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Abstract. This work investigates the effects of convective cooling on entropy gene-
ration in a transient generalized Couette flow of water-based nanofluids containing
Copper (Cu) and Alumina (Al2O3) as nanoparticles. Both First and Second Laws of
thermodynamics are utilised to analyse the problem. The model partial differential
equations for momentum and energy balance are tackled numerically using a semi-
discretization finite difference method together with Runge–Kutta Fehlberg integration
scheme. Graphical results on the effects of parameter variation on velocity, tempera-
ture, skin friction, Nusselt number, entropy generation rate, irreversibility ratio and
Bejan number are presented and discussed.

Keywords. Channel flows; nanofluids; Couette flow; entropy generation; Bejan
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1. Introduction

Theoretical study of nanofluids heat transfer characteristics and entropy generation between two
parallel plates, one of which is moving relative to the other under the combined action of axial
pressure gradient and imposed uniform velocity on the upper plate known as generalised Cou-
ette flow not only present a mathematical fascinating problems but also find various applications
in engineering and industrial processes such as tribological devices, cooling of heat exchanging
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devices, solar water heating, cooling of electronics, cooling of transformer oil, improving
diesel generator efficiency, improving heat transfer efficiency of chillers, domestic refrigerator-
freezers, cooling in machining and in nuclear reactor. Nanofluid is the addition of nanoscale
particles into the base fluid like water, engine oil, and ethylene glycol. It was first used by Choi
(1995) who was working with Argonne National Laboratory in the USA. The research done
by Choi showed that nanofluids possess enhanced thermophysical properties. Nanofluid may be
considered as a single phase flow in low solid concentration because of very small sized solid
particles. Several experimental and theoretical studies have been made on the flow of nanofluids
in different geometries (Choi et al 2001; Abu-Nada 2008; Makinde & Aziz 2011; Makinde 2012,
2013a; Mutuku-Njane & Makinde 2013; Olanrewaju & Makinde 2013; Motsumi & Makinde
2012). The nanofluid in the enclosure was assumed to be in single phase. It was found that, for
any given Grash of number, the average Nusselt number increased with the solid volume concen-
tration parameter. Modelling of nanofluids flow over a convectively heated unsteady stretching
sheet was considered by Makinde (2013a, b). Oztop & Abu-Nada (2008) considered natural
convection in partially heated enclosures having different aspect ratios and filled with nanofluid.
They found that the heat transfer was more pronounced at low aspect ratio and high volume
fraction of nanoparticles. Wang & Mujumdar (2007) presented a comprehensive review of heat
transfer characteristics of nanofluids. Detailed reports on convective transport in nanofluids can
be found in Buongiorno (2006), Mutuku-Njane & Makinde (2014), and Tiwari & Das (2007).

Meanwhile, the primary objective in designing a thermal system is the analysis of energy
utilization and entropy generation. It has been the main concern in many fields such as heat
exchangers, turbo machinery, electronic cooling, porous media and combustion. Knowledge of
entropy production started from Clausius and Kelvin’s studies on the irreversible aspects of
the second law of thermodynamics. Since then the theories based on these foundations have
rapidly developed, Bejan (1982, 1996). Optimal designs of thermodynamic systems have been
extensively suggested by the thermodynamic second law (Woods 1975) based on the concept
of efficient energy use and the minimal entropy generation principle. Entropy generation min-
imization techniques may improve the efficiency and overall performance of all kinds of flow
and thermal systems. Makinde & Eegunjobi (2013) did the study on thermodynamic analysis of
variable viscosity magnetohydrodynamics (MHD) unsteady generalized Couette flow with per-
meable walls. It was found that local entropy generation rate increases with group parameter
but decreases with viscosity exponent. Increase in magnetic field parameter decreases entropy
production at the moving upper plate while increase in Reynolds number decreases entropy gen-
eration at the lower fixed plate. Thermodynamic analysis of variable viscosity MHD unsteady
generalized Couette flow with permeable walls by Makinde & Theuri (2014). The obtained
result was that the decrease in fluid viscosity increases the Bejan number while an increase
group parameter Br�−1 (where � is temperature difference parameter and Br Brinkman num-
ber) decreases the Bejan number. Increase in Reynolds number increases Bejan number at the
lower fixed plate and decreases Bejan number at the upper moving plate. The situation reversed
with increasing magnetic field. Several studies have thoroughly dealt with conventional fluid
flow irreversibility due to viscous effect and heat transfer by conduction (Narusawa 1998;
Sahin 1998; Makinde & Aziz 2010; Makinde & Beg 2010). Numerous investigations to cal-
culate entropy production and irreversibility due to flow and heat transfer of nanofluids over a
moving flat surface were considered by Makinde et al (2013). Their observation was that the
entropy generation in the flow system is minimized by appropriate combination of parameter
values together with nanoparticles volume fraction. Moreover, the entropy generation analy-
sis with respect to nanofluids flow under various physical situations has remained untreated by
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classical thermodynamics. This motivates many researchers to conduct analyses of fundamen-
tal and applied engineering problems based on second law analysis with respect to nanofluid
flow.

