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Abstract
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APPROACHES TO ESTIMATION OF POPULATION LEVEL HIV 

INCIDENCE FROM SURVEY DATA

L. Mhlanga
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University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Thesis: PhD. (Epidemiology)

April 2022

Disease prevalence (the proportion of a population with a condition of interest) is con-
ceptually and procedurally much more straightforward to estimate than disease inci-
dence (the rate of occurrence of new cases - for example, infections). For long-lasting 
conditions, incidence is fundamentally more difficult to estimate than prevalence, but 
also more interesting, as it sheds light on current epidemiological trends such as the 
emerging burden on health systems and the impact of recent policy interventions. Progress 
towards reducing reliance on questionable assumptions in the analysis of large popu-
lation based surveys (for the estimation of HIV incidence) has been slow. The work 
of Kassanjee et al and the work of Mahiane et al, in particular, provide rigorous ways 
of estimating incidence by using 1) markers of ‘recent infection’, 2) the ‘gradient’ of 
prevalence, and 3) ‘excess mortality’ associated with HIV infection, without the need 
for simplifying assumptions to the effect that any particular parameters are constant 
over ranges of time and/or age. To date, the use of these methods has largely ignored 
1) the rich details of the age and time structure of survey data, and 2) the opportunities
for combining the two methods.
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iii Abstract

The primary objective of this work was to find stable approaches to applying the Mahi-
ane and Kassanjee methods to large age/time structured population survey data sets
which include HIV status, and optionally, ‘recent infection’ status. In order to evalu-
ate proposed methods, a sophisticated simulation platform was created to simulate HIV
epidemics and generate survey data sets that are structured like real population survey
data, with the underlying incidence, prevalence, and mortality explicitly known.

The first non-trivial step in the analysis of survey data amounts essentially to performing
a smoothing procedure from which the (age/time specific) prevalence of HIV infection,
the prevalence of ‘recent infection’, and the gradient of prevalence of infection can be in-
ferred without recourse to ‘epidemiological’ assumptions. The second step involves the
correct accounting for uncertainty in a context-specific weighted mean of the Mahiane
and Kassanjee estimators. These two steps are approached incrementally, as there are
numerous details which have not previously been systematically elucidated.

The investigation culminates in a proposed generic ‘once size fits most’ algorithm based
on: 1) fitting survey data to generalised linear models defined by simple link functions
and high order polynomials in age and time; 2) the use of a ‘moving window’ rule for
data inclusion into a separate analysis for each age/time point for which incidence is
to be estimated; 3) a ‘variance optimal’ weighting scheme for the combination of the
Mahiane and Kassanjee estimators (when both are applicable); 4) flexible use of a delta
method expansion or bootstrapping to estimate confidence intervals and p values. We
find it is relatively easy to obtain estimates with practically negligible bias, but sample-
sizes/sampling-density requirements are always considerable. We also make numerous
observations on survey design and the inherent challenges faced by all attempts to esti-
mate HIV incidence using surveys of reasonable size.

Keywords: incidence, prevalence, cross-sectional surveys, population-level surveys, HIV
incidence estimation.
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Opsomming

OPTIMERING EN VERGELYKING VAN ANALITIESE BENADERINGS 
TOT DIE BERAMING VAN BEVOLKINGSVLAK MIV-INSIDENSIE UIT 

OPNAME DATA

L. Mhlanga

Departement Wiskundige Wetenskappe,
Universiteit van Stellenbosch,

Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: PhD. (Epidemiologie)

April 2022

Die prevalensie van siektes (die proporsie van ’n bevolking met ’n sekere siekte) is kon-
septueel en prosedureel baie eenvoudiger om te beraam as die insidensie van siektes 
(die voorkoms van nuwe gevalle - byvoorbeeld infeksies). Vir langdurige toestande is 
die insidensie fundamenteel moeiliker om te beraam as die prevalensie, maar ook in-
teressanter, aangesien dit lig werp op die huidige epidemiologiese tendense, soos die 
opkomende las op gesondheidstelsels en die impak van onlangse beleidsintervensies. 
Twyfelagtige aannames word gemaak gedurende die ontleding van groot bevolkings-
opnames om die insidensie van MIV te beraam, en tog word daar gesteun op hierdie 
studies. Die werk van Kassanjee et al, en veral die werk van Mahiane et al, bied deeg-
like metodes om insidensie te beraam deur 1) merkers van ’onlangse infeksie’, 2) die 
’gradiënt’ van prevalensie en 3) ’oortollige sterftes’ wat verband hou met MIV -infeksie 
te gebruik. Hierdie metodes maak nie die aannames dat sekere parameters konstant 
is oor tydsperiodes en/of ouderdomme nie. Tot op datum het die gebruik van hier-
die metodes grootliks 1) die ryk besonderhede van die ouderdom en tydstruktuur van 
opname-data, en 2) die geleenthede om die twee metodes te kombineer, geïgnoreer.

iv
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v Abstract

Die primêre doel van hierdie werk was om stabiele benaderings te vind vir die toepas-
sing van die Mahiane- en Kassanjee-metodes op groot ouderdom-/tyd-gestruktureerde
opname datastelle, wat MIV-status, en soms die status van ’onlangse infeksie’ insluit.
Om voorgestelde metodes te evalueer, is ’n gesofistikeerde simulasieplatform geskep
om MIV-epidemies te simuleer en opname datastelle te genereer wat soos werklike be-
volkingsopname data is, met die onderliggende insidensie, prevalensie en sterftes uit-
druklik bekend.

Die eerste nie-triviale stap in die analise van opname-data kom in wese neer op die
uitvoering van ’n afstrykingsprosedure waaruit die (ouderdom/tydspesifieke) preva-
lensie van MIV-infeksie, die prevalensie van ’onlangse infeksie’ en die gradiënt van pre-
valensie van infeksie afgelei kan word sonder om van ’epidemiologiese’ aannames ge-
bruik te maak. Die tweede stap behels die korrekte kwantifisering van onsekerheid in
’n konteks-spesifieke geweegde gemiddelde van die Mahiane en Kassanjee beramings.
Hierdie twee stappe word inkrementeel benader, aangesien daar ’n groot aantal beson-
derhede is wat nie voorheen stelselmatig ondersoek is nie.

Die ondersoek loop uit op ’n voorgestelde generiese ’once size fits most’ algoritme ge-
baseer op: 1) die pas van opname data tot veralgemeende lineêre modelle gedefinieer
deur eenvoudige skakelfunksies en hoë orde polinome in ouderdom en tyd; 2) die ge-
bruik van ’n ’bewegende venster’ -reël vir die insluiting van data in ’n aparte analise vir
elke ouderdom/tydspunt waarvoor die insidensie beraam moet word; 3) ’n ’variansie-
optimale’ wegings-skema vir die kombinasie van die Mahiane- en Kassanjee -beramers
(wanneer beide van toepassing is); 4) buigsame gebruik van ’n delta-metode uitbreiding
of bootstrapping om vertrouensintervalle en p-waardes te skat. Ons vind dit relatief
maklik om beramings te verkry met onbeduidende sydigheid, maar die vereistes vir
steekproefgroottes/steekproefdigtheid is altyd aansienlik. Ons maak ook talle opmer-
kings oor die ontwerp van opnames en die inherente uitdagings waarmee alle pogings
om die insidensie van MIV uit opname data te beraam, gekonfronteer word.

Sleutelwoorde: prevalensie, insidensie, deursnee-opnames, bevolkingsopname, beram-
ing van insidensie van MIV.
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Chapter 1

Introduction

1.1 Background to Incidence Estimation

Chronic diseases are highly prevalent in the world, for example, in 2020 approximately
39 million people were living with HIV [1] with an estimated 1.5 million being new in-
fections. It is important to track the epidemiological trajectory of diseases i.e., the main
purpose of disease surveillance, in particular HIV surveillance, is to provide measures
of trends and absolute state of the HIV epidemic [2, 3, 4, 5], which encompass provid-
ing an understanding of the epidemic, identifying the sources and drivers of new HIV
infections, designing and evaluating the intervention programs, and informing policy.

Of the two key epidemiological measures in HIV surveillance i.e., prevalence (the pro-
portion of the population with the condition of interest) and incidence (the rate of occur-
rence of new infections in a population), incidence is the most informative. Incidence
sheds light to the questions at hand, for example, a constant/drop in the prevalence
(in a region or country) does not necessarily mean that there have been no/few infec-
tions but showcases the complex interaction of incidence, migration, and mortality in
the population under consideration [4]. Equally, an increase in (or greater) prevalence
does not imply an increase in the (or greater) force of infection (rate at which suscep-
tible individuals in a population acquire an infectious disease in that population, per
unit time). Most importantly the survival times of individuals where Anti-Retro-viral
Therapy (ART) is readily available, is likely to be longer than in countries where ART is
(only) available to the minority. Consequently, countries with better ART programmes,
or which accessed ART earlier may have high HIV prevalence.

1
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Chapter 1. Introduction 2

Comparing the incidence estimation of non-transient (for example, HIV) to transient
conditions (for example, influenza), estimating the incidence for transient conditions,
less complex. Because there is a straightforward relationship between incidence and
prevalence, such that one is utilised to infer the other, assuming prevalence is at an
endemic equilibrium and the duration of the infection is fixed. More precisely:

λ =
NI

NS · µD
=

P
1− P

· 1
µD

(1.1.1)

Where λ is the incidence normalised to the susceptible population (and λ′ = P
µD

is the
incidence normalised to the total population), NS is the number of susceptible people in
the population, NI is the number of infected people in the population, µD is the mean
duration of the infection, and P is the prevalence.

The Joint United Nations Programme on HIV/AIDS (UNAIDS Reference Group on
Estimates, Modelling, and Projections. UNAIDS Reference Group meetings) working
group recommends tracking the temporal trajectory of the HIV epidemic through Spec-
trum/Estimation and Projection Package (Spectrum/EPP) and the ‘recency’ framework.
Over 160, countries in the world use EPP/Spectrum, to create the HIV epidemic esti-
mates [6]. Spectrum/EPP provides comparable epidemiological indicators and proxies
to age-specific incidence, but there is a need to improve the age-structured HIV inci-
dence estimates. This is a recurring theme in the bi-annual UNAIDS meetings i.e., the
specific recommendation being to investigate the importance and feasibility of accom-
modating the age structure in the EPP/Spectrum model [6].

Typical age-structured incidence estimates are in 5 year age bins [7, 8], which implies a
complex incidence average over the ages within the age bin. But incidence and preva-
lence are age-specific in important ways, and may differ considerably even within a
given age bin, for example, the 15 - 19 year age bin. Eaton et al. [7] also explored the
age structure and introduced the Estimation and Projection Package Age-Sex Model and
the r-hybrid model, but still the HIV incidence estimates are not age specific. Evidently,
with the epidemic having matured, it is important to yield age-specific incidence esti-
mates as there may be no substantial changes in HIV prevalence and incidence in the
time direction [9, 10].
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1.2 Rationale and Purpose of the Study

Unfortunately, progress towards reducing reliance on questionable assumptions in HIV
incidence estimation has been slow, independent of the abundance of data (population-
level HIV surveillance data [11, 12, 13, 14]) which is key in improving the existing meth-
ods and relaxing some assumptions.

This body of work explores two approaches of incidence estimation that have been
shown to work reasonable well, namely the Mahiane et al. [3] and Kassanjee et al. [4]
framework.

1. The Mahiane et al estimator is an incidence estimator that naturally emerges from
the population renewal equations themselves and it does not make unreasonable
epidemiological/demographic assumptions but allows incidence to emerge nat-
urally from the dynamical equation. However, the uptake of this approach has
been slow, as it required population-level survey data and reliable information
on excess mortality. Additionally, not much guidance was given as to how one
can summarise population-level survey data into the input parameters required -
prevalence, and gradient of prevalence.

Fortunately, this framework is more applicable now, as data from routine cross-
sectional surveys conducted by organisations, Demographic Health Surveys (DHS)
[11], Population Based HIV Impact Assessment (PHIA) [12]. Additionally, there has
been great improvement in the excess mortality estimates including the reduced
rate of disease-induced death (due to improved treatment coverage). This abun-
dance of routine cross-sectional survey and excess mortality data is motivation
enough to revisit and investigate approaches to optimise Mahiane method , ex-
plore its applicability and limitations in yielding precise age specific incidence,
and incidence trends, estimates.

2. The Kassanjee et al framework is well embraced and widely used to estimate in-
cidence but normally to yield population-level survey estimates as the sample
size is not sufficiently statistically robust (lacks statistical power) to yield infor-
mative age-specific incidence and incidence trends estimates. The Kassanjee et al.
[4] framework also falls short of giving precise guidance on how the population
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level survey data may be summarised into prevalence and recency estimates.

It is essential to investigate ways to improve the statistical power of incidence
estimates derived from the Kassanjee method and whether/not the continuous
(regression) methods yield more precise age-specific prevalence and recency esti-
mates required by the incidence estimator versus the prevalence and recency esti-
mates from the naïve binning approaches.

Hence we revisit these methods with the intent of shedding light on their applicability.
The proposed investigations (testing, validating, and benchmarking) cannot be applied
to real data, but on simulated data where the analyst has control of the experiment and
knows the real answers. The proposed approach data ensures that both the random
errors and statistical errors are quantifiable. Hence there is a need for a platform that
simulates population-level survey data such as those of DHS [11], and PHIA [12] (in-
cluding recency ascertainment). Unfortunately, such a specific simulation platform does
not exist and hence we designed a simulation platform for the proposed investigations.

In summary, there is a need to investigate how survey data may be summarised into
prevalence, gradient of prevalence and recency estimates to yield optimal age-specific
incidence and incidence trend estimates and before embarking on the investigation an
age-structured simulator is required.

1.3 Objectives

1. To create a simulation platform that simulates population dynamics (HIV epi-
demic) and carries out surveys for an age/time structured population

2. Use the platform to investigate alternative approaches optimal smoothing of preva-
lence data for surveys aimed at HIV incidence estimation.

3. Distil the lessons learned into distributable practical tools and guidance on how to
use survey data.

4. Use the lower level tools (which implement analysis of real or simulated surveys)
to build higher-level tools (which explore various conditions under which all this
happens) to support context-appropriate survey design.
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1.4 Overview of the Thesis

The bulk of this thesis is focused on testing, validating, and benchmarking HIV surveil-
lance methods, particularly incidence. The thesis outline is as follows:

Chapter 2 - Literature Review

We revisits the progress made by various organisations in developing HIV surveillance
methods from data collection up incidence. The chapter’s main emphasis is on recap-
ping details of HIV surveillance methods, their pros and cons, including data sources,
estimation methods and tools available to countries and organisations that seek to esti-
mate population-level incidence.

Chapter 3 - Time Structure but no Explicit Age Structure

This chapter demonstrates the key limitations of incidence estimation using a simpli-
fied and less complex scenario - of an age cohort. These people have the same birth
date, and have the same age at any specific time and experience the same demographic
rates - incidence and mortality. The chapter is a prelude to more complex investigations
presented in the subsequent chapters.

Chapter 4 - Computational Platform for Scenario Simulation and Analysis
Benchmarking

Primarily, we describe the age/time structured population simulation focusing on the
analytical approaches and computational decisions made. The platform simulates an
age- and time-structured population based on a standard Susceptible Iinfec model. A
section of this chapter gives a detailed account of designing and simulating cross-sectional
surveys and further summarises the methodological approaches implemented to sum-
marise population survey data into a prevalence, prevalence of recency among HIV pos-
itive and gradient of prevalence and tools used to determine optimal inclusion distance
and polynomial order permutations.

Chapter 5 - Optimal Accounting of Age/Time Structure in Cross-sectional
Surveys with ‘Recency’ Data

After the creation of the simulation platform we embark on the investigation of opti-
mal ways to smooth population survey data with recency ascertainment from a single
cross-sectional survey into a prevalence and prevalence of recency. The main focus is

Stellenbosch University https://scholar.sun.ac.za



Chapter 1. Introduction 6

investing optimal polynomial order(s) and inclusion distance to yield an accurate and
informative incidence estimate. We further compare the incidence estimates from ar-
bitrary pooling of the data versus fitting a regression model in the case of estimating
age-specific incidence.

Chapter 6 - Smoothing Survey Data for Mahiane Incidence Estimator.

We explored the missed opportunities in the seminal work of Mahiane et al. [3] high-
lighting how best population survey data may potentially be summarised into a preva-
lence and rate of change of prevalence. The key aspect is how best to account for the
age/time structure in major population-level survey data. We discuss the optimal choice
of polynomial order and inclusion distance permutation and focus briefly on link func-
tions. Given the ’one size fits most’ solution we revisit key attributes associated with
synthetic cohort approaches including the time between surveys (inter-survey interval),
sample sizes, and effects of unknown disease-associated mortality (excess mortality).

Chapter 7 - Value of Recency Data in Surveys

We proceed to use the methodological developments and recommendations in previous
chapters (on Kassanjee and Mahiane frameworks) to augment the two methods, us-
ing the optimally weighted incidence estimator. The chapter explores the sensitivity of
the standard error to the normalised weights, weighs in on the value of recency to HIV
surveillance and considers estimating incidence trends from two or more cross-sectional
surveys.

Chapter 8 - COVID 19 analysis Among Blood Donors.

An additional chapter that that describes work carried out on COVID-19. The chapter
focuses on the work done in collaboration with South African National Blood Services
(SANBS) and Western Cape Blood Services (WCBS) to infer the seroprevalence among
the South African blood donors and the associated infection fatality rate based on the
readily available data from South African Medical Research Council (SAMRC).
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Chapter 9 Concluding Remarks

We discuss the lessons learnt from our investigations focusing on methodological im-
provements, the benefits and giving advice/recommendations on deriving age-specific
HIV incidence estimates based on Mahiane [3] and Kassanjee [4] approaches from pop-
ulation level surveys. We highlight the advantages and disadvantages of augmenting
these two methods, and the shortcomings of each of the methods.

1.5 Contribution and Originality of the Study

The study explores several nuanced aspects of HIV incidence estimation and is focused
on developing algorithms to facilitate method improvement and ultimately provide
guidance and recommendation. The key features that add to the existing body of knowl-
edge and offer uniqueness to the study are as follows:

1. New methods to acquire better performance from existing data formats.

2. Simulation/benchmarking techniques are not systematically used to evaluate/-
compare HIV surveillance methods, especially for methods with different frame-
works. The thesis presents a generic simulation platform that enables method
comparison i.e, ‘synthetic cohort’ vs ‘recency’.

3. A non mechanistic modelling framework which makes it possible to simulate an
age/time structured population, and complex surveys without excessive complex-
ity beyond the structured sampling design.

4. An explicit performance benchmarking of a wide range of methods and produc-
tion of tools that can eventually be slotted into routine use/provide an alternative
to existing methods.
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Chapter 2

Review of HIV Incidence estimation
methods and tools

2.1 Introduction

We provide an unstructured review of population level HIV surveillance, concentrating
on;

1. Population level survey data sources

2. Broad categories of the HIV incidence estimation methods

3. Current tools meant for HIV surveillance and specifically HIV incidence estima-
tion

2.2 Data sources for HIV Surveillance

2.2.1 Evolution of Data Collection

The methods of collecting HIV surveillance data have evolved, since the first HIV cases
in the early 1990s. Initial surveillance was mainly in the form of AIDS case reporting
(still applicable in some contexts), which was seen to be very limited in generalised epi-
demics. Subsequently, the anonymous HIV testing of pregnant women, STI patients in
clinics, and sex workers at sentinel sites was introduced [15].

8
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9 2.2. Data sources for HIV Surveillance

2.2.2 Sentinel Sites

This approach gives the number of people infected among those who frequent the an-
tenatal clinics, but it cannot provide prevalence estimates of the general population
[2, 15, 16, 17] though they may provide a meaningful indicator. Additionally, the data
may be subject to site selection bias, most of the sites being government clinics, fre-
quented mainly by a particular sub-population defined by social and economic status.
Pisani et al. [15], Magnani et al. [16], Zaba and Gregson [18] argued for better sampling
strategies to reduce the bias from antenatal data. Specifically, it is worth noting that
the improved representativeness of ANC SS sites advocated by [15, 16, 18] were imple-
mented across most countries in the early 2000s, following revised guidelines in 2001 by
CDC and WHO for improved ANC SS.

2.2.3 The rise of Population Level Surveys

Sentinel data is usually augmented, in the generation of population level estimates, by
data from other sources such as Demographic Health Surveys (DHS) and Population-
Based HIV Impact Assessments (PHIA). Representativeness in HIV surveillance is key,
and various survey methods/designs exist which are meant to estimate the population-
level HIV epidemiological metrics [11, 12, 13, 14]. Cross-sectional surveys are snapshots
of the population at a given time. These surveys entail visiting (possibly at intervals of
3 - 5 years) a subset/sample of the population (usually independently selected for each
‘round’) during a specified period of a given time (usually 5 - 8 months, though often
conceived of as happening instantaneously) [11, 12, 13, 14].

