi =
⊔

j

aik ◦ xj t bi

xi = aik ◦ xk t ci with ci =
⊔

j 6=k

aik ◦ xj t bi

(5.29)

The solution for xk is substituted into the ith equation xi = aik ◦xkt ci. This substitution eliminates
xk in the i-th equation:

xi = aik ◦ âkk ◦ ck t ci

xi =
⊔

j 6=k

(aij t aik ◦ âkk ◦ akj) ◦ xj t (bi t aik ◦ âkk ◦ bk) (5.30)

In performing the elimination, it is assumed that the element akk is stable, so that the closure âkk

exists. If this is not the case, the elimination cannot be performed. The closure âkk of the element akk

is calculated as a union of powers of akk according to Section 5.3.5.2. For various path algebras, the
closure âkkis known a priori and need not be calculated explicitly.

5.5.2.5 Gaussian elimination method

Let a system x = A0 ◦ x t b0 with n variables be given. It is transformed into a staggered system of
equations with an upper triangular matrix in n consecutive steps.

x = Ak ◦ x t bk k = 1, ...n (5.31)

In every step k = 1, ..., n, the variable xk is eliminated in the equations i = k, ..., n of the system
x = Ak−1 ◦ x t bk−1. The formulas for the elements of the matrix Ak and the vector bk are compiled
below.

ãkj = âkk ◦ akj j = k + 1, ..., n

ãij = aij t aik ◦ âkk ◦ akj = aij t aik ◦ ãkj i, j = k + 1, ..., n

b̃k = âkk ◦ bk

b̃i = bi t aik ◦ âkk ◦ bk = bi t aik ◦ b̃k i = k + 1, ..., n

(5.32)
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The matrices Ak and the vectors bk in the steps k = 1, ..., n are not explicitly constructed in the algo-
rithms. Instead, the matrix and the vector of the original system of equations are repeatedly overwritten.
In the kth step, the elements are overwritten as follows:

akj ← âkk ◦ akj j = k + 1, ..., n

aij ← aij t aik ◦ akj i, j = k + 1, ..., n

bk ← âkk ◦ bk

bi ← bi t aik ◦ bk i = k + 1, ..., n

(5.33)

The Gaussian elimination method assumes that in each step the diagonal element akk is stable, so that
the closure âkk exists. If this is not the case, the elimination proccess fails. Upon successful completion
of the elimination process, the system of equations is staggered, and the variables may be determined by
back substitution. The solution reached by Gaussian elimination is always the least solution.

5.5.3 Iterative Methods of Solution

5.5.3.1 Introduction

Various iterative methods have been developed for solving systems of equations. Such methods form
the basis for powerful algorithms in graph theory. In formulating these methods, it is assumed that the
matrix of the system of equations contains zero elements on the diagonal. The simplest iterative methods
are the Jacobi method, the Gauss-Seidel method and the forward and back substitution method. They
form a class of methods and are treated in the following in generalized form.

5.5.3.2 General iteration

The general iteration for solving a system of equations x = A ◦ x t b consists of the following steps:

initial values x0 = b

iteration xk+1 = M ◦ xk tN ◦ b k = 0, 1, ...

termination xk+1 = xk

(5.34)

The vector b is conveniently chosen as the initial vector x0 for the iteration, since every solution x

of the system of equations x = A ◦ x t b contains the vector b. In each iteration k = 0, 1, ... an iterated
vector xk+1 is calculated from the vector xk and the vector b using the matrices M and N. The iteration
is terminated if two consecutive iterated vectors xk+1 and xk coincide. The matrices M and N of the
iteration procedure must be chosen such that the iteration yields the least solution x = A∗ ◦ b of the
system of equations. The relevant conditions are derived in the following section.

5.5.3.3 Conditions

The iteration with the general rule defined above yields iterated vectors of the following form:

x0 = b

x1 = M ◦ x0 tN ◦ b = M ◦ b tN ◦ b

x2 = M ◦ x1 tN ◦ b = M2 ◦ b t (I tM) ◦N ◦ b

xk+1 = M ◦ xk tN ◦ b = Mk+1 ◦ b t (
I tM tM2 t ... tMk

) ◦N ◦ b

(5.35)

The iteration can only yield a solution if the matrix M is stable. If the stability index of the matrix
M is p, the vector xp+1 is obtained as:
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xp+1 = Mp+1b tM∗ ◦N ◦ b (5.36)

The vector xp+1 contains the least solution x = A∗ ◦ b of the system of equations if the product
M∗ ◦N is equal to the closure A∗.

xp+1 = Mp+1 ◦ b tA∗ ◦ b with M∗ ◦N = A∗ (5.37)

The vector xp+1 is the least solution x = A∗ ◦ b of the system of equations only if Mp+1 ◦ b v
Mp+1 ◦A∗ ◦ b = Mp+1 ◦M∗ ◦N ◦ b v M∗ ◦N ◦ b = A∗ ◦ b

Hence the general iteration procedure yields the least solution x = A∗ ◦b of the system of equations
if the matrix M is stable and the product M∗ ◦N is identical with the closure A∗. If the stability index
of the matrix M is p, then p + 1 iterations are required to determine the least solution.

5.5.3.4 Jacobi method

The Jacobi method is the simplest method for solving a system of equations. The iteration is carried
out according to the following rule:

iteration xk+1 = A ◦ xk t b (5.38)

The iteration procedure is a special case of the general iteration procedure and satisfies the conditions
for the least solution of the system of equations.

matrices M = A N = I

condition M∗ ◦N = A∗ ◦ I = A∗ (5.39)

5.5.3.5 Gauss-Seidel method

In the Gauss-Seidel method, the matrix A of the system of equations is represented as the union of a
lower triangular matrix L and an upper triangular matrix R. The lower triangular matrix L contains
zero elements on and above the diagonal. The upper triangular matrix R contains zero elements on and
below the diagonal. The system of equations to be solved may thus be formulated as follows:

x = A ◦ x t b ⇔ x = (L tR) ◦ x t b ⇔ x = L ◦ x tR ◦ x t b (5.40)

The Gauss-Seidel iteration is carried out according to the following rule:

iteration xk+1 = L ◦ xk+1 tR ◦ xk t b (5.41)

This iteration procedure corresponds to a staggered system of equations with the matrix L and the
solution vector xk+1. To reduce it to the general iteration procedure, the solution vector xk+1 is written
as a function of xk and b using the closure L∗. With the rules in Section 5.5.3.2 the iteration procedure
is shown to satisfy the conditions for the least solution of the system of equations:

iteration xk+1 = L∗ ◦ (R ◦ xk t b) = L∗ ◦R ◦ xk t L∗ ◦ b

matrices M = L∗ ◦R N = L∗

condition M∗ ◦N = (L∗ ◦R)∗ ◦ L∗ = (L tR)∗ = A∗
(5.42)
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5.5.3.6 Forward and back substitution method

Like the Gauss-Seidel Method, this method uses a decomposition of the matrix A of the system of
equations into a union of a lower triangular matrix L and an upper triangular matrix R. The iteration
is carried out according to the following rules:

iteration yk+1 = R ◦ yk+1 t xk t b

xk+1 = L ◦ xk+1 t yk+1

(5.43)

The first equation corresponds to a system of equations with the matrix R and the solution vector
yk+1, which is solved by back substitution. The second equation corresponds to a system of equations
with the matrix L and the solution vector xk+1, which is solved by forward substitution. In order to
reduce the iteration procedure to the general iteration procedure, the solution vectors yk+1 and xk+1 are
specified using the closures R∗ and L∗, and the first equation is substituted into the second equation.
By the rules for closures the iteration procedure satisfies the required condition.

iteration yk+1 = R∗ ◦ (xk t b)
xk+1 = L∗ ◦ yk+1

xk+1 = L∗ ◦R∗ ◦ (xk t b) = L∗ ◦R∗ ◦ xk t L∗ ◦R∗ ◦ b

matrices M = N = L∗ ◦R∗

condition M∗ ◦N = (L∗ ◦R∗)∗ ◦ (L∗ ◦R∗) = (L∗ ◦R∗)∗ = (L tR)∗ = A∗

(5.44)

5.5.3.7 Number of iterations

Every iterative method yields the least solution x = A∗ ◦b of the system of equations after at most p+1
iterations, where p is the stability index of the matrix M. An upper bound for the stability index p of
M is given by the stability index q of the matrix A. The quadratic matrix A with n rows and columns
has a stability index q < n if the path algebra is stable. In this case, the iterative methods require at
most n iterations.

A stronger upper bound may be derived for the matrix M of the forward and back substitution method
assuming a unitarily stable path algebra. The derivation leads to a stability index p ≤ q/2 + 1. This
method thus requires roughly half as many iterations as the Jacobi method and the Gauss-Seidel method
do in the worst case. Since the calculational cost per iteration is the same for all iterative methods, the
calculational cost of this method is roughly half that of the Jacobi and Gauss-Seidel methods in the
worst case.

Knowledge of an upper bound on the number of iterations in the case of stable matrices is of funda-
mental importance for algorithms. If the upper bound is exceeded in the course of the iteration process,
then the matrix A of the system of linear equations is not stable, and the iteration is aborted without a
result.

5.6 Relabelling of vertices

After a graph has been decomposed into its strongly connected components we can construct the reduced
graph of super vertices and super edges. The reduced graph can be sorted topologically, since it is a
directed acyclic graph. The topological sorting can be used to relabel the vertices of a graph, such that
each edge points from a lower numbered vertex to a higher numbered vertex. Such relabelling results in
an upper triangular adjacency-matrix for a directed acyclic graph.
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The vertices of cyclic graphs can also be relabelled, considering the strongly connected components
in topological order. The vertices in a strongly connected component are relabelled as long as none of
their successors have been relabelled. In this case, the vertex is stored and processed after the other
vertices. The adjacency-matrix up to this point is now an upper triangular matrix. All the unprocessed
vertices are labelled at the end. The adjacency-matrix from this point is not an upper triangular matrix.
Therefore, the adjacency-matrix will be of the form shown in Figure 5.4.

Knowledge of the upper triangular part of the adjacency-matrix can be used to reduce the number
of calculations for the methods of solutions of path algebras (see Section 5.5).

Figure 5.4: Adjacency-matrix after relabelling

5.6.1 Relabelling example

The graph shown in Figure 5.5 will be used to demonstrate the advantages of relabelling the vertices of
the graph.
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Figure 5.5: Graph before relabelling
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Figure 5.6: Topologically sorted graph
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The strongly connected components are shown in Figure 5.5 and the topologically sorted graph in
Figure 5.6. The relabelled graph is shown in Figure 5.7

Weight matrix before relabelling:

{} {(1, 2)} {} {} {} {} {} {} {} {(1, 10)}
{} {} {(2, 3)} {} {} {} {} {} {} {}
{} {} {} {} {} {} {} {} {(3, 9)} {}
{} {} {} {} {} {} {} {(4, 8)} {} {}

Z = {} {} {} {} {} {} {} {} {} {}
{(6, 1)} {} {} {} {} {} {} {} {} {}
{} {} {(7, 3)} {} {} {} {} {} {} {}

{(8, 1)} {} {} {} {} {(8, 6)} {} {} {} {}
{} {} {} {} {(9, 5)} {} {(9, 7)} {} {} {}
{} {} {(10, 3)} {} {} {} {} {} {} {}

Weight matrix after relabelling:

{} {(1, 0)} {} {} {} {} {} {} {} {}
{} {} {(2, 3)} {(2, 4)} {} {} {} {} {} {}
{} {} {} {(3, 4)} {} {} {} {} {} {}
{} {} {} {} {(4, 5)} {(4, 6)} {} {} {} {}

Z = {} {} {} {} {} {} {} {} {} {(5, 10)}
{} {} {} {} {} {} {} {} {} {(6, 10)}
{} {} {} {} {} {} {} {(7, 8)} {(7, 9)} {}
{} {} {} {} {} {} {} {} {} {(8, 10)}
{} {} {} {} {} {} {} {} {} {}
{} {} {} {} {} {} {(10, 7)} {} {} {}

The partially staggered form can be seen in the weight matrix after relabelling.
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Figure 5.7: Graph after relabelling



Chapter 6

Implementation of computer model for
graphs and performance testing

6.1 Introduction

It has been shown that the “has to be executed before” relation in the set of tasks of an engineering process
model can be described by a directed graph. Different algorithms were devised to determine certain
structural characteristics of these graphs. The Java programming language was used to implement these
concepts.

First, we need a computer model for the graphs. Different possible models, including the model that
was implemented are discussed in Section 6.2. An algorithm to generate random test graphs is discussed
in Section 6.2.2. The Unified Modelling Language (UML) (see Section 6.3) will be used to outline the
implementation of the computer model. See reference [3] for a more detailed description of the unified
modelling language.

Different methods of solution of a system of equations were implemented. Random test graphs were
used to compare the performance of these methods (see Section 6.5) in order to choose the best method.
See the attached CD for the source code of the implementation, as well as a complete documented
example.

6.2 Computer models for graphs

6.2.1 Data structures

6.2.1.1 Adjacency-matrix representation

The amount of space used to store a graph using an adjacency-matrix is proportional to the square of the
number of vertices

(
V 2

)
. If the number of edges is relatively small compared to the number of vertices,

the adjacency-matrix uses an unneccessary amount of storage space, since most of the entries are false.

6.2.1.2 Adjacency-lists representation

In the adjacency-lists representation, a list of successors is associated with each vertex. The amount
of space used to store a graph using adjacency-lists is proportional to the number of vertices and the

65
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number of edges (V + E), since only existing edges are stored. This is the primary advantage of the
adjacency-lists representation over the adjacency-matrix representation.

6.2.1.3 Alternative representation

The graph representation used in this implementation is similar to the adjacency-lists representation.
A set of vertices and a set of edges are stored as part of the graph. A set of successors and a set of
predecessors is associated with each vertex. The set of predecessors can be used to quickly find the reverse
of a graph. When an edge (x, y) is added to a graph, the vertex x is added to the set of successors of
vertex y and vertex y is added to the set of successors of x.

The amount of space used to store a graph using this representation is proportional to the number
of vertices and five times the number of edges (V + 5E). Each vertex is stored once in the vertex set
(V ). Each edge is stored once in the edge set (E). For each edge two vertices, the start vertex and end
vertex, are stored (2E), as well as two vertices, one predecessor and one successor (2E). Although this
representation is more expensive in storage space than the adjacency lists representation, it saves on the
number of calculations for graph algorithms.

6.2.1.4 Example

The graph in Figure 6.1 will be used to illustrate the different graph representations.

1

2

4

3

5

(a) Graph

Adjacency matrix:

1 2 3 4 5
1 0 1 0 0 1
2 0 0 1 0 0
3 0 0 0 1 0
4 0 1 0 0 1
5 0 1 0 0 0

Adjacency lists:

1 2,5
2 3
3 4
4 5
5 1

(b) Adjacency-matrix and adjacency-lists

Alternative representation:

Vertex set: {1,2,3,4,5}
Edge set: {(1,2),(1,5),(2,3),(3,4),(4,2),(4,5),(5,2)}

Vertex Set of successors Set of predecessors
1 {2,5} {}
2 {3} {1,4,5}
3 {4} {2}
4 {2,5} {3}
5 {2} {1,4}

Edge Start vertex End vertex
(1,2) 1 2
(1,5) 1 5
(2,3) 2 3
(3,4) 3 4
(4,2) 4 2
(4,5) 4 5
(5,2) 5 2

(c) Alternative representation

Figure 6.1: Graph representation
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6.2.2 Graph generator

Graphs modelling an engineering process are sequential in nature. Therefore, we need to generate graphs
with this property. Graphs will be generated randomly with the following specifications and restraints:

Specifications:

• number of vertices of the graph (n)

• number of steps in the sequence of tasks (s)

• maximum number of vertices in a step (t)

Restraints:

• The number of vertices should be equal to or greater than the number of steps, since there should
be at least one vertex in a step.