In this paper, we focus on the analysis of the effects of convective cooling and entropy gener-
ation rate in unsteady generalized Couette flow of water base nanofluids. We have made use of a
single component homogenous model in describing the nanofluids (Abu-Nada 2008; Makinde &
Aziz 2011; Makinde 2012, 2013a, b; Mutuku-Njane & Makinde 2013; Olanrewaju & Makinde
2013; Motsumi & Makinde 2012; Oztop & Abu-Nada 2008; Wang & Mujumdar 2007). The
justification of this model is based on the fact that the particles size are of nano-meter (1–100
nm) and these particles are mechanically and chemically suspended into the base fluid, conse-
quently, the entire flow behaviour is similar to homogenous fluid with different thermophysical
properties due to the presence of nano-sized particles (Choi 1995; Choi et al 2001). In addition,
the single component homogenous model enables one to compare the flow/thermal behaviour
of Cu–water nanofluid to that of Al2O3–water nanofluid. We are fully aware of the Buongiorno
(2006) models approach which incorporates the effects of thermophoresis and Brownian motion
of nanoparticles. This model approach has been utilised in some of our earlier studies. Secondly,
we have assumed no-slip condition at both the fixed lower plate and the moving upper plate;
however, the movement of the fluid near the upper plate is due to the impose uniform velocity of
the upper plate and the axial pressure gradient (Makinde & Eegunjobi 2013; Makinde & Theuri
2014). The mathematical model for the problem is formulated in the next section. Entropy analy-
sis is done in section 3. In section 4, the model equations formulated in section 2 are numerically
solved. Relevant results are displayed graphically and discussed in section 5. The final section
concludes the paper.

2. Mathematical model

Consider unsteady generalised Couette flow of viscous incompressible nanofluids containing
Copper (Cu) and Alumina (Al2O3) as nanoparticles. It is assumed that the upper wall moves
with uniform velocity U at time t >0 and exchange heat with the ambient surrounding following
the Newton’s law of cooling. Take a Cartesian coordinate system (x, y) where x lies along the
flow direction, y is the distance measured in the normal direction as depicted in figure 1.

The Navier–Stokes nanofluids momentum and energy balance equation in one dimension for
the transient flow can be written as (Olanrewaju & Makinde 2013; Motsumi & Makinde 2012;

Figure 1. Schematic diagram of the problem under consideration.
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Makinde 2012, 2013b; Oztop & Abu-Nada 2008; Wang & Mujumdar 2007; Buongiorno
2006)
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, (3)

where u is the nanofluid velocity in the x-direction, T is the temperature of the nanofluid, P is
the nanofluid pressure, t̄ is the time, a is the channel width, Tw is the ambient temperature, μnf

is the dynamic viscosity of the nanofluid, knf is the nanofluid thermal conductivity, ρnf is the
density of the nanofluid and αnf is the thermal diffusivity of the nanofluid which are given below
as (Abu-Nada 2008; Makinde 2012, 2013a; Bejan 1982);