Information on age, geographical area, serostatus, and (sometimes) ‘recency status’ (de-
fined as testing negative/positive to newly acquired infection as classified by biological
assay) of infected individuals, is collected from all consenting individuals. Some of
the programmes that conduct/implement these national household-based surveys are,
DHS, PHIA, (Kenyan, and other) AIDS Indicators Survey (KAIS), and various AIDS
Impact Surveys (AIS). South Africa collects its own population-level survey data inde-
pendently under the South African National HIV Prevalence HIV Incidence, Behaviour
and Communication Survey (SABSSM), primarily via a division of the Human Sciences
Research Council (HSRC) ( HIV/AIDS, STIs, TB department (HAST)) [13]. To ensure
representativeness, most of these use complex (multi-staged) surveys, which is an um-
brella term used for surveys that aggregate two or more common sampling strategies
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(simple random (SRS), systematic, stratified, and cluster sampling) and are each imple-
mented at different stages of sampling the population.

Figure 2.1: Depiction of 3 cross-sectional surveys equally spaced. The picture depicts
how cross sectional surveys meant for HIV surveillance are distributed in time. A single
speckled band represents the status of the population at that given time and a speckle
represents an individual who was part of the survey.

South African National HIV Prevalence, HIV Incidence, Behaviour and
Communication Survey (SABSSM)

The SA HSRC has conducted five surveys since 2002. Approximately within the last
decades HSRC introduced laboratory methods (HIV diagnostic testing) which facili-
tated direct HIV incidence estimation and exposure to ART [13]. The HSRC seeks to
disseminate information on HIV prevalence, incidence, and crucially, HIV relevant be-
havioural factors.

All individuals residing in South Africa, excluding those staying in designated institu-
tions, are part of the target population. The master sample (probability sample of the
2001 census enumerator areas (EAs) representing the provincial, settlement, and racial
diversity of South Africa) is used to decide EAs that are considered as the Primary Sam-
pling Units (PSU) [19]. The secondary sampling units are the households, and ultimately
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the sampling units are individuals eligible to participate in the survey (spent the night
in the dwelling unit) [13, 19]. Each sampled unit is assigned a weight to support popu-
lation representativeness. Households were randomly selected from all communities in
South Africa [13].

In the most recent survey, 11000 households agreed to participate, 38000 individuals
consented to complete the individual questionnaires and 29000 agreed to provide blood
samples for HIV testing [13]. The collected data give insight into the observed trends of
HIV incidence [19] and the data has facilitated numerous studies [19, 20, 21].

Demographic Health Surveys - DHS

Nationally representative DHS surveys are carried out in approximately ninety coun-
tries. However, only a subset of these include HIV testing, which are presumably the
only surveys relevant to this research HIV[11]. The data collected are used to calculate
various population indicators, including incidence [22]. DHS conducts two kinds of
surveys; the standard DHS survey (repeated every 3 - 5 years) and interim surveys (in-
between standard DHS surveys and reported annually) [22]. The surveys are voluntary
and anonymous. Individuals aged 15-49 are eligible to participate and standard DHS
sampling frames range from 5000- 10000 households [22].

The study design is a stratified two-stage cluster sampling. The first stage of the survey
involves sampling from the enumeration areas (EA) and followed by sampling house-
holds from each EA [22]. The residential levels in the survey include both the rural and
urban areas [22] and on average the surveys take 18 - 20 months. This time scale in-
cludes survey design, visits, final result analysis and communication [22].

Population-Based HIV Impact Assessments - PHIA

PHIA is a project led by the Centre for Disease Control (CDC) International Center for
AIDS Care and Treatment Programs (ICAP) at Columbia University [12]. Surveys are
conducted in approximately 15 countries supported by the President’s Emergency Plan
for AIDS Relief (PEPFAR), which is a US initiative aimed at addressing the HIV/AIDS
epidemic. PHIA’s strength is derived from the ICAP which has experience with Swazi-
land HIV Incidence Measurement Surveys (SHIMS). The studies are supported by the
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United States Center for Disease Control and Prevention (CDC) and the Ministry of
Health in the hosting countries [12].

Their main objective is to measure the reach and impact of the HIV interventions [12].
The data collection encompasses household interviews, individual surveys and diag-
nostic tests. Consenting individuals from the pre-selected households are interviewed
and tested, for HIV and other related diseases [12].

Swaziland HIV Incidence Measurement Surveys - SHIMS

SHIMS1 (2011) was initially aimed at evaluating the HIV epidemic in Swaziland before
an intervention (Male Circumcision Accelerated Saturation Initiative project (MC ASI)
and after the MC ASI [23]. SHIMS2 was conducted in August 2016 to March 2017 un-
der the PHIA guidelines and as part of the then 13 countries that PHIA supported. Note
SHIMS1 and SHIMS2 had differing sampling strategies. The SHIMS study also involved
a substantial cohort component [23]. The short term cohorts served to reduce the cohort
effects e.g. logistics cost and the loss to follow up. The study was a household-based and
nationally representative longitudinal cohort [24] survey and had a high cooperation
(participation) rate and the samples were adjusted appropriately for the non-responses.

A two-staged sampling study design was implemented, with 575 EAs. The households
in each EA were numbered using the geographical position system and then 26 house-
holds were randomly selected from each EA [23]. The selection strategy involved a
systematic sampling of the households [23]. The probability of selecting a household
in each EA was proportional to the population size and within each household, every
eligible candidate was requested to participate [23].

Cohort A1 was recruited 6 months before the MC ASI and followed for another 6 months
after the MC ASI [23]. Cohort A2 was recruited after MC ASI and followed for 12
months. Cohort B was created from a subset of cohort A2 and they are followed for
an additionally 6 to 12 months after the initial 12 months [23].

The study design concentrated on the MC ASI. Other intervention programs were not
accommodated, limiting the possibility of investigating the most effective intervention
[23, 24].
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Kenyan AIDS Indicators Survey - KAIS

Kenyan AIDS Indicators Survey (KAIS) is a Kenyan based organisation in collaboration
with the Kenyan Ministry of Health. At the time of inception, the main aim was to eval-
uate the country’s response to the HIV epidemic [14] and two surveys were conducted
in 2007 and 2012.

The study design implemented was a 2 staged cluster survey [14]. 372 clusters were
systematically sampled from 5360 clusters (from 47 counties, stratified into rural and
urban areas - minus the Northern Eastern part of Kenya) of the National Sample Survey
and Evaluation Programme V Frame (NASSEP V) [25]. The second phase used equal
probability systematic sampling, to sample 25 households in each cluster [25] and the
collected data was on households, demographics, recent infections and behavioural as-
pects.

The key improvements made to the KAIS 2012 was the introduction of children in the
sampling frame. The children’s sample (18months - 14 years) was randomly sampled
from the rest of the households [14]. HIV prevalence was estimated for the fraction of
the population aged between 18 months and 64 years [26].

2.3 HIV Incidence Estimation Methods

Incidence, rather than prevalence, is the more potent epidemiological metric to assess
the impact of interventions. In this section we explore the evolution of HIV incidence
estimation methods and their main categories.

Seminal papers with differing schools of thoughts have been published and all are aimed
at one goal - to provide accurate and precise estimates of incidence. These incidence es-
timation methodologies can be classified into three different types approach; 1. The
cohorts approach, 2. The dynamic approach and 3. The test for "recency" of HIV infec-
tion.

1. Repeated study-subject interactions (cohorts), involving multiple HIV status as-
certainment, to accumulate paired status conversion event counts and exposure
time.
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2. Estimates derived from largely unrepeated study-subject combinations, but spread
over some sufficient range of ages and/or times to allow estimation of gradients of
prevalence. These measures may need to be augmented by particular contextually
valid mortality estimates (cross - sectional survey data), and

3. Narrowly time-distributed ascertainment of both a) HIV infection and b) categor-
ical recent/ non-recent infection according to a well-characterised case definition.

Cohorts

The gold standard for estimating HIV incidence is traditionally to follow up a cohort
that is initially uninfected [27].

The cohorts are useful especially when addressing a concentrated epidemic [2] or at the
beginning of an epidemic when we seek to; track temporal priority [28], understand
the specific characteristics and progression of the epidemic [24]. A good example of a
cohort survey that was robust in HIV incidence estimation was the SHIMS study, that
highlighted the impact of male circumcision in reducing HIV incidence [24]. Examples
of the cohort studies that are not generalisable are; Tanser et al. [29], Feldblum et al. [30],
Xu et al. [31], and Feldblum et al. [32]

Unfortunately, the incidence estimate is limited to the cohort in question and is sel-
dom representative of large population. This arises from selection criteria, sample sizes,
repeated testing, and counselling which lead to behaviour change (Hawthorne effect)
Grebe et al. [9], Brookmeyer et al. [17], Hall et al. [33]. Additionally, they are expen-
sive, time-consuming, tedious, and are exposed to non-random loss to follow up. Large
sample sizes are required for the results to be statistically robust and to achieve a useful
measure representative of the total population [2, 34, 35].

It is worth pointing out that cohorts have been a success in surveillance of some chronic
conditions, for example, heart diseases [34, 36]. In the case of HIV, cohorts offered a
unique opportunity to study the interplay of infection/opportunistic infections, dynam-
ics of the disease and provided a direct measure of the differential mortality, association
with fertility and migration.
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Dynamical Approach

The dynamical approach has been used to estimate incidence in several countries for
example, South Africa [20], Dominican Republic, Mali, Tanzania and Zambia [37]. The
dynamical methods [2, 3, 35, 38, 39, 40, 41, 42] depend on data from cross-sectional sur-
veys. The survey data is made available by several organisations [11, 12, 13].

Figure 2.2: Time/age distribution structure of cross sectional surveys. Age/time plane indi-
cating relationship between survey-subject interactions and values of (age,time) when
incidence estimation can be considered based on those contacts. The many small dots
indicate survey-subject contacts generated by two similarly structured population-level
surveys. In order to estimate incidence at a point in the inter-survey interval, such as in-
dicated by the bold black dot, one would smooth the HIV status information to provide
an interpolated estimate of both prevalence and the rate of change of prevalence, at the
(age,time) point of interest, moving along the indicated diagonal line, i.e. as experienced
from the point of view of a given birth cohort.

The methods [2, 3, 35] rely on data from two/more cross-sectional surveys to estimate
the prevalence and gradient of the prevalence, and in conjunction, with some external
information on survival after infection, excess mortality, and/or migration estimates
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the incidence. For example, in Figure 2.2 the data is from the two cross sectional surveys
shown is smoothed into prevalence and its gradient.
Comparing the Mahiane et al. [3] to the related estimators Hallett et al. [2], Brook-
meyer and Konikoff [35], Brookmeyer and Quinn [38], Podgor and Leske [39], Brunet
and Struchiner [40, 41], the Mahiane et al. [3] incidence estimator is more informative
and accurate, as it measures the instantaneous incidence with no epidemiological or de-
mographic assumptions about any indicators or parameters being constant for ranges
of time or having any particular stratification, and no fitting via underlying mechanistic
assumptions.

Unfortunately, dynamical methods require accurate information on disease induced (ex-
cess) mortality/survival after infection which is complex to estimate, and hence the
methods rely on proxies which may introduce bias and uncertainty in the incidence es-
timates. Improved data sources on survival rates/differential mortality will effectively
improve the incidence estimates from the dynamical models [35]. Furthermore, the time
between surveys is also a crucial metric in dynamical methods as a reasonable time be-
tween surveys is required to derive accurate and informative changes in prevalence i.e.,
if the time between surveys is long the estimates get biased and if surveys are too close
together the incidence estimates are uninformative.

Most dynamical models produce 5 year age aggregated/binned HIV incidence estimates
Hallett et al. [2], Brookmeyer and Konikoff [35], Brookmeyer and Quinn [38], Podgor
and Leske [39], Brunet and Struchiner [40, 41], of which Grebe et al. [9], has shown
that much of what drives the HIV epidemic is in the age structure and this raises the
question on how much binning is acceptable without over aggregating the incidence es-
timates. An advantage of Mahiane et al. [3], is that it facilitates arbitrarily fine grained
age-specific incidence estimates - though it is unlikely that there is much information in
anything finer than integer age estimates.

Dynamical models directly use large samples sizes being used in any case for major
cross sectional surveys being conducted for the purpose of prevalence estimation. Ad-
ditionally with the current methodological and technological developments data is now
readily available and well documented at population level which may improve the ro-
bustness of dynamical methods.
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Back Calculation

Back calculation methods are similar to the aforementioned dynamical approach, but
were mostly used in the 1990s [43], when the only available technology and method-
ology was the identification of incidence of clinical AIDS cases, and estimates of the
distribution of the incubation period from HIV infection to first diagnosis of AIDS [33].
For many countries, where the data are well documented and dates back to the onset of
the epidemic, a time series approach based on the AIDS incidence is adopted.

The shortcomings of this approach were cited by Rosenberg [44], Bellocco and Marschner
[45]. Brookmeyer and Gail [46] also raised the sensitivity of the back calculation ap-
proach to the incubation period. With more understanding of the epidemic, the ap-
proach lost most of its attention due to the introduction of anti-retro viral treatment
which distorted the assumed distribution of the incubation period, consequently mak-
ing the AIDS data unreliable [43]. This gave birth to an evolution of this method termed
the "extended back calculation" [33, 43], additionally [47] Other causes of concern is the
uncertainty of the estimates, challenges of estimating the incubation period and diffi-
culty of modelling the non-stationarity between diagnoses and reporting [48].

Test for ‘Recent Infection’

Biomarkers/assays can be used to determine the recency state of an HIV (or, potentially,
other) infection. Once the proportion of recently infected individuals among the HIV
positive is determined, an incidence estimator that closely resembles that of transient
conditions is obtained. To facilitate estimating HIV incidence population level surveys
now sometimes include an ascertainment of ‘recency’ test. The methods of Kassanjee
et al. [4], Brookmeyer et al. [17], Brookmeyer and Quinn [38], Janssen et al. [49], Har-
grove et al. [50] rely on data with ‘recency’ ascertainment.

The method provides key advantages that include good local and national HIV inci-
dence estimates, and provides up to date population level incidence estimates vs the ret-
rospective estimation of HIV from the back calculation and dynamical approach. Other
advantages involve being able to determine incidence from a single cross sectional sur-
vey, and being able to measure incidence trends from at least two or more cross-sectional
surveys. Moreover, there is no need for knowledge on excess mortality dynamics, nor
need for expensive longitudinal studies [17].
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A key challenge is that some HIV patients who have been long infected test ‘recently
infected’. It is crucial to note that Mean Duration of Recent Infection (MDRI) and False
Recency Rate (FRR) are context specific and depend on the bioassay, type of epidemic
and HIV virus subtype. Kassanjee et al. [4], Brookmeyer et al. [17] highlight the impor-
tance of properly accounting for FRR and MDRI and the one approach that consistently
and correctly accounts for this is Kassanjee et al. [4]. This is not a matter of consensus
as some scholars (mistakenly) argue that the false recents cancel out with the false non-
recents (which don’t exist, if the MDRI is correctly estimated). Recent infection testing
algorithms (RITAS) were introduced and are structured such that they reduce the false
recency proportion to a minimum [4, 17] without eroding too much of the MDRI. The
RITAs mainly exclude, from the case definition of recent, those whose viral load is less
than a specified threshold, which in practice means mainly those who are on ARTs, who
account for most of the false recent results in a typical survey of an advanced epidemic.
Very large sample sizes are required to give informative and robust incidence estimates,
as the proportion of being recently infected among the positive is usually very low, and
hence difficult to estimate with precision [49].

2.4 HIV Surveillance Tools

Several tools meant for HIV surveillance exist and may apply to specific epidemics (con-
centrated vs generalised epidemics), for example; Thembisa for the South African epi-
demic [51], whereas a new statistical model called Naomi derives estimates stratified by
subnational administrative units, sex and 5-year age groups [52] and case surveillance
and vital registration data (CSVAR) is most suitable for high and middle-income coun-
tries with low HIV prevalence [53]. This sections briefly recaps and discusses the HIV
surveillance tools focusing mainly on HIV incidence estimation.

Spectrum/Estimation and Projections Package − Spectrum/EPP

The Spectrum/EPP model/package is supported by UNAIDS and was first derived
from two software tools: Spectrum and Estimation and projection package [54]. The
Spectrum/EPP software is a suite of modules each with specific functions. For example,
EPP estimates HIV incidence rate primarily from historical prevalence data (Antenatal
care (ANC) data scaled up to population level estimates using data from DHS [11] and
PHIA [12]). The GOALS module evaluates the efficacy of interventions.
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Spectrum/EPP is updated/modified based on the recommendations from the UNAIDS
working group [54]. One recurrent theme /specific recommendation from UNAIDS
working group biannual meetings is to update EPP/Spectrum to include age-specific
incidence estimates, but the best one can do from EPP are 5 year age bins. Eaton et al.
[7], modified EPP into be more adaptable to mature epidemics and yield the 5 year age
bin/sex stratified incidence estimates.

EPP links the ANC data and population prevalence from the dynamical model through
a random effects model and an extra term is used to cater for the bias of ANC data rel-
ative to data from the national population-based household survey [55]. For countries
without population survey data, the ANC data is used and the confidence interval is
estimated from the data derived from the other countries with population survey data
[56]. Other interesting aspects in EPP include the estimation of sub national populations
based on better data sources [8].

Currently, EPP fits the incidence trends based on four approaches discussed in Stover
et al. [8]. which is a major advantage as it provides a suite of tools in one place - i.e.,
it includes all crucial units for HIV surveillance for easy access, and enables the HIV
incidence among countries to be methodologically comparable.

Thembisa Model

The Thembisa model is a tool specifically designed for South African epidemic surveil-
lance and it draws strength and motivation from key previous models, namely: the
Actuarial Society of South Africa (ASSA), STI-HIV Interaction model, UCT (Univer-
sity of Cape Town) Paediatric HIV model and the National Strategic Plan ART Need
model. These models were each tailored for the South African epidemic, but each had
its strengths and limitations [51]. The Thembisa model synthesised the four models
and updated them accordingly. For example, ASSA and STI- HIV interaction models
failed to reflect HIV prevention and treatment beyond 2011. It also enabled the dynam-
ical evaluation of Mother to Child Transmission (MTCT) which was not possible with
UCT Paediatric model [51]. Since the first version of the Thembisa model, about six
more versions have been released and each updated to suit context-specific issues. The
latest version, Thembisa version 4.3 released in June 2020, made adjustments to the pre-
vious model based on the availability of data [57]. For example the updates included
assumptions on fertility rates on HIV positive women, the alteration of some provincial
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calibration procedures, and revision of the viral suppression model after ART initiation
[57].

Institute for Health Metrics and Evaluation - IHME

The Institute for Health Metrics and Evaluation (IHME) explores the past, present and
future of the HIV/AIDS epidemic in the world, especially in hard-hit areas like sub-
Saharan Africa [58, 59]. With the Millennium Development Goals (MDGs) in mind, they
produced an online tool - MDG data visualisation - that provides the incidence and
mortality yearly rates for each country from 1990 to 2013 [58, 59]. The data visualisa-
tion tool is made available through the Global Burden of Disease Study, and the rates
are estimated from a modified UNAIDS Spectrum models (for mortality with/without
Anti-retroviral Therapy) [59]. Models are adjusted based on the type of epidemic. For
example concentrated epidemics are calibrated to fit the recorded data. Whereas for
generalized epidemics they use a minimised loss function to select an epidemic curve
that fits the prevalence and demographic data for all-cause mortality [59]. The imple-
mented methodologies allow investigating/inferring the lives saved by the Prevention
of Mother to child Treatment (PMTCT) and ART programmes [59].

INCTOOLS

This was initially introduced as an Assay Based Incidence Estimator (ABIE) spread-
sheet online tool and since evolved into an R package - Inctools [60]. Inctools estimates
population-level incidence from survey data with a biomarker ascertainment. The major
function that does the incidence calculation uses the prevalence of HIV and the preva-
lence of recency estimates provided. When raw data is obtained (in the form of subject
counts, and potentially stratification and weights) a pre-processing step is required to
convert the counts to prevalence and recency estimates [60]. This is essentially a process
which currently lies outside of Inctools. A naïve method is implemented internally. The
findings of this thesis are guiding the developed of more sophisticated tools to perform
this derivation of prevalence from raw survey data.

Inctools primarily implements the Kassanjee framework [60]. The standard errors are
estimated either through bootstrapping or using closed-form error propagation formu-
las based on the delta method. Additionally, Inctools offers two other functionalities
“incprecision” and “incpower” to calculate the power/precision and sample size of the
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required incidence estimate. In future, Inctools seeks to expand the age/time structure
dynamical incidence estimator [3].

2.5 Conclusion

HIV incidence estimates are of great importance and we reviewed (not systematically)
methods that various countries and organisations use to keep track of incidence, and
incidence trends. Of great concern is to yield HIV incidence estimates that are accurate
and precise independent of the epidemic. The main focus was on approaches (data col-
lection/methods/soft wares) meant for population level incidence estimates.