• The maximum number of vertices in a step times the number of steps should be equal to or greater
than the number of vertices, since there should be enough placements for each vertex.

(s ≤ n ≤ s ∗ t) (6.1)

.

• Each vertex should have a vertex in the previous step pointing to it. This is necessary to justify
the placement of the vertex in the step.

Other considerations:

• Random edges spanning over two steps are added to add more complexity.

• Edges creating random strongly connected components are added.

6.2.2.1 Algorithm

• Create n new vertices.

• Create s new steps.

• Assign each vertex to a step.

• Create necessary edges in three steps:

1. edges pointing to vertices from the previous step,

2. edges spanning over two steps and

3. edges creating strongly connected components.
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6.2.2.2 Example

Generate a graph with n = 10 vertices in s = 3 steps, with a maximum number of t = 4 vertices per
step. The generated elements are shown in Figure 6.2.

  Vertex Step

      1    2
      2    1
      3    1
      4    1
      5    2
      6    2
      7    2
      8    3
      9    3
     10    3

(a) Vertices and steps (b) Sequence of tasks

2

10

9

8

7

6

5

1

4

3

(c) Edges

 Edge Type

 (7,10)   1
  (7,9)   1
  (6,8)   1
  (4,6)   1
  (2,1)   1
  (3,5)   1
  (4,7)   1
  (3,8)   2
  (2,4)   3
  (4,3)   3
  (3,2)   3

Step 1

Step 2

Step 3

Figure 6.2: Elements

The resulting graph is shown in Figure 6.3.

21

5

9

8

4

7

3
10

6

Figure 6.3: Random graph

6.3 Unified Modelling Language view of implementation

6.3.1 Introduction

The Unified Modeling Language (UML) is a graphical notation for drawing diagrams of software concepts.
It can be used for drawing diagrams of a problem domain, a proposed software design, or an already
completed software implementation. These three levels can be described as Conceptual, Specification
and Implementation.

Implementation level diagrams have a strong connection to source code, since it is the intent of these
diagrams to describe existing source code. As such there are rules and semantics that these diagrams
must follow, in order to have very little ambiguity, and a great deal of formality.

Static UML diagrams, which describe the unchanging logical structure of software elements by de-
picting classes, objects, and data structures and the relationships that exist between them, will be used
in this document. UML diagrams are not particularly good for communicating algorithmic detail.
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6.3.2 Class diagrams

UML class diagrams allow us to denote the static contents of and relationships between classes. In a
class diagram we can show the variables and methods of a class. We can also show whether one class
holds a reference to another. In short, we can depict all the source code dependencies between classes.

This can be valuable. It can be much easier to evaluate the dependency structure of a system from
a diagram than from source code. Diagrams make certain dependency structures visible.

A class diagram shows the major classes and relationships in the program. A class is represented by
a rectangle, which can be subdivided into compartments. The top compartment is for the name of the
class, the second is for the variables of the class and the third is for the methods of the class. The basic
structure of a class diagram is shown in Figure 6.4.

Figure 6.5 shows the relationships between classes. A relationship is represented by an arrow. As-
sociations between classes most often represent instance variables that hold references to other objects.
The name on an association maps to the name of the variable that holds the reference. A number next
to an arrowhead typically shows the number of instances held by the relationship. If some kind of a
container, such as an array, is used, the symbol ∗ implies many.

An empty arrow head as in Figure 6.6 shows an inheritance relationship. In UML arrows heads point
in the direction of source code dependency.

Name of the class

 Variables of the class

 Methods of the class

Java access specifiers

     (-) private
     (+) public

Format of variables

     variable : type

Format of methods

     method(argument : type) : return value

Figure 6.4: Class diagram basics

Class A

variable a : Class B
variable b : Class B
variable c : Class C[ ]

Class C

Class B
variable a
variable b

variable c*

2

Figure 6.5: Class diagram associations
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Class B

Class A

Class B extends Class A

test

Figure 6.6: Class diagram inheritance

6.4 UML view of graph model

6.4.1 Basic graph implementation

An implementation of the basic graph model is shown in Figure 6.7. This model is extended as more
functionality is added to the classes. These extensions are shown in detail in Appendix B.

Graph

Vertex

Edge

*

*

vertexSet

edgeSet

- vertexSet : HashSet
- edgeSet : HashSet

+ addVertex() : Vertex
+ addEdge() : Edge
+ getVertices() : HashSet
+ getEdges() : HashSet

- successors : HashSet
- predecessors : HashSet

+ addSuccessor(edge : Edge)
+ addPredecessor(edge : Edge)
+ getSuccessors() : HashSet
+ getPredecessors() : HashSet

- startVertex : Vertex
- endVertex : Vertex

+ Edge(startVertex : Vertex, endVertex : Vertex)
+ getStartVertex() : Vertex
+ getEndVertex() : Vertex

2
startVertex
endVertex

*
successors
predecessors

Figure 6.7: UML diagram of basic Graph implementation

6.5 Performance testing of solution methods

The performance of the solution methods of Jacobi and Gauss-Seidel, as well as the forward and back
substitution method discussed in Section 5.5 is tested using random test data. Different methods of
doing the same task have to be compared in order to choose the method best suited to the task.
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During the solution of a system of equations a number of concatenation and union operations are
performed. The number of calculations for each solution method is used to compare the performance
of the different algorithms. The number of calculations is a function of the number of vertices in the
graph. In the case of the iterative methods it is also a function of the number of iterations that has to
be completed. Knowledge of the structure of the graph can be used to reduce the number of calculations
per iteration for the iterative methods, using the method of relabelling discussed in Section 5.6. The
execution times are also used as a comparison between the different methods.

6.5.1 Gauss elimination calculations

A graph with a vertex set of size = 5 will be used to demonstrate and derive equations to determine the
number of calculations for each method.

6.5.1.1 Gauss elimination

The number of calculations performed during the solution of the equations in Section 5.5.2.5 can be
determined as follows:

k = 1:
a12 ← â11 ◦ a12

a13 ← â11 ◦ a13

a14 ← â11 ◦ a14

a15 ← â11 ◦ a15

4 calculations

a22 ← a22 t a21 ◦ a12 a32 ← a32 t a21 ◦ a12

a23 ← a23 t a31 ◦ a13 a33 ← a33 t a31 ◦ a13

a24 ← a24 t a41 ◦ a14 a34 ← a34 t a41 ◦ a14

a25 ← a25 t a51 ◦ a15 a35 ← a35 t a51 ◦ a15

a42 ← a42 t a21 ◦ a12 a52 ← a52 t a21 ◦ a12

a43 ← a43 t a31 ◦ a13 a53 ← a53 t a31 ◦ a13

a44 ← a44 t a41 ◦ a14 a54 ← a54 t a41 ◦ a14

a45 ← a45 t a51 ◦ a15 a55 ← a55 t a51 ◦ a15

32 calculations

b1 ← â11 ◦ b1

b2 ← b2 t a21 ◦ b1

b3 ← b3 t a31 ◦ b1

b4 ← b4 t a41 ◦ b1

b5 ← b5 t a51 ◦ b1

1 + 8 calculations

The total number of calculations for k = 1 is 4 + 32 + 1 + 8 = 45 calculations. Similarly, for k = 2,
3 + 18 + 1 + 6 = 28, k = 3, 2 + 8 + 1 + 4 = 15, k = 4, 1 + 2 + 1 + 2 = 6 and k = 5, 1. The total number
of calculations for k = 1, . . . , 5 is 45 + 28 + 15 + 6 + 1 = 95 (excluding the number of calculations for
determining the element closures).

6.5.1.2 Back substitution

The Gauss elimination is followed by a back substitution as discussed in Section 5.5.2.3.
x5 = b5

x4 = a45 ◦ x5 t b4

x3 = a34 ◦ x4 t a35 ◦ x5 t b3

x2 = a23 ◦ x3 t a24 ◦ x4 t a25 ◦ x5 t b2

x1 = a12 ◦ x2 t a13 ◦ x3 t a14 ◦ x4 t a15 ◦ x5 t b1

20 calculations
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6.5.1.3 Generalized

The number of calculations for k = 1, . . . , 5 can be rewritten as follows:
k = 1 : 4 + 32 + 1 + 8
k = 2 : 3 + 18 + 1 + 6
k = 3 : 2 + 8 + 1 + 4
k = 4 : 1 + 2 + 1 + 2
k = 5 : 0 + 0 + 1 + 0

Considering each column separately, we begin to see a pattern forming:
column 1: 0 + 1 + 2 + 3 + 4
column 2: 0 + 2 + 8 + 18 + 32 = 2 (1 + 4 + 9 + 16) = 2

(
12 + 22 + 32 + 42

)

column 3: 1 + 1 + 1 + 1 + 1
column 4: 0 + 2 + 4 + 6 + 8 = 2 (1 + 2 + 3 + 4)

The algebraic equations in Appendix C can be used to rewrite these sums in terms of the number of
vertices n:

1 + 2 + 3 + . . . + (n− 1) = (n−1)2+(n−1)
2 = n2−2n+1+n−1

2 = n2−n
2

12 + 22 + 32 + . . . + (n− 1)2 = (n−1)(n−1+1)(2(n−1)+1)
6 = (n−1)×n×(2n−1)

6 = n(n−1)(2n−1)
6

3(n2−n)
2 + 2n(n−1)(2n−1)

6 + n

=
(

3
2n2 − 3

2n
)

+
(

2
3n3 − 1

3n2 − 2
3n2 + 1

3n
)

+ n

= 2
3n3 + 1

2n2 − 1
6n

= n
(

2
3n2 + 1

2n− 1
6

)

The total number of calculations for Gauss elimination has now been determined as:
n

(
2
3n2 + 1

2n− 1
6

)
+

(
n2 − n

)
= n

(
2
3n2 + 3

2n− 7
6

)

and for back substitution:
n2 − n

Element closures: We can determine the number of calculations in determining the element closures
in terms of the stability index p of the element as follows:

âkk = 1Z t akk t akk ◦ akk t akk ◦ akk ◦ akk t . . .

1+2+3+. . .+(p− 1) concatenation (◦) calculations and p union (t) calculations = 1+2+3+. . .+p =
(p2+p)

2 calculations, (p2+p)
2 calculations.

Total: Total number of calculations for the Gauss elimination method, with a back substitution:

n
(

2
3n2 + 3

2n− 7
6

)
+ (p2+p)

2

where n is the number of vertices and p the stability index of the element.

6.5.2 Jacobi calculations

The number of calculations performed during the solution of the equations in Section 5.5.3.4 can be
determined as follows:

y = A ◦ xk t b and xk+1 = y

yi =
n⊔

j=1

aij ◦ xj t bi
(6.2)
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y1 = a11 ◦ x1 t a12 ◦ x2 t a13 ◦ x3 t a14 ◦ x4 t a15 ◦ x5 t b1

y2 = a21 ◦ x1 t a22 ◦ x2 t a23 ◦ x3 t a24 ◦ x4 t a25 ◦ x5 t b2

y3 = a31 ◦ x1 t a32 ◦ x2 t a33 ◦ x3 t a34 ◦ x4 t a35 ◦ x5 t b3

y4 = a41 ◦ x1 t a42 ◦ x2 t a43 ◦ x3 t a44 ◦ x4 t a45 ◦ x5 t b4

y5 = a51 ◦ x1 t a52 ◦ x2 t a53 ◦ x3 t a54 ◦ x4 t a55 ◦ x5 t b5

50 calculations

6.5.2.1 Generalized

Total number of n× 2n = 2n2 calculations, where n is the number of vertices.

6.5.3 Jacobi calculations after sorting

y1 = a12 ◦ x2 t a13 ◦ x3 t a14 ◦ x4 t a15 ◦ x5 t b1

y2 = a23 ◦ x3 t a24 ◦ x4 t a25 ◦ x5 t b2

y3 = a34 ◦ x4 t a35 ◦ x5 t b3

16 calculations

—————————————————————————————– (division due to staggered form)

y4 = a41 ◦ x1 t a42 ◦ x2 t a43 ◦ x3 t a44 ◦ x4 t a45 ◦ x5 t b4

y5 = a51 ◦ x1 t a52 ◦ x2 t a53 ◦ x3 t a54 ◦ x4 t a55 ◦ x5 t b5

20 calculations

Total calculations = 16 + 20 = 36

6.5.3.1 Generalized

Upper part:(
n2 − n

)−
(
(n− r)2 − (n− r)

)

Lower part:
2n (n− r)

Total:(
n2 − n

)−
(
(n− r)2 − (n− r)

)
+ 2n (n− r) = 2n2 − r2 − r

where n is the number of vertices and r is the number or rows in staggered form.

6.5.4 Gauss-Seidel calculations

The number of calculations performed during the solution of the equations in Section 5.5.3.5 can be
determined as follows:

xk+1 = L ◦ xk+1 tR ◦ xk t b

xi ←
n⊔

j=1

aij ◦ xj t bi i = 1, . . . , n
(6.3)

x1 ← a11 ◦ x1 t a12 ◦ x2 t a13 ◦ x3 t a14 ◦ x4 t a15 ◦ x5 t b1

x2 ← a21 ◦ x1 t a22 ◦ x2 t a23 ◦ x3 t a24 ◦ x4 t a25 ◦ x5 t b2

x3 ← a31 ◦ x1 t a32 ◦ x2 t a33 ◦ x3 t a34 ◦ x4 t a35 ◦ x5 t b3

x4 ← a41 ◦ x1 t a42 ◦ x2 t a43 ◦ x3 t a44 ◦ x4 t a45 ◦ x5 t b4

x5 ← a51 ◦ x1 t a52 ◦ x2 t a53 ◦ x3 t a54 ◦ x4 t a55 ◦ x5 t b5

50 calculations
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6.5.4.1 Generalized

n× 2n = 2n2, where n is the number of vertices.

6.5.5 Gauss-Seidel calculations after sorting

x1 ← a12 ◦ x2 t a13 ◦ x3 t a14 ◦ x4 t a15 ◦ x5 t b1

x2 ← a23 ◦ x3 t a24 ◦ x4 t a25 ◦ x5 t b2

x3 ← a34 ◦ x4 t a35 ◦ x5 t b3

16 calculations

—————————————————————————————— (division due to staggered form)

x4 ← a41 ◦ x1 t a42 ◦ x2 t a43 ◦ x3 t a44 ◦ x4 t a45 ◦ x5 t b4

x5 ← a51 ◦ x1 t a52 ◦ x2 t a53 ◦ x3 t a54 ◦ x4 t a55 ◦ x5 t b5

20 calculations

Total calculations = 16 + 20 = 36

6.5.5.1 Generalized
(
n2 − n

)−
(
(n− r)2 − (n− r)

)
+ 2n (n− r) = 2n2 − r2 − r

where n is the number of vertices and r is the number or rows in staggered form.