μnf = μf

(1−φ)2.5 , ρnf = (1 − ϕ)ρf + ϕρs,

αnf = knf

(ρcp)nf
, τ = (ρcp)s

(ρcp)f
,

knf

kf
= (ks+2kf )−2ϕ(kf −ks)

(ks+2kf )+ϕ(kf −ks)
,

(ρcp)nf = (1 − ϕ)(ρcp)f + ϕ(ρcp)s

(4)

The nanoparticles volume fraction is represented by ϕ(ϕ = 0 correspond to a regular fluid), ρf

and ρs are the densities of the base fluid and the nanoparticle respectively, kf and ks are the
thermal conductivities of the base fluid and the nanoparticles respectively,

(
ρcp

)
f

and
(
ρcp

)
s

are the heat capacitance of the base fluid and the nanoparticle respectively. It is worth mentioning
that the use of the above expression for knf , is restricted to spherical nanoparticles (Makinde
2012; Oztop & Abu-Nada 2008; Tiwari & Das 2007) and does not account for other shapes
of nanoparticles. Also, the effective viscosity of the nanofluid μnf with respect to that of base
fluid μf containing dilute suspension of fine spherical particles is approximated as described in
Eq. (4) (Oztop & Abu-Nada 2008; Tiwari & Das 2007). The initial and boundary conditions are
given as follows:

u(y, 0) = 0, T (y, 0) = Tw, (5)

u(0, t̄) = 0, T (0, t̄) = Tw, (6)

u(a, t̄) = U, −knf

∂T

∂y
(a, t̄) = h(T (a, t̄) − Tw), (7)

where Tw is the ambient temperature which also corresponds to the lower wall temperature.
Table 1 below presents thermophysical properties of water, copper and alumina at the reference
temperature.

Table 1. Thermophysical properties of the fluid phase (water)
and nanoparticles (Makinde 2012; Makinde & Eegunjobi 2013;
Makinde & Theuri 2014).

Physical properties Fluid phase (water) Cu Al2O3

cp(J/kg K) 4179 385 765
ρ(kg/m3) 997.1 8933 3970
k(W/m K) 0.613 401 40
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We introduce the dimensionless variables and parameters into Eqs. (1)–(7) as follows:

θ = T −Tw
Tw

, W = u
U

, t = t̄U
a

, υf = μf

ρf
, P = Pa

μf U
,

A = − ∂P
∂X

, X = x
a
, η = y

a
, Pr = μf cpf

kf
, Ec = U2

cPf Ta
,

τ = (ρcp)s
(ρcp)f

, m = (ks+2kf )+ϕ(kf −ks)

(ks+2kf )−2ϕ(kf −ks)
, Re = Ua
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⎫⎪⎪⎬
⎪⎪⎭

. (8)

The dimensionless governing equations together with the appropriate initial and boundary condi-
tions can be written as

∂W

∂t
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) + 1

Re
(
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, (9)
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(
∂W

∂η

)2
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with initial and boundary conditions

W(η, 0) = θ(η, 0) = 0, (11)

W(0, t) = θ(0, t) = 0, (12)

W(1, t) = 1,
∂θ

∂η
(1, t) = −mBiθ(1, t), (13)

where Bi is the Biot number, Pr is the Prandtl number, Ec is the Eckert number and A is the
pressure gradient parameter. Other physical quantities of practical interest in this problem are
the skin friction coefficient Cf and the local Nusselt number Nu which are defined as

Cf = aτw

μf U
, Nu = aqw

kf Tw
, (14)

where τw is the wall shear stress and qw is the heat flux at the channel walls given by

τw = μnf

∂u

∂y

∣∣∣∣
y=a

, qw = −knf

∂T

∂y

∣∣∣∣
y=a

. (15)

Substituting Eqs. (15) into (14) and using dimensionless variables, we obtain

Cf = 1
(1−ϕ)2.5

∂W
∂η

Nu = − 1
m

∂θ
∂η

}
at η = 1. (16)