There is no overall consensus on the most appropriate method to use when one is in
possession of population level data. Important aspects to consider are the representa-
tiveness of data, accuracy and precision of the methods chosen to estimate the crucial
input parameters, including the excess mortality after infection, and/or recency test
properties.

There are various data sources that enable HIV incidence estimation depending on the
adopted method. For example some methods rely on;

• ANC data and/or population level survey data - Thembisa and Spectrum/EPP,

• Entire history of the epidemic - back calculation methods.

Some of these methods were not discussed in the main text, but also yield HIV incidence
estimates and are context specific and may not be applicable to generalized epidemics,
for example,

• Case surveillance and vital registration data - (CSAR) uses vital registration data
[53] and most recently

• A new statistical model called Naomi - that produces subnational estimates form
population level survey data and ANC data [52].
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Chapter 3

Estimating incidence in data with a
time domain but no meaningful age
structure

3.1 Introduction

Whereas a real population has both age and time structure, HIV surveillance data, from
real surveys or thought experiments, may have simplified time-like degrees of freedom.
For example, data may be from a single time point but have an age structure. A ‘birth
cohort’ is a group of people born on the same date, leaving us with time structure that
codes for age, but no internal variability by age. A population defined by an activity,
such as sex work or blood donation, may have age structure which has no particular
importance, but the prevalence of risk factors in that population may vary in important
ways over time.

Independent of the data structure, the usual key epidemiological measures are still im-
portant i.e., questions on prevalence, incidence and incidence trends still need answers.
This chapter explores how to get the most out of data with a single time-like dimension,
in terms of optimal ways to obtain informative incidence and incidence trend estimates.
Using both the frameworks of Kassanjee and Mahiane, we explore the informativeness
of survey data under various conditions of simplified time/age structure. This leads to
some useful observations that require more complex machinery to explore more deeply,
which we do in the subsequent chapters.

22
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3.2 Methods

3.2.1 Simulations

We used a non-mechanistic and unstructured SI-model to simulate an HIV epidemic.
The input parameters were incidence, background mortality (death due to natural causes),
and excess mortality (HIV (disease) induced death). Based on the prevalence output we
simulated surveys at various time points. Our base case had constant parameters, but
in order to interrogate study design options, we simulated a scenario with varying in-
cidence, simulated yearly surveys and estimated the relative standard error associated
with the Mahiane [3] estimator with an inter survey interval ∆t = 5 years and sample
size = 1000 at each time point. We also varied sample size and expressed the relative
standard error of each age from 18 to 48 in steps of 2 as a function of sample sizes

3.2.2 Comparison of Dynamical vs Recency Approach

We compare the performance of the Kassanjee [4] and Mahiane [3] estimators based on
their precision and bias in estimating incidence either from an instantaneous survey at
the time of interest, or at the mid-point between two times of observation, respectively.
We chose two symmetrically placed time points t1 and t2 respectively about t where,
t =

(
t1+t2

2

)
to achieve comparability of the two study designs. For the Mahiane [3]

method, incidence is calculated at t from the two cross sectional surveys simulated at
t1 and t2. To adapt the Kassanjee [4] method, we simulated a cross sectional survey at
time t. To compare the estimators at a comparable level of study-subject interactions, the
sum of the sample sizes in the two cross sectional surveys used in the Mahiane analysis
was set equal to the sample size of the one cross sectional survey used in the Kassanjee
analysis.

The incidence in a birth cohort (i.e. a population with a single time variable which codes
for both time and age) using the Mahiane method (IM) is given by;

IM =
1

1− P
· dP

dt
+ M · P (3.2.1)

We used a linear regression model to estimate the midpoint prevalence P and the rate
of change of prevalence dP

dt from the two simulated surveys at t1 and t2 and var(IM) is
approximated using the delta method. Note M is the excess (disease induced) mortality.
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The incidence estimate using Kassanjee method (IK) (‘recency’) is given by ;

IK =
P(R− β)

(1− P) · (Ω− β · T) (3.2.2)

We estimated var(IK) using the delta method assuming no covariance between P and
R (which is probably true in the case of simple random sampling). In Equation 3.2.2,
IK - incidence estimate, R - prevalence of recency among the HIV positive, P - HIV
prevalence, β the false recency rate (FRR), Ω - mean duration of recent infections (MDRI)
and finally T - time cut-off.

3.2.3 Incidence Trends in a Birth Cohort - Application to First Time Blood
Donors

To explore the idea of continuous sampling (ongoing surveillance) we simulated 500,000
first time donors presenting over a period of 10 years- as occurred in South Africa over
a period of widening of the donor pool to include other racial groups [61, 62] beyond
the previously mainly white donor pool. We simulated testing for HIV and for ’recent
infection’ with a test like the Sedia Lag Elisa. Data was analysed for incidence either in
’period bins’ or continuously, in accordance with a suitably adapted form of the method
of Kassanjee et al. [4] - Equation 3.2.2.

Method 1 - Time Binning

Suppose there exists first time donor data from a time period t1 to t2 , we define a disrup-
tion time td (point or period when questionnaire adjustments or intervention programs
occurred). The individual level data is divided into two-time intervals t1− td and td− t2.
For each interval we summarise the data into prevalence P = nP

nP+nN
and prevalence of

recency R = nR
nP

. Where, nN is the total number of FT-donors who test negative for HIV,
nP is the total number of FT-donors who test positive for HIV, and nR is the number of
individuals who test recently infected among the HIV positive blood-donors.

Populating the incidence estimator yields I1 and I2, the incidence estimates for the first
and second intervals (bins) respectively and for each time bin/interval there exists mid-
points defined by m1 and m2, which are used as reference points to calculate the inci-
dence slope and associated standard error as shown in Equations 3.2.3 and 3.2.4 respec-
tively,
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sl1 =
I1 − I2

m1 −m2
(3.2.3)

And the standard error

se(sl1) =

√
1

(m1 −m2)2 · [var(I1) + var(I2)] (3.2.4)

Method 2 - Continuous Time Treatment

We fitted a regression model to the simulated data, and predicted P and R at disruption
time (td), and to investigate the trend in HIV incidence we evaluated the derivative of
Equation 3.2.2 given by Equation 3.2.5 (defined as the rate of change of incidence at
disruption time with respect to time).

sl2 =
dP
dt
· (R− β)

(1− P)2 · (Ω− β · T) +
dR
dt
· P
(1− P) · (Ω− β · T) (3.2.5)

Where dP
dt and dR

dt are the derivatives of P and R with respect to time t.

The standard errors are estimated through 10000 bootstrap samples or the delta method
in Equation 3.2.7 we assume cov(P, R) = 0.

var(sl2) =

[
∂s12

∂P

]2

· var(P) +
[

∂s12

∂R

]2

· var(R) (3.2.6)

var(sl2) =

[
dP
dt
· 2 · (R− β)

(1− P)3 · (Ω− β · T) +
dR
dt
· 1
(1− P)2 · (Ω− β · T)

]2

· var(P)

+

[
dR
dt
· 1
(1− P)2 · (Ω− β · T)

]2

· var(R)

(3.2.7)

Data Simulation: Method Testing and Validating

We used the test parameter values suggested in Grebe et al. [9] i.e. Ω = 207, β = 0.001,
T = 2years and based on the parameterisation of the Consortium for the Evaluation and
Performance of HIV Incidence Assays (CEPHIA) data.

Below is the generic algorithm for the simulation of FT-donor data;

1. Uniformly distribute the N first time donors to the donation times between t1 and
t2 such that the time step δ , the time between consecutive donations is given by;
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δ =
t2 − t1

N

2. Assign an HIV status to each donation based on P = P0 + P1 · t, P the prevalence as
a function of time, where P0 is the intercept and P1 is the gradient of the prevalence.

3. For HIV positive cases we assign the HIV recency status using Equation 3.2.8 and
for HIV negative cases we assign Not Applicable (NA).

R =
(1− P) · (Ω− β · T)

P
· IK + β (3.2.8)

For simplicity we set the midpoint as the disruption point (questionnaire changes or a
new intervention strategies is introduced). Bootstrap was used to calculate the standard
errors and we show the distribution of p values for each method (binning versus con-
tinuous) for both constant and time varying incidence.

3.3 Results

3.3.1 Reproducibility/Uncertainty

To assess the reproducibility of the Mahiane estimator in the context of a pure birth co-
hort, we used a hypothetical epidemiological scenario with incidence (0.02 p.a.), excess
mortality (0.1 p.a.), and background mortality (0.01 p.a.). The cross-sectional surveys
were simulated at times (years) t1 = 17 and t2 = 23 with sample sizes of 5000, to es-
timate midpoint incidence (t = 20 - not that it varies with time in our case). Figure
3.1 presents a histogram that assesses the reproducibility of the Mahiane estimator for
10000 iterations. For 9538 out of 10000 iterations, the 95% confidence intervals included
the simulation’s true incidence value. In this scenario the Mahiane analyses very slightly
underestimates the true incidence, because of the smoothing approach employed, which
assumes the prevalence is a linear function of age whereas the simulated prevalence is
concave.
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Figure 3.1: 10000 incidence estimates from bootstrap samples. The distribution of incidence
estimates for 10000 iterations using the Mahiane estimator (blue line - true incidence).

Inter Survey Interval

To demonstrate the intrinsic tradeoff of the standard error and bias, in determining the
optimal inter survey interval, we used the hypothetical epidemiological scenario pre-
sented earlier and expressed the RMSE as a function of inter survey interval.

Figure 3.2 depicts how various values of ∆t result in variation of the RMSE, relative bias,
and relative standard error; for this specific scenario, the optimal inter survey interval is
between 5 and 8 years. Practically, we suggest interpreting this as a 5 year interval being
optimal; as the overall error reduction from waiting longer (up to 8 years) is negligible.
Optimal ∆t implies an acceptable trade-off between bias and standard error.
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Figure 3.2: RMSE, relative bias, and relative standard error as functions of the inter survey
interval. The figure expresses the relative errors as function of the inter-survey interval
for a specific epidemiological scenario with incidence = 0.02, excess mortality = 0.1,
and background mortality = 0.01 (created arbitrary)..

Accuracy and Precision of the Estimators in Mature and Early Epidemics

For a hypothetical scenario, with an underlying incidence of 0.05 and 0.01 in early
(left) and mature (right) epidemic respectively, we show (Figure 3.3) the relative errors
(RMSE, bias and RSE) as functions of ∆t for the Mahiane (solid lines) and Kassanjee es-
timator (dashed lines).
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Figure 3.3: Method performance in estimating HIV incidence at early vs mature epidemic stages.
The figure compares the performance of two incidence estimators (Kassanjee and Ma-
haiane) at differing epidemic stages early (left) and mature (right) for a range of inter
survey intervals (only applicable to Mahiane method). The horizontal dashed reference
values represent Kassanjee analysis solid lines the Mahiane estimator.

Based on Figure 3.3, (left panel), the Mahiane estimator is more precise in estimating the
incidence in the early epidemic, whereas in the right panel we see that the Kassanjee
estimator is more precise in the mature epidemic.

For a more nuanced notion of context, we simulated a birth cohort with a simple time
varying incidence, and calculated, over a range of ages, the precision of the Mahiane
and Kassanjee estimators, at comparable effort - and at a constant inter survey interval
of 5 years for the Mahiane analysis. The results are in Figure 3.4. We also investigated
the sample sizes required to attain a specified RSE (15%) for the Mahiane estimate, at
each age, as shown in Figure 3.5. Note the required sample size is 12300 for 48 year olds
and 1400 for 26 year olds!
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Figure 3.4: Relative standard error (RSE) versus age. The figure shows the relative standard
error as a function of age for a specific scenario where incidence rises linearly from (1 to
5)% per annum from ages 14 -25, declining linearly to 2% p.a. by age 50. Background
mortality 1% p.a. Excess mortality rising linearly from 1% p.a.- 5% p.a. from ages 14 -50,
MDRI is 180 days, and FRR is 0.2%. We expressed the RSE as a function of age for both
methods (Mahiane and Kassanjee).

Figure 3.5: Relative standard error as a function of the sample size for selected ages. The figure
depicts the required sample sizes for various ages to attain a reasonable RSE (of 15%).
For example, a sample size of 12300 is required for 48 year olds versus 1400 for 26 year
olds i.e., An extra 10900 sampling units are required to obtain the desired RSE.
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3.3.2 Incidence Trends in a Birth Cohort - Application to First Time Blood
Donors

Figure 3.6: Distribution of p-values for constant incidence (no disruption) vs non-constant (a
disruption is introduced) both methods are suitable for their intended use. Constant Incidence
yields p values uniformly distributed between 0 and 1 (top row), contrary, for non-
constant incidence the p values are clustered closer to zero (bottom row).

In a simulation of first time blood donors being screened with a test for HIV and a test
for ‘recent infection’ applied to positive specimens, using a simple linear fit to preva-
lence observations leads to the expected uniform distribution of p values (see Figure
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3.6, upper panels). Adjusting the incidence to vary linearly with time show a slight ad-
vantage of continuous regression versus binning, with a higher proportion of p values
less than 0.05. For 10000 iterations with a true slope of 0.2% p.a the methods estimate, an
incidence slope and the 95 percentile range of 0.2004 (0.1310, 0.2698)% p.a - continuous
approach and 0.2006 (0.1190, 0.2822)% p.a - binning approach.

3.4 Discussion

Before heading into much more complex simulations and calculations, we focused this
chapter on how incidence can be estimated from a population with just the time aspect
(where the age ceases to be an interesting structure) or vice versa.

We demonstrated how one can use either the Mahiane [3] or the Kassanjee [4] frame
work to estimate incidence at a given time (or age) point. Both Mahiane and the Kassan-
jee frame work are not meaningfully biased in these simulated scenarios, but depending
on the epidemic context, one or other may be more informative at comparable effort.
We noted the trade off, applicable to the Mahiane estimator, between bias and precision,
which naturally emerges from varying the time interval between surveys. The classic
Kassanjee analysis only requires one survey per estimate, so this trade off is not appli-
cable.

In a simplified scenario with age dependent incidence we see that younger ages favoured
the Mahiane [3] estimator, and older ages the Kassanjee estimator [4].

To address the need to detect incidence differences, we developed an algorithm that we
validated using simulated data and compared two approaches; 1. Binning of observa-
tions into an earlier and a later phase. 2. Continuous variability of time. In a simulation
of first time donors, we showed that the continuous approach is very slightly more in-
formative about changes in incidence.
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Chapter 4

Computational Platform for Scenario
Simulation and Analysis
benchmarking

4.1 Introduction

This chapter presents aspects of the methodology deployed for the simulation of popu-
lation dynamics and surveys. We cover the considerations taken into account in choos-
ing the implemented approach, and shed light on the mathematical and computational
details. Given our objective, which is to test the performance of approaches to obtain-
ing and analysing survey data, a non-mechanistic model is most applicable. In seeking
to test, optimise, validate, and benchmark existing and novel HIV incidence estimation
methods, we need merely to have access to a simulated scenario in which we know, and
can readily control, the actual incidence and prevalence, so as to produce contexts which
resemble real life applications. Hence mechanistic/predictive models are of no partic-
ular value to us, and merely complicate calibration. As we do not specifically model
heterogeneity, so we implemented an aggregated simulation approach, but the platform
does simulate the generation of individual-level datasets.

Specifically, this chapter covers the methods and thoughts that went into;

• Building blocks of the customised HIV epidemic simulation platform:

1. The population renewal equations and their solution, including detailed ac-
counting for age, time, and time since infection.

33
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2. Integrating over times since infection to obtain observable prevalence of in-
fection, prevalence of ‘recent infection’, and emergent mortality as a function
of age and time

3. The design of the simulation platform in R

• Testing (Section 4.6)

• Simulation of cross-sectional surveys

4. Generating survey data.

5. Analysing simulated data exactly as if it were real survey data

• The details of the investigation (Section 4.9)

• Investigating computational demands of the investigation (Section 4.10)

4.2 Population Renewal Equations

In this section, we give a mathematical description of the population dynamics that we
considered in creating the simulation platform. We adopt a standard susceptible - in-
fected (SI) compartmental model described by the SI model Equations 4.2.1 and 4.2.2.

∂S
∂a

+
∂S
∂t

= − (λ(t, a) + µ(t, a)) S(t, a) (4.2.1)

Where,

• λ(a, t) is the incidence rate defined as the rate of new infections at time (t) and age
(a),

• µ(a, t) the ‘background mortality’ rate - the rate at which natural death occurs
within the population time (t) and age (a), and

• ∂S
∂t and ∂S

∂a rate of change in the susceptible population with respect to time (t) and
age (a), respectively.

∂I
∂a

+
∂I
∂t

+
∂I
∂τ

= − (µ(t, a) + ε(t, a, τ)) · I(t, a, τ) (4.2.2)

Where,
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• M(t, a, τ) denotes the excess mortality (death) rate due to HIV, at age a, time t and
having been infected for τ − time-since infection (τ = a− a0),

• ∂I
∂a , ∂I

∂t , and ∂I
∂τ denotes the rate of change of the infected population with respect to

age (a), time (t), and time since infection (τ), respectively.

Sensible boundary condition for the susceptible population can be defined in various
ways. We will specify S(t,0) by asserting a net birth rate, without explicit reference to
fertility, for a suitable range of times. We will specify I(t, a, 0) = s(t, a) · [1− e(−λ(t,a)·δt)] ·
e(−µ(t,a)·δt), which denotes the total number of people who get infected, but do not die,
in a time step δ.

4.3 Discretised Solutions to the population Renewal Equations

The PDEs are solved using the method of lines and the epidemiological rates are defined
as piecewise constant in a given unit grid such that on an [a : a + δ] × [t : t + δ] the
same epidemiological rate applies. Consequently, we use the midpoint approximation
to estimate the survival probabilities and population counts at specific age and time
intervals, for example, the incidence and background mortality rates that apply on a unit
grid defined by [a : a + δ]× [t : t + δ], are given by λ

(
t + δ

2 , a + δ
2

)
and µ

(
t + δ

2 , a + δ
2

)
.

Hence at any given age and time, the susceptible population is given by Equation 4.3.1;

S(t, a) = S0 · e−∑n
i=1(λ(ti+

δ
2 ,ai+

δ
2 )+µ(ti+

δ
2 ,ai+

δ
2 ))·δ (4.3.1)

Where, i is an index for the elements in the age/time vector, n is the length of the age/-
time vector, S0 is the initial population size at birth. Equation 4.3.1 implies that given a
birth count - S(t, 0) of S0 (first term of Equation 4.3.2) and the cumulative survival prob-
ability in the susceptible population (second term of Equation 4.3.2), we can estimate
the susceptible population in the birth cohort at any given age and time.

Equation 4.3.2, gives the total number of people infected at age a − τ and time t − τ

(infected at time τ previously).

I(t− τ, a− τ, 0) = S(t− τ, a− τ) · [1− e−λ(t−τ+ δ
2 ,a−τ+ δ

2 )·δ] · e−µ(t−τ+ δ
2 ,a−τ+ δ

2 )·δ (4.3.2)

Equation 4.3.2 facilitates the calculation of the total number of infected people who are
aged a at time t, survived from natural or infection related death for τ years as shown
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in Equation 4.3.3.

I(t, a, τ) = I(t− τ, a− τ, 0) · e−∑n
i=1(µ(ti+

δ
2 ,ai+

δ
2 )+M(ti+

δ
2 ,ai+

δ
2 ,τi+

δ
2 ))·δ. (4.3.3)

4.4 Integrating Out Unobservable Time-since-infection

The population states are simulated whilst keeping track of the time since infection τ,
which is a reasonable epidemiological procedure for method development and bench-
marking purposes, but τ is not observable and hence when proper accounting of the
calculations has been done we aggregate over τ (where applicable) as described below.

Prevalence

The prevalence P(t, a, τ) is defined as the proportion of individuals still alive aged a at
time t, who have been infected for a duration of τ times as shown in Equation 4.4.1;

P(t, a, τ) =
I(t, a, τ)

S(t, a) + I(t, a, τ)
(4.4.1)

Aggregating over τ yields P(t, a) the proportion of infected individuals at age a at time
t and note I(t, a) = ∑τ I (a, t, τ) and consequently,

P(t, a) =
I(t, a)

S(t, a) + I(t, a)
(4.4.2)

Prevalence of Recency

The prevalence of recency R(t, a) (Equation 4.4.3), estimates the proportion of individ-
uals testing recently infected among the HIV positive. PR(τ) gives the probability of
testing recently infected given that you have been infected for a time τ for which we
used the Weibull function with shape and scale parameter 5 and 0.5, respectively.

R(t, a) =
∑τmax

τ=1 I(t, a, τ) · PR(τ)

P(t, a) · (S(t, a) + I(t, a))
(4.4.3)

Based on the specified PR(τ), MDRI (integral of PR(τ), from 0 to T and (context specific)
FRR (the proportion of individuals testing recently infected but have been infected for
over time T (time cut off of recency) are estimated by Equation 4.4.4.