6.5.6 Forward and back substitution calculations

The number of calculations performed during the solution of the equations in Section 5.5.3.6 can be
determined as follows:

yk+1 = R ◦ yk+1 t xk t b and xk+1 = L ◦ xk+1 t yk+1

yn = xn t bn

yi =
n⊔

j=i+1

aij ◦ yj t xi t bi i = n− 1, . . . , 1

x1 = y1

xi =
i−1⊔

j=1

aij ◦ xj t yi i = 2, . . . , n

(6.4)

y5 = x5 t b5

y4 = a45 ◦ y5 t x4 t b4

y3 = a34 ◦ y4 t a35 ◦ y5 t x3 t b3

y2 = a23 ◦ y3 t a24 ◦ y4 t a25 ◦ y5 t x2 t b2

y1 = a12 ◦ y2 t a13 ◦ y3 t a14 ◦ y4 t a15 ◦ y5 t x1 t b1

1 + 24 calculations

1 + 3 + 5 + 7 + 9 = 25 = n2

x1 = y1

x2 = a21 ◦ x1 t y2

x3 = a31 ◦ x1 t a32 ◦ x2 t y3

x4 = a41 ◦ x1 t a42 ◦ x2 t a43 ◦ x3 t y4

x5 = a51 ◦ x1 t a52 ◦ x2 t a53 ◦ x3 t a54 ◦ x4 t y5

20 calculations

2 + 4 + 6 + 8 = 2 (1 + 2 + 3 + 4) = 20 = 2× (n2−n)
2 = n2 − n

6.5.6.1 Generalized

Total calculations = 1 + 24 + 20 = 45 = n2 + n2 − n = 2n2 − n, where n is the number of vertices.
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6.5.7 Forward and back substitution calculations after sorting

y5 = x5 t b5

y4 = a45 ◦ y5 t x4 t b4

y3 = a34 ◦ y4 t a35 ◦ y5 t x3 t b3

y2 = a23 ◦ y3 t a24 ◦ y4 t a25 ◦ y5 t x2 t b2

y1 = a12 ◦ y2 t a13 ◦ y3 t a14 ◦ y4 t a15 ◦ y5 t x1 t b1

1 + 24 calculations

n2 calculations
x1 = y1

x2 = y2

x3 = y3

————————————————————————————— (division due to staggered form)
x4 = a41 ◦ x1 t a42 ◦ x2 t a43 ◦ x3 t y4

x5 = a51 ◦ x1 t a52 ◦ x2 t a53 ◦ x3 t a54 ◦ x4 t y5

14 calculations
(
n2 − n

)− (
r2 − r

)
calculations

6.5.7.1 Generalized

Total calculations = 1 + 24 + 14 = 39 = n2 +
(
n2 − n

)− (
r2 − r

)
= 2n2 − r2 − n + r

where n is the number of vertices and r is the number or rows in staggered form.

6.5.8 Interpretation of results

General equations for determining the number of calculations for the solution methods of Gauss, Jacobi
and Gauss-Seidel, as well as the forward and back substitution method were determined in Sections 6.5.1
to 6.5.7. The number of calculations were determined per iteration for the iterative methods. Therefore,
the number of iterations for an iterative method to reach a solution determines the total amount of
calculations for the method. The test data in Appendix D was used to compare the different methods.

6.5.8.1 Number of iterations

The data in Appendix D.1 was divided into groups of graphs of similar size. The average number of
iterations for the Jacobi, Gauss-Seidel and forward and back substitution methods were determined for
each group. The results are shown in Figures 6.8 and 6.9 for the unsorted and sorted cases, respectively.
It is obvious from these graphs that the Jacobi method required the most iterations to reach a solution
for the test graphs, while the forward and back substitution method required the least.

6.5.8.2 Influence of sorting on the number of iterations

The grouped and averaged data of Appendix D.1 was also used to plot the difference in the number of
iterations before and after sorting, difference = number of iterationsafter−number of iterationsbefore, for
the Jacobi, Gauss-Seidel and forward and back substitution methods. The results are shown in Figure
6.10. A positive result means that more iterations were required after sorting than before sorting and a
negative result means that less iterations were required after sorting than before sorting.
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Figure 6.8: Number of iterations for unsorted graphs

0.00

5.00

10.00

15.00

20.00

25.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

graph groups

n
u

m
b

er
 o

f 
it

er
at

io
n

s

Jacobi Gauss-Seidel Forward and back

Figure 6.9: Number of iterations for sorted graphs
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Figure 6.10: Difference in number of iterations before and after sorting

It is very clear from the figure that the number of iterations for the Jacobi method is independent of
whether the graph has been sorted and relabelled or not. The number of iterations for the Gauss-Seidel
and forward and back substitution methods can either increase or decrease after sorting. It is obvious
from the average values in the figures that the required number of iterations for the Gauss-Seidel method
increases in most cases, while the required number of iterations for the forward and back substitution
method decreases in most cases.

6.5.8.3 Number of calculations

The results in Sections 6.5.2 to 6.5.7 show that the Jacobi and Gauss-Seidel algorithms require an equal
amount of calculations per iteration, while the forward and back substitution algorithm requires a little
less. However, the total number of required calculations for the iterative methods is dependent on
the number of iterations necessary for each algorithm. The direct Gauss algorithm requires a constant
amount of calculations for a graph of given size.

The data in Appendix D.2 was grouped and the average number of calculations for the Jacobi, Gauss-
Seidel and forward and back substitution methods were plotted for each group. The results are shown
in Figures 6.11 and 6.12 for the unsorted and sorted cases, respectively. It is obvious that the Jacobi
method requires the most calculations in most cases, while the forward and back substitution method
requires the least. This can be expected from the results in Section 6.5.8.1.
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Figure 6.11: Number of calculations for unsorted graphs
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Figure 6.12: Number of calculations for sorted graphs

6.5.8.4 Influence of sorting on the number of calculations

The grouped and averaged data of Appendix D.2 was also used to plot the difference in the number of cal-
culations before and after sorting, difference = number of calculationsafter−number of calculationsbefore,
for the Jacobi, Gauss-Seidel and forward and back substitution methods. The results are shown in Figure
6.13. A positive result means that more calculations were done after sorting than before sorting and a
negative result means that less calculations were done after sorting than before sorting.
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Figure 6.13: Difference in number of calculations before and after sorting

An obvious reduction in the number of calculations due to sorting is obvious for all the methods.
This is most pronounced for the Jacobi method and least for the Gauss-Seidel method. This can be
ascribed to the fact that the number of iterations remains constant before and after sorting for the
Jacobi method. Therefore, the reduction in the number of calculations per iteration after sorting leads
to a total reduction of calculations for the Jacobi method. In the case of the Gauss-Seidel, and to a minor
degree the forward and back substitution method, there may be an increase in the number of iterations
required after sorting, which counters the reduction in the number of calculations per iteration.

6.5.8.5 Duration

The extreme values of the data in Appendix D.3 were removed, and the remaining values grouped
according to similar graph sizes. The average values for the duration of the grouped graphs were plotted
for the Jacobi, Gauss-Seidel and forward and back substitution methods. The results are shown in
Figures 6.14 and 6.15, for the unsorted and sorted cases, respectively.

It is obvious from these figures that the implementation of the direct Gauss elimination method is
faster than that of the iterative methods for both the unsorted and sorted test graphs. The Jacobi method
is the slowest of the iterative methods in general, while the forward and back substitution method is the
fastest.

There are pronounced jumps in the duration values on the graphs for both the unsorted and sorted
test graphs. Although the graphs have been sorted according to size, the size of a graph is only an
indication of the possibilities of paths. The number of resulting paths, as well as their lengths, depend
on the structure of the graph and the choice of vertex to which the paths have to be calculated. A
smaller graph may have more results than a larger graph and the number of results for graphs of the
same size may vary considerably. Therefore, the duration of some smaller graphs may be longer than for
larger graphs and the duration may vary considerably for graphs of the same size.

The differences, difference = durationafter sorting − durationbefore sorting, between the sorted and un-
sorted durations, for the Jacobi, Gaualsoss-Seidel and the forward and back substitution methods were
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calculated. The extreme values were removed and the long tail of entering values cropped. The remaining
values were grouped and averaged. These values were plotted and the results are shown in Figure 6.16.
A positive result means a longer duration after sorting than before sorting and a negative result means
a shorter duration after sorting than before sorting.

The Jacobi method has the most pronounced reduction in execution time. This is a result of the
constant number of iterations before and after sorting, which means the number of calculations will either
remain the same or be reduced, depending on the renumbering. There are cases for which the duration is
longer after sorting than before sorting, most notably for the Gauss-Seidel method. This can be ascribed
to the fact that this method has shown a greater increase in the necessary number of iterations after
sorting.
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Figure 6.14: Unsorted durations
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Figure 6.15: Sorted durations
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Chapter 7

Conclusions

The relation “has to be executed before” in the set of tasks of an engineering process model was suc-
cessfully described by a directed graph. Therefore, there exists a powerful mathematical basis in graph
theory to determine the dependencies of tasks in a process model upon each other. The logical sequence
of tasks, as well as the logical critical path can be determined algebraically.

The logical sequence of tasks is important to ensure that tasks in an engineering process are executed
in the correct order to avoid costly delays. The logical sequence of tasks was determined by a topological
sorting of the directed graph. However, this could only be done if the graph was acyclic. Therefore, the
detection of cycles in the graph became very important. The cycles was detected indirectly by finding the
strongly connected components of the graph. Different methods of determining the strongly connected
components, the methods of Kosaraju, Tarjan and Gabow, were discussed and implemented. This led
to the reduced graph of super vertices, which is a directed acyclic graph. This graph could successfully
be sorted topologically to find the logical sequence of tasks.

The logical critical path is the longest elementary path through a graph. The importance of this
path lies in the fact that the tasks on this path has a direct influence on the total duration of a project.
The tasks on this path need to be executed on time to avoid delays. The elementary path algebra was
discussed and implemented to find all the elementary paths to or from a given task in a graph. In
addition to the logical critical path, the elementary path algebra is useful to determine the dependencies
of tasks on other tasks in an engineering process.

The elementary path algebra was reduced to a system of equations. Different methods of solution were
discussed and implemented, the direct Gauss elimination method, followed by a back substitution, as
well as the iterative methods of Jacobi and Gauss-Seidel and the forward and back substitution method.
The performance of these methods was tested, using random test data, and compared to each other.
The number of calculations required to execute each method was used, as well as the duration of the
execution.

Relabelling of vertices of a graph after topological sorting was used in an attempt to improve the
performance of the methods. Such a relabelling leads to a partially staggered coefficient matrix. Knowl-
edge of this structure could be used to reduce the number of calculations per iteration for the iterative
methods.

On average, the Jacobi method required the most iterations to reach a solution, while the forward
and back substitution method required the least. The number of iterations for the Jacobi method
remained constant after sorting, while an unexpected change in the number of iterations required by the
Gauss-Seidel and the forward and back substitution methods was encountered. Therefore, relabelling

82
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of the vertices always led to a reduction of calculations for the method of Jacobi, while the gain in the
reduction of calculations per iteration was sometimes countered by an increase in the necessary number
of iterations for the Gauss-Seidel and forward and back substitution methods. Despite the increase in
number of iterations for the Gauss-Seidel and forward and back substitution methods in some cases, the
number of calculations decreased on average.

The direct Gauss elimination method was found to be the fastest on average with the current im-
plementation of the methods. The Jacobi method was the slowest of the iterative methods, while the
forward and back substitution method was the fastest. Sorting and relabelling of the graphs led to a
general decrease in duration of the iterative methods.
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Appendix A

Elementary paths - example from
Section 5.3.6

All elementary paths to vertex 4
Paths from vertex 1

[<1,7,5,6,2,10,8,3,4> , <1,7,8,4> , <1,6,4> , <1,5,6,7,8,4> ,
 <1,6,7,8,9,3,4> , <1,5,6,2,10,8,3,4> , <1,2,10,8,3,4> , <1,7,5,6,2,10,8,4> ,
 <1,7,5,6,4> , <1,7,5,6,10,8,3,4> , <1,6,10,8,9,3,4> , <1,7,8,9,3,4> ,
 <1,6,7,3,4> , <1,6,10,8,4> , <1,5,6,2,10,8,4> , <1,6,10,8,3,4> ,
 <1,6,7,8,4> , <1,5,6,10,8,4> , <1,5,6,7,3,4> , <1,7,5,6,2,10,8,9,3,4> ,
 <1,5,6,2,10,8,9,3,4> , <1,2,10,8,4> , <1,5,6,10,8,9,3,4> , <1,6,2,10,8,4> ,
 <1,6,7,8,3,4> , <1,7,5,6,10,8,9,3,4> , <1,6,2,10,8,9,3,4> , <1,5,6,7,8,9,3,4> ,
 <1,7,8,3,4> , <1,6,2,10,8,3,4> , <1,5,6,10,8,3,4> , <1,7,5,6,10,8,4> ,
 <1,2,10,8,9,3,4> , <1,7,3,4> , <1,5,6,4> , <1,5,6,7,8,3,4>]

Paths from vertex 5

[<5,6,2,10,8,3,4> , <5,6,7,8,3,4> , <5,6,10,8,4> , <5,6,7,3,4> ,
 <5,6,2,10,8,4> , <5,6,7,8,9,3,4> , <5,6,4> , <5,6,2,10,8,9,3,4> ,
 <5,6,7,8,4> , <5,6,10,8,9,3,4> , <5,6,10,8,3,4>]

Paths from vertex 6

[<6,10,8,3,4> , <6,2,10,8,9,3,4> , <6,70,8,4> , <6,2,10,8,4> ,
 <6,10,8,9,3,4> , <6,2,10,8,3,4> , <6,10,8,4> , <6,7,3,4> ,
 <6,4> , <6,7,8,9,3,4> , <6,7,8,3,4>]

Paths from vertex 7

[<7,8,3,4> , <7,8,9,3,4> , <7,3,4> , <7,5,6,10,8,9,3,4> ,
 <7,5,6,10,8,4> , <7,5,6,2,10,8,9,3,4> , <7,5,6,10,8,3,4> , <7,5,6,2,10,8,3,4> ,
 <7,5,6,4> , <7,5,6,2,10,8,4> , <7,8,4>]

Paths from vertex 2

[<2,10,8,9,3,4> , <2,10,8,4> , <2,10,8,3,4>]

Paths from vertex 8

[<8,3,4> , <8,9,3,4> , <8,4>]

Paths from vertex 10

[<10,8,4> , <10,8,9,3,4> , <10,8,3,4>]

Paths from vertex 3

[<3,4>]

Paths from vertex 4

[<4> , <%>]
Paths from vertex 9

[<9,3,4>]

A–1
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UML implementation of graph model

B.1 Graph

Graph

+ NEUTRAL : int

+ KOSARAJU : int
+ TARJAN : int
+ GABOW : int

+ TO_VERTEX : int
+ FROM_VERTEX : int

- vertexSet : HashSet
- edgeSet : HashSet

- superVertexSet: HashSet
- superEdgeSet: HashSet

- SCCs : HashMap

- steps : ArrayList

- equation : Equation

- pathCode : int

- toVertexNumber : int
- fromVertexNumber : int

+ Graph()

+ addVertex() : Vertex
+ addEdge(startVertex : Vertex, endVertex : Vertex) : Edge

+ addSuperVertex() : SuperVertex
+ addSuperEdge(startVertex : SuperVertex, endVertex : SuperVertex) :
SuperEdge

+ getVertexSet() : HashSet
+ getEdgeSet() : HashSet
+ getSuperVertexSet() : HashSet
+ getSuperEdgeSet() : HashSet

+ generateRandomGraph(n : int, t : int, s: int)

B–1
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Graph (continued)

+ dfs()
+ Kosaraju()
+ Tarjan()
+ Gabow()
+ reducedGraph()
+ topologicalSortingReducedGraph()
+ reLabel()

+ isSorted() : boolean
+ getSCCs() : HashMap

+ setPathCode(code : int)
+ setToVertex(vertex : Vertex)
+ setFromVertex(vertex : Vertex)

+ getEquation() : Equation

B.2 Vertex

Vertex

- successors : HashMap
- predecessors : HashMap

- label : int
- SCCno : int
- step : int

- superVertex : SuperVertex

- weight : ElementaryPathSet

+ Vertex()

+ addSuccessor(vertex : Vertex, edge : Edge)
+ addPredecessor(vertex : Vertex, edge : Edge)

+ getSuccessors() : HashSet
+ getPredecessors() : HashSet

+ setLabel(label : int)
+ setSCCno(SCCno : int)
+ setStep(step : int)

+ getLabel() : int
+ getSCCno() : int
+ getStep() : int

+ setWeight(weight : ElementaryPathSet)

+ getWeight() : ElementaryPathSet

The edges entering and leaving a vertex is mapped to the successor and predecessor vertices to which
it points. Vertices has the same strongly connected component numbers and step numbers in the logical
sequence of tasks as the super vertices to which it is mapped. All the paths, to or from a vertex , which
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has been calculated is stored as the weight of the vertex.