3. Entropy analysis

The second law of thermodynamics is an important tool to scrutinize the irreversibility effects
due to flow and heat transfer. Thermodynamic irreversibility is closely related to entropy produc-
tion. Convection process involving channel flow of nanofluids is inherently irreversible due to
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the exchange of energy and momentum, within the nanofluid and at solid boundaries. Following
Woods (1975), the local volumetric rate of entropy generation is given by

S′′′ = knf

T 2
w

(
∂T

∂y

)2

+ μnf

Tw

(
∂u

∂y

)2

. (17)

The first term in Eq. (17) is the entropy generation due to heat transfer while the second term
is the entropy generation due to fluid friction. Using dimensionless variables from Eq. (8), we
express the entropy generation number in dimensionless form as,

Ns = a2S′′′

kf

= 1

m

(
∂θ

∂η

)2

+ Br

(1 − ϕ)2.5

(
∂W

∂η

)2

, (18)

where Br = Ec Pr is the Brinkmann number.
Let

N1 = 1

m

(
∂θ

∂η

)2

, N2 = Br

(1 − ϕ)2.5

(
∂W

∂η

)2

, (19)

The irreversibility distribution ratio is defined as � = N2/N1. Heat transfer irreversibility domi-
nates for 0 ≤ � < 1 and fluid friction irreversibility dominates when � >1. The contribution of
both irreversibilities to entropy generation is equal when � = 1. We define the Bejan numbers
(Be) mathematically as

Be = N1

Ns
= 1

1 + �
. (20)

Equation (20) shows that the Bejan number ranges from 0 to 1. The zero value of the Bejan
number corresponds to the limit where the irreversibility is dominated by the effect of fluid
friction while Be = 1 is the limit where the irreversibility due to heat transfer dominates the flow
system. The contribution of both heat transfer and fluid friction to irreversibility are the same
when Be = 0.5.

4. Numerical procedure

Using a semi-discretization finite difference method (method of lines Woods 1975), the nonlinear
initial boundary value problem (IBVP) in Eqs. (9)–(13) can be solved numerically. We partition
the spatial interval 0 ≤ η ≤ 1 into N equal parts and define grid size 
η = 1/N and grid points
ηi = (i − 1) 
η, 1 ≤ i ≤ N + 1. The discretization is based on a linear Cartesian mesh and
uniform grid on which finite-differences are taken. The first and second spatial derivatives in Eqs.
(9)–(10) are approximated with second-order central finite differences. Let Wi (t) and θi (t) be
approximation of W (ηi, t) and θ (ηi, t), then the semi-discrete system for the problem becomes

dWi

dt
= A

Re (1 − ϕ + ϕρs/ρf )
+ (Wi+1 − 2Wi + Wi−1)

Re (1 − ϕ + ϕρs/ρf )(1 − ϕ)2.5(
η)2
, (21)

dθi

dt
= (θi+1 − 2θi + θi−1)

m Pr Re (1 − ϕ + ϕτ)(
η)2
+ Ec

Re (1 − ϕ + ϕτ)(1 − ϕ)2.5

(
Wi+1 − Wi−1

2
η

)2

, (22)

with initial conditions

Wi (0) = θi (0) = 0, 1 ≤ i ≤ N + 1, (23)
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and boundary conditions

W1 = 0, θ1 = 0, WN+1 = 1, θN+1 = θN(1 − mBi
η). (24)

Considering Eqs. (21)–(23), we can see that they are first order ordinary differential equations
with known initial conditions. So they can be easily solved iteratively using the Runge–Kutta
Fehlberg integration technique (Na 1979) implemented on a computer using Matlab. From
the process of numerical computation, the skin-friction coefficient and the Nusselt number in
Eq. (16) are also worked out and their numerical values are presented graphically.
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Figure 2. Nanofluids velocity profiles with increasing time.
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Figure 3. Nanofluids velocity profiles across the channel with increasing time.
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5. Results and discussions