FRR(a, t) =
∑τmax

τ>T R(a, t, τ)

∑τmax
τ=1 R(a, t, τ)

(4.4.4)

Stellenbosch University https://scholar.sun.ac.za



37 4.5. Simulation Platform

Averaged Excess Mortality

The platform takes in the excess mortality as a function of age - a, time - t and time since
infection - τ denoted by M(t, a, τ), but the Mahiane [3] framework requires the excess
mortality averaged over τ (times since infection) - M(t, a), therefore we estimate M(t, a)
in equation 4.4.5.

M(t, a) = ∑τ=1 [M(t, a, τ)] · P(t, a, τ)

∑τ=1 P(t, a, τ)
(4.4.5)

4.5 Simulation Platform

There are many ways to proceed from what has been said so far. For example, one
can design the simulator so that λ(a, t) emerges from some rules for how people of one
age have sexual contact with people of other ages, the prevalence, including detailed
distribution of times since infection (coding for infectiousness) providing for infectious
pressure. We simply declare the function λ(a, t) in a way that does not require looking
at the population state - it is just a fully specified function of age and time.

The platform is implemented in R and is primarily made up of numerous units that are
aggregated into a single function that is called once with the desired input parameters to
get an age and time structured population status at given cross sectional survey dates.
All the units can be executed independently and hence use of separate units of the plat-
form is possible. The intended use of the platform is to simulate an entire population
history at specified cross-sectional surveys and to ensure that the final output is as de-
sired.
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Figure 4.1: A depiction of how each calculation is linked to the next calculation in the platform.
The platform is composed of generic, independent, autonomous micro parts that are
unified into major functions to yield an age/time structured population. Each units
summarises a group of functions found within the umbrella term given to the box.

Given a set of epidemiological rates and parametric adjustments one birth cohort is simu-
lated at a time up to the specified maximum age.

Model Requirements - Inputs and Outputs

The epidemiological/demographic rates required are;

• Birth rates -β(t) and Mother to child transition (MTCT)- β I(t): these are two pa-
rameters, are both functions of time t - β(t), specifies the total number of individ-
uals born at a given time and β I(t) specifies the total number of infants who test
positive independent of the stage of infection out of β(t).

This is just a convenience to help interpret the population state numbers that
emerge. We always, for survey purposes, treat the population as effectively in-
finite, but we may want to implement ‘age weighting’ in which case it is useful to
have meaningful state variables form which we can define a relative population
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size for different age groups

• Incidence (λ(t, a)) - specified as a function of age (a) and time (t), extra incidence
parameters are specified in the global environment. For example, the shape, and
scale parameters of a log-normal distribution.

• Mortality - background and excess mortality - µ(t, a) and M(t, a, τ), respectively.
The mortality is specified as a function of age (a), and/or time (t), and time since
infection (τ) (only for excess mortality).

• Probability of testing recently infected - PR(τ) is user defined and is a function of
time since infection τ.

In addition to the rate functions the platform requires ‘parametric adjustment’ parame-
ters (housekeeping parameters)

• Time step δ - is the discretisation step for age, time, and/or time since infection
δ ∈ (0, 1].

• Maximum and minimum date births - DOBmin and DOBmax specify the date of
births of the oldest (DOBmax) to the youngest cohort (DOBmin) born in the popula-
tion.

• Reporting bin - specifies whether/not the DOB vector should be a δ step or use
the user defined reporting bin, if not specified the birth cohorts are simulated in
steps of δ from DOBmin and DOBmax. For example, reporting bin = 1, means birth
dates are spaced 1 year apart but the cohort states are still calculated in steps of
δ. The advantage being the discretisation errors are reduced, but still improve the
simulation’s run time. For the cases were the output’s age structure is reported in
steps δ (time steps), a function to aggregate the output into the desired reporting
bin is available.

• Time cut-off T - time threshold determines when one stops being classified as re-
cently infected.

• Time cut off switch - τ cut-off specifies whether or not the individuals with τ > T
be included in the calculation of the prevalence of ‘recent infections’ - ‘recency’.

• Time slice (cross-sectional surveys) - this is either a single calender dates or vector
of calendar dates on which the population prevalence are required.
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• Maximum age - amax the maximum age to which each cohort is simulated to,
but note that the final output will display the maximum age that corresponds
to the last cross-sectional survey (maximum specified time slice). For example
if DOBmin = 1980 and we require the population status in 2015, implies the age
range of the population is from 0 to 35 years. Internally the full calculation is done
of the state parameters up to age amax for each cohort in question.

Single Birth Cohort Simulation

Figure 4.2 shows how a single birth cohort is simulated based on the implementation of
Equations 3 to 9 and a set of inputs provided.

Figure 4.2: Trajectory of an age cohort with a shared date of birth. The diagram above de-
picts a detailed structure/trajectory for a single birth cohort starting from age 15.5 at
time 2000, and how it is populated into the data structure for a time step 0.1. An unin-
fected individual (susceptible) who survives in the uninfected state moves horizontally
as age/time passes, whereas an infected individual as time passes moves diagonally in
the age-time (a,t) and time since infection (τ) plane. Those who get infected at a given
age - a and time-t, for example, a = 15.5 and t = 2000 move into the infected state (row
below the susceptible -τ = 0).

To avoid storing large amounts of irrelevant population state data, once a birth cohort
has been simulated to its maximum age, only the population state at specific time points
of interest are saved and used to calculate prevalence, prevalence of recency, averaged
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excess mortality, and FRR, before the next birth cohort is simulated (see Figure 4.3 on
structured simulations). The output is stored in a dataframe with the corresponding
date of birth, age, cohort totals (alive individuals both susceptible and infected) and
Non-applicable (NA) is assigned to non-existent population counts/prevalence.

Structured Simulation

Now consider another example where δ = 0.1, Reporting bin = 1, first birth date in 2015
and last births at time 2020 and the required time slice is 2019 and 2020, then a total of
5 birth cohorts will be simulated and with ages ranging from 0.5 to 4.5. Note that for a
given birth date the platform assigns all the births occurring at that time to the middle
of the year or time step/reporting bin.

Figure 4.3: Depiction of the simulation platform output. For given ‘parametric adjustment’
parameters, the required time slices are 2019 and 2020 and specified dates of births 2015
to 2020. The output will correspond only to time slices 2019 and 2020 (Grey bands)
and the corresponding ages to these time slice from each birth cohort is 0.5, 1.5, 2.5, 3.5,
and 4.5 in 2020 and 0.5, 1.5, 2.5, and 3.5 in 2019 (no older ages are reported as there
are cohorts simulated before 2015). This plot depicts a specific scenario with time step
0.1 and reporting bin 1, note that births happen in the middle of the year. At each
cross-sectional survey, the platform yields a data frame of total population surviving
(T), prevalence (P), recency R), averaged excess mortality (M(a, t)) and the age specific
FRR.
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4.6 Simulation Platform Testing

The simulation platform was extensively tested, validated, and benchmarked using cus-
tom tests and investigations in R before the planned comprehensive investigations. A
few crucial tests are described below.

Correctness of Prevalence and Recency Calculations

Consider an epidemiological scenario where a birth cohort is exposed to constant inci-
dence but no mortality then, the closed-form (exact) solutions for the prevalence of HIV
(P) and prevalence of recency (R) at any point in time are given by;

P = 1− e−λ·t

R =
(e(Ω·λ) − 1) · e(−λ·t)

1− e−λ·t

Assuming a constant incidence λ = 0.01, no excess and base mortality (µ = 0 and
M = 0) and a date of birth in 1995, we simulate the cohort’s history until the age of
25 and compare the output to the closed-form calculations (our benchmark). Table 4.1
shows an extract of the simulation platform’s output tabulated together with the closed-
form calculations, including the absolute difference for P and R (ages 15.5 to 19.5).

Table 4.1: Simulation platform output versus closed-form calculation (benchmark). The Table
compares simulation platform’s output (time step = 0.01) to the closed form answer of
the prevalence and ‘recency’ and shows the absolute relative difference of prevalence
(∆P) and ‘recency’ (∆R).

Prevalence Recency
Age Platform Closed form ∆P Platform Closed form ∆R
15.5 0.1435848 0.1435848 0 0.0274485 0.0274451 0.0003315
16.5 0.1521063 0.1521063 0 0.0256529 0.0256498 0.0003098
17.5 0.1605430 0.1605430 0 0.0240630 0.0240601 0.0002906
18.5 0.1688957 0.1688957 0 0.0226454 0.0226426 0.0002735
19.5 0.1771653 0.1771653 0 0.0213735 0.0213709 0.0002581

The absolute difference estimated for the P is negligible (≈ 0 %) at a time step of 0.01.
Similarly, the R has a relative absolute difference of less than 0.02%. Figure 4.4 shows
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a detailed comparison of closed form calculation of P and R for all the simulated ages
(0.5:24.5), and there clearly is no distinction between the closed-form calculation and
simulation platform estimates.

Figure 4.4: Closed form versus simulation platform output. A detailed comparison of the
simulation platform output to the closed form calculation for a specific epidemiological
scenario where incidence is constant and there is no mortality, the reporting bin is 1 and
time step is 0.01.

Correctness of Aggregation of Mortality Over τ

We tested the aggregation over τ of the excess mortality calculated by the platform using
two approaches:

1. Test Case 1: We used the previous test scenario of constant incidence but with
constant base mortality (0.01) and no excess mortality. Calculating the average
excess mortality gave M = 0 as expected.

2. Test Case 2: As a spin off of the scenario in test case 1 we introduced a constant
excess mortality (= 0.1) and again aggregating over τ yielded a value not greater
than the input excess mortality but approaches the given value asymptotically (as
expected).
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Impact of Choice of Time Step

We used a standard Dell latitude 5490 laptop with RAM - 8 GiB, and processor - quad
core Intel (R) core (TM) i5 − 8350 CPU at 1.70GH. It is satisfying to note that all de-
sired calculations were doable on this very modest platform, but this did require some
streamlining to avoid unnecessary storage demands, and even then, choosing a small
delta value (0.001) can lead to inconveniently long run times.

In this section, we investigated and determined the effects of δ (the discretisation time
step) on the accuracy of P and R.

• Run time - δ if it is too small the simulation run is increased.

• Accuracy of P and R - reasonably δ should be no more than than a modest fraction
of the MDRI (Ω) and realistically available tests currently have an MDRI of about
0.5 years.

• Memory space - depending on the simulation specifications and the machine spec-
ifications where the code is being run may not be enough since there is limit on the
size of an R object (maximum dimension of an array in R is 231 − 1) at present

Given this limitation (bullet 3), the platform does not yield the entire history of the
population, but only the population status at pre-specified survey dates - called time
slice(s).
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Figure 4.5: Run time (seconds) of 5 arbitrary selected cohort sizes as a function of the time step..
Cohort size refers to the number of birth cohorts being simulated and is equal to the
length of the date of births supplied, we show a calculation of arbitrary chosen cohort
sizes for which we measure the runtime.

Figure 4.5 shows the runtime of the number of cohorts (1, 5, 10, 15, and 40) per sim-
ulation as a function of δ. If the population dimension increases (decreased time step
size or increased birth cohorts) then this results in an increased run-time. For example,
in one cross-sectional survey, suppose we need 40 cohorts with maximum age 50 and
time-step δ = 0.01 then the run time is approximately 184 secs (see: Figure 4.5).

Table 4.2, shows the estimates of R at age 20.5 from the simulation platform versus
the closed-form calculation. The simulation results are for a single birth cohort, δ =

[0.01, 0.5]. When δ ≤ 0.1 the percentage relative bias is between 0.012% and 0.013%, i.e.,
the R values associated with δ ∈ [0.01, 0.1] are all equal up to the 5th decimal place.
Running big (≤ 10 birth cohorts) simulations suggests settling for a time step (δ) of
0.1 which provides a reasonable trade-off i.e., faster run-time, minimum bias on R and
enough disc space.
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Table 4.2: δ and the associated run time of the simulation, and the estimated R (birth
cohort).

Time step Run time Closed form R Simulation R Relative bias (%)
0.010 4.43520927 0.02022370 0.02022614 0.01207868
0.025 0.81270123 0.02022370 0.02022615 0.01212643
0.050 0.16710210 0.02022370 0.02022618 0.01229658
0.100 0.05958414 0.02022370 0.02022632 0.01295190
0.500 0.01957679 0.02022370 0.02136397 5.63830692

Effects of Discretisation on Incidence Estimates IK and IM Based on Raw
Simulation Output

1. ‘Recency’ - Using the previously described scenario of constant incidence (0.01)
and no base/excess mortality we simulated an HIV epidemic and used Inctools
(Section 2.4) to estimate the incidence using the simulation platform output values
of P and R. We used the incidence estimate obtained from Inctools to quantify the
error term in γ8 (an error term in the weighted recency incidence estimator) and
compared it to what is expected i.e., the error should be some value plus γ8. γ8

(Equation 4.6.2) and IT (Equation 4.6.1 - the weighted incidence) are defined in
Kassanjee et al. [4] and also given below;

IT = IK

(
1 +

(
Ω

Ω− β · T

)
γ8 − β

(
T

Ω− β · T

) 7

∑
k=1

γk

)−1

(4.6.1)

where IK is the incidence estimate (as implemented in Inctools - R ), the second term
in parentheses captures the bias (which cannot be evaluated by an experimenter
[4] ) in the weighted incidence estimator IK , γks, where k = 1, ..., 7 are as defined
in Kassanjee et al. [4]. Note since β = 0, then Equation 4.6.1 reduces to IT =

IK(1 + γ8)−1 implying that γ8 = e and hence we only recap the definition of γ8,
given by Equation 4.6.2.

γ8 =
1

ΩT

∫ T

0
fNs(−t) · PR(t)dt (4.6.2)

In the given scenario, PR(t) = e−
(

t
η

)k

and fNs(−t) = eλ·t − 1 therefore γ8
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γ8 =
1

ΩT

∫ 0

−T
(eλ·t − 1) · e−

(
t
η

)k

dt (4.6.3)

Given our scenario and the fact that the susceptible population is depleting, we
expect to overestimate the incidence by a factor of (1 + e)−1. Specifically, for inci-
dence I = 0.01 and Ω = 0.500402 and solving for γ8 yields 0.002638103, and hence
the bias factor should be (1 + 0.002638103)−1.

The incidence estimate from Inctools is 0.01003 which, when we factor out the
bias, reduces to 0.01000361 implying that the absolute relative bias for the sce-
nario described above with a time step of 0.01 is 0.0361%. Varying the time step
i.e., 0.01 ≤ δ ≤ 0.1 yields an insignificant change in the incidence estimate and
hence it does not affect our choice to consistently use δ = 0.1.

2. Mahiane - ‘Synthetic Cohort’ Using the same scenario (constant incidence and
no excess mortality) we implemented the Mahiane method [3] to estimate the in-
cidence at the age of 24.5 (arbitrary chosen), using a time step (δ) of 0.01. Using
the prevalence P(24.5) and dP

dt = P(24.51)−P(24.49)
(24.51−24.49) the slope of the prevalence. The

calculation yields an incidence of IM = 0.00997387 (implying an absolute relative
bias of 0.02613%) and hence, based on the output from the simulation platform,
there are negligible discretisation errors to compromise the incidence estimation
process. Table 4.3 captures the output from the simulation platform used for the
calculation of the prevalence gradient at age 24.5.

Table 4.3: Prevalence output from the platform for the estimation of the gradient. A single birth
cohort is simulated from a constant incidence and no excess/base mortality with a time
step of 0.01 to enable estimation of the gradient of the prevalence for IM and incidence
is estimated at arbitrary age of 24.5.

Age Total Prevalence Recency Mortality
24.49 100 0.2172172 0.0165840 0
24.50 100 0.2172955 0.0165764 0
24.51 100 0.2173737 0.0165687 0

Effects Simple Random Sampling Incidence Estimates IM

Similarly, we implemented a simple random survey (where everyone has an equal chance
of being selected) and estimated the incidence. We set the survey sample size at 1 million
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and repeated the sampling process 10000 times, and for each bootstrapped sample, esti-
mated the Mahiane incidence. Additionally, we compared the difference in the relative
standard errors of the binomial approximation to the bootstrap approach, the absolute
relative difference in the relative standard errors was 0.283%. Implying the standard er-
ror can be calculated using the binomial approximation. The resulting relative absolute
discretisation error on the incidence estimates was 0.0131%.

4.7 Simulating Surveys

Simple Random Sample: Implementation

The survey implemented is an adaptation of simple random sampling; every individual
in a given age group has an equal probability of being selected and the heterogeneity is
only in the age. A survey simulation proceeds by using the simulation platform output
and survey specifications.

We illustrate the survey algorithm using an example. Given the survey specification (Ta-
ble 4.4) for ages 15 to 25 and prevalence data specifications from the simulation platform
(Table 4.5) for a specified time t = 2012, with a total sample size requirement of 4000.

Table 4.4: Example of survey specification. The survey specifications are given in 5-year age
bins that is ages 15-19 (bin 1) and 20- 24 (bin 2) and each bin is such that amin ≤ a < amax
(unless or otherwise stated).

Age bin one two
Age min 15 20
Age max 20 25

Sample size 2000 2000
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Table 4.5: Example of population state platform output specifications. The simulated popula-
tion status for ages 15.5 to 25.5, from a time slice (cross sectional survey) of 2012. Note
we chose a PR(τ) that ensures FRR = 0.

Dates Age Population Prevalence (P) Recency (R) FRR Excess mortality
2012 15.5 816.2374 0.0016967 0.812364 0 0.000008
2012 16.5 802.9602 0.0141436 0.521970 0 0.000039
2012 17.5 789.5816 0.0440682 0.339266 0 0.000111
2012 18.5 776.1079 0.0900368 0.229016 0 0.000249
2012 19.5 762.5352 0.1467310 0.159521 0 0.000483
2012 20.5 748.8428 0.2086098 0.113861 0 0.000849
2012 21.5 734.9878 0.2713802 0.082875 0 0.001385
2012 22.5 720.9011 0.3321801 0.061316 0 0.002135
2012 23.5 706.4916 0.3890993 0.046057 0 0.003135
2012 24.5 691.6565 0.4407839 0.035137 0 0.004415
2012 25.5 676.2849 0.4865116 0.027239 0 0.006003

1. Using the age specific population in the simulated prevalence, we partition the age-
bin sample size ni (in this case ni = 2000) in the survey specifications, among the
ages in the age-bin.

2. Based on the totals column in Table 4.5 we calculate the proportion of each age in
the age bin - age weight (Wa) shown in Table 4.6 (creates an age distribution within
an age bin), for example Wa(15) = population(15)

bintotal .

Table 4.6: Simulation platform and the survey specification combined. The table highlights
the internal calculations executed by the survey function to calculate the age weights for
each age in the specified age bin.

Survey Specifications Simulation Platform Output Calculated
Bin Sample size Dates Age Total Prevalence Recency Bin total Age Weight
15 - 20 2000 2012 15.5 816.2374 0.001696704 0.812364 3947.422 0.206777

2012 16.5 802.9602 0.014143647 0.521970 0.203414
2012 17.5 789.5816 0.044068168 0.339266 0.200025
2012 18.5 776.1079 0.090036816 0.229016 0.196611
2012 19.5 762.5352 0.146730963 0.159521 0.193173

20 - 25 2000 2012 20.5 748.8428 0.208609781 0.113861 3602.88 0.207846
2012 21.5 734.9878 0.271380217 0.082875 0.204000
2012 22.5 720.9011 0.332180077 0.061316 0.200090
2012 23.5 706.4916 0.389099349 0.046057 0.196091
2012 24.5 691.6565 0.440783856 0.035137 0.191973

7550.302 7550.302
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3. Using a multinomial distribution, we generate an age specific sample size Si such
that ∑<20

i=15 Si = 2000 (required sample size per age bin in the survey specification).
The multinomial distribution is also used on Si based on P and R to partition Si

into HIV negative (S), recent (R), and long infected (L) counts (as illustrated in
Table 4.6).

Table 4.7: Survey data derived from the survey specifications and simulation platform output.
The table depicts the final output of a survey implementation derived from the simula-
tion platform output and survey specifications. Age weight refers to the proportion of
the population in a given age relative to the age bin (5 year age bin).

Simulation Platform Output Derived sample Sample breakdown
Dates Age Prevalence Recency Age Sample Size Negative Recent Long
2012 15.5 0.001696704 0.812364 414 413 1 0
2012 16.5 0.014143647 0.521970 407 401 3 3
2012 17.5 0.044068168 0.339266 400 382 6 12
2012 18.5 0.090036816 0.229016 393 358 8 27
2012 19.5 0.146730963 0.159521 386 330 9 48
2012 20.5 0.208609781 0.113861 416 329 10 77
2012 21.5 0.271380217 0.082875 408 297 9 102
2012 22.5 0.332180077 0.061316 400 267 8 125
2012 23.5 0.389099349 0.046057 392 240 7 146
2012 24.5 0.440783856 0.035137 384 215 6 163

Variations of the algorithm implementation exist; for example, the algorithm yields in-
dividual based data if ‘individual’ is specified (as true). Additionally, in cases where
bootstrapping the survey is not required the expectation functionality can be used in
the algorithm (bypasses the multinomial sampling stage) and yields expected values
(rounded to the nearest integer). This reduces the runtime considerable and relies on
the delta method to estimate the standard errors.