B.3 Edge

Edge

+ Edge (startVertex : Vertex, endVertex : Vertex)

+ getStartVertex() : Vertex
+ getEndVertex() : Vertex

+ setLabel(label : String)

+ getLabel() : String

+ setTypeOfEdgeDFS(type : int)
+ setTypeOfEdgeReduced(type : int)

+ getTypeOfEdgeDFS() : int
+ getTypeOfEdgeReduced() : int

+ setSuperVertex(superVertex : SuperVertex)
+ setSuperEdge(superEdge : SuperEdge)

+ getSuperVertex() : SuperVertex
+ getSuperEdge() : SuperEdge

+ TREE : int
+ BACK : int
+ DOWN : int
+ CROSS : int

+ INTERNAL : int
+ TRANSITION : int

- startVertex : Vertex
- endVertex : Vertex

- superVertex : SuperVertex
- superEdge : SuperEdge

- typeOfEdgeDFS : int
- typeOfEdgeReduced : int

- label : String

- weight : ElementaryPath

An edge is a relationship between two vertices and is represented by an ordered vertex pair. Edges
can can classified as either, tree, back, down or cross edges during a depth-first search (DFS). Edges can
also be classified as either an internal or an transition edge, depending on whether it is mapped to a
super vertex or a super edge in the reduced graph (see Section 3.4.2.8).
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B.4 SuperVertex

SuperVertex

- vertices : HashSet
- edges : HashSet

- successors : HashMap
- predecessors : HashMap

- SCCno : int
- step : int

+ SuperVertex()

+ addVertex(vertex : Vertex)
+ addEdge(edge : Edge)

+ getVertices() : HashSet
+ getEdges() : HashSet

+ addSuccessor(superVertex : SuperVertex, superEdge : SuperEdge)
+ addPredecessor(superVertex : SuperVertex, superEdge : SuperEdge)

+ getSuccessors() : HashSet
+ getPredecessors() : HashSet

+ setSCCno(SCCno : int)
+ setStep(step : int )

+ getSCCno() : int
+ getStep() : int

A graph can be decomposed into its strongly connected components (see the strongly connected com-
ponent example in Section 3.4.2.10). Each vertex in the reduced graph represents a strongly connected
component in the graph.

Super vertices are used to store the strongly connected components . A super vertex corresponds to a
vertex in the reduced graph. The set of vertices of a strongly connected component, as well as the set of
edges connecting these vertices are stored as part of the super vertex. The successors and predecessors of
the super vertex are the adjacent super vertices in the reduced graph. As with the vertices of the graph
the super edges connecting the super vertex with its successors and predecessors are mapped to these
super vertices. Since the reduced graph is acyclic it can be sorted topologically (see Section 3.4.3.3) into
steps.
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B.5 SuperEdge

SuperEdge

- startVertex : SuperVertex
- endVertex : SuperEdge

- edges : HashSet

+ SuperEdge(startVertex : SuperVertex, endVertex : SuperVertex)

+ getStartVertex() : SuperVertex
+ getEndVertex() : SuperVertex

+ addEdge(edge : Edge)

+ getEdges() : HashSet

Super edges are edges connecting vertices in the reduced graph. Super edges connect super vertices.
The set of edges connecting vertices in one strongly connected component to vertices in another strongly
connected component, and which is therefore not part of any of the strongly connected components, is
stored as part the super edge connecting the two super vertices.

B.6 Equation

Equation

+ GAUSS : int
+ JACOBI : int
+ GAUSS_SEIDEL : int
+ FORWARD_BACK : int

- algebra : ElementaryPathAlgebra

- matrix : ElementaryPathSet[ ][ ]
- x : ElementaryPathSet[ ]
- b : ElementaryPathSet[ ]

- mapping : Vertex[ ]

+ analyze(methodOfSolution : int)

- setVertexIndices()
- setSystemMatrix()
- transposeSystemMatrix()
- setSystemVector(unitNumber : int)

- eliminateGauss()
- substitute()

- eliminateJacobi()
- eliminateGaussSeidel()
- eliminateForwardBack()

The system of equations of the literal path algebra for elementary paths, consisting of the elementary



Appendix B. UML implementation of graph model B–6

weight matrix, the solution vector and the unit vector, is represented by the class Equation. Vertices are
mapped to their indices in the elementary weight matrix. The system of equations can be solved by any
of the methods of solution mentioned in Section 5.5.

B.7 ElementaryPath

ElementaryPath

+ ElementaryPath()

+ addPathElement(pathElement : String)
+ addPath(path : ElementaryPath)
+ getPathElement(index : int) : String
+ isLambda() : boolean
+ equals(elementaryPath : ElementaryPath) : boolean
+ createCopy() : ElementaryPath

ArrayList

The class ElementaryPath is used to store elementary paths (see Section 3.4.1.13) in the graph. An
empty path is represented by {λ}.

B.8 ElementaryPathSet

ElementaryPathSet

+ ElementaryPathSet()
+ ElementaryPathSet(path : ElementaryPath)

+ addPath(path : ElementaryPath)
+ createCopy() : ElementaryPathSet

+ isZeroW() : boolean
+ isOneW() : boolean

+ getZeroW() : ElementaryPathSet
+ getOneW() : ElementaryPathSet

+ removeElementCycles() : ElementaryPathSet

+ equals(obj : ElementaryPathSet) : boolean

HashSet

The class ElementaryPathSet is used to store a set of elementary paths. The zero set is equal to {}
and the one set is equal to {λ}. Elementary cycles are not stored as part of the elementary path set.
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B.9 ElementaryPathAlgebra

ElementaryPathAlgebra

+ LAMBDA :  String

+ zero() : ElementaryPathSet
+ one() : ElementaryPathSet

+ union(a : ElementaryPathSet, b : ElementaryPathSet) : ElementaryPathSet
+ concatenate(a : ElementaryPathSet, b : ElementaryPathSet) : ElementaryPathSet

+ elementClosure(element : ElementaryPathSet) : ElementaryPathSet

The elementary path algebra operations are implemented in the Class ElementaryPathAlgebra.
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Useful algebraic equations

1 + 2 + 3 + . . . + n =
n2 + n

2
(C.1)

1 + 3 + 5 + . . . = n2, where n = number of odd numbers (C.2)

12 + 22 + 32 + . . . + n2 =
n (n + 1) (2n + 1)

6
(C.3)

C–1



Appendix D

Test graph data

D.1 Iterations

unsorted sorted difference unsorted sorted difference unsorted sorted difference
1 5 4 3 3 0 3 3 0 2 2 0
2 5 5 3 3 0 2 3 1 2 2 0
3 5 5 3 3 0 3 3 0 2 2 0
4 5 4 3 3 0 3 3 0 2 2 0
5 5 5 3 3 0 3 3 0 2 2 0
6 5 3 3 3 0 3 3 0 2 2 0
7 5 4 3 3 0 2 3 1 2 2 0
8 5 5 3 3 0 2 3 1 2 2 0
9 5 4 3 3 0 2 3 1 2 2 0
10 5 5 3 3 0 2 3 1 2 2 0
11 6 5 4 4 0 3 4 1 2 2 0
12 6 7 4 4 0 3 4 1 2 2 0
13 6 6 4 4 0 4 4 0 3 2 -1
14 6 5 4 4 0 3 4 1 2 2 0
15 6 7 4 4 0 4 4 0 2 2 0
16 6 6 4 4 0 3 4 1 3 2 -1
17 6 7 4 4 0 3 4 1 3 2 -1
18 6 5 4 4 0 4 4 0 3 2 -1
19 6 7 4 4 0 3 4 1 3 2 -1
20 6 6 4 4 0 3 4 1 2 2 0
21 7 8 4 4 0 3 4 1 3 2 -1
22 7 8 4 4 0 3 4 1 2 2 0
23 7 8 4 4 0 4 4 0 2 2 0
24 7 7 4 4 0 3 4 1 2 2 0
25 7 10 6 6 0 5 4 -1 3 3 0
26 7 9 6 6 0 5 5 0 3 3 0
27 7 7 4 4 0 4 4 0 2 2 0
28 7 8 4 4 0 3 4 1 2 2 0
29 7 7 4 4 0 3 4 1 2 2 0
30 7 8 4 4 0 4 4 0 2 2 0
31 8 9 6 6 0 4 6 2 3 3 0
32 8 11 6 6 0 4 4 0 3 3 0
33 8 10 4 4 0 4 4 0 2 2 0
34 8 6 4 4 0 4 4 0 3 2 -1
35 8 7 4 4 0 3 4 1 2 2 0

Vertices Edges
Jacobi Gauss-Seidel Forward and back

D–1
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unsorted sorted difference unsorted sorted difference unsorted sorted difference
36 8 9 4 4 0 3 4 1 2 2 0
37 8 11 6 6 0 4 5 1 3 3 0
38 8 11 6 6 0 3 3 0 3 3 0
39 8 9 4 4 0 2 4 2 2 2 0
40 8 9 6 6 0 3 4 1 3 3 0
41 9 13 6 6 0 4 4 0 3 3 0
42 9 13 6 6 0 4 3 -1 3 3 0
43 9 14 6 6 0 4 4 0 3 4 1
44 9 9 4 4 0 4 4 0 3 2 -1
45 9 14 8 8 0 6 7 1 4 3 -1
46 9 14 6 6 0 4 6 2 3 3 0
47 9 10 6 6 0 4 4 0 3 3 0
48 9 10 6 6 0 5 6 1 3 2 -1
49 9 8 4 4 0 3 4 1 3 2 -1
50 9 6 4 4 0 3 4 1 3 2 -1
51 10 12 6 6 0 4 4 0 4 3 -1
52 10 16 8 8 0 6 6 0 4 4 0
53 10 13 6 6 0 5 4 -1 3 3 0
54 10 17 8 8 0 7 7 0 4 3 -1
55 10 15 6 6 0 5 6 1 3 3 0
56 10 12 6 6 0 4 5 1 4 3 -1
57 10 17 8 8 0 5 5 0 4 4 0
58 10 17 8 8 0 5 5 0 4 4 0
59 10 13 6 6 0 4 6 2 3 3 0
60 10 11 6 6 0 4 4 0 3 4 1
61 11 16 7 7 0 4 6 2 3 3 0
62 11 16 9 9 0 7 7 0 5 4 -1
63 11 18 9 9 0 5 6 1 5 5 0
64 11 15 7 7 0 5 6 1 4 3 -1
65 11 17 7 7 0 4 7 3 4 2 -2
66 11 17 9 9 0 6 7 1 4 4 0
67 11 20 9 9 0 7 7 0 5 5 0
68 11 17 9 9 0 6 6 0 4 4 0
69 11 15 5 5 0 4 5 1 2 2 0
70 11 9 5 5 0 3 5 2 2 2 0
71 12 23 11 11 0 8 7 -1 5 5 0
72 12 19 9 9 0 6 8 2 5 3 -2
73 12 15 7 7 0 4 5 1 4 4 0
74 12 17 7 7 0 5 5 0 4 3 -1
75 12 13 5 5 0 3 5 2 3 2 -1
76 12 19 7 7 0 5 6 1 4 3 -1
77 12 15 7 7 0 5 5 0 4 3 -1
78 12 12 5 5 0 4 5 1 3 2 -1
79 12 14 7 7 0 5 5 0 4 3 -1
80 12 21 9 9 0 7 7 0 5 5 0
81 13 19 7 7 0 5 5 0 4 4 0
82 13 12 5 5 0 3 5 2 3 2 -1
83 13 24 11 11 0 9 7 -2 6 5 -1
84 13 19 9 9 0 7 7 0 4 4 0
85 13 14 5 5 0 4 5 1 3 2 -1
86 13 17 7 7 0 6 7 1 4 2 -2
87 13 19 9 9 0 6 5 -1 4 5 1
88 13 20 9 9 0 7 5 -2 5 3 -2
89 13 18 7 7 0 5 6 1 4 3 -1
90 13 26 13 13 0 10 8 -2 6 5 -1
91 14 18 8 8 0 6 6 0 4 3 -1
92 14 23 10 10 0 7 8 1 5 4 -1
93 14 20 8 8 0 6 6 0 5 3 -2
94 14 15 6 6 0 6 6 0 3 2 -1

Vertices Edges
Jacobi Gauss-Seidel Forward and back
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unsorted sorted difference unsorted sorted difference unsorted sorted difference
95 14 20 10 10 0 7 7 0 6 4 -2
96 14 14 6 6 0 6 6 0 3 2 -1
97 14 17 6 6 0 5 6 1 4 2 -2
98 14 20 8 8 0 6 6 0 3 4 1
99 14 24 10 10 0 7 8 1 4 4 0
100 14 26 12 12 0 8 7 -1 5 6 1
101 15 19 8 8 0 5 6 1 3 3 0
102 15 20 8 8 0 5 6 1 4 4 0
103 15 19 8 8 0 5 6 1 4 3 -1
104 15 29 12 12 0 8 8 0 5 6 1
105 15 21 10 10 0 6 8 2 4 4 0
106 15 23 10 10 0 7 5 -2 5 4 -1
107 15 20 8 8 0 5 6 1 4 4 0
108 15 22 10 10 0 7 8 1 4 4 0
109 15 25 10 10 0 8 8 0 5 3 -2
110 15 28 10 10 0 7 7 0 5 4 -1
111 16 28 12 12 0 8 8 0 5 6 1
112 16 24 8 8 0 5 7 2 4 4 0
113 16 25 10 10 0 7 7 0 5 4 -1
114 16 22 8 8 0 5 7 2 3 3 0
115 16 21 8 8 0 4 6 2 4 4 0
116 16 22 8 8 0 6 7 1 4 3 -1
117 16 23 10 10 0 8 7 -1 4 5 1
118 16 29 12 12 0 8 9 1 6 6 0
119 16 28 12 12 0 7 7 0 5 6 1
120 16 20 8 8 0 6 7 1 4 4 0
121 17 24 9 9 0 5 8 3 4 3 -1
122 17 34 13 13 0 8 8 0 6 6 0
123 17 28 11 11 0 7 8 1 5 5 0
124 17 22 9 9 0 6 9 3 3 3 0
125 17 28 11 11 0 8 9 1 5 4 -1
126 17 28 11 11 0 7 9 2 6 5 -1
127 17 23 11 11 0 8 8 0 5 5 0
128 17 22 9 9 0 5 8 3 4 3 -1
129 17 22 7 7 0 6 7 1 3 2 -1
130 17 28 11 11 0 6 8 2 5 6 1
131 18 28 11 11 0 8 8 0 4 5 1
132 18 34 15 15 0 10 11 1 6 6 0
133 18 23 9 9 0 6 9 3 5 3 -2
134 18 25 9 9 0 5 8 3 4 3 -1
135 18 27 13 13 0 9 8 -1 7 6 -1
136 18 26 11 11 0 7 7 0 6 4 -2
137 18 18 7 7 0 5 7 2 3 2 -1
138 18 34 13 13 0 10 9 -1 6 5 -1
139 18 27 9 9 0 6 7 1 3 3 0
140 18 30 13 13 0 10 8 -2 6 6 0
141 19 32 13 13 0 10 11 1 6 5 -1
142 19 29 9 9 0 4 6 2 4 3 -1
143 19 31 13 13 0 9 7 -2 5 5 0
144 19 27 11 11 0 7 10 3 5 4 -1
145 19 28 11 11 0 8 9 1 5 4 -1
146 19 36 15 15 0 11 10 -1 7 6 -1
147 19 35 13 13 0 8 8 0 6 5 -1
148 19 29 13 13 0 9 10 1 5 5 0
149 19 31 13 13 0 9 7 -2 6 5 -1
150 19 29 13 13 0 9 9 0 6 3 -3
151 20 32 11 11 0 8 7 -1 5 5 0
152 20 39 13 13 0 9 10 1 6 6 0
153 20 28 9 9 0 6 7 1 5 3 -2