In this paper, the pure water has been considered as the base fluid, copper (Cu) and Alumina
(Al2O3) as nanoparticles. The Prandtl number of the base fluid (water) is kept constant at 6.2 and
the effect of solid volume fraction is investigated in the range of 0 ≤ ϕ ≤ 0.3. Numerical solu-
tion for the representative velocity field, temperature field, skin friction, Nusselt number, entropy
generation rate and Bejan number has been carried out by assigning some arbitrary chosen spe-
cific values to various thermophysical parameters controlling the flow system (figures 2–27).
Moreover, it is important to note that ϕ = 0 correspond to base fluid scenario while ϕ > 0 corre-
spond to nanofluids scenario. The detailed discussion and graphical representation of the results
of above equations are reported in this section.
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Figure 4. Nanofluid velocity profiles with increasing ϕ.
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Figure 6. Nanofluid velocity profiles with increasing Re.

5.1 Effects of parameter variation on velocity profiles

Graphical results are presented in figures 2–6 to give a better understanding of the effect of dif-
ferent parameters on the velocity profiles. In general, the velocity increases with time for a given
set of parameter values until a steady state profile is achieved as shown in figure 2. It can be
noted that the steady state velocity profile in this study is attained at t = 1.4. Figure 3 shows
an interesting observation that alumina–water nanofluid tends to flow faster than copper–water
nanofluids. This result may be due to the high density of copper nanoparticle as compared to alu-
mina nanoparticle. Figures 4–6 show the effects of parameters variation on the velocity profiles
using Cu–water nanofluid. It is observed from figure 4 that an increase in nanoparticles volume
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Figure 7. Nanofluids temperature profiles with increasing time.
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Figure 8. Nanofluids temperature profiles across the channel with increasing time.

fraction causes a decrease in the velocity profile. This result may be attributed to both the den-
sity and the dynamic viscosity of the nanofluid which increases with an increasing nanoparticles
volume fraction as a result the decrease in the velocity is observed. Figure 5 shows a rise in the
nanofluid velocity with an increase in the pressure gradient parameter. Automatically, it observed
and true that, for standard Couette flow (A = 0) the velocity is small and constant compared to
the generalized Couette flow scenario in which A > 0. The opposite effect of decreasing velocity
is observed when increasing Reynolds number; this happens because the viscous force increases
within the flow system as indicated in figure 6.
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5.2 Effects of parameter variation on temperature profiles

Figures 7 and 8 represent the transient effects on the nanofluids temperature profiles. It is noted
that the temperature decreases with time for a given set of parameter values until a corresponding
steady state profile is achieved. The steady state temperature profile is attained at t = 3. The
temperature of Al2O3–water nanofluids, fall faster than that of Cu–water nanofluids. In addition
as the flow continues, the temperature increases near the lower wall and reverse its behaviour as
it approaches the upper wall, may be is because of the moving upper plate as shown in figure 7.
Comparing figure 2 and figure 7, it is observed that the steady state of velocity profile is attained
earlier than that of temperature profile. It attains its maximum temperature within the channel
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Figure 11. Nanofluid temperature profiles with increasing Ec.
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Figure 12. Nanofluid temperature profiles with increasing A.

and the minimum value at the walls as shown in figure 8. The effect of parameter variation
on the temperature profiles with Cu–water nanofluid is shown in figures 9–12. The increase in
temperature profile is observed as the nanoparticles volume fraction increases as shown in figure
9. Moreover, figures 4 and 9 illustrate the flow and thermal characteristics of base fluid (water)
as compare to that of nanofluids. This observation is in perfect agreement with the results of
Oztop & Abu-Nada (2008) and Makinde et al (2013), and validates the present results. The
opposite trend of a decrease in temperature is noticed with a rise in Biot number, this is due to a
convective cooling at the walls as shown in figure 10. It is observed in figure 11 that, temperature
increases with an increase in Eckert number, this behaviour may be attributed to the viscous
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Figure 13. Nanofluid temperature profiles with increasing Re.
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Figure 14. Skin friction with increasing ϕ.

dissipation. In figure 12 a rise in the nanofluid temperature and reverse situation as it approaches
the upper wall is observed with an increase of the pressure gradient parameter. However, the
nanofluid temperature for standard Couette flow (A = 0) is small at the lower wall compared to
the generalizer Couette flow (A > 0) and vice versa at the upper wall. Figure 13, a rise in the
nanofluid temperature and reverse situation as it approaches the upper wall is observed with an
increase in Reynolds number. This increase and decrease in temperature can be because of the
upper moving wall.