4.8 Survey Data Analysis

We investigated the use of generalised linear models (GLM) to summarise the survey
data into P, R, and dP

dt (=
∂P
∂a + ∂P

∂t ) and quantified the errors (relative bias, relative stan-
dard error, and relative root mean square error) to determine the optimal (‘one size fits
most’) analysis approach. Below we outline the sequence of steps followed to arrive at
an optimal choice.
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Determine the Inclusion/Exclusion Criteria/ Data Truncation Rule

The inclusion/exclusion radius r is a value that defines the region/area with the data
points of interest (points used to estimate P, R, and dP

dt ), therefore given an incidence
estimation point (a0, t0) we specify r such that the data for subsequent step are specified
by the range a0 − r ≤ a0 ≤ a0 + r and t0 − r ≤ t0 ≤ t0 + r (see Figure 4.6).

Figure 4.6: Region with points of interest. The circle with radius r (inclusion radius) defines
the region with the points used in the model fitting.

Fit a Regression Model

We used GLM on the truncated data to estimate P, dP
dt , and R. The choice of link func-

tions were ‘identity’ and ‘logit’, for P and complementary log log - (‘clog-log’) for R.

P(t, a) = P(t0, a0) +
∂P
∂a

∣∣∣
t0,a0

(a− a0)

+
∂P
∂t

∣∣∣
t0,a0

(t− t0) +
∂P

∂t∂a

∣∣∣
t0,a0

(t− t0)(a− a0)

+
∂2P
∂t2

∣∣∣
t0,a0

(t− t0)
2 +

∂2P
∂a2

∣∣∣
t0,a0

(a− a0)
2

+ O(∆3)

(4.8.1)
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P(v, z) = P(v = 0, z = 0) +
∂P
∂v

∣∣∣
v=0,z=0

· v +
∂P
∂z

∣∣∣
r=0,z=0

· z

+
∂2P
∂z∂r

∣∣∣
v=0,z=0

· z · v +
∂2P
∂v2

∣∣∣
v=0,z=0

· v +
∂2P
∂z2

∣∣∣
v=0,z=0

· z

+ O(∆3)

(4.8.2)

To estimate P, and dP
dt using the ‘identity’ link function we used a variable transforma-

tion (45◦ τ
8 anticlockwise rotation - see Figure 4.7). This enables the estimation of dP

dt and
its standard error in one step, instead of estimating ∂P

∂a , ∂P
∂t , standard errors, and their co-

variance separately (a simplification only applicable with link function identity). There-
fore Equation 4.8.1 and Equation 4.8.2 give the functional forms of the fitted polynomial
in the case of no variable transformation and variable transformation, respectively.

Figure 4.7: Variable transformation. The Figure shows the axis transformation about the
point of interest (a0, t0) where incidence is to be estimated and when link function is
‘identity’ in GLM, and note τ = 360◦ and only the points within the region defined by r
are transformed. The solid arrows represent the original age and time axis whereas the
solid arrows represents the new axis after transformation.
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Similarly the logit link function can be used to estimate the prevalence and its gradient,
but in this case axis transformation offers no advantage and hence the data is used as is.
The details of the logistic regression are discussed in greater detail in Chapter 6.

The recency (R) is estimated using the GLM methods with link function ‘clog log’ (un-
less stated) and both the estimate of R and its standard error are readily available from
the GLM fitting process and hence no extra calculations are required.

Incidence Estimation

IK, and IM are as previously introduced in Chapter 3, and IOpt is the optimally weighted
incidence estimator derived from augmenting IK, and IM, using the inverse variance
method. Not much about these incidence estimators is covered in this chapter as each
one of them has a Chapter dedicated to the method.

We populate the incidence estimators IK, IM and IOpt previously discussed, with P, dP
dt ,

and R. The optimal inclusion distance and polynomial order are determined by varying
the various permutations of the two qualitative choices and at each step we determine
the relative errors of IK, and IM.

The standard error for each method is estimated through the delta method or repeating
the survey 10000 times (resample one survey data 10000 times) and for each sampled
survey the incidence is estimated. The 95 percentile range is then estimated for the 10000
incidence estimates. This is ideal for complex surveys as the bootstrapping captures
the complex sampling strategy and helps circumvent the challenges of estimating the
various covariance pieces required in the standard error of the incidence. In cases where
bootstrapping is not necessary the standard error and the covariance are estimated using
the delta method (see Appendix 4.11). Where applicable further investigations are done
using an optimal permutation of polynomial order and inclusion distance and these
included;

• Inter survey interval for IM

• Incidence trends (incidence differences from 2/3 cross sectional surveys)

• Post hoc averaging to improve incidence estimate’s precision and compared to the
true average incidence estimate
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• appropriate weight measure .

4.9 Investigation Flow of Analysis

Figure 4.8 highlights the internal core of the computational machine. An execution is
initiated by a complementary choice of ‘scenario’, which involves setting the initial pop-
ulation state, incidence and mortality, and survey or study designs. The simulation is
run, and the model world survey conducted to ‘generate data’. The selected method is
used to ‘Analyse’ the modelled survey data into incidence (point estimates, confidence
intervals, trends, posteriors, etc.).

If there are concerns about the robustness of formulas for variance, the generation of
data sets can be repeated, as indicated in Loop 1. Having established performance in
one scenario, Loop 2 enumerates a choice of scenarios on which performance is to be
benchmarked. Loop 3 involves the selection and implementation of variations in qual-
itative analytical model choices, or parameters. The final step involves evaluating per-
formance as a function of conditions, to determine the best choice for a kind of scenario,
and describe easy or difficult scenarios for a given method.
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Figure 4.8: The Investigation flow. Highlights the internal mathematical computation and
core of the platform. We show how the different methods and scenarios are investigated
and evaluated. Loop 1 denotes the random iterations to measure reproducibility, loop
2 points to the selection of a new scenario to evaluate the performance of the system
under varied epidemiological/demographic functions and finally loop 3 is the selection
of qualitative choice and parametric adjustment.

Stellenbosch University https://scholar.sun.ac.za



Chapter 4. Simulation/Benchmarking Platform 56

4.10 Profiling the Investigation Algorithm

We implemented a basic profiling algorithm to investigate the time associated with the
key blocks in generating and analysing the data. The analysis algorithm has two main
aspects that were of concern to us;

1. Survey implementation and

2. Modelling P, R, and dP
dt .

For each unit we investigated the run-times for 101, 102, 103, and 105 iterations to yield
run time per execution of the survey and the parameter estimation process (call to GLM).

Table 4.8: Execution time in (seconds) for the survey implementation versus the call to
GLM

iterations survey runtime (sec) GLM runtime (sec)
1 101 0.72 0.1956592
2 102 4.22 0.5040493
3 103 37.46 3.2780149
4 104 376.98 31.6990335
5 105 3166.84 307.7739689

Table 4.8, Execution times for iterations for the survey implementation versus the pa-
rameter estimation, the analysis algorithm takes longer to generate surveys versus the
call to GLM and the magnitude increases rapidly with increased iteration numbers.

To counter the runtime challenge we implemented parallelisation and in some instances,
where bootstrap was not necessary, we used the delta method to approximate the 95 per-
centile range of the incidence estimates. The advantage being that delta method requires
a single call of the algorithm with expectation set to TRUE.

4.11 Discussion/Conclusions

The simulation platform is versatile and is primarily meant to mimic the HIV epidemic
without any social interactions incorporated (non-mechanistic, non-predictive and non-
explanatory), but can be used to simulate any chronic condition epidemic. The plat-
form is meant to test, compare, and validate incidence estimation methods i.e., facil-
itates method development. The platform takes epidemiological/demographic rates
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and parametric adjustment parameters to yield the population state at a given time and
for all ages up to the maximum age.

This is not a recreation of an existing tool as we desired specific features and we could
not find a tool with the desired specifications i.e., tracks the time since infection, allows
the specification of PR(τ) , granular tracking of τ and tracks the excess mortality as a
function of τ.

The high level points that were covered in this section include;

1. The simulation can run seamlessly on standard computers with no need for high
performance or cloud computing as long the required output is of a reasonable
size and the data store at each calculation point does not exceed the disc size limit
in R.

2. The quantified discretisation errors were shown to be almost negligible (δ = 0.1)
compared to closed form approximations and hence the simulation output can be
used in further analysis with discretisation errors being the least of our concerns.
The objective was to ensure that the platform offers discretisation errors less than
at least 1%.

3. P and R were estimated accurately and hence it translates to an accurate imple-
mentation of the other micro units that make up the platform -such as the counts
(susceptible and infected populations) and their cumulative probabilities.

4. The incidence estimates IM and IK from the raw prevalence estimates with uncom-
plicated epidemiological rates yielded relative bias estimates less than 1% for both
no sampling (prevalence values used as is) and simple random sampling.

5. The profiling investigation highlighted that the survey simulations greater run
time compared to the data smoothing process. Hence we estimated the standard
error using either bootstrapping (with parallelisation) and in some instances the
delta method.
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4.A Appendix: Parameterising Epidemiological/ Demographic
Rates

All epidemiological rates are functions of either age, or time, or time since infection, and
hence all the parameters crucial to the functional forms of the selected epidemiologi-
cal/demographic rates, parametric choices, and qualitative parameters are predefined
in a separate R script called Global variable script. The analysis script sources global avail-
able script first before executing the investigation in question. Users of the platform have
the option to define their own functions, but should adhere to the requirement of ensur-
ing that the rates are strictly functions of a, t, and τ. Below we present some of the utility
functions used in the simulation;

Birth Rate

The total counts of birth is essential to the population simulation, and we do not liken
it to any particular population growth rate in the world but treat this rate as a tool to
enable us to execute the simulations. The implementation is such that all the births
happen at a particular time (birth date) and if the time step is δ, then the births occur at
δ
2 . All simulations used a constant birth rate - β(t). If the functional form of the birth
rate is complex (not constant) the other extra parameters will need to be defined in the
global variable script.

Incidence

We use a log normal distribution to parameterise the incidence as a function of age a
- f (a) (Equation 4.A.1) and f (a) is rescaled by Rs ( mode for the specified log normal
distribution) so that it lies between 0 and 1. Specifically:

f (a) =

0 a < a0

1
σa·(a−a0)

√
2π
· e
−(log(a−a0)−βa)2

2σa a ≥ a0

(4.A.1)

Where a0 is the age at which incidence departs from 0 for the first time - 14 years in
our case. βa is the mean of the log distribution, σa is the standard deviation of the log
distribution and we choose parameters βa = 2.3 and σa = 0.5 so that the peak incidence
is always attained at age 20.
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Similarly, in the case were we parametrise the P(t) (the peak incidence experienced at
time t) to follow a log normal distribution, then P(t) is given by;

P(t) =


0 t < t0

1
σt·(t−t0)

√
2π
· e
−(log(t−t0)−βt)

2

2σt t ≥ t0

(4.A.2)

Where t0 is the initial time when incidence is introduced, t is the time of interest, σt is the
shape parameter (standard deviation of the log distribution) in time and βt - is the mean
of the log normal distribution. We set the parameters βt = 2.5, σt = 0.325, t0 = 1985 for
times t ∈ [1985, 2030].

We also made available the P(t) function presented in Mahiane et al. [3], which is a
piecewise linear function in time i.e., linearly increases in time up to the maximum
specified incidence from a given time, remains constant at the maximum value for a
stipulated interval, and then gradually declines for another given time interval until it
reaches some stipulated incidence value and remains constant thereafter (see Mahiane
et al. [3]). The overall incidence function is given by;

λ(t, a) = Rs · f (a) · P(t)

The incidence function is a function of a and t. The shape, scale, and other parameters
are defined in the global variable script as previously stated.

Base mortality

The base mortality in all the simulations is parameterised using a linear function of age
(only) starting at 1% to 3% per annum for ages 0 to 50 and remains constant thereafter.
The platform requires that you supply the base mortality as a function of time and age
and it is possible to use a function of either of the two variables.

Excess Mortality and Averaged Excess Mortality (Platform Output)

The platform requires the excess mortality as a function of age, time, and time since
infection. We have several excess mortality utility function, namely;

1. Constant,
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2. Function of age (a) and time since infection (τ) i.e., internally it is a function of age
at infection ai (see Mahiane et al. [3])

3. Function of age (a), time (t) and time since infection (τ) i.e., internally it is a func-
tion of age at infection ai and t

Below we give details on the excess mortality used in the simulations that are meant for
the Mahiane et al. [3] investigations. The excess mortality in bullet 2 and 3 above were
parameterised using a Weibull functional form, with a shape parameter (ω = 2.28) scale
parameter, α(a, t) which is a function of age and time and specifies the median survival
times for infected individuals.

We defined the median survival time using a linearly decreasing function of the age at
infection (ai) between the maximum (maxj) and minimum (minj) median survival times
and is j = 1, 2 depending on the time-pre-treatment era (j = 1) versus treatment era
(j = 2), respectively

ηj(ai) =


maxj ai < a0
maxj−minj

a0−amax
· (ai − a0) + maxj a0 ≤ ai ≤ amax

minj ai > amax

(4.A.3)

Since j ∈ (1, 2), this implies that we have η1(ai) and η2(ai), such that the overall scale
parameter of the excess mortality rate is a piecewise function given by Equation 4.A.4.

α(a, t) =


η1(ai) ti < t0

η2(ai)−η1(ai)
tmax−t0

· (ti − t0) + η1(ai) t0 ≤ ti ≤ tmax

η2(ai) ti > tmax

(4.A.4)

Where t0 is the time treatment starts and tmax is the time the median survival times
become constant. For our simulations, we defined the excess mortality;

M(a, t, τ) = ω

(
1

α(a, t)

)(
τ

α(a, t)

)ω−1

(4.A.5)

Note that M(a, t, τ) is a function of a, t and τ, and has internal functions(ηj(ai) and
α(a, t)). M(a, t, τ), firsts calculates ai and ti and then parses them to the internal functions
(ηj(ai) and α(a, t)).
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Recency Function PR(t)

This function is meant to calculate the probability of testing recently infected given that
you tested HIV positive. We parameterised this probability using a Weibull distribution
function as it describes the behaviour of most biomarkers. The function is required only
as a function of time (t) and the shape and scale parameters are specified in the global
variable script. The MDRI is calculated in the global variable script and is dependent on
your choice of recency function.

4.B Appendix: Global Variable Script

Below we show an example of a global variable script with all the epidemiological/de-
mographic rates functions, their extra parameters, qualitative choice and investigation
stipulations.

########################################################################

# Global Variables to Control

# - Demographic/Epi Simulation

# - Survey Simulation

# - Survey Data Analysis

########################################################################

####################################

# BEGIN Simulation Housekeeping

####################################

time_slice = seq(1980, 2025, 2.5)

max_age = 50

min_birth_date = 1935

max_birth_date = 2025

time_step = 0.1

reporting_bin = 1

####################################

# END Simulation Housekeeping

####################################
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####################################

# BEGIN Survey Design

####################################

# survey_speccs

alteredspecss <- data.frame(dates = c(rep(time_slice[1], 10)),

samplesize = c(rep(samplesize, 2),samplesize, rep(samplesize, 7)),

agesmin = (c(0, 5, 10, 15,20, 25, 30, 35, 40, 45)),

agesmax = (c( 5, 10, 15, 20, 25, 30, 35, 40, 45, 50)))

####################################

# END Survey Design

####################################

####################################

# BEGIN Incidence Estimation Housekeeping

####################################

estimatemethod = ``Mahiane"/ ``Kassanjee"/ ``Optimally"

recency = T

method_weight = NULL

# incidence prediction point

age_predict = c(18, 22, 32, 42)

time_predict = 2002.5

# incidence anchor points (when data is to be transformed)

agetimetrans = TRUE

anchorage = age_predict #15.5:45.5

anchortime = 2002.5

# Taylor series expansion

overall_weights = FALSE

prevtaylororder = 1:4

rectaylororder = 1:4
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# GLM link functions

prevlink = "logit"

reclink = "cloglog"

psilon = 0.01

# Inclusion criteria

inclusion_distance = seq(2,6, 1)

timecutoff = 5 # when method is distance

inclusionmethod = "distance" # can be circle/distance

# Mahiane method extras

excessmortality_se = 0

# Kassanjee methods extras

RSE_MDRI = 0.00001

FRR = 0

RSE_FRR = 0.00001

BigT = 730

# extras

expectation = T

iterations = 1

individual = F # aggregate if individual is TRUE

points_weights = F

####################################

# END Incidence Estimatin Housekeeping

####################################

####################################

# BEGIN Demographic rate functions

####################################

####################################

# Fertility Functions

# (GV_fertility)
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fertility_function = constant_birth_rate

GV_fertility_constant = 10000

# MTCT Functions

# (GV_mtct)

mtct_function = constant_pmtct_rate

GV_mtct_constant = 0

# constant_pmtct_rate

# GV_mtct_constant = 0

###################################

# Incidence Functions

# (GV_inc)

incidence_function = lognormalage_time_incidence_stretched

#age specifications

GV_inc_min = 0

GV_age_critical = 21

GV_stretchfactor = 2

GV_inc_betat = 2.3

GV_inc_sigma2 = 0. 5

#time specifications

GV_inc_time_debut = 1985

GV_inc_betat = 2.5

GV_inc_sigma2 = 0.324575

GV_timestretch_factor <- 2

GV_time_critical <- 1998

###################################

# HIV-free mortality functions

base_mortality_function = time_indep_age_linear_base_mortality #(Linear in Age)

GV_basemort_constant = 0

GV_basemort_agemin = 0

GV_basemort_agemax = 50

GV_basemort_min = 0.01
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GV_basemort_max = 0.03

###################################

# HIV-positive mortality functions

excess_mortality_function = timeage_instanteneous_excessmortality

GV_treat_starts = 2005

GV_treat_constant = 2015

GV_maximum_survival_scale = 40

GV_minimum_survival_scale = 15

GV_maximum_survival_scale_pretreat = 15

GV_minimum_survival_scale_pretreat = 5

###################################

# recency functions

# (GV_prt)

recency_function = weibull_recency

GV_prt_scale = 0.5

GV_prt_shape = 5

GV_prt_bigt = 2

# MDRI_calculation

MDRI = (calculate_MDRI(recency_function = weibull_recency) * 365.25)

####################################

# END Demographic rate functions

####################################
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Chapter 5

Optimal accounting for age and time
structure of HIV incidence estimates
based on cross-sectional survey data
with ascertainment of ‘recent
infection’

5.1 Abstract

Background

Many surveys have attempted to estimate HIV incidence from cross-sectional data which
includes ascertainment of ‘recent infection’, but the inevitable age and time structure of
these data has never been systematically explored - no doubt partly because statistical
precision in such estimates is often insufficient to allow for satisfactory disaggregation.
Given the non-trivial age structure of HIV incidence and prevalence, and the enormous
investments that have been made in such data sets, it is important to understand effec-
tive ways to extract valid age structure from these precious data sets.

This chapter is available as a preprint: authors: Mhlanga, L. Grebe, E. Welte, A., Title: Optimal ac-
counting for age and time structure of HIV incidence estimates based on cross-sectional survey data with
ascertainment of ‘recent infection’, DOI: 10.21203/rs.3.rs-871044/v2

66
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Methods

Using a comprehensive demographic/epidemiological simulation platform developed
for this, and some wider, purposes (documented in more detail separately) we simulated
a complex ‘South Africa inspired’ HIV epidemic, with explicitly specified 1) age/time
dependent incidence, 2) age/time dependent mortality for uninfected individuals, and
3) age/time/time-since-infection dependent mortality for infected individuals. In this
simulated world, we conducted cross-sectional surveys at various times, and applied
variants of the recent-infection-based incidence estimation methodology of Kassanjee
et al. We analysed in considerable detail how to smooth, and average over, the age
structure in these surveys to produce the incidence estimates, paying attention to the
fundamental trade off between bias and statistical error.

Results

We summarise our detailed observations about incidence estimates, generated by vari-
ous age smoothing or age disaggregation procedures, into a straightforward fully spec-
ified ‘one size fits most’ algorithm for processing the survey data into age-specific inci-
dence estimates: 1) generalised linear regression to turn observations into ‘prevalence’
of ‘infection’ and ‘recent infection’ (logit, and complementary log log, link functions, re-
spectively; fitting coefficients of up to cubic terms in age/time); 2) a ‘moving window’
data inclusion recipe which handles each age/time point of interest separately; 3) post
hoc age averaging of resulting pseudo continuously fitted incidence; 4) bootstrapping
as a generic variance/significance estimation procedure.

Conclusions

As far as we are aware, this is the first analysis of several fine details of how age structure
in cross-sectional surveys interacts with recency-based incidence estimation. Our pro-
posed default estimation procedure generates incidence estimates with negligible bias
and near-optimal precision, and can be readily applied to complex survey data sets by
any group in possession of such data. Our code is available, in part freely through the R
computing platform, and in part upon request.