Vertices Edges
Jacobi Gauss-Seidel Forward and back



Appendix D. Test graph data D–4

unsorted sorted difference unsorted sorted difference unsorted sorted difference
154 20 28 11 11 0 7 9 2 5 5 0
155 20 37 12 12 0 8 6 -2 5 5 0
156 20 34 14 14 0 10 9 -1 5 7 2
157 20 39 17 17 0 11 11 0 8 8 0
158 20 33 9 9 0 6 8 2 4 3 -1
159 20 28 11 11 0 8 9 1 5 4 -1
160 20 30 11 11 0 9 8 -1 5 5 0
161 21 28 9 9 0 7 6 -1 4 2 -2
162 21 35 13 13 0 8 9 1 6 6 0
163 21 26 9 9 0 6 8 2 5 3 -2
164 21 37 14 14 0 9 8 -1 6 7 1
165 21 27 7 7 0 5 7 2 3 2 -1
166 21 33 11 11 0 7 9 2 6 5 -1
167 21 29 9 9 0 8 7 -1 4 3 -1
168 21 32 12 12 0 8 9 1 6 5 -1
169 21 31 11 11 0 8 8 0 5 5 0
170 21 35 15 15 0 10 11 1 7 7 0
171 22 37 13 13 0 10 9 -1 6 5 -1
172 22 40 13 13 0 9 10 1 7 4 -3
173 22 43 19 19 0 11 12 1 9 9 0
174 22 34 13 13 0 9 7 -2 5 6 1
175 22 38 13 13 0 10 10 0 6 6 0
176 22 41 16 16 0 9 10 1 6 7 1
177 22 31 11 11 0 8 11 3 5 4 -1
178 22 33 10 10 0 7 7 0 5 5 0
179 22 33 10 10 0 7 8 1 4 5 1
180 22 39 12 12 0 8 8 0 6 6 0
181 23 37 13 13 0 8 9 1 5 4 -1
182 23 29 10 10 0 7 8 1 5 3 -2
183 23 41 16 16 0 11 10 -1 7 6 -1
184 23 33 10 10 0 6 8 2 5 4 -1
185 23 39 16 16 0 10 10 0 7 6 -1
186 23 29 10 10 0 6 9 3 4 3 -1
187 23 35 12 12 0 8 10 2 6 5 -1
188 23 38 14 14 0 10 9 -1 7 6 -1
189 23 45 16 16 0 10 12 2 7 6 -1
190 23 29 10 10 0 7 8 1 5 4 -1
191 24 35 10 10 0 7 8 1 5 4 -1
192 24 34 12 12 0 6 8 2 6 4 -2
193 24 42 13 13 0 8 10 2 6 6 0
194 24 40 14 14 0 10 9 -1 7 5 -2
195 24 34 12 12 0 7 8 1 5 4 -1
196 24 41 13 13 0 9 8 -1 7 6 -1
197 24 33 11 11 0 7 8 1 6 4 -2
198 24 42 14 14 0 9 9 0 6 6 0
199 24 34 12 12 0 8 9 1 6 4 -2
200 24 41 14 14 0 10 8 -2 6 6 0
201 25 47 17 17 0 10 11 1 9 7 -2
202 25 45 18 18 0 12 12 0 8 8 0
203 25 37 11 11 0 8 8 0 5 5 0
204 25 40 13 13 0 7 9 2 6 6 0
205 25 39 12 12 0 7 10 3 6 5 -1
206 25 42 14 14 0 9 10 1 6 5 -1
207 25 43 15 15 0 10 12 2 7 6 -1
208 25 36 10 10 0 6 9 3 4 3 -1
209 25 35 10 10 0 6 8 2 5 3 -2
210 25 39 14 14 0 8 9 1 7 6 -1
211 26 38 13 13 0 8 8 0 7 5 -2
212 26 40 11 11 0 7 9 2 4 3 -1

Vertices Edges
Jacobi Gauss-Seidel Forward and back



Appendix D. Test graph data D–5

unsorted sorted difference unsorted sorted difference unsorted sorted difference
213 26 42 15 15 0 10 11 1 6 6 0
214 26 36 12 12 0 9 9 0 5 4 -1
215 26 47 13 13 0 10 8 -2 5 4 -1
216 26 41 13 13 0 8 7 -1 6 4 -2
217 26 37 13 13 0 8 10 2 6 6 0
218 26 44 16 16 0 8 9 1 6 7 1
219 26 41 11 11 0 6 10 4 5 3 -2
220 26 44 14 14 0 9 9 0 5 5 0
221 27 49 19 19 0 10 13 3 8 9 1
222 27 43 12 12 0 8 9 1 5 5 0
223 27 56 20 20 0 12 14 2 7 8 1
224 27 44 15 15 0 10 9 -1 7 5 -2
225 27 37 13 13 0 7 8 1 6 5 -1
226 27 43 15 15 0 9 10 1 6 5 -1
227 27 44 15 15 0 8 10 2 7 6 -1
228 27 46 12 12 0 7 9 2 4 4 0
229 27 51 17 17 0 11 13 2 8 6 -2
230 27 44 15 15 0 10 10 0 7 5 -2
231 28 48 14 14 0 8 9 1 6 5 -1
232 28 36 11 11 0 8 10 2 5 3 -2
233 28 52 15 15 0 10 11 1 6 5 -1
234 28 51 17 17 0 11 11 0 8 8 0
235 28 50 16 16 0 10 11 1 7 7 0
236 28 52 17 17 0 10 11 1 7 8 1
237 28 50 17 17 0 9 11 2 7 8 1
238 28 46 15 15 0 9 9 0 5 6 1
239 28 40 13 13 0 8 10 2 5 5 0
240 28 56 21 21 0 12 13 1 9 8 -1
241 29 51 16 16 0 11 10 -1 8 6 -2
242 29 45 14 14 0 10 11 1 5 4 -1
243 29 44 16 16 0 10 11 1 7 6 -1
244 29 43 15 15 0 11 9 -2 7 5 -2
245 29 47 15 15 0 9 12 3 8 6 -2
246 29 48 16 16 0 10 11 1 6 6 0
247 29 42 14 14 0 8 9 1 6 5 -1
248 29 49 15 15 0 8 9 1 7 6 -1
249 29 46 13 13 0 8 10 2 5 4 -1
250 29 49 14 14 0 8 11 3 6 6 0
251 30 55 20 20 0 13 13 0 8 8 0
252 30 50 16 16 0 9 13 4 7 6 -1
253 30 48 16 16 0 9 10 1 7 6 -1
254 30 49 18 18 0 12 12 0 8 6 -2
255 30 49 13 13 0 8 10 2 7 5 -2
256 30 53 16 16 0 8 9 1 6 6 0
257 30 55 18 18 0 12 13 1 8 6 -2
258 30 43 12 12 0 7 10 3 6 4 -2
259 30 43 14 14 0 10 10 0 5 3 -2
260 30 49 18 18 0 10 12 2 8 8 0
261 31 55 17 17 0 11 11 0 7 7 0
262 31 44 13 13 0 9 11 2 7 4 -3
263 31 48 18 18 0 12 14 2 8 6 -2
264 31 45 15 15 0 10 10 0 5 5 0
265 31 47 17 17 0 9 12 3 7 5 -2
266 31 45 15 15 0 10 11 1 7 4 -3
267 31 58 23 23 0 15 12 -3 10 9 -1
268 31 55 19 19 0 10 12 2 10 7 -3
269 31 54 19 19 0 10 12 2 7 8 1
270 31 57 23 23 0 13 15 2 11 8 -3
271 32 57 20 20 0 14 13 -1 8 8 0

Vertices Edges
Jacobi Gauss-Seidel Forward and back



Appendix D. Test graph data D–6

unsorted sorted difference unsorted sorted difference unsorted sorted difference
272 32 55 19 19 0 10 13 3 8 7 -1
273 32 55 19 19 0 13 12 -1 8 7 -1
274 32 62 21 21 0 12 12 0 9 10 1
275 32 49 15 15 0 8 12 4 6 5 -1
276 32 59 16 16 0 8 12 4 8 8 0
277 32 57 21 21 0 13 15 2 8 8 0
278 32 55 16 16 0 9 11 2 7 6 -1
279 32 50 15 15 0 9 11 2 5 4 -1
280 32 49 16 16 0 10 11 1 6 7 1
281 33 49 16 16 0 9 13 4 6 5 -1
282 33 57 22 22 0 14 15 1 9 8 -1
283 33 60 21 21 0 10 13 3 9 10 1
284 33 51 16 16 0 9 12 3 7 4 -3
285 33 53 17 17 0 11 13 2 7 5 -2
286 33 62 22 22 0 14 15 1 9 8 -1
287 33 61 22 22 0 14 12 -2 9 9 0
288 33 55 18 18 0 10 14 4 8 6 -2
289 33 55 16 16 0 10 12 2 8 7 -1
290 33 54 17 17 0 10 15 5 8 6 -2
291 34 54 16 16 0 9 13 4 6 5 -1
292 34 62 21 21 0 14 12 -2 10 8 -2
293 34 65 19 19 0 11 14 3 9 8 -1
294 34 58 19 19 0 10 13 3 8 6 -2
295 34 62 22 22 0 14 15 1 9 8 -1
296 34 59 20 20 0 10 16 6 9 6 -3
297 34 49 18 18 0 11 12 1 8 5 -3
298 34 52 20 20 0 12 14 2 7 7 0
299 34 58 20 20 0 13 14 1 9 6 -3
300 34 55 17 17 0 11 11 0 7 6 -1
301 35 59 20 20 0 13 15 2 8 8 0
302 35 57 21 21 0 12 16 4 9 7 -2
303 35 58 19 19 0 11 12 1 8 5 -3
304 35 58 17 17 0 12 14 2 6 4 -2
305 35 64 23 23 0 13 14 1 9 8 -1
306 35 57 19 19 0 12 15 3 7 5 -2
307 35 62 23 23 0 16 17 1 10 7 -3
308 35 59 23 23 0 14 15 1 10 9 -1
309 35 51 16 16 0 12 14 2 6 5 -1
310 35 53 17 17 0 11 13 2 8 5 -3
311 36 58 15 15 0 12 13 1 6 3 -3
312 36 64 23 23 0 14 14 0 8 10 2
313 36 62 23 23 0 12 14 2 11 8 -3
314 36 60 19 19 0 11 14 3 8 7 -1
315 36 58 20 20 0 13 12 -1 9 7 -2
316 36 58 21 21 0 14 17 3 8 6 -2
317 36 57 18 18 0 10 14 4 8 5 -3
318 36 59 22 22 0 11 13 2 8 8 0
319 36 57 19 19 0 14 15 1 6 6 0
320 36 68 23 23 0 14 15 1 9 9 0
321 37 62 23 23 0 14 15 1 9 9 0
322 37 63 20 20 0 11 14 3 9 7 -2
323 37 61 19 19 0 13 15 2 8 7 -1
324 37 59 22 22 0 14 16 2 9 7 -2
325 37 55 17 17 0 10 14 4 6 5 -1
326 37 57 18 18 0 13 16 3 9 3 -6
327 37 57 18 18 0 13 14 1 5 4 -1
328 37 57 18 18 0 10 14 4 7 4 -3
329 37 70 26 26 0 16 16 0 10 11 1
330 37 50 18 18 0 13 13 0 7 6 -1

Vertices Edges
Jacobi Gauss-Seidel Forward and back



Appendix D. Test graph data D–7

unsorted sorted difference unsorted sorted difference unsorted sorted difference
331 38 57 19 19 0 12 14 2 8 6 -2
332 38 58 17 17 0 12 16 4 7 4 -3
333 38 60 20 20 0 12 14 2 9 6 -3
334 38 69 24 24 0 16 15 -1 9 10 1
335 38 65 20 20 0 13 15 2 8 6 -2
336 38 64 19 19 0 14 14 0 8 6 -2
337 38 61 20 20 0 14 15 1 8 7 -1
338 38 67 22 22 0 12 17 5 9 6 -3
339 38 67 25 25 0 17 15 -2 10 12 2
340 38 54 18 18 0 12 14 2 8 5 -3
341 39 65 23 23 0 14 18 4 8 7 -1
342 39 70 26 26 0 15 17 2 11 10 -1
343 39 70 23 23 0 14 17 3 9 7 -2
344 39 68 25 25 0 15 19 4 10 9 -1
345 39 68 25 25 0 16 17 1 9 8 -1
346 39 55 17 17 0 11 14 3 7 4 -3
347 39 71 26 26 0 17 17 0 10 9 -1
348 39 60 21 21 0 13 15 2 9 6 -3
349 39 69 22 22 0 16 16 0 9 8 -1
350 39 68 24 24 0 17 16 -1 9 7 -2
351 40 61 19 19 0 13 16 3 7 4 -3
352 40 65 25 25 0 15 16 1 9 9 0
353 40 67 23 23 0 13 15 2 8 7 -1
354 40 65 21 21 0 13 17 4 8 6 -2
355 40 60 23 23 0 14 18 4 10 8 -2
356 40 67 25 25 0 15 19 4 9 9 0
357 40 68 21 21 0 12 16 4 8 7 -1
358 40 62 19 19 0 14 14 0 7 4 -3
359 40 71 24 24 0 13 15 2 10 7 -3
360 40 57 17 17 0 11 14 3 8 4 -4