5.3 Skin friction and Nusselt number

The effects of parameter variation on skin friction and Nusselt number is illustrated in figures 14–
17. It is observed in figure 14 that the skin friction increases with an increase in nanoparticles
volume fraction. This is due to an increase in the velocity gradient at the channel walls, which

0 0.05 0.1 0.15 0.2 0.25 0.3
-0.5

0

0.5

1

1.5

2

2.5

C
f

φ

________ Re = 2, 2.5, 3

- - - - - - - - A = 2, 2.5, 3

Copper−water

Ec = 0.1,Bi = 10

Figure 15. Skin friction with increasing ϕ, A and Re.



2086 M H Mkwizu et al

0 0.05 0.1 0.15 0.2 0.25 0.3
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

N
u

φ

________ Copper−water
- - - - - - - - Alumina−water

Ec=0.1, A=1, Bi=10, Re=2

Figure 16. Nusselt number with increasing ϕ.

may be caused by Couette flow. Furthermore, the skin friction produced by Cu–water nanofluid
is higher than the one produced by Al2O3–water nanofluid. Also, the skin friction increases with
an increase in the Reynolds number but decreases with increase in pressure gradient A as illus-
trated in figure 15. The Nusselt number Nu is based on the thermophysical properties of nanoflu-
ids. Note that the temperature gradient depends on the thermophysical properties of nanofluids
as highlighted in table 1. Figure 16 shows that the heat flux at the channel walls increases with
an increase in nanoparticles volume fraction due to a rise in the temperature gradient. More-
over, the Nusselt number produced by Cu–water nanofluid is higher than that of Al2O3–water
nanofluid. Furthermore, the Nusselt number increases with an increase in Reynolds number
and the opposite situation of decreasing Nusselt number is observed when increasing pressure
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Figure 18. Entropy generation rate with increasing time.

gradient as shown in figure 17. The observed results may be attributed to movement of the upper
plate (Couette flow) and viscous dissipation at the walls with a rise in parameter values. The Nu
for the base fluid (water) can be obtained when the parameter that ϕ = 0. Generally, the increase
in Nu is not only due to the factor knf/kf multiplying the temperature gradient as shown in
Eq. (16), but it depends on the entire thermophysical properties of nanoparticles with parameter
ϕ >0 as shown in figures 16 and 17.

5.4 Effects of parameter variation on entropy generation rate

It is noted in figure 18 that the entropy generation rate increases with time and its behaviour is
reversed after half a distance for a given set of parameter values. Also, the entropy generated by
Al2O3–water nanofluid is higher than that of Cu–water nanofluid at the beginning but it is vice
versa as it approaches the upper moving plate. This shows that the combination of moving plate
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Figure 20. Entropy generation rate with increasing Bi.

and materials with low conductivity lower entropy generation than combination of moving plate
and materials with high conductivity and vice versa. So machine with the system of moving
plate nanoparticle used to prepare the nanofluid should be of lower conductivity to make it more
efficiency. Figure 19 shows that a rise in an entropy generation rate is observed with an increase
in nanoparticles volume fraction. This is due to the fact that temperature gradients within the
channel increase as ϕ increases. Figure 20 shows that the entropy generation rate decreases and
increases as it approaches the upper moving plate with an increase in Biot number Bi, while it
increases with an increase in Eckert number Ec as shown in figure 21. An entropy generation rate
decreases with an increase in pressure gradient A as shown in figure 22. Generally, this situation
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Figure 22. Entropy generation rate with increasing A.

may be attributed to the increase in temperature gradient with an increase in Eckert number, as
well as decrease in temperature gradient with an increase in Biot number and the movement of
the upper wall.