5.2 Introduction

Population-level cross-sectional surveys, including HIV status determination, are con-
ducted routinely in many Sub-Saharan countries. Within the last two decades, many of
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the surveys include administering a ‘recency’ test to consenting individuals that have
tested HIV positive. Defining a transient ‘recency infection’ state, among the HIV posi-
tive group, allows for the derivation of an HIV incidence estimator that resembles that
of transient conditions.

Various methodologies for incidence estimation, based on ‘recency’ ascertainment [4, 38,
50, 63, 64] have been proposed. We will use the framework of Kassanjee et al.[4], which,
we would argue, is the formally correct approach.

We envisage a ‘recency’ state that is fundamentally defined through standardised and
validated objective laboratory procedures, sometimes known as a Recent Infection Test-
ing Algorithm (RITA), or Test for Recent Infection (TRI). For technical details, we strongly
recommend a close reading of the seminal derivation of the estimator [4] and for initial
efforts to investigate age structure, we suggest looking at Grebe et al. [9].

A typical RITA (applied only on sensitively and specifically classified HIV infected re-
spondents) defines‘recency infection’ as having:

1. A lower-than-threshold immunological marker (like antibody titre, avidity, or HIV-
specific component fraction) and

2. A non-negligible Viral Load, defined by some threshold

These two typical components of the test serve the following functions:

1. The serology marker acts as a rough biological clock indicating duration of infec-
tion, and

2. The viral load marker rules out stable treatment (addressing the fact that consistent
viral suppression typically rolls back the naive infection-time clock)

Details of thresholds are a subtle matter involving challenges in the development of an
appropriate dynamic range for the assaying procedures employed, and some optimisa-
tion based on analysis of results obtained on substantial panels of well curated speci-
mens [65].

The ‘recency infection’ case definition is reflected in the estimator via two parameters:
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1. Mean Duration of Recent Infection (MDRI): the average time individuals are clas-
sified as recently infected on a given RITA, all while having been infected for a
time less than some convenient bookkeeping cut-off T [65].

2. False Recent Rate (FRR): the proportion of the long-term infected individuals (those
infected for longer than the bookkeeping recency cut-off T) that are (‘falsely’) clas-
sified as recently infected [9, 65, 66].

MDRI and FRR are, unfortunately, context-dependent, varying by such factors as domi-
nant circulating virus subtypes, antiretroviral treatment coverage, and detailed epidemi-
ological factors like current and recent history of incidence. For a RITA to be of signif-
icant value in the context of realistic survey sizes and currently envisaged contexts of
application:

• The MDRI needs to be of the order of half a year [74], and subject only to minor
variation between times and places for which incidence estimates are to be com-
pared.

• The FRR needs to be below 1% [74]. i.e. the probability of false recent result,
among ‘definitely long infected cases’, meaning infected for longer than T, must
be reliably known to be less than 0.01.

There are a number of significant loose ends on matters of optimisation of analysis.
This despite the fact that: HIV incidence estimation has been of high interest for several
decades, considerable work has been done to extract such estimates from data sets gath-
ered at great effort and cost, and there is a semblance of consensus that the Kassanjee
incidence estimator (IK) is the only formally rigorous and consistent approach to such
estimation.

In particular, there is no general understanding of how to analyse and interpret the non-
trivial age structure of HIV survey data. In outline, the present work has the following
high-level components:

1. Simulating ‘realistic’ epidemics and cross-sectional surveys;

2. Applying either categorical criteria or smoothing algorithms to the survey data, in
order to infer (age- and time-structured) prevalence of HIV infection, and preva-
lence of recent infection amongst HIV positive subjects;
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3. Estimating incidence, and incidence differences/trends, from these smoothed func-
tions, using the Kassanjee framework;

4. Evaluating the relative merits of various smoothing and averaging schemes, by
comparing estimated with the known incidence parameter values in the simula-
tions; and

5. Proposing a generic one-fits-most approach to the main use-cases of incidence es-
timation.

This paper is the first of three companion pieces looking at a closely related set of varia-
tions on the theme of smoothing survey data to optimally extract the age/time structure
for the purposes of estimating HIV incidence.

5.3 Methods

5.3.1 Computational Environment

All computations were performed in the R system for statistical computation [67], and
required only an ordinary laptop/pc hardware platform. Core evaluation of the Kassan-
jee estimator and its variance was largely performed by functionality in the R package
inctools [60], available on CRAN.

5.3.2 Simulations

We used a customised simulation platform that requires only emergent epidemiological
rates:

• birth rates as a function of time,

• incidence as a function of age and time ,

• background mortality as a function of age and time, and

• disease associated mortality as a function of age, time and time-since-infection.

This means we do not need to specify (i.e. ‘make assumptions about‘) mechanistically
detailed processes like contact rates, mixing rules, etc. in order to simulate an HIV
epidemic that resembles what has been observed in generalised epidemics, such as, in
South Africa. This platform, which is described in detail separately [68], allows us to
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track the age, time, and time-since-infection structure of the prevalence of infection/dis-
ease (interpreted as HIV), as well as the age and time structure of the prevalence of ‘re-
cent infection’ (sometimes abbreviated to ‘recency’). Using these simulated prevalences,
we then simulated cross-sectional surveys (notably in 1990, 1995, 2000, 2005, 2010, 2015,
and 2020) with varied sampling densities as a function of age (notably: uniform sam-
pling density per year of age, and sampling density proportional to population density
per year of age). The details of the functional forms which we used for the age, time,
and, where applicable, time −since-infection dependence of the demographic process
parameters are found in Appendix 5.A.

5.3.3 Estimating Incidence from One Cross-sectional Survey

IK =
P(R− β)

(1− P)(Ω− β · T) (5.3.1)

Where, P is the HIV prevalence, R is the prevalence of recency among the positive, Ω
is the Mean duration of recent infections(MDRI) and β, is the false recency rate (FRR),
and T is time cut-off. A delta method-based formula for variance/standard error of in-
cidence estimates has been derived, and this replicates very closely the values obtained
by either bootstrapping a data set, or outright repeating (the simulation of) the entire
survey process.

5.3.4 Estimating an Incidence Difference from Two Cross-sectional Surveys

When there are two cross sectional surveys, the Kassanjee estimator can be directly ap-
plied separately to the data set from each survey. However, the estimation of incidence
differences requires some care, as the two estimates are usually not entirely indepen-
dent. Most typically, even if the prevalence estimates are completely independent, at
least the estimates of the recency test properties (Ω and β) are not independent. The
point estimates of MDRI and FRR may be exactly the same numbers, derived from the
same background analysis. In this case, they would be perfectly correlated. The FRR
is almost inevitably somewhat different between any two contexts, but since this differ-
ence may not be directly estimated, it may still be rational to treat it as ‘estimated once’-
and this is how we proceed in the present analysis. Alternatively, MDRI and FRR may
be similar numbers estimated by slight contextual adaptations to a shared base estimate
obtained for a shared biomarker - in which case they would be significantly correlated in
a way that would need to be analysed on a case-by-case basis. If the two recent infection
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tests are based on different biomarkers, whose properties are estimated on independent
(or sufficiently large) specimen panels, it would be reasonable to treat MDRI estimates
as independent.

In the present investigation, we consider the possibility of analysing the combined data
set from two surveys in one single regression, to obtain smoothed prevalence from as
much data as possible. In this case, the correlation in prevalence estimates will be com-
plicated, and probably not readily estimated by means other than brute force bootstrap-
ping. However, rather than estimating the correlation as an independent parameter,
and then propagating the implications of that parameter into an incidence difference
variance formula, we propose that it is generically more robust, and always computa-
tionally feasible, to generate bootstrapped data sets by resampling the full data, and thus
generating a large number of incidence difference point estimates, from which a stan-
dard error can be obtained. This makes the most sense for real world data sets, where a
little computational delay is the least of many challenges faced by investigators.

5.3.5 Binning Approach to Estimating P and R

Typically, one uses all the data from the survey to produce an incidence estimate for the
entire population, or one divides the data according to 5 year-age bins. An exception is
Grebe et al. [9]. The reason for this is largely the size of the data set, which usually leads
to very uncertain incidence estimates for small age ranges. When binning data, we use
a binomial exact function in R.

5.3.6 Regression Approach to Estimating P and R

A key point in the present investigation is the exploration of the performance of various
regression models to summarise the survey data into P(a, t) and R(a, t). We considered
linear models and differing in:

• the link function,

• observation/data inclusion/exclusion criteria, and

• polynomial order in powers of age/time.
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5.4 Results/Discussion

All incidence estimation was done in the simulated ’South Africa −like’ epidemic al-
luded to above, and described in more detail in the Appendix 5.A

5.4.1 Ignoring Age Structure

Figure 5.1: Representative incidence estimates derived by treating an entire survey data set
as one large age bin (red) shown alongside the ‘true’ incidence of the surveyed population i.e.
age-weighted to the susceptible population (green)). From each five−year age bin (15− 19,
20− 24, . . . , and 40− 44) 4 000 individuals were sampled with equal probability (total
sample size of 24 000).

Figure 5.1 shows a common way in which incidence estimates are derived and pre-
sented. All the data from a cross−sectional survey is used to derive one incidence es-
timate, without regard to age structure. We see that this approach has little bias and
reasonable precision. An important caveat when treating a survey data set as one large
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age range is that the complex age structure of the incidence is hidden and no highly-at-
risk ages can be identified.

Figure 5.2: Incidence estimates derived by decomposition of each survey data set into 5-year
age bins (red) shown alongside the ‘true’ incidence within each age bin i.e. age−weighted to
the susceptible population within each bin (green). From each five−year age bin (15− 19,
20− 24, . . . , and 40− 44) 4 000 individuals were sampled with equal probability (total
sample size of 24 000).

5.4.2 Regression

A crucial part of the present investigation is understanding how one might extract
prevalence estimates (of HIV and recency) from survey data in the form of well fitted
functions of age, and how this might be ‘optimised’ for the purposes of estimating inci-
dence. We considered permutations of link function, data inclusion rules, and polyno-
mial order (powers of age) of the fitting function. Based on preliminary investigations,
we:
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• set the default link functions of P and R to logit and complementary log log, respec-
tively,

• computed P and R separately for each integer age, by performing a fit of data ‘suf-
ficiently close’ to the age of interest (defined simply by an age difference cut−off),and

• explored in great detail the choice of inclusion distance and polynomial order. To
avoid undue proliferation of permutations, we always used the same values of
these parameters for the calculation of both P and R.

Figure 5.3: Relative bias− relative standard error− and relative root mean square error− at age
20.5− 30.5− and 40.5 (rows)− using polynomial orders 1− 4 (columns)− in each case as a
function of data inclusion radius (x−axes). These errors are based on the cross−sectional
survey simulated in 2015− with a sampling density of 4000 per 5−year age range.

We executed all combinations of polynomial order and inclusion distance, for each in-
teger age from 15 to 44, using data from each of the surveys conducted in 1990, 1995,
2000, 2005, 2010, 2015, 2020. This led to too many individual results to present here. We
demonstrate some key features in the body of this article, and display additional results
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in the Appendix 5.A.

Figure 5.3 shows (percentage) relative ’errors’ associated with estimating P and R, using
variations (defined by age polynomial order and age inclusion radius) on this regres-
sion approach, applied to the 2015 survey data. The errors are colour coded turquoise
and lilac for P and R, respectively. Each line type represents one of the 3 relative errors:
dotted − standard error, dashed − bias, and solid − total root mean square error. Note
that only bias has a meaningful (plus/minus) sign. Each row shows relative errors for a
single age, as labelled. Each column corresponds, as labelled, to the polynomial order 1
− 4, and the x−axes of individual plots represent the inclusion distance.

Figure 5.4: Relative root mean square error for estimated prevalence, recency, and incidence.
These errors are based on the cross-sectional survey simulated in 2015 on the canonical
scenario- with a sampling density of 4000 per 5-year age range.

Figure 5.4 shows just the relative root mean square errors, but in addition to the errors
in Prevalence and Prevalence of Recency among positives, also shows the error in the
estimate IK, for the same ages presented in Figure 5.3. Evidently R is the main source of
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errors in IK as the relative root mean square error of R largely tracks that of IK. Instead of
generating a large number of plots similar to Figure 5.4, by displaying individual results
from all permutations of polynomial order, inclusion distance, age, and survey round
(in our canonical scenario described above) we can summarise the relative root mean
square errors into one plot, showing the distributions of relative root mean square error
for P, R and IK, as shown in Figure 5.5.

Figure 5.5: Distributions of the relative root mean square errors of Prevalence- Recency- and
Incidence- over the canonical permutation of survey dates and ages- shown separately for each
choice of polynomial order of regression formula (columns 1−4) and choice of data inclusion
distance in the age direction (row label). These estimates are based on the canonical sce-
nario and surveys simulated throughout this section- comprising 30 integer ages and 7
surveys- for a total of 210 estimates to construct each of the distributions.

Even at the generous sample size used here (4000 individuals per 5 year age range) the
standard error of incidence estimates consistently exceeds the bias. While this is true
for both the underlying estimates of prevalence and recency, it is well known that the
standard error in the prevalence of recency is the most important source of the standard
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error in incidence estimates.

Comparing different choices for inclusion radius and polynomial order of fitting func-
tion, only the linear fit shows a stark deterioration as the inclusion radius becomes ‘too
large’- a manifestation of the bias we saw in Figure 5.3. There is little to choose between
the third and fourth order fitting procedures, but we noted, by looking at estimated stan-
dard errors across repeats of surveys, that the standard errors are more tightly clustered
for the cubic fitting. We henceforth use, unless specified otherwise, a cubic polynomial
order and an inclusion window of 10 years around the age of interest.

Figure 5.6: Comparison of the incidence estimates to the true incidence at selected epidemic
stages. Shows the comparison of incidence estimates to the true incidence at epidemic
stages simulated in 1990- 2000- 2005- 2015- and 2020 (moving window vs fixed window).

In Figure 5.6 we see a comparison of this ‘moving data inclusion window’ (cubic with
10 years on either side of age of interest) with a fit performed over the entire range of
the age data (15-45), for 4 epidemiological stages. The true incidence is also shown. The
slight decrease in standard error achieved by using all the data in a single fit seems to
be more than offset by the appearance of significant bias.
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Table 5.1: Age specific incidence estimates (in % p.a.) derived from the regression versus naive
approach.

Age True Regression Estimate Naive Estimate S.E. Naive
Regression

20.5 2.54 2.64 (1.70−3.59) 2.63 (1.61−3.66) 1.08
21.5 2.47 2.55 (1.97−3.13) 2.56 (1.53−3.59) 1.76
22.5 2.40 2.48 (1.87−3.10) 2.49 (1.46−3.52) 1.68
23.5 2.32 2.40 (1.82−2.98) 2.41 (1.36−3.46) 1.80
24.5 2.23 2.32 (1.80−2.83) 2.32 (1.28−3.37) 2.04
25.5 2.13 2.23 (1.70−2.75) 2.22 (1.19−3.24) 1.95
26.5 2.03 2.13 (1.55−2.71) 2.13 (1.09−3.17) 1.80
27.5 1.93 2.02 (1.46−2.59) 2.02 (0.97−3.07) 1.85
28.5 1.84 1.91 (1.34−2.47) 1.91 (0.89−2.93) 1.82
29.5 1.74 1.82 (0.89−2.74) 1.82 (0.77−2.86) 1.13

Figure 5.7: Representative incidence estimate by age from focused survey of 24000 individuals
in the age range 20-30.

Table 5.1 presents a comparison of age specific incidence estimates derived from our pro-
posed regression with the naive approach of estimating P and R for each age by simply
using the observed prevalences in a one-year age bin. The mean and ranges summarise
the point estimates from 10,000 repeats of the entire survey. Expectation values of the
point estimates from these two approaches show precisely the same negligible bias, but
as expected, the standard errors are substantially smaller for the estimates derived from
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the regression approach. Figure 5.7, is a graphical representation of Table 5.1, and com-
pares the age specific incidence estimates derived from the binomial exact versus the
regression approach for ages 20.5 to 29.5.

5.4.3 Post Hoc Age Averaging

Integer age specific incidence estimates for similar ages are fairly correlated as they are
based on very similar data sets, but they are derived from age-specific customisation and
hence each contain some different information. Hence, the question arises whether some
averaging over these incidence estimates might provide a reduction in statistical error.
To explore this, we performed variable window averaging of the integer age specific
estimates obtained by our canonical regression. Figure 5.8 shows the standard errors of
such estimates as a function of the averaging window, for a combination of ages and
times, using our canonical scenario and survey times.

Figure 5.8: Incidence’s relative standard error as a function of the binning strategy for simulated
times 1995- 2005- 2010- 2015- and 2020 and ages 22- 27- 32- 37- and 42.

5.4.4 Incidence Trends

Increasingly, major population-based surveys with recency ascertainment, such as the
PHIA surveys, are being performed in multiple rounds. Naturally, one would like to
use such data sets to estimate changes in incidence over time.
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Various attempts will inevitably be made to estimate mean or midpoint incidence be-
tween major surveys, based on such ideas as ‘synthetic cohort’ analysis [2, 3]. These
methods do not necessarily require, or have any role for, recency data. In the present
discussion, it makes sense to ask how such midpoint estimates would be obtained via
the Kassanjee analysis, and how accurate and precise they are expected to be. We used
pairs of surveys 5 years apart, from our canonical set of surveys, and performed a simul-
taneous age and time regression using all the relevant powers of age and time (including
cross terms) consistent with the default cubic form chosen earlier. Given that there are
only two time points in each regression, terms with higher order than linear in time
are pointless and a sufficiently robust regression algorithm will detect this. Figure 5.11
shows the estimates obtained when fitting with polynomial order 3, with a moving win-
dow of plus minus ten years around each age at which incidence is being estimated.
Note the almost absent bias and pleasing standard errors.

Figure 5.9: Comparison of age specific and age range incidence differences. Estimated from 2
cross sectional surveys five years apart (1993- and 1998) and simulated when incidence
was increasing- the sample size is 1000- 2000- and 4000 per 5-year age range (total sam-
ple sizes are 8000- 12000- and 24000 respectively).
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Figure 5.10: Comparison of age specific and age range incidence differences. Estimated from 2
cross sectional surveys five years apart (2010 and 2015) and simulated when incidence
was steadily decreasing- with sample size is 1000- 2000- and 5000 per 5-year age range
(total sample sizes are 8000- 12000- and 24000 respectively
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5.4.5 Mean Incidence Between Survey Rounds:

Figure 5.11: Midpoint incidence estimates from two time points in our canonical South-Africa-
like epidemiological scenario- alongside the true incidence at the corresponding time.

5.5 Conclusion

Using some laboratory procedure to define ‘recent infection’ amongst HIV positive sur-
vey respondents is a widely practiced approach to generating population level incidence
estimates without the need to do individual follow up or wholesale repeat of major sur-
veys. A useful conceptual framework for

• Defining recent infection testing,

• Defining recency test performance characteristics, and
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• How to combine these with survey-based ‘prevalence’ estimates into an incidence
estimator with well described analytical inputs and computable variance

was fundamentally outlined by Kassanjee et al in 2012 [4] but this exposition did not ad-
dress important details around managing age structure in survey data, which is known
to be very important in the case of generalised HIV epidemics.
In the present work, we have shown

• That while ignoring age structure is technically valid, the age averaging implied by
such an analysis hides important details that are of high interest epidemiologically

• How to select generically stable regression models which ultimately lead to robust
age-specific incidence estimates that are close to optimal, given the information
content of data sets such as are routinely generated by large population-based
surveys which test for ‘recent’ HIV infection.

Specifically, we propose the following one-size-fits-most approach to implementing the
Kassanjee estimator:

• Prevalence (of HIV and of recency) data can be generically fitted by a polynomial
in age (and, where applicable, time) truncated at third or fourth order.

• It makes sense to estimate incidence separately for each integer age, by perform-
ing a fit of data sufficiently close to the age/time point of interest, in a ‘moving
window’ data inclusion rule. We recommend, by default, inclusion of data from
all ages no further than 10 years from the age of interest.

• To improve precision, age specific estimates can be aggregated into age range av-
erages using a contextually appropriate range of ages.

• Statistical uncertainty is most reliably computed by bootstrapping the data in ac-
cordance with the sampling strategy, to generate realistic uncertainty in, and co-
variance among, the prevalence estimates.

Depending on how much data is available - by which we mean both the sampling inten-
sity per survey, and the number of discrete survey rounds (typically separated by more
than just one or two years), the following can be considered to be the primary fruitful
applications of the Kassanjee incidence estimator:

• Estimating incidence from a single cross-sectional survey
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• Estimating incidence changes from two cross sectional surveys conducted some
years apart

• Estimating incidence differences between locales surveyed separately

• Estimating point (or mean) incidence at (or over) a time between two surveys

Much of our crucial R code for analysis is partly already freely available in the R pack-
age Inctools [60] available on CRAN (the standard community platform), and additional
code is will find its way into later releases of inctools. The simulation code can be trans-
ferred under bilateral agreements until it is formally released in a separate R package.
It will not be burdensome for analysts who are familiar with R to replicate our analyses,
and adapt them to their specific needs in order to confirm or tailor our proposed algo-
rithms from case to case.