Vertices Edges
Jacobi Gauss-Seidel Forward and back



Appendix D. Test graph data D–8

D.2 Calculations

unsorted sorted difference unsorted sorted difference unsorted sorted difference
1 125 150 90 -60 150 90 -60 90 66 -24 4
2 125 150 90 -60 100 90 -10 90 66 -24 4
3 125 150 90 -60 150 90 -60 90 66 -24 4
4 125 150 90 -60 150 90 -60 90 66 -24 4
5 125 150 90 -60 150 90 -60 90 66 -24 4
6 125 150 90 -60 150 90 -60 90 66 -24 4
7 125 150 90 -60 100 90 -10 90 66 -24 4
8 125 150 90 -60 100 90 -10 90 66 -24 4
9 125 150 90 -60 100 90 -10 90 66 -24 4
10 125 150 90 -60 100 90 -10 90 66 -24 4
11 203 288 168 -120 216 168 -48 132 92 -40 5
12 203 288 168 -120 216 168 -48 132 92 -40 5
13 203 288 168 -120 288 168 -120 198 92 -106 5
14 203 288 168 -120 216 168 -48 132 92 -40 5
15 203 288 168 -120 288 168 -120 132 92 -40 5
16 203 288 168 -120 216 168 -48 198 92 -106 5
17 203 288 168 -120 216 168 -48 198 92 -106 5
18 203 288 168 -120 288 168 -120 198 92 -106 5
19 203 288 168 -120 216 168 -48 198 92 -106 5
20 203 288 168 -120 216 168 -48 132 92 -40 5
21 308 392 224 -168 294 224 -70 273 122 -151 6
22 308 392 224 -168 294 224 -70 182 122 -60 6
23 308 392 224 -168 392 224 -168 182 122 -60 6
24 308 392 224 -168 294 224 -70 182 122 -60 6
25 308 588 516 -72 490 344 -146 273 255 -18 3
26 308 588 516 -72 490 430 -60 273 255 -18 3
27 308 392 224 -168 392 224 -168 182 122 -60 6
28 308 392 224 -168 294 224 -70 182 122 -60 6
29 308 392 224 -168 294 224 -70 182 122 -60 6
30 308 392 224 -168 392 224 -168 182 122 -60 6
31 444 768 648 -120 512 648 136 360 324 -36 4
32 444 768 648 -120 512 432 -80 360 324 -36 4
33 444 512 288 -224 512 288 -224 240 156 -84 7
34 444 512 288 -224 512 288 -224 360 156 -204 7
35 444 512 288 -224 384 288 -96 240 156 -84 7
36 444 512 288 -224 384 288 -96 240 156 -84 7
37 444 768 648 -120 512 540 28 360 324 -36 4
38 444 768 648 -120 384 324 -60 360 324 -36 4
39 444 512 288 -224 256 288 32 240 156 -84 7
40 444 768 648 -120 384 432 48 360 324 -36 4
41 615 972 792 -180 648 528 -120 459 399 -60 5
42 615 972 792 -180 648 396 -252 459 399 -60 5
43 615 972 792 -180 648 528 -120 459 532 73 5
44 615 648 360 -288 648 360 -288 459 194 -265 8
45 615 1296 1248 -48 972 1092 120 612 453 -159 2
46 615 972 792 -180 648 792 144 459 399 -60 5
47 615 972 792 -180 648 528 -120 459 399 -60 5
48 615 972 792 -180 810 792 -18 459 266 -193 5
49 615 648 360 -288 486 360 -126 459 194 -265 8
50 615 648 360 -288 486 360 -126 459 194 -265 8
51 825 1200 948 -252 800 632 -168 760 480 -280 6
52 825 1600 1504 -96 1200 1128 -72 760 736 -24 3
53 825 1200 948 -252 1000 632 -368 570 480 -90 6
54 825 1600 1504 -96 1400 1316 -84 760 552 -208 3
55 825 1200 948 -252 1000 948 -52 570 480 -90 6
56 825 1200 948 -252 800 790 -10 760 480 -280 6
57 825 1600 1504 -96 1000 940 -60 760 736 -24 3

Gauss
Jacobi Gauss-Seidel Forward and back

Rows



Appendix D. Test graph data D–9

unsorted sorted difference unsorted sorted difference unsorted sorted difference
58 825 1600 1504 -96 1000 940 -60 760 736 -24 3
59 825 1200 948 -252 800 948 148 570 480 -90 6
60 825 1200 948 -252 800 632 -168 570 640 70 6
61 1078 1694 1302 -392 968 1116 148 693 567 -126 7
62 1078 2178 1998 -180 1694 1554 -140 1155 876 -279 4
63 1078 2178 1998 -180 1210 1332 122 1155 1095 -60 4
64 1078 1694 1302 -392 1210 1116 -94 924 567 -357 7
65 1078 1694 1302 -392 968 1302 334 924 378 -546 7
66 1078 2178 1998 -180 1452 1554 102 924 876 -48 4
67 1078 2178 1998 -180 1694 1554 -140 1155 1095 -60 4
68 1078 2178 1998 -180 1452 1332 -120 924 876 -48 4
69 1078 1210 660 -550 968 660 -308 462 282 -180 10
70 1078 1210 660 -550 726 660 -66 462 282 -180 10
71 1378 3168 3102 -66 2304 1974 -330 1380 1370 -10 2
72 1378 2592 2322 -270 1728 2064 336 1380 768 -612 5
73 1378 2016 1512 -504 1152 1080 -72 1104 880 -224 8
74 1378 2016 1512 -504 1440 1080 -360 1104 660 -444 8
75 1378 1440 780 -660 864 780 -84 828 332 -496 11
76 1378 2016 1512 -504 1440 1296 -144 1104 660 -444 8
77 1378 2016 1512 -504 1440 1080 -360 1104 660 -444 8
78 1378 1440 780 -660 1152 780 -372 828 332 -496 11
79 1378 2016 1512 -504 1440 1080 -360 1104 660 -444 8
80 1378 2592 2322 -270 2016 1806 -210 1380 1280 -100 5
81 1729 2366 1736 -630 1690 1240 -450 1300 1012 -288 9
82 1729 1690 910 -780 1014 910 -104 975 386 -589 12
83 1729 3718 3586 -132 3042 2282 -760 1950 1595 -355 3
84 1729 3042 2664 -378 2366 2072 -294 1300 1180 -120 6
85 1729 1690 910 -780 1352 910 -442 975 386 -589 12
86 1729 2366 1736 -630 2028 1736 -292 1300 506 -794 9
87 1729 3042 2664 -378 2028 1480 -548 1300 1475 175 6
88 1729 3042 2664 -378 2366 1480 -886 1625 885 -740 6
89 1729 2366 1736 -630 1690 1488 -202 1300 759 -541 9
90 1729 4394 4394 0 3380 2704 -676 1950 1625 -325 0
91 2135 3136 2256 -880 2352 1692 -660 1512 864 -648 10
92 2135 3920 3360 -560 2744 2688 -56 1890 1344 -546 7
93 2135 3136 2256 -880 2352 1692 -660 1890 864 -1026 10
94 2135 2352 1260 -1092 2352 1260 -1092 1134 444 -690 13
95 2135 3920 3360 -560 2744 2352 -392 2268 1344 -924 7
96 2135 2352 1260 -1092 2352 1260 -1092 1134 444 -690 13
97 2135 2352 1260 -1092 1960 1260 -700 1512 444 -1068 13
98 2135 3136 2256 -880 2352 1692 -660 1134 1152 18 10
99 2135 3920 3360 -560 2744 2688 -56 1512 1344 -168 7
100 2135 4704 4464 -240 3136 2604 -532 1890 2196 306 4
101 2600 3600 2544 -1056 2250 1908 -342 1305 975 -330 11
102 2600 3600 2544 -1056 2250 1908 -342 1740 1300 -440 11
103 2600 3600 2544 -1056 2250 1908 -342 1740 975 -765 11
104 2600 5400 5040 -360 3600 3360 -240 2175 2490 315 5
105 2600 4500 3780 -720 2700 3024 324 1740 1516 -224 8
106 2600 4500 3780 -720 3150 1890 -1260 2175 1516 -659 8
107 2600 3600 2544 -1056 2250 1908 -342 1740 1300 -440 11
108 2600 4500 3780 -720 3150 3024 -126 1740 1516 -224 8
109 2600 4500 3780 -720 3600 3024 -576 2175 1137 -1038 8
110 2600 4500 3780 -720 3150 2646 -504 2175 1516 -659 8
111 3128 6144 5640 -504 4096 3760 -336 2480 2796 316 6
112 3128 4096 2848 -1248 2560 2492 -68 1984 1456 -528 12
113 3128 5120 4220 -900 3584 2954 -630 2480 1696 -784 9
114 3128 4096 2848 -1248 2560 2492 -68 1488 1092 -396 12
115 3128 4096 2848 -1248 2048 2136 88 1984 1456 -528 12
116 3128 4096 2848 -1248 3072 2492 -580 1984 1092 -892 12

Gauss
Jacobi Gauss-Seidel Forward and back

Rows



Appendix D. Test graph data D–10

unsorted sorted difference unsorted sorted difference unsorted sorted difference
117 3128 5120 4220 -900 4096 2954 -1142 1984 2120 136 9
118 3128 6144 5640 -504 4096 4230 134 2976 2796 -180 6
119 3128 6144 5640 -504 3584 3290 -294 2480 2796 316 6
120 3128 4096 2848 -1248 3072 2492 -580 1984 1456 -528 12
121 3723 5202 3564 -1638 2890 3168 278 2244 1215 -1029 13
122 3723 7514 6786 -728 4624 4176 -448 3366 3114 -252 7
123 3723 6358 5148 -1210 4046 3744 -302 2805 2355 -450 10
124 3723 5202 3564 -1638 3468 3564 96 1683 1215 -468 13
125 3723 6358 5148 -1210 4624 4212 -412 2805 1884 -921 10
126 3723 6358 5148 -1210 4046 4212 166 3366 2355 -1011 10
127 3723 6358 5148 -1210 4624 3744 -880 2805 2355 -450 10
128 3723 5202 3564 -1638 2890 3168 278 2244 1215 -1029 13
129 3723 4046 2142 -1904 3468 2142 -1326 1683 642 -1041 16
130 3723 6358 5148 -1210 3468 3744 276 2805 2826 21 10
131 4389 7128 5676 -1452 5184 4128 -1056 2520 2600 80 11
132 4389 9720 9270 -450 6480 6798 318 3780 3660 -120 5
133 4389 5832 3942 -1890 3888 3942 54 3150 1344 -1806 14
134 4389 5832 3942 -1890 3240 3504 264 2520 1344 -1176 14
135 4389 8424 7488 -936 5832 4608 -1224 4410 3444 -966 8
136 4389 7128 5676 -1452 4536 3612 -924 3780 2080 -1700 11
137 4389 4536 2394 -2142 3240 2394 -846 1890 716 -1174 17
138 4389 8424 7488 -936 6480 5184 -1296 3780 2870 -910 8
139 4389 5832 3942 -1890 3888 3066 -822 1890 1344 -546 14
140 4389 8424 7488 -936 6480 4608 -1872 3780 3444 -336 8
141 5130 9386 8216 -1170 7220 6952 -268 4218 3155 -1063 9
142 5130 6498 4338 -2160 2888 2892 4 2812 1479 -1333 15
143 5130 9386 8216 -1170 6498 4424 -2074 3515 3155 -360 9
144 5130 7942 6226 -1716 5054 5660 606 3515 2284 -1231 12
145 5130 7942 6226 -1716 5776 5094 -682 3515 2284 -1231 12
146 5130 10830 10200 -630 7942 6800 -1142 4921 4038 -883 6
147 5130 9386 8216 -1170 5776 5056 -720 4218 3155 -1063 9
148 5130 9386 8216 -1170 6498 6320 -178 3515 3155 -360 9
149 5130 9386 8216 -1170 6498 4424 -2074 4218 3155 -1063 9
150 5130 9386 8216 -1170 6498 5688 -810 4218 1893 -2325 9
151 5950 8800 6798 -2002 6400 4326 -2074 3900 3120 -780 13
152 5950 10400 9672 -728 7200 7440 240 4680 4428 -252 7
153 5950 7200 4752 -2448 4800 3696 -1104 3900 1620 -2280 16
154 5950 8800 6798 -2002 5600 5562 -38 3900 3120 -780 13
155 5950 9600 8280 -1320 6400 4140 -2260 3900 3450 -450 10
156 5950 11200 10416 -784 8000 6696 -1304 3900 5166 1266 7
157 5950 13600 13260 -340 8800 8580 -220 6240 6144 -96 4
158 5950 7200 4752 -2448 4800 4224 -576 3120 1620 -1500 16
159 5950 8800 6798 -2002 6400 5562 -838 3900 2496 -1404 13
160 5950 8800 6798 -2002 7200 4944 -2256 3900 3120 -780 13
161 6853 7938 5184 -2754 6174 3456 -2718 3444 1178 -2266 17
162 6853 11466 9750 -1716 7056 6750 -306 5166 4506 -660 11
163 6853 7938 5184 -2754 5292 4608 -684 4305 1767 -2538 17
164 6853 12348 11340 -1008 7938 6480 -1458 5166 5635 469 8
165 6853 6174 3234 -2940 4410 3234 -1176 2583 962 -1621 20
166 6853 9702 8250 -1452 6174 6750 576 5166 3755 -1411 11
167 6853 7938 5184 -2754 7056 4032 -3024 3444 1767 -1677 17
168 6853 10584 9720 -864 7056 7290 234 5166 4025 -1141 8
169 6853 9702 7392 -2310 7056 5376 -1680 4305 3395 -910 14
170 6853 13230 12150 -1080 8820 8910 90 6027 5635 -392 8
171 7843 12584 10556 -2028 9680 7308 -2372 5676 4070 -1606 12
172 7843 12584 10556 -2028 8712 8120 -592 6622 3256 -3366 12
173 7843 18392 18164 -228 10648 11472 824 8514 8460 -54 3
174 7843 12584 10556 -2028 8712 5684 -3028 4730 4884 154 12
175 7843 12584 10556 -2028 9680 8120 -1560 5676 4884 -792 12