5.5 Effects of parameter variation on Bejan number

Figure 23 illustrates the transient effect on the Bejan number across the channel. The Bejan num-
ber increases with time near the channel walls but decreases at the channel centreline. This can
be attributed to a rise in the dominant effect of fluid friction irreversibility within the channel
centreline region, the heat transfer irreversibility at the channel walls and the Couette flow. The
Bejan number produced by Cu–water nanofluid near the walls is higher than that of Al2O3–water
nanofluids. Figure 24 shows an increase in the Bejan number with an increase in nanoparticles
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Figure 24. Bejan number with increasing ϕ.

volume fraction. It is also noted that the Bejan number became stable as it approached the moving
wall (upper wall). This implies an increase in dominant effects of fluid friction irreversibility as
ϕ increases. Furthermore, as Bi increases, the Bejan number decreases near the lower wall and
at the centre of the channel, but increases as it approaches the upper wall as shown in figure 25.
An increase in Ec causes the increase in Bejan at the lower wall, at the centre of the channel and
as it approaches the upper wall of the channel as shown in figure 26. Figure 27 shows a decrease
in Bejan number at the lower wall and increase at the centre of the channel and at the upper wall
with an increase in pressure gradient A. This may be attributed to the movement of the upper
wall (Couette flow) leading to a rise in the dominant effects of heat transfer irreversibility.
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Figure 27. Bejan number with increasing A.

6. Conclusions

The flow structure, heat transfer and entropy generation in unsteady generalized Couette flow
of a water-based nanofluids with convective cooling are numerically investigated. The nonlinear
governing partial differential equations are solved numerically using a semi-discretization finite
difference method together with the Runge–Kutta Fehlberg integration scheme. The observed
results in this paper can be summarized as follows:

• The Al2O3–water nanofluid tends to flow faster than Cu–water nanofluid and the velocity
profile increases with A but decreases with ϕ and Re.
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• The temperature of Cu–water nanofluid rises higher than Al2O3–water nanofluid and the
temperature profile increases with ϕ and Ec but decreases with Bi. Moreover temperature
profile increases near the lower wall and decreases as it approaches the upper wall with an
increase in A, the same is observed with an increase in Re.

• Cu–water nanofluid produces higher skin friction than Al2O3–water nanofluid and the skin
friction increases with Re and ϕ but decreases with A.

• Cu–water nanofluid produces higher Nusselt number than Al2O3–water nanofluid and the
Nusselt number increases with Re and ϕ but decreases with A.

• The Al2O3–water nanofluid produces higher entropy generation rate than Cu–water
nanofluid near the lower wall, but as it approaches the upper wall, Cu–water nanofluid pro-
duces higher entropy generation rate than Al2O3–water nanofluid. The entropy generation
increases with ϕ and Ec, it decreases with A. With an increase in Bi the entropy generation
rate decreases and reverse its behaviour near the upper wall.

• The Bejan number produced by Cu–water nanofluid is greater than Al2O3–water nanofluid.
The Bejan number increases with time at the walls but decreases at the centre of the channel.
It increases with an increase in ϕ. But as Bi increases, Bejan number decreases near the
lower wall and at the centre of the channel, and increases as it approaches the upper wall.
An increase in Ec causes the increase in the Bejan number. It is low at the lower wall, high
at the centre of the channel and at the upper wall as A increases.

Nomenclature

u Velocity in the x-direction qw Heat flux at the wall
T Temperature of the nanofluid Nu Nusselt number
P Nanofluid pressure Greek symbols
t̄ Time μ Dynamic viscosity (Nsm−2)

a Channel width (m) ρ Density
Tw Ambient temperature α Thermal diffusivity (m2s−1)

Cp Specific heat at constant pressure ϕ Nanoparticle volume fraction
(kJkg−1K−1)

Be Bejan number τw Wall shear stress
Bi Biot number Subscripts
K Thermal conductivity (Wm−1K−1) nf Nanofluid
Pr Prandtl number w Wall
Ec Eckert number f Fluid
Re Reynolds number s Solid
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