In two companion papers to the present one, we further investigate:

1. Similar prevalence smoothing criteria [69]- in particular optimised for estimating
the gradient of prevalence such as is needed for a robust ‘synthetic cohort’ type
incidence estimate in the sense of Mahiane et al [3].

2. The optimal use of both the Kassanjee and Mahiane analyses on data sets to which
both are applicable [70].

5.A Appendix: Epidemiological Rates in the Simulation
Platform

We simulated a population starting in 1945, in order to have persons of all relevant ages
when we start surveys in 1990. Incidence and mortality were chosen to yield a scenario
superficially similar to the generalized HIV epidemic seen since then in South Africa

Fertility

Most of the calculations are not affected in any way by the fertility parameters of the
simulation, since sampling is performed as if from an infinite population. Except where
explicitly noted, we used an arbitrary, meaningless, constant birth rate. This results in
some age structure due to mortality, and hence (minor) differences between various age
weighted incidence averages:
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• uniformly weighted,

• population age distribution weighted,

• susceptible population weighted

Incidence

The HIV incidence is dependent on age and time through a function which is the prod-
uct of

1. a lognormal term that is only a function of age, with incidence being zero until age
14 (no mother to child transmission) and peaking at age 20 (see figure A1), and

2. a lognormal term that is only a function of time, becoming non zero from 1986,
and peaking in 2000 (see Figure 5.12)

Figure 5.12: Incidence as a function of age I(a) at selected times considered in the inves-
tigations

Background Mortality

Mortality among uninfected individuals is 1 percent per annum at birth, and climbs lin-
early with age, reaching 3 percent per annum at age 50. We do not survey the population
over age 50.
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Infection-associated Mortality

Upon infection, individuals experience an age-at-infection and time-since-infection de-
pendent excess mortality which is a calendar time independent power (2.28) of time-
since-infection. The prevalence which emerges from the interplay of incidence and mor-
tality is summarized in Figure 5.13

Figure 5.13: Age weighted prevalence output as a function of time P(t) for (ages 15-45).

‘Recent Infection’

After infection, individuals tested for ‘recent infection’ have a probability of giving the
result ‘recent’ according to a Weibull survival curve with scale factor 0.5 (years) and
shape parameter 5. This leads to a mean duration of recent infection (MDRI) of 167.7
days and a negligible false recent rate (FRR). This simplifies all our analysis by freeing
us from the real-world problem of estimating the FRR. The interplay of all of the above
mentioned parameters leads to a ‘prevalence’ of recent infection as shown in Figure
5.14. Note that this prevalence is only defined among HIV positives, not over the entire
population.
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Figure 5.14: Age weighted prevalence of recent infection output as a function of time
R(t).

5.B Appendix: Further Error Analysis

Figure 5.5 in the body of the manuscript shows distributions of relative root mean square
errors for prevalence, recency and incidence for various choices of survey data fitting
parameters (polynomial order and data inclusion age range around age of interest). The
following three plots present the underlying distributions of the relative standard errors
(red), and relative bias (teal), of, respectively, prevalence (Figure 5.16), prevalence of
recent infection (Figure 5.15), and incidence (Figure 5.17). The plots are based on a range
of simulated epidemic stages (the standard times at which the cross-sectional surveys
were simulated) and ages in the range 15 to 45. At each of these times and ages, we
varied the polynomial order of the regression formula, as well as the data inclusion
distance.
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Figure 5.15: Relative standard error and relative bias of P (prevalence) estimates using
the logit link function. Each facet represents the 4 polynomial orders (1-4) compared to
each other and the x-axis represents the inclusion distance, sample = 4000/5 year age
range.

Figure 5.16: Relative standard error and relative bias of R (recency) estimates using the clog
log link function. Each facet represents the 4 polynomial orders being compared and the
inclusion distance is on the x-axis. The sample size was set to 4000 per 5 year age ranges

Stellenbosch University https://scholar.sun.ac.za



Chapter 5. Optimal accounting for age and time structure of HIV incidence
estimates based on cross-sectional survey data with ascertainment of ‘recent
infection’ 90

Figure 5.17: Relative standard error and relative bias for incidence estimates disaggre-
gated by polynomial order and the inclusion distance on the x-axis.

Incidence Difference

For the purpose of evaluating the ability to detect incidence differences, we simulated
2 pairs of cross-sectional surveys; the first pair of cross-sectional surveys depicted an
epidemic where incidence was rapidly increasing (1993 and 1998 in our canonical sce-
nario); the second pair of cross-sectional surveys portrays an epidemic that is steadily
decreasing (2010 and 2015 in our canonical scenario). For each cross-sectional survey, we
independently estimated the age specific incidence and for the survey pairs (set 5 years
apart) we estimated the incidence differences. For each analysis we varied the sample
size to highlight the effect of sample size on yielding informative incidence difference
estimates. Figures 5.9 and 5.10 in the body indicate differences in various proposed
incidence age-range-averages, and Figures 5.18 and 5.19 show the underlying detailed
integer-age specific estimates.
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Figure 5.18: Incidence difference estimates calculated from two cross sectional surveys
simulated in 1993 and 1998 with size of 1000, 2000, and 4000 per 5-year age bin.

Figure 5.19: Incidence difference estimates calculated from two cross sectional surveys
simulated in 2010 and 2015 each with sample size 1000, 2000, 4000 per 5-year age bin.
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Chapter 6

Smoothing age/time structure of HIV
prevalence, for optimal use in
synthetic cohort based incidence
estimation

6.1 Abstract

Background

Population-based surveys which ascertain HIV status are conducted in heavily affected
countries, with the estimation of incidence being a primary goal. Numerous methods
exist under the umbrella of ‘synthetic cohort analysis’, by which we mean estimating
incidence from the age/time structure of prevalence (given knowledge on mortality).
However, not enough attention has been given to how serostatus data is ‘smoothed’
into a time/age-dependent prevalence, so as to optimise the estimation of incidence.

Methods

To support this and other related investigations, we developed a comprehensive simula-
tion environment in which we simulate age/time structured SI type epidemics and sur-
veys. Scenarios are flexibly defined by demographic rates (fertility, incidence and mor-

This chapter is available as a preprint: authors: Mhlanga, L. Grebe, E. Welte, A., Title: Smoothing
age/time structure of HIV prevalence, for optimal use in synthetic cohort based incidence estimation, DOI:
10.21203/rs.3.rs-959136/v2
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tality - dependent, as appropriate, on age, time, and time-since-infection) without any
reference to underlying causative processes/parameters. Primarily using 1) a simulated
epidemiological scenario inspired by what is seen in the hyper-endemic HIV affected
regions, and 2) pairs of cross-sectional surveys, we explored A) options for extracting
the age/time structure of prevalence so as to optimise the use of the formal incidence
estimation framework of Mahiane et al, and B) aspects of survey design such as the in-
teraction of epidemic details, sample-size/sampling-density and inter-survey interval.

Results

Much as in our companion piece which crucially investigated the use of ‘recent infection’
(whereas the present analysis hinges fundamentally on the estimation of the prevalence
gradient) we propose a ‘one size fits most’ process for conducting ‘synthetic cohort’
analyses of large population survey data sets, for HIV incidence estimation: fitting a
generalised linear model for prevalence, separately for each age/time point where an
incidence estimate is desired, using a ‘moving window’ data inclusion rule. Overall,
even in very high incidence settings, sampling density requirements are onerous.

Conclusion

The general default approach we propose for fitting HIV prevalence to data as a func-
tion of age and time appears to be broadly stable over various epidemiological stages.
Particular scenarios of interest, and the applicable options for survey design and analy-
sis, can readily be more closely investigated using our approach. We note that it is often
unrealistic to expect even large household based surveys to provide meaningful inci-
dence estimates outside of priority groups like young women, where incidence is often
particularly high.

6.2 Introduction

Population-level cross-sectional surveys, including HIV status determination, are con-
ducted routinely in many Sub-Saharan countries [11, 12, 13, 14]. Within the last two
decades, variations of such surveys have been executed multiple times in numerous
countries, making it possible to track explicitly the dependence of prevalence on both
age and time. Combining estimates of the age/time structure of prevalence with appro-
priate estimates of mortality facilitates what have often been called ‘synthetic cohort’
estimates of incidence. Various approaches to ‘synthetic cohort’ incidence estimate have
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been proposed [2, 3, 40, 41]. A recurring theme is the use of assumptions, or parameter-
isations, which effectively capture the idea that some combination of incidence, preva-
lence and mortality is constrained to be piecewise constant over ranges of age and/or
time.

The approach of Mahiane et al. [3] requires no such simplifications, and the core es-
timator is nothing more than a rewriting of the minimal population renewal equation
applicable to an irremissible condition. The inputs required for the estimator are:

1. An estimate of prevalence for the population at an age and time of interest

2. An estimate of the ‘gradient’ of this prevalence - defined as the rate of change of
prevalence experienced by the single-age birth cohort to which the age and time
of interest belongs

3. An estimate of the (net/average) ‘excess mortality’ experienced by the infected
population at the age/time of interest. (Viewed in its most general form, we can
reinterpret the excess mortality as a ‘net excess attrition’, which can theoretically
be negative if there is substantial migration impacting prevalence)

The first two of these inputs are clearly to be based on particular survey data, and the
third will typically have to be based on suitable background studies, sensibly adapted
to the applicable context where the survey data has been obtained.

In the present investigation, we do not explore the problem of estimating this excess
attrition rate. We focus on the smoothing of serostatus observations of survey respon-
dents, to extract optimal estimates of the prevalence and prevalence gradient. As far
as we are aware, there has been no previous investigation of the various trade-offs in-
volved in choosing one or other approach for extracting the age/time structure of the
prevalence for these purposes.

In outline, the present work has the following high-level components:

1. Simulating ‘realistic’ epidemics and cross-sectional surveys

2. Applying various smoothing algorithms to the survey data, in order to infer (age-
and time-structured) prevalence of HIV infection.

3. Estimating incidence, and incidence differences/trends, from these smoothed func-
tions, using the Mahiane [3] framework
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4. Evaluating the relative merits of various smoothing and averaging schemes, by
comparing estimated with the known incidence parameter values in the simula-
tions.

5. Proposing a generic one-fits-most approach to the main use-cases of incidence es-
timation

The possible availability of ‘recent infection’ ascertainment is not considered here, but
features in detail in two companion pieces, which together with this one, explore a
closely related set of variations on the theme of smoothing survey data to optimally ex-
tract the age/time structure of prevalence, for the purposes of estimating HIV incidence.

6.3 Methods

Using a customised simulation platform, developed for this and some closely related
investigations, and described in detail separately [71], we simulated a South-Africa-like
HIV epidemic. The simulation platform generates scenarios defined by epidemiological
and demographic rates (incidence, base and excess mortality - see functional forms in
Appendix 6.5) and described by an age, time, and time since infection dependent popu-
lation (density). The canonical simulation is run from 1935 to 2025. Each birth cohort is
simulated to age 50.

We simulated cross-sectional surveys in stages (1992, 1997), (1995, 2000), (1998, 2003),
(2000, 2005), (2005, 2010), (2010, 2015), and (2015, 2020). Sampling density was varied
from 1000 to 4000 persons per 5 year age bracket. Incidence estimation is based on the
estimator of Mahiane et al. [3]

IM =
1

1− P
·
(

∂P
∂t

+
∂P
∂a

)
+ M · P (6.3.1)

Or,

IM =
1

1− P
· dP

dt
+ M · P (6.3.2)
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where P is the prevalence of HIV, M is the differential mortality of the HIV infected pop-
ulation, and the derivative of prevalence captures the rate of increase of prevalence as
seen from the point of view of a birth cohort which has reached the age of interest, at the
time of interest. In terms of a traditional delta method expansion for statistical error:

var(IM) =

[
1

(1− P)2 ·
dP
dt

+ M
]2

· σ2
P +

[
1

1− P

]2

· σ2
dP
dt
+ [P]2 · σ2

M+

2 ·
[

1
(1− P)2 ·

dP
dt

+ M
]
·
[

1
1− P

]
· σP, dP

dt
+

2 ·
[

1
(1− P)2 ·

dP
dt

+ M
]
· P · σP,M+

2 ·
[

1
1− P

]
· P · σdP

dt ,M

(6.3.3)

Where σP, σdP
dt

, and σM are the standard errors of prevalence, gradient of the prevalence,
and excess mortality respectively, and the σ’s with double subscripts are the indicated
covariances and therefore the incidence’s standard error is given by se(λ) =

√
var(IM).

Our investigation is very similar in inspiration to that reported in our companion article
[71], as it aims to find robust ways to perform regression of survey based HIV status
observations, to derive prevalence as a function of time in a manner that can be sub-
stituted into an incidence estimator. The key difference is that in our prior work, we
reported on an estimator (according to Kassanjee et al. [4]) which does not rely on an
estimate of the gradient of prevalence, using instead, crucially, data on ascertainment of
‘recent’ versus ‘non-recent’ infection. In the present case, as far as processing of survey
data is concerned, incidence estimation hinges crucially on the estimates of the gradient
of prevalence.

Additionally, the Mahiane estimator requires an estimate of ‘excess mortality’ associated
with infection. We defer discussion of how best to estimate this, but note:

1. Data from household surveys is generally not an appropriate source of mortality
estimates.

2. Hence, appropriate estimation of the contextually applicable excess mortality is in
practice an open ended problem.
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3. In our simulated estimation challenges, we explicitly calculate the age and time
specific excess mortality, at any required values of age and time, by averaging the
differential mortality over all extant values of ‘time since infection’ which are man-
ifested in the population, and we use this exact excess mortality in our estimates.

4. Hence, our estimates indicate the most optimistic application of the Mahiane esti-
mator which is conceivable under the circumstances defined by the survey design.

The Appendix 6.5 provides additional details on how uncertainty in fitting parameters
is propagated into uncertainty of incidence estimates, given the potentially non linear
relation between these parameters and the prevalence and prevalence gradient which
are required in the Mahiane [3] estimator.

Our approach to smoothing prevalence data in this work is essentially the same as in
our companion piece focusing on recency data - namely to have a separate raw-data-
to-estimate process for each value of age and time for which an incidence estimate is to
be obtained. For any particular choice of age and time, then, we identify the data ‘suf-
ficiently close‘ to the age/time of interest - usually defined by all observations within a
specified range of ages - and then fit a generalised linear model of some polynomial in
age and time, using a logit link function by default.

Proceeding much as in our previous analysis of how to smooth survey data in preva-
lence and prevalence of recency, we proceed to consider also the estimated gradient of
prevalence, by considering various permutations of the polynomial order of the fitting
function and data inclusion algorithms. The use of a logit link function ensures stability
of prevalence between 0 and 1, whereas an identity link function sometimes leads to
fitting instability. We use the logit link throughout the present work, but note that other
link functions may be perfectly stable in various real-data applications where it is not
necessary to automate the production of a large number of variations on an analytical
theme.

6.4 Results

6.4.1 Data Inclusion Distance and Polynomial Order of Fitting Function

Within the general approach of a ‘moving window’ data inclusion rule, fitting a gener-
alised linear model (polynomial in age and time) to HIV status data is expected to show
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the following trade-offs:

• Increasing the data inclusion rule should increase precision at the cost of some bias

• Increasing the polynomial order should decrease bias at the cost of precision

Figure 6.1: Relative errors, as a function of the inclusion distance, for various ages and choices of
the polynomial order of the prevalence fitting function. The plots relative bias (green), relative
standard error (red), and relative root mean square error (blue) for estimates of incidence
at the indicated ages, in mid-2017 of the canonical scenario, based on surveys conducted
at the beginning of 2015 and 2020 with a sampling density of 4000 individuals per 5 year
age range.

Figure 6.1 shows the interaction of these trade-offs at a range of ages (a0 = 18, 20, 30,
and 40) and a single time (t0 = 2017.5) using simulated data from 2015 and 2020. The
curves indicate (percentage) relative errors (standard error (red), bias (green) and root
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mean square error (blue)) as functions of r (inclusion distance) shown separately for
each polynomial order (linear, quadratic, cubic, or quartic in age, always terminated at
linear in time as there are only two time points, and allowing all the arising cross terms).
It appears that, for these cases:

• At least cubic terms are needed to avoid substantial bias

• Inclusion distances should be at least 5 years

• The younger ages are more problematic.

Figure 6.2: Distributions of relative errors in incidence estimates, arising over the range of in-
teger ages and inter-survey midpoint times in the standard canonical epidemiological scenario.
The plots show the relative bias, relative standard error and relative root mean square
error. The inter survey intervals are each 5 years, and the sampling density is 4000/5yr
age bin. Each facet shows the distribution of the relative errors generated for the indi-
cated combination of polynomial order of the prevalence fitting function, and the data
inclusion distance.
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Rather than considering many more individual combinations of age, time, polynomial
order and inclusion distance, we show, in Figure 6.2, the distribution of errors arising
over various combinations of age (15-45) and times (1994.5, 1997.5, 2000.5, 2002.5, 2007.5,
2010.5, 2012.5, and 2017.5 - in each case based on a pair of surveys five years apart with
the relevant time as the midpoint) in our canonical scenario. Each single density plot
depicts the distribution of the relative error under consideration (relative bias/relative
standard error/relative root mean square error) for the indicated choice of polynomial
order and inclusion distance.

The cubic and quartic distributions show significantly smaller tales, indicating fewer
‘poor’ estimates, and as in Figure 6.1, it seems best to consider data inclusion windows
of at least plus/minus 5 years from the age of interest. From now, by default, we will
use a polynomial order of 3 and a data inclusion distance of plus/minus 6 years from
the age of interest

6.4.2 Effect of Sample Size

For an inter-survey interval of 5 years, we investigated the effects of sample size on the
overall errors and present the results as distributions over age/time points in Figure 6.3.
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Figure 6.3: Density plots of the overall errors for varying sample sizes. The effect of sample
size on the incidence estimates is summarised by the distribution of the relative errors.
The sample sizes varied are 2000, 4000, 10000, 12000, and 16000 per 5 year survey bin
and the inter survey interval is 5. The distributions are based on 248 data points (8
midpoints for ages 15:45).

As expected, the sample size only has an effect on the standard error, not the bias. Even
at simulated sampling densities well beyond what has ever been seen in the real world
(more than 10,000 individuals per 5 year age bin) the net root mean square error is dom-
inated by the standard error rather than bias.

6.4.3 Inter-survey Interval

Figure 6.4 shows relative error density plots for a range of indicated inter-survey inter-
vals, at which incidence estimates are again generated for the canonical 248 combina-
tions of age and time.
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Figure 6.4: Density plot of the relative errors (bias, standard error, and root mean square error)
for 3 different inter-survey intervals (3, 5, and 7). The Figure shows the distribution of the
relative errors for a range of simulated pairs of survey each with a sample of 4000 per
5 year age bin. The surveys are simulated 3, 5, and 7 years apart, but have mid points
1994.5, 1994.5, 2000.5, 2002.5, 2010.5, 2012.5, 2017.5. The plot is based on a total of 210
data points (ages 15 to 45, for each of the 8 time points).

The inter-survey interval of 3 stands out as the one with clean tails on the bias, but a
more substantial tail in the distribution of standard errors as the short time between
surveys means the prevalence has changed less, and it is hence harder to estimate the
prevalence gradient. At an inter-survey interval of 7 years, bias begins to become signif-
icant.

6.4.4 Estimating Precision

When analysing real survey data, obtained by substantial investment of money and
effort, we would generically propose that statistical error be estimated by bootstrap-
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ping the data, replicating sample clustering, stratification, and weighting, as appropri-
ate. When investigating the performance of analysis algorithms on simulated data, one
may want to consider many permutations of design features, and be tolerant of such
approximations as delta method expansion, which are unlikely to have substantial im-
pact on the evaluation of algorithm optimisation. In fact, as shown in Table 6.1, there is
no important difference between the numerically considerably more intensive approach
of bootstrapping and the much more computationally compact delta method, which
makes it easy to perform a great many simulations very rapidly without requiring more
than a single standard PC or laptop. It would even be feasible to implement reliable
calculations in browser based applications.

Table 6.1: Bootstrap (10000) versus delta method standard errors for prevalence, gradient of
the prevalence and incidence. The table shows the prevalence, gradient of the prevalence
and the incidence’s standard errors, for selected ages 18, 20, 30, and 40 at time 2017.5.

Prevalence Prevalence Gradient Incidence
Age Bootstrap Delta Ratio Bootstrap Delta Ratio Bootstrap Delta Ratio
18 0.289 0.286 1.01 0.209 0.230 0.900 0.218 0.227 0.96
20 0.400 0.414 0.96 0.231 0.230 1.00 0.248 0.239 1.04
30 0.518 0.514 1.01 0.327 0.330 1.00 0.469 0.467 1.00
40 0.492 0.492 1.00 0.307 0.310 0.989 0.407 0.412 0.98

6.4.5 Two-survey Midpoint Incidence Estimation

It is worth emphasizing that the classic application of the Mahiane estimation procedure
is to estimate incidence at the mid-time between two cross sectional surveys conducted
a few years apart. We focus, for the present analysis, on this application, and describe
the pros and cons of various methodological details in this context. Other application
scenarios will be considered in our third (and final) article in this series, where we ex-
plore the relative utility of adding recency ascertainment to surveillance scenarios where
it might be hoped that the Mahiane analysis provides useful estimates by itself.
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Figure 6.5: Midpoint incidence estimates for selected epidemic stages in (1992, 1997),
(2000, 2005), (2008, 2013), (2010, 2015), and (2015, 2020) with inter survey interval 5.