Gauss
Jacobi Gauss-Seidel Forward and back

Rows



Appendix D. Test graph data D–11

unsorted sorted difference unsorted sorted difference unsorted sorted difference
176 7843 15488 14816 -672 8712 9260 548 5676 6412 736 6
177 7843 10648 8008 -2640 7744 8008 264 4730 2944 -1786 15
178 7843 9680 7280 -2400 6776 5096 -1680 4730 3680 -1050 15
179 7843 9680 7280 -2400 6776 5824 -952 3784 3680 -104 15
180 7843 11616 9744 -1872 7744 6496 -1248 5676 4884 -792 12
181 8924 13754 11388 -2366 8464 7884 -580 5175 3516 -1659 13
182 8924 10580 6780 -3800 7406 5424 -1982 5175 2079 -3096 19
183 8924 16928 15168 -1760 11638 9480 -2158 7245 5670 -1575 10
184 8924 10580 7860 -2720 6348 6288 -60 5175 3180 -1995 16
185 8924 16928 15168 -1760 10580 9480 -1100 7245 5670 -1575 10
186 8924 10580 6780 -3800 6348 6102 -246 4140 2079 -2061 19
187 8924 12696 9432 -3264 8464 7860 -604 6210 3975 -2235 16
188 8924 14812 12264 -2548 10580 7884 -2696 7245 5274 -1971 13
189 8924 16928 15168 -1760 10580 11376 796 7245 5670 -1575 10
190 8924 10580 6780 -3800 7406 5424 -1982 5175 2772 -2403 19
191 10100 11520 8460 -3060 8064 6768 -1296 5640 3424 -2216 17
192 10100 13824 10152 -3672 6912 6768 -144 6768 3424 -3344 17
193 10100 14976 12246 -2730 9216 9420 204 6768 5676 -1092 14
194 10100 16128 13188 -2940 11520 8478 -3042 7896 4730 -3166 14
195 10100 13824 10152 -3672 8064 6768 -1296 5640 3424 -2216 17
196 10100 14976 12246 -2730 10368 7536 -2832 7896 5676 -2220 14
197 10100 12672 9306 -3366 8064 6768 -1296 6768 3424 -3344 17
198 10100 16128 13188 -2940 10368 8478 -1890 6768 5676 -1092 14
199 10100 13824 10152 -3672 9216 7614 -1602 6768 3424 -3344 17
200 10100 16128 13188 -2940 11520 7536 -3984 6768 5676 -1092 14
201 11375 21250 19720 -1530 12500 12760 260 11025 8071 -2954 9
202 11375 22500 20880 -1620 15000 13920 -1080 9800 9224 -576 9
203 11375 13750 9988 -3762 10000 7264 -2736 6125 4595 -1530 18
204 11375 16250 13130 -3120 8750 9090 340 7350 6090 -1260 15
205 11375 15000 10896 -4104 8750 9080 330 7350 4595 -2755 18
206 11375 17500 14140 -3360 11250 10100 -1150 7350 5075 -2275 15
207 11375 18750 16410 -2340 12500 13128 628 8575 6558 -2017 12
208 11375 12500 9080 -3420 7500 8172 672 4900 2757 -2143 18
209 11375 12500 7880 -4620 7500 6304 -1196 6125 2415 -3710 21
210 11375 17500 14140 -3360 10000 9090 -910 8575 6090 -2485 15
211 12753 17576 12636 -4940 10816 7776 -3040 9282 4920 -4362 19
212 12753 14872 10692 -4180 9464 8748 -716 5304 2952 -2352 19
213 12753 20280 16200 -4080 13520 11880 -1640 7956 6516 -1440 16
214 12753 16224 11664 -4560 12168 8748 -3420 6630 3936 -2694 19
215 12753 17576 15210 -2366 13520 9360 -4160 6630 4680 -1950 13
216 12753 17576 12636 -4940 10816 6804 -4012 7956 3936 -4020 19
217 12753 17576 14040 -3536 10816 10800 -16 7956 6516 -1440 16
218 12753 21632 18720 -2912 10816 10530 -286 7956 8190 234 13
219 12753 14872 9306 -5566 8112 8460 348 6630 2592 -4038 22
220 12753 18928 15120 -3808 12168 9720 -2448 6630 5430 -1200 16
221 14238 27702 25194 -2508 14580 17238 2658 11448 11889 441 11
222 14238 17496 12456 -5040 11664 9342 -2322 7155 5255 -1900 20
223 14238 29160 27720 -1440 17496 19404 1908 10017 11000 983 8
224 14238 21870 17280 -4590 14580 10368 -4212 10017 5795 -4222 17
225 14238 18954 13494 -5460 10206 8304 -1902 8586 5255 -3331 20
226 14238 21870 17280 -4590 13122 11520 -1602 8586 5795 -2791 17
227 14238 21870 17280 -4590 11664 11520 -144 10017 6954 -3063 17
228 14238 17496 13824 -3672 10206 10368 162 5724 4636 -1088 17
229 14238 24786 22542 -2244 16038 17238 1200 11448 7926 -3522 11
230 14238 21870 18720 -3150 14580 12480 -2100 10017 6245 -3772 14
231 15834 21952 17164 -4788 12544 11034 -1510 9240 6170 -3070 18
232 15834 17248 10648 -6600 12544 9680 -2864 7700 2964 -4736 24
233 15834 23520 18390 -5130 15680 13486 -2194 9240 6170 -3070 18
234 15834 26656 22576 -4080 17248 14608 -2640 12320 10640 -1680 15

Gauss
Jacobi Gauss-Seidel Forward and back

Rows



Appendix D. Test graph data D–12

unsorted sorted difference unsorted sorted difference unsorted sorted difference
235 15834 25088 21248 -3840 15680 14608 -1072 10780 9310 -1470 15
236 15834 26656 24004 -2652 15680 15532 -148 10780 11264 484 12
237 15834 26656 22576 -4080 14112 14608 496 10780 10640 -140 15
238 15834 23520 18390 -5130 14112 11034 -3078 7700 7404 -296 18
239 15834 20384 14378 -6006 12544 11060 -1484 7700 5600 -2100 21
240 15834 32928 31038 -1890 18816 19214 398 13860 11744 -2116 9
241 17545 26912 20832 -6080 18502 13020 -5482 13224 7866 -5358 19
242 17545 23548 16464 -7084 16820 12936 -3884 8265 4764 -3501 22
243 17545 26912 20832 -6080 16820 14322 -2498 11571 7866 -3705 19
244 17545 25230 19530 -5700 18502 11718 -6784 11571 6555 -5016 19
245 17545 25230 19530 -5700 15138 15624 486 13224 7866 -5358 19
246 17545 26912 20832 -6080 16820 14322 -2498 9918 7866 -2052 19
247 17545 23548 16464 -7084 13456 10584 -2872 9918 5955 -3963 22
248 17545 25230 19530 -5700 13456 11718 -1738 11571 7866 -3705 19
249 17545 21866 15288 -6578 13456 11760 -1696 8265 4764 -3501 22
250 17545 23548 16464 -7084 13456 12936 -520 9918 7146 -2772 22
251 19375 36000 31800 -4200 23400 20670 -2730 14160 12704 -1456 14
252 19375 28800 22080 -6720 16200 17940 1740 12390 8340 -4050 20
253 19375 28800 22080 -6720 16200 13800 -2400 12390 8340 -4050 20
254 19375 32400 26892 -5508 21600 17928 -3672 14160 8988 -5172 17
255 19375 23400 17940 -5460 14400 13800 -600 12390 6950 -5440 20
256 19375 28800 22080 -6720 14400 12420 -1980 10620 8340 -2280 20
257 19375 32400 26892 -5508 21600 19422 -2178 14160 8988 -5172 17
258 19375 21600 14976 -6624 12600 12480 -120 10620 5056 -5564 23
259 19375 25200 17472 -7728 18000 12480 -5520 8850 3792 -5058 23
260 19375 32400 26892 -5508 18000 17928 -72 14160 11984 -2176 17
261 21328 32674 26860 -5814 21142 17380 -3762 13237 11095 -2142 18
262 21328 24986 15158 -9828 17298 12826 -4472 13237 4756 -8481 27
263 21328 34596 28440 -6156 23064 22120 -944 15128 9510 -5618 18
264 21328 28830 19830 -9000 19220 13220 -6000 9455 6695 -2760 24
265 21328 32674 24820 -7854 17298 17520 222 13237 7355 -5882 21
266 21328 28830 19830 -9000 19220 14542 -4678 13237 5356 -7881 24
267 21328 44206 40618 -3588 28830 21192 -7638 18910 15831 -3079 12
268 21328 36518 31958 -4560 19220 20184 964 18910 11767 -7143 15
269 21328 36518 30020 -6498 19220 18960 -260 13237 12680 -557 18
270 21328 44206 40618 -3588 24986 26490 1504 20801 14072 -6729 12
271 23408 40960 35520 -5440 28672 23088 -5584 16128 14208 -1920 16
272 23408 38912 31692 -7220 20480 21684 1204 16128 11718 -4410 19
273 23408 38912 31692 -7220 26624 20016 -6608 16128 11718 -4410 19
274 23408 43008 37296 -5712 24576 21312 -3264 18144 17760 -384 16
275 23408 30720 23130 -7590 16384 18504 2120 12096 7770 -4326 22
276 23408 32768 26688 -6080 16384 20016 3632 16128 13392 -2736 19
277 23408 43008 37296 -5712 26624 26640 16 16128 14208 -1920 16
278 23408 32768 26688 -6080 18432 18348 -84 14112 10044 -4068 19
279 23408 30720 20970 -9750 18432 15378 -3054 10080 5664 -4416 25
280 23408 32768 24672 -8096 20480 16962 -3518 12096 10878 -1218 22
281 25619 34848 26016 -8832 19602 21138 1536 12870 8195 -4675 23
282 25619 47916 41184 -6732 30492 28080 -2412 19305 14984 -4321 17
283 25619 45738 39312 -6426 21780 24336 2556 19305 18730 -575 17
284 25619 34848 23616 -11232 19602 17712 -1890 15015 5980 -9035 26
285 25619 37026 27642 -9384 23958 21138 -2820 15015 8195 -6820 23
286 25619 47916 41184 -6732 30492 28080 -2412 19305 14984 -4321 17
287 25619 47916 41184 -6732 30492 22464 -8028 19305 16857 -2448 17
288 25619 39204 29268 -9936 21780 22764 984 17160 9834 -7326 23
289 25619 34848 28128 -6720 21780 21096 -684 17160 12355 -4805 20
290 25619 37026 27642 -9384 21780 24390 2610 17160 9834 -7326 23
291 27965 36992 24896 -12096 20808 20228 -580 13668 7880 -5788 27
292 27965 48552 41370 -7182 32368 23640 -8728 22780 15776 -7004 18
293 27965 43928 37430 -6498 25432 27580 2148 20502 15776 -4726 18

Gauss
Jacobi Gauss-Seidel Forward and back

Rows



Appendix D. Test graph data D–13

unsorted sorted difference unsorted sorted difference unsorted sorted difference
294 27965 43928 35150 -8778 23120 24050 930 18224 11148 -7076 21
295 27965 50864 43340 -7524 32368 29550 -2818 20502 15776 -4726 18
296 27965 46240 37000 -9240 23120 29600 6480 20502 11148 -9354 21
297 27965 41616 30816 -10800 25432 20544 -4888 18224 8630 -9594 24
298 27965 46240 37000 -9240 27744 25900 -1844 15946 13006 -2940 21
299 27965 46240 39400 -6840 30056 27580 -2476 20502 11832 -8670 18
300 27965 39304 29104 -10200 25432 18832 -6600 15946 10356 -5590 24
301 30450 49000 38880 -10120 31850 29160 -2690 19320 15624 -3696 22
302 30450 51450 43470 -7980 29400 33120 3720 21735 14511 -7224 19
303 30450 46550 34200 -12350 26950 21600 -5350 19320 9075 -10245 25
304 30450 41650 27846 -13804 29400 22932 -6468 14490 6636 -7854 28
305 30450 56350 47610 -8740 31850 28980 -2870 21735 16584 -5151 19
306 30450 46550 36936 -9614 29400 29160 -240 16905 9765 -7140 22
307 30450 56350 47610 -8740 39200 35190 -4010 24150 14511 -9639 19
308 30450 56350 47610 -8740 34300 31050 -3250 24150 18657 -5493 19
309 30450 39200 26208 -12992 29400 22932 -6468 14490 8295 -6195 28
310 30450 41650 27846 -13804 26950 21294 -5656 19320 8295 -11025 28
311 33078 38880 25830 -13050 31104 22386 -8718 15336 5232 -10104 29
312 33078 59616 49956 -9660 36288 30408 -5880 20448 21760 1312 20
313 33078 59616 49956 -9660 31104 30408 -696 28116 17408 -10708 20
314 33078 49248 35910 -13338 28512 26460 -2052 20448 13342 -7106 26
315 33078 51840 40800 -11040 33696 24480 -9216 23004 14350 -8654 23
316 33078 54432 42840 -11592 36288 34680 -1608 20448 12300 -8148 23
317 33078 46656 34020 -12636 25920 26460 540 20448 9530 -10918 26
318 33078 57024 47784 -9240 28512 28236 -276 20448 17408 -3040 20
319 33078 49248 35910 -13338 36288 28350 -7938 15336 11436 -3900 26
320 33078 59616 52578 -7038 36288 34290 -1998 23004 20556 -2448 17
321 35853 62974 52348 -10626 38332 34140 -4192 24309 20529 -3780 21
322 35853 54760 39640 -15120 30118 27748 -2370 24309 13993 -10316 27
323 35853 52022 37658 -14364 35594 29730 -5864 21608 13993 -7615 27
324 35853 60236 47036 -13200 38332 34208 -4124 24309 15043 -9266 24
325 35853 46546 30736 -15810 27380 25312 -2068 16206 9155 -7051 30
326 35853 49284 32544 -16740 35594 28928 -6666 24309 5493 -18816 30
327 35853 49284 32544 -16740 35594 25312 -10282 13505 7324 -6181 30
328 35853 49284 32544 -16740 27380 25312 -2068 18907 7324 -11583 30
329 35853 71188 64948 -6240 43808 39968 -3840 27010 27401 391 15
330 35853 49284 32544 -16740 35594 23504 -12090 18907 10986 -7921 30
331 38779 54872 39444 -15428 34656 29064 -5592 22800 12564 -10236 28
332 38779 49096 32232 -16864 34656 30336 -4320 19950 7680 -12270 31
333 38779 57760 41520 -16240 34656 29064 -5592 25650 12564 -13086 28
334 38779 69312 57168 -12144 46208 35730 -10478 25650 23880 -1770 22
335 38779 57760 44760 -13000 37544 33570 -3974 22800 13500 -9300 25
336 38779 54872 39444 -15428 40432 29064 -11368 22800 12564 -10236 28
337 38779 57760 41520 -16240 40432 31140 -9292 22800 14658 -8142 28
338 38779 63536 49236 -14300 34656 38046 3390 25650 13500 -12150 25
339 38779 72200 62700 -9500 49096 37620 -11476 28500 30096 1596 19
340 38779 51984 34128 -17856 34656 26544 -8112 22800 9600 -13200 31
341 41860 69966 53820 -16146 42588 42120 -468 24024 16471 -7553 26
342 41860 79092 68172 -10920 45630 44574 -1056 33033 26230 -6803 20
343 41860 69966 53820 -16146 42588 39780 -2808 27027 16471 -10556 26
344 41860 76050 62250 -13800 45630 47310 1680 30030 22473 -7557 23
345 41860 76050 62250 -13800 48672 42330 -6342 27027 19976 -7051 23
346 41860 51714 30294 -21420 33462 24948 -8514 21021 7252 -13769 35
347 41860 79092 68172 -10920 51714 44574 -7140 30030 23607 -6423 20
348 41860 63882 45612 -18270 39546 32580 -6966 27027 13146 -13881 29
349 41860 66924 51480 -15444 48672 37440 -11232 27027 18824 -8203 26
350 41860 73008 59760 -13248 51714 39840 -11874 27027 17479 -9548 23
351 45100 60800 39482 -21318 41600 33248 -8352 22120 8416 -13704 33
352 45100 80000 65000 -15000 48000 41600 -6400 28440 23472 -4968 24

Gauss
Jacobi Gauss-Seidel Forward and back

Rows



Appendix D. Test graph data D–14

unsorted sorted difference unsorted sorted difference unsorted sorted difference
353 45100 73600 56212 -17388 41600 36660 -4940 25280 17206 -8074 27
354 45100 67200 47670 -19530 41600 38590 -3010 25280 13740 -11540 30
355 45100 73600 56212 -17388 44800 43992 -808 31600 19664 -11936 27
356 45100 80000 65000 -15000 48000 49400 1400 28440 23472 -4968 24
357 45100 67200 51324 -15876 38400 39104 704 25280 17206 -8074 27
358 45100 60800 43130 -17670 44800 31780 -13020 22120 9160 -12960 30
359 45100 76800 62400 -14400 41600 39000 -2600 31600 18256 -13344 24
360 45100 54400 31756 -22644 35200 26152 -9048 25280 7600 -17680 36

Gauss
Jacobi Gauss-Seidel Forward and back

Rows



Appendix D. Test graph data D–15

D.3 Durations

unsorted sorted unsorted sorted unsorted sorted
1 0 10 0 0 0 0 0
2 0 10 0 0 0 0 10
3 10 0 0 0 0 0 10
4 0 0 0 10 0 0 0
5 0 10 0 0 10 0 0
6 10 0 10 0 0 10 0
7 10 0 10 0 0 10 0
8 10 0 0 0 0 10 0
9 0 0 0 10 0 0 0
10 0 10 0 0 0 0 10
11 0 10 0 0 10 10 0
12 10 10 20 0 0 10 10
13 10 0 10 10 0 0 0
14 10 0 10 10 0 0 0
15 10 0 0 0 0 0 0
16 10 0 0 10 0 0 10
17 10 10 0 0 10 10 0
18 10 0 0 10 10 0 0
19 10 10 0 10 0 10 0
20 10 0 10 10 0 0 0
21 10 10 0 0 10 10 0
22 10 10 0 0 0 10 0
23 10 10 10 10 0 0 0
24 10 10 0 0 0 10 0
25 10 20 10 10 10 0 10
26 10 10 0 40 10 0 10
27 10 0 0 10 10 10 0
28 10 0 10 20 0 0 0
29 20 0 10 10 0 10 0
30 10 0 0 10 0 10 0
31 10 20 10 10 0 10 0
32 30 30 40 0 0 10 0
33 10 0 10 10 0 10 40
34 11 10 0 10 0 0 30
35 10 0 10 10 0 0 0
36 10 10 0 10 0 0 10
37 10 20 10 10 0 0 10
38 10 20 20 10 0 10 10
39 0 10 0 10 10 0 0
40 10 10 40 10 0 0 0
41 10 30 0 10 20 0 0
42 20 20 0 10 10 20 0
43 20 20 0 0 0 30 10
44 10 10 10 0 0 10 0
45 20 40 10 20 10 10 0
46 10 30 10 10 10 20 0
47 10 40 10 10 0 10 0
48 20 20 0 0 10 20 0
49 10 20 20 10 0 0 0
50 10 10 10 10 0 0 10
51 20 30 11 10 10 0 0
52 20 40 10 30 0 10 10
53 20 10 10 41 10 10 0
54 40 40 10 10 10 10 0
55 10 20 0 30 10 0 0
56 20 20 10 20 0 10 0
57 30 30 10 10 10 10 0

Jacobi Gauss-Seidel Forward and back
Gauss



Appendix D. Test graph data D–16

unsorted sorted unsorted sorted unsorted sorted
58 30 30 10 10 0 10 10
59 20 30 10 20 0 10 11
60 20 10 0 20 10 0 0
61 40 30 0 10 10 10 0
62 30 30 0 10 20 10 0
63 30 30 10 10 0 10 10
64 20 50 0 10 20 0 0
65 30 40 10 20 0 10 10
66 30 60 10 10 0 10 10
67 40 60 10 20 10 10 0
68 30 40 10 10 10 10 0
69 20 10 0 10 0 0 0
70 20 10 10 10 0 10 0
71 80 50 60 20 10 10 20
72 30 60 10 10 10 10 20
73 40 30 10 10 0 10 0
74 30 30 10 10 11 10 0
75 20 10 0 10 20 20 0
76 30 40 0 10 10 10 0
77 20 20 10 10 10 10 10
78 20 10 10 20 0 0 0
79 30 20 0 30 10 0 0
80 50 50 10 30 20 10 0
81 20 40 0 10 10 10 0
82 20 20 0 0 10 0 0
83 60 50 20 20 20 10 10
84 30 60 10 10 20 10 0
85 20 20 0 0 0 0 0
86 30 30 10 10 10 10 10
87 50 40 20 10 0 0 0
88 60 30 10 10 0 10 10
89 30 40 0 10 10 0 0
90 61 60 40 60 30 40 20
91 20 40 10 10 10 10 0
92 50 40 10 20 30 10 10
93 40 50 20 10 0 10 20
94 30 30 10 0 0 11 10
95 40 50 20 10 10 10 10
96 20 20 0 20 10 10 10
97 40 20 10 10 0 10 10
98 30 40 10 10 10 0 20
99 51 60 20 10 20 10 10
100 70 50 20 20 20 20 20
101 30 40 10 10 10 0 10
102 30 60 10 10 30 10 0
103 30 40 10 10 20 10 0
104 90 50 50 30 60 20 31
105 60 30 20 20 20 0 0
106 40 40 20 20 10 10 10
107 30 50 10 10 20 11 0
108 40 60 20 20 20 10 10
109 40 50 10 30 20 10 10
110 60 30 20 20 20 0 10
111 70 50 40 30 20 10 20
112 50 40 20 10 10 0 11
113 70 40 20 10 20 20 10
114 71 20 20 10 30 20 10
115 40 20 20 10 10 10 10
116 50 40 10 10 21 10 10

Gauss
Jacobi Gauss-Seidel Forward and back



Appendix D. Test graph data D–17

unsorted sorted unsorted sorted unsorted sorted
117 40 40 20 20 30 0 10
118 80 40 30 30 20 10 40
119 90 40 30 30 30 10 20
120 50 40 20 10 10 0 10
121 80 40 20 10 20 11 10
122 140 110 100 80 80 61 120
123 101 50 30 30 30 30 20
124 100 61 30 20 30 10 0
125 90 60 30 30 20 20 20
126 120 90 40 30 30 40 20
127 100 40 20 30 20 10 20
128 70 30 40 21 20 10 10
129 90 30 30 20 10 10 20
130 90 50 50 30 30 20 20
131 100 80 50 50 40 10 20
132 120 140 110 100 110 71 80
133 91 30 30 20 20 10 10
134 100 60 21 20 30 20 10
135 100 70 50 50 50 30 30
136 90 30 50 30 20 50 20
137 70 10 30 20 20 10 0
138 120 120 80 111 70 40 40
139 100 31 20 10 20 10 0
140 130 140 80 71 40 40 40
141 150 70 50 60 60 60 30
142 101 40 20 10 50 30 10
143 120 70 40 60 40 20 30
144 110 90 40 30 30 21 20
145 110 50 50 40 20 20 30
146 150 220 150 160 130 111 100
147 110 90 70 60 50 40 40
148 131 70 50 50 60 70 30
149 90 60 40 50 20 20 40
150 120 60 60 51 50 30 20
151 81 40 20 20 20 10 20
152 110 120 80 100 100 61 90
153 70 30 10 10 20 10 10
154 80 40 20 20 20 10 10
155 90 60 40 40 30 30 30
156 110 71 50 60 90 40 50
157 120 190 180 161 180 130 131
158 70 30 20 30 20 10 10
159 80 40 20 20 20 40 30
160 80 40 31 30 20 10 10
161 90 41 20 30 20 10 10
162 150 80 60 50 50 41 40
163 100 40 41 20 20 50 20
164 170 120 110 111 100 80 100
165 80 50 20 10 20 20 0
166 110 81 30 60 30 20 20
167 100 30 10 40 30 10 10
168 120 70 41 50 30 30 30
169 90 40 30 40 40 10 10
170 170 130 100 90 91 60 60
171 130 80 50 50 40 50 30
172 150 120 100 100 141 90 70
173 250 1072 972 701 801 781 801
174 130 70 40 70 31 40 40
175 160 120 120 100 120 71 60

Gauss
Jacobi Gauss-Seidel Forward and back



Appendix D. Test graph data D–18

unsorted sorted unsorted sorted unsorted sorted
176 150 190 180 190 120 111 110
177 130 60 20 30 30 20 20
178 100 80 20 50 20 20 21
179 120 50 30 30 20 20 30
180 130 140 70 50 40 50 40
181 140 70 40 40 21 30 30
182 60 40 10 20 20 30 20
183 170 270 200 181 130 140 121
184 90 71 30 20 40 20 20
185 190 241 201 170 160 210 130
186 101 40 20 30 20 20 20
187 120 101 40 60 40 30 30
188 150 81 50 50 40 40 30
189 200 381 320 320 271 231 180
190 101 60 30 30 20 20 30
191 100 60 21 10 30 50 40
192 100 50 20 20 30 20 20
193 120 101 70 70 60 50 50
194 120 100 60 70 71 60 30
195 140 70 50 51 40 40 30
196 180 101 90 100 90 90 70
197 110 60 40 30 30 40 20
198 131 160 100 80 60 50 60
199 110 70 30 30 40 40 20
200 170 130 101 90 60 60 60
201 221 480 441 361 411 400 280
202 230 491 441 381 381 330 310
203 100 71 40 30 30 40 20
204 171 110 60 50 60 50 50
205 101 80 40 30 40 40 20
206 161 130 70 80 70 50 50
207 140 140 121 110 120 80 60
208 110 50 20 30 21 10 20
209 130 81 20 20 30 40 20
210 140 110 70 61 60 60 50
211 90 80 30 40 20 30 20
212 110 71 40 30 30 20 30
213 160 211 140 130 110 80 71
214 110 80 40 40 30 20 31
215 140 110 50 70 50 20 21
216 100 70 40 40 20 20 30
217 111 120 60 70 50 40 40
218 170 231 170 140 120 90 111
219 120 60 30 30 51 30 10
220 140 160 100 90 70 51 60
221 241 651 581 410 510 361 431
222 111 80 40 50 40 30 40
223 451 2974 2854 2434 2484 1211 1682
224 140 130 101 140 70 80 60
225 100 81 50 40 20 30 30
226 161 110 50 50 50 60 30
227 171 160 181 100 110 90 80
228 140 70 50 41 30 20 40
229 230 481 431 360 420 321 251
230 130 120 70 81 90 50 70
231 200 200 180 150 130 111 80
232 110 60 40 40 30 30 20
233 200 130 101 110 100 70 50
234 271 881 741 581 681 561 591

Gauss
Jacobi Gauss-Seidel Forward and back



Appendix D. Test graph data D–19

unsorted sorted unsorted sorted unsorted sorted
235 240 360 291 281 280 200 210
236 220 491 401 320 330 271 290
237 180 281 241 250 180 140 180
238 150 110 120 80 81 30 50
239 140 80 50 61 40 30 30
240 331 1953 1743 1171 1482 1182 971
241 200 241 201 200 150 140 120
242 130 81 50 60 30 20 20
243 251 210 171 170 150 140 120
244 130 130 110 100 91 50 40
245 180 150 140 121 140 110 80
246 180 200 170 160 130 151 90
247 150 101 50 50 40 60 40
248 161 130 120 80 110 70 61
249 160 110 90 100 120 41 60
250 171 160 110 90 160 80 91
251 220 801 751 601 621 431 621
252 131 140 160 90 121 80 70
253 160 160 200 131 130 120 151
254 151 240 210 260 140 161 130
255 120 80 60 70 70 60 50
256 130 140 90 90 70 50 71
257 170 531 471 480 400 351 271
258 90 50 20 20 30 20 10
259 90 120 50 80 50 30 30
260 130 310 280 191 231 220 190
261 190 270 230 221 171 170 160
262 141 80 40 70 50 30 30
263 291 460 361 311 360 280 201
264 120 101 50 70 40 30 40
265 171 140 110 100 110 60 60
266 130 80 50 60 30 30 20
267 2032 13360 12889 11616 8823 10245 8432
268 311 1252 1252 751 1111 1372 722
269 261 931 982 651 701 481 1101
270 1392 12508 11526 8952 9995 8162 5247
271 480 2013 2223 1953 1853 2303 1392
272 291 641 591 611 491 370 431
273 421 1702 1593 1583 1271 851 892
274 411 1722 1582 1112 1112 1121 1201
275 170 221 100 90 90 60 50
276 441 1031 941 701 992 821 881
277 431 1993 1832 1542 1673 971 1031
278 250 511 411 331 350 310 251
279 181 160 60 110 70 40 30
280 180 210 110 130 110 70 90
281 271 160 110 120 111 80 80
282 1152 6469 5838 5137 5067 4196 2995
283 1061 4176 3234 2123 2404 2704 2323
284 210 191 150 130 110 100 81
285 270 611 581 471 510 360 301
286 1042 7340 10045 7391 8321 4807 4136
287 1222 5608 4306 5247 3245 2674 2874
288 561 671 781 791 551 411 300
289 260 601 741 711 681 471 421
290 260 891 641 431 671 801 401
291 311 350 280 261 270 440 141
292 721 7060 5728 5789 3636 4586 3034
293 441 2684 2314 1432 2023 2133 1532

Gauss
Jacobi Gauss-Seidel Forward and back



Appendix D. Test graph data D–20

unsorted sorted unsorted sorted unsorted sorted
294 791 1392 1232 1192 1352 701 871
295 801 3175 2694 2864 2503 1813 1232
296 391 1332 591 500 651 431 330
297 280 281 490 490 240 171 140
298 731 881 521 380 320 241 221
299 631 2003 1872 1412 1142 1181 641
300 210 631 210 460 211 221 140
301 651 1613 1712 1191 2424 922 991
302 351 1312 801 571 711 931 461
303 450 812 501 621 380 310 211
304 321 801 541 931 420 231 221
305 1021 5168 3635 4165 4467 2053 1823
306 621 1052 641 561 521 410 260
307 4135 29733 24956 24265 19558 21551 9323
308 561 2844 2254 1943 1852 1612 1472
309 220 160 140 161 110 100 60
310 241 200 180 140 150 120 70
311 240 151 140 160 100 80 70
312 1052 10625 9534 8803 5207 4476 8373
313 1582 7971 7571 5568 6289 5979 3585
314 330 1642 1131 1242 922 771 711
315 450 2053 1202 1312 711 1092 711
316 861 1072 1152 1302 1011 841 631
317 400 1472 872 962 881 781 320
318 481 2023 1532 1472 801 1162 822
319 461 1331 1252 1242 1252 591 651
320 1102 8472 9534 5598 7831 4827 6780
321 1382 10155 8372 6048 5868 4547 5618
322 661 2443 1673 1342 1452 1262 981
323 621 961 511 601 530 361 451
324 992 1842 1852 2123 1753 1202 921
325 641 631 250 350 250 130 201
326 381 1161 831 872 1082 731 260
327 290 1172 540 571 481 250 170
328 310 1142 501 391 541 350 180
329 15592 113073 105491 85122 82239 55851 56421
330 290 631 260 631 200 160 140
331 280 451 431 421 310 691 301
332 610 802 380 420 471 251 170
333 380 1051 981 761 721 811 561
334 1011 7181 6560 6028 4726 3245 4517
335 501 2433 2183 1773 2294 1923 1091
336 581 771 571 641 601 360 331
337 1102 3735 2674 3125 2433 1662 1963
338 911 2173 1833 1252 2293 951 821
339 3645 26168 24355 20790 16324 15352 19338
340 240 281 210 240 160 140 121
341 641 3395 3104 2203 2914 1783 1693
342 1352 10575 10335 7190 7561 6880 6840
343 2043 16604 15082 11847 13209 8913 9223
344 1892 15983 16174 12408 15772 10305 9454
345 2994 22943 27049 22072 22732 13549 11828
346 841 671 461 611 611 641 260
347 6039 48390 40949 35531 36312 25026 25116
348 481 851 651 761 491 601 411
349 931 5788 5267 5308 4186 3515 3966
350 611 5238 4807 5197 3825 2784 2173
351 280 501 461 380 420 311 151
352 811 5077 4807 3866 3675 3114 2714

Gauss
Jacobi Gauss-Seidel Forward and back



Appendix D. Test graph data D–21

unsorted sorted unsorted sorted unsorted sorted
353 241 530 481 341 361 230 270
354 511 1532 1882 1302 1713 981 911
355 200 491 390 480 371 291 260
356 411 3364 4016 2794 3956 1743 2373
357 220 751 721 501 691 511 411
358 190 221 181 180 140 100 70
359 521 3805 4616 3505 3255 3195 2033
360 220 331 281 250 270 220 130

Gauss
Jacobi Gauss-Seidel Forward and back
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