Figure 6.5 show detailed age specific incidence estimates obtained at the canonical time
points from two surveys conducted 5 years apart around the indicated time. The solid
(blue) line is the expected point estimate, and the shading indicates the 95% confidence
interval obtained from a data set which attains the expected value. The central 95% of
point estimates generated by simulating many surveys yields much the same image.
Estimation is slightly biased at the younger ages, when incidence varies sharply by age,
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and hence, for the individuals concerned, over time.

Figure 6.6: Relative standard error of the midpoint incidence estimates for selected epidemic
stages. The Figure shows relative standard errors for a range of simulated pairs of survey
each with a sample of 4000 per 5 year age bin. The surveys are simulated 5 years apart
and the corresponding midpoints are 1994.5, 2002.5, 2010.5, 2012.5, and 2017.5.

Figure 6.6 shows much the same information as Figure 6.5, but disregards bias and
shows the relative rather than absolute standard error. We see that at the edge of the
data range, and at older ages, precision is substantially poorer than at the ‘sweet spot’
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around 20 years, especially for a more mature epidemic, when prevalence is high.

6.4.6 Sensitivity Analysis (Different Epidemic Stages).

As noted earlier, for the core of our demonstrative calculations we have calculated the
emergent excess mortality required by the Mahiane estimator, and supplied this number,
free of charge, as it were, to our estimation procedure.

Figure 6.7: Sensitivity analysis of the excess mortality’s discrepancy ratio.Sensitivity analysis
of the excess mortality’s discrepancy ratio. The picture depicts the bias of the incidence
as a function of the bias in the excess mortality for selected ages at different epidemic
stages.

In practice, it may be difficult to obtain a precise and unbiased estimate of this parame-
ter, which summarises significant diversity and complexity. Figure 6.7 demonstrates the
impact on the incidence estimate, of having an incorrect estimate of the excess mortality,
supplied with a putative zero standard error. To scale the scenarios across the various
indicated ages and times, we define the ‘discrepancy’ in a relative way from -1 to 1, the
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limits in which the excess mortality is estimated as 0, or twice its actual value, respec-
tively. We see that as prevalence increases in a maturing epidemic, the sensitivity to the
estimation of the excess mortality becomes very significant.

In practice, the estimates of excess mortality will have a significant standard error. Con-
sidering the same combination of ages and times, Figure 6.8 considers fractional/rela-
tive standard errors ranging from 0 to 1, and shows the relative standard errors thus
induced on the incidence estimates.

Figure 6.8: Sensitivity analysis of the excess mortality’s standard error. The Figure depicts
the relative standard error of the incidence estimate at selected ages 18, 22, 32, and 42
as functions of the relative standard error of the excess mortality, each age represents
a specific epidemic stage for example age 18 represents an early epidemic state, a time
when the incidence is rapidly rising and there is not much excess mortality. The analysis
is based on a pair of cross sectional surveys simulated in (2015, 2020)

At younger ages, it matters little, but at older ages, the precision of the excess mortality
estimate becomes important, as 1) it multiplies the prevalence in the estimator, and 2)
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the term in the estimator which has the prevalence gradient becomes less important as
prevalence saturates.

6.5 Discussion/Conclusions

Previously, Mahiane et al. [3] derived an instantaneous, age-time specific incidence es-
timator - assuming some knowledge of survival after infection, summarised as differ-
ential mortality. That prior work did not critically evaluate techniques for summarising
the population level survey data into a prevalence, P, and gradient of prevalence

(
dP
dt

)
.

Given the ever-growing abundance of survey data with HIV infection status ascertain-
ment, we investigated ways to optimally smooth such data for the purpose of incidence
estimation using the Mahiane et al. [3] approach, leading to the following general re-
marks:

• Serostatus data can be smoothed into prevalence, including robust estimation of
the gradient of prevalence, using generalised (binomial) linear regression on age
and time, with a moving window for data inclusion (plus minus 5-10 years around
an age of interest), and a third or fourth order polynomial fitting function.

• This is essentially the same finding as we made, in a companion piece [71], when
investigating the smoothing of survey data where there was no immediate concern
for extracting a prevalence gradient, while crucially relying, for incidence estima-
tion, on ‘recent infection’ ascertainment- using the ideas of Kassanjee et al. [4].

• We have not investigated the prospects for consistently obtaining the required es-
timates for “mean excess attrition/mortality", which must be supplied in order to
interpret the prevalence gradient in terms of incidence.We worked in the limit in
which the relevant excess mortality is known precisely.

• The general approach demonstrated here can be refined/adapted to particular
contexts by simulating scenarios resembling that context- which is not very dif-
ficult to do, using the simulation environment developed for the present investi-
gation.

• Beyond minor fine tuning of data inclusion rules, polynomial order of fitting func-
tions, possibly choice of link function in binomial regression, and quantifying ex-
cess mortality, there appears to be nothing noteworthy left to be done, that can
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extract any more incidence related information from large household surveys of
the kind which are widely performed in the heavily HIV affected regions such as
sub-Saharan Africa.

• As demonstrated in our analysis of recency data based incidence estimation, the
base procedure naturally provides a finely age-resolved family of estimates, which
can either be taken at face value, or used as the basis for further age averaging that
may improve relative precision at the cost of hiding some age structure

Even when handling data in what we suspect is a nearly theoretically optimal way, there
are fundamental sobering limitations:

• The synthetic cohort approach cannot avoid reliance on estimates of (net) infection
associated excess mortality, which is further complicated in highly mobile popu-
lations.

• Even surveys of substantial size do not admit much disaggregation beyond the
fundamental age dependence which is crucial in understanding HIV epidemiol-
ogy.

We have emphasized the analysis of survey data, but also demonstrated that the same
ideas and tools developed here can be used to support design decisions by investigating
exposure to bias and statistical error, in simulated scenarios that resemble the intended
real world application, but where the ‘true’ (simulated) incidence is known. Such in-
vestigations can help decide such key features of surveys as sample size/density, age
ranges of interest, and timing.

What crucially remains to be understood, in this vein, is how best to use both the Kas-
sanjee et al. [4] and Mahiane et al. [3] analyses, simultaneously, on data sets to which
both are applicable and, hence, to understand the benefit of the additional investment
in effort, complexity and expense which is implied by conducting ascertainment of ‘re-
cent infection’ among confirmed HIV infected respondents. This is the subject of our
third piece in this set of three companion pieces.

6.A Appendix: Simple Mahiane et-al Estimator − Proof

We derive the Mahiane et al. [3] estimator for a closed population based on the non-
mechanistic SI model, i.e. we are not concerned about the interaction of people but
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what the dynamical evolution of prevalence (P) based on the interplay of incidence and
mortality. Hence if we consider a birth cohort then the prevalence is defined by;

P =
I

S + I
(6.A.1)

Where S - is the number of susceptible, I - of infected individuals in the birth cohort
and, we aim at deriving a formula for incidence λ at any given age/time. Given the
definition of prevalence and the respective population renewal equations for a standard
SI model. The change in the prevalence is given by;

dP
dt

=
dI
dt · (S + I)− ( dS

dt +
dI
dt ) · I

(S + I)2 (6.A.2)

Where dI
dt - is the rate of change of the infected population with respect to time and dS

dt -
is the rate of change of the susceptible population with respect to time and are given by;

dI
dt

= λS− I · (µ + M)

And,
dS
dt

= −S · (µ + λ)

Note that µ is the base (background) mortality rate, λ is the incidence rate and M is
the disease induced mortality (excess mortality). Substituting for dS

dt and dI
dt in Equation

6.A.3 yields,

dP
dt

=
((λS− I · (µ + M)) · (S + I)− (−S · (µ + λ) + λS− I · (µ + M) · I

(S + I)2 (6.A.3)

Therefore substituting Equation 6.A.1 into Equation 6.A.3 and rearranging we have;

1
(1− P)

· dP
dt

+ MP = λ (6.A.4)

Remark

This applies to a birth cohort and similar derivation for an age/time structured popula-
tion yields

1
(1− P)

·
(

∂P
∂t

+
∂P
∂a

)
+ MP = λ (6.A.5)

In addition, if the population is viewed as birth cohorts, it follows that the age specific
incidence at a given time yields Equation 6.A.4
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6.B Appendix: Mahiane et-al Estimator − Quantifying Errors
Using Delta Method

The Delta method [72, 73] is used to derive the uncertainty associated with the Mahiane
estimator. The Delta method is based on the Taylor series expansion. For a small neigh-
bourhood of µ, then g(µ) is considered a linear function.

Given a function
w = G(x) (6.B.1)

Let µ be the mean of x, then based on the delta method, the mean and variance of w are

w̄ = G(µ)

and

variance(w) =

(
dG
dx

)2

· variance(x)

Definition 6.B.1. If, in some neighbourhood of the point X = Mx, Y = My the function
F(X, Y) is continuous and has continuous derivatives of the first and second order with respect
to the arguments X and Y, the random variable ŵ = F(x̄, ȳ) is asymptotically normal, the mean
and variance of limiting normal distribution being given by:

mean = F(Mx, My) (6.B.2)

var(ŵ) =

[
∂F
∂x

]2 σ2
x

n
+

[
∂F
∂y

]2 σ2
y

n
+ 2

[
∂F
∂x

] [
∂F
∂y

]
σxy

n
[72] (6.B.3)

Given that the incidence function is a multi varied function of prevalence, the change
in prevalence, and the excess mortality as highlighted in Equation 6.A.5 and Equation
6.B.1, we use the definition of delta method to derive the variance estimate. We first find
the derivatives of the three variables in the incidence estimator.

Substituting the respective derivatives into the the delta method formula we have;
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var(λ) =
[

∂λ

∂P

]2

var(P) +

 ∂λ

∂
(

dP
dt

)
2

var
(

dP
dt

)
+

[
∂λ

∂M

]2

var(M)

+ 2 ·
(

∂λ

∂P

)
·

 ∂λ

∂
(

dP
dt

)
 cov

(
P,

dP
dt

)

+ 2 ·
(

∂λ

∂P

)
·
(

∂λ

∂M

)
cov(P, M)

+ 2 ·
(

∂λ

∂M

)
·

 ∂λ

∂
(

dP
dt

)
 cov

(
dP
dt

, M
)

(6.B.4)

Through substitution we have;

var(λ) =
[

1
(1− p)2 ·

dP
dt

+ M
]2

· σ2
P +

[
1

1− p

]2

· σ2
dP
dt
+ [P]2 · σ2

M+

2 ·
[

1
(1− p)2 ·

dP
dt

+ M
]
·
(

1
1− P

)
· σP( dP

dt )
+

2 ·
[

1
(1− p)2 ·

dP
dt

+ M
]
· P · σPM+

2 ·
[

1
1− p

]
· P · σM dP

dt

(6.B.5)

where σPM is the covariance of mortality and prevalence, σP dP
dt

is the covariance of preva-
lence and the gradient of prevalence and σP is the standard error of prevalence, σdP

dt
is the

standard error of the gradient of the prevalence, and σM is the standard error of excess
mortality, and σM dP

dt
is the covariance of excess mortality and the gradient of prevalence.

Note that the standard error of the incidence is: se(λ) =
√

var(λ). Alternatively, one
can use bootstrap to estimate the standard error of λ.

6.C Appendix: Functional forms of the
Epidemiological/Demographic Functions.

Birth Rate

This is a constant function of time and for the present analyses has no impact on any
calculations as the population state is used merely to determine prevalence.
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Incidence

The incidence’s functional form was selected to resemble the incidence estimates ob-
served in generalised epidemics. Incidence was allowed to be high in younger ages and
lower in mature ages.

The incidence rate is given λ(t, a) = f (a) · P(t) i.e. the product of a function of age and
a function of time. The age structure function, f (a) is parameterised using a log normal
function, as used in Mahiane et al. [3], rescaled by R so that it lies between 0 and 1 as
shown in Figure 6.9 (left). This means that P(t) can be understood as the peak incidence
experienced at time t (i.e. the highest incidence experienced by any age at time t):

Figure 6.9: The relative incidence as a function of age (left) and Peak incidence (i.e. incidence
experienced by 20 year olds) as a function of time (right). The incidence always peaks at age
20 and individuals aged 35 experience an incidence rate that is half of what is experi-
enced by the 20 year olds at that given time. The maximum incidence in the simulation
is 5% (p.a.) in 1997.

Background Mortality

Mortality among uninfected individuals is 1 % per annum at birth, and climbs linearly
with age, reaching 3 percent per annum at age 50. We do not survey the population over
age 50.
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Excess Mortality and Averaged Excess Mortality (Platform Output)

The excess mortality as a function of age a, time t, and time since infection (τ ) is another
input parameter in the simulation platform. The excess mortality is parameterised us-
ing a Weibull functional. The scale parameter (α(a, t)) is a function of age and time and
specifies the median survival times. The median survival time is defined by linearly de-
creasing function of the age at infection between the maximum and minimum median
survival times and depends on time (pre-treatment era versus treatment era), that is, the
median survival times are defined for each era.

Figure 6.10: The plot describes averaged excess mortality as calculated from the input
excess mortality by the simulation platform for selected ages 18, 22, 32, and 42.

Mahiane et al. [3] incidence estimator requires an averaged excess mortality as a func-
tion of time and age and hence the platform yields an averaged excess mortality for
every age and time simulated. Figure 6.10, shows the averaged excess mortality for
times 1985:20 at ages 18, 22, 32, and 42.
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6.D Appendix: Emergent Population Prevalence

Figure 6.11 depicts the average prevalence output as a function of time. We chose to
estimate incidence at various epidemic stages which are when prevalence is plateauing,
steadily increasing and decreasing.

Figure 6.11: The plot highlights the trajectory of prevalence in time and is weighted to
the age distribution in the simulated population.

6.E Appendix: Variance Estimate for the Slope-logit Link
Function

The prevalence is estimated by using the generalised linear models package in R with
link function ‘logit’, given by Equation 6.E.1 below;
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log
(

P(a, t)
1− P(a, t)

)
= Q(a, t) = β00 + β01 · (a− a0) + β10 · (t− t0)

+ β11 · (t− t0) · (a− a0) + β02 · (a− a0)
2 + β20 · (t− t0)

2 + . . .

(6.E.1)

which means that the prevalence is given by;

P(a, t) =
1

1 + e−Q(a,t)
(6.E.2)

The fitted model yields the required parameters (regression coefficients (β00, β01, . . . in
Equation 6.E.1)) of the age/time polynomial fitted. Independent of how complex Q(a, t)
is, evaluating the prevalence and its gradient at the point of interest (a0, t0), offers a
simplification such that Equation 6.E.2 reduces to Equation 6.E.3 below;

P(a, t) =
1

1 + e−β00
(6.E.3)

To estimate the prevalence gradient dP
dt from Equation 6.E.1 we derive the respective par-

tial derivatives with respect to time ∂P
∂t and age ∂P

∂t , since dP
dt = ∂P

∂t +
∂P
∂a .

And hence the corresponding gradient to dP
dt is given by Equation 6.E.4 where Q(a, t)-

is the age/time polynomial function, Qa(a, t) is the partial derivative of Q(a, t) with
respect to age (a) and similarly Qt(a, t), is the partial derivative of Q(a, t) with respect
to time (t).

G =
dP(a, t)

dt
=

(Qa(a, t) + Qt(a, t)) · e−Q(a,t)(
1 + e−Q(a,t)

)2 (6.E.4)

By estimating the prevalence and the gradient at the point of interest Equation 6.E.4
reduces to Equation 6.E.5 below;

G =
(β01 + β10) · e−β00(

1 + e−β00
)2 (6.E.5)

The corresponding standard error of the gradient is not part of the accessible parameters
and hence the standard error is estimated by either bootstrapping the data or using the
delta method for error propagation, which is ideal for computationally intense simula-
tions.
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Note that G (Equation 6.E.4) is a function of 3 random variables (β00, β01, andβ10) and
hence we use the delta method (error propagation methods) [72, 73] to estimate the
variance of G and is approximated by 6.E.6 below;

Var (G) =

[
∂G

∂β00

]2

σ2
β00

+ ·
[

∂G
∂β01

]2

· σ2
β01

+

[
∂G

∂β10

]2

· σ2
β10

+

2 ·
[

∂G
∂β00

] [
∂G

∂β01

]
· σβ00,β01 + 2 ·

[
∂G

∂β00

] [
∂G

∂β10

]
· σβ00,β10+

2 ·
[

∂G
∂β01

] [
∂G

∂β10

]
· σβ01,β10

(6.E.6)

The partial derivatives can be derived from 6.E.5 and standard errors of the fitted pa-
rameters (σβ00 , σβ01 , and σβ10), and covariances σβ00,β01 , σβ00,β10 , and σβ01,β10 are estimated
through the vcov function in R.

6.F Appendix: Inclusion/Exclusion Distance and Polynomial
Order Permutations

In the main article we presented some of the ages to demonstrate the trade off between
bias and the standard error when varying the polynomial order and inclusion distance.
In this section we present the relative errors of all the ages (15-45) at an epidemic stage
simulated in 2017.5 in Figure 6.12- Figure 6.14.

For all the ages we observe a general trend of a decreasing relative bias and standard er-
ror as we increase the polynomial order and inclusion distance and as previously stated
in the main body of the text a cubic or quartic order polynomial with an inclusion dis-
tance ≥ 5 yields accurate and informative incidence estimates.
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Figure 6.12: The relative errors for an epidemiological scenario simulated with surveys
simulated 5 years apart (2015, 2020) and incidence estimated in 2017.5 for ages 18-25.
Each survey has a sample size of 4000 per 5 year age bin.
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Figure 6.13: The relative errors for an epidemiological scenario simulated with surveys
simulated 5 years apart (2015, 2020) and incidence estimated in 2017.5 for ages 26− 35.
Each survey has a sample size of 4000 per 5 year age bin.
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Figure 6.14: The relative errors for an epidemiological scenario simulated with surveys
simulated 5 years apart (2015, 2020) and incidence estimated in 2017.5 for ages 36− 45.
Each survey has a sample size of 4000 per 5 year age bin.

Appendix: Relative Error Histograms

We present alternatives to Figure 6.2, presented in the main body of the article as Figure
6.15 to Figure 6.17 and each histograms shows the distributions of the relative errors
(bias, standard error and root mean square error) for given polynomial orders and in-
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clusion distances.

Figure 6.15: The plot shows distributions of the relative bias (random errors) for each
permutation of polynomial order (linear-quartic) and inclusion distance (1-10), for sam-
ple size 4000 per 5 year age bin and link function ‘logit’.

Figure 6.16: The plot shows distributions of the relative standard error (statistical error)
for each permutation of polynomial order (linear - quartic) and inclusion distance (1-10),
for sample size 4000 per 5 year age bin and link function ‘logit’.
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Figure 6.17: The plot shows the overall sum of squares of the relative bias and relative
standard error from Figure 6.15 and Figure 6.16. The inter survey interval is set at 5 and
the sample size is 4000/5yr age bin. Each facet depicts the distribution of the R. RMSE
for a specific inclusion distance and Taylor order permutation.
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Chapter 7

The added value of recent-infection
testing in population-based HIV
surveys

7.1 Abstract

Background

There is no clear consensus on how best to use increasingly available data derived from
large population-based surveys featuring HIV infection status ascertainment. In partic-
ular, for the purpose of estimating HIV incidence, there is considerable scope for better
elucidation of the benefit of adding ‘recent infection’ ascertainment, which adds consid-
erable additional cost and complexity to surveys which are already costly and complex.

Methods

Using an epidemic/survey simulation tool developed for this and some closely related
investigations, we explore the value added by ‘recent infection’ data from population
surveys, to support HIV incidence estimation. This directly piggy-backs on to two com-
panion pieces which have explored, independently, the use of the ‘synthetic cohort’
paradigm of Mahiane et al (analysing age/time structure of prevalence, in conjunction

This chapter is available as a preprint: authors: Mhlanga, L. Grebe, E. Welte, A., Title: The added value
of recent-infection testing in population-based HIV surveys, DOI : 10.21203/rs.3.rs-996585/v2
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with estimates of mortality) and the paradigm of Kassanjee et al (focusing on ‘recent
infection’ data).

Results

Our headline findings are that: 1) Recent infection data adds marginal benefit to surveil-
lance focused on the early years after sexual debut, which can reasonably be taken to be
a core sentinel group in which surveillance is significantly more efficient than attempts
to cover all ages; and 2) by contrast, recent infection data is crucial for the reliable es-
timation of incidence trends when only two cross sectional surveys are available. We
detail numerous components of a general and robust approach to analysing data when
both the Mahiane and Kassanjee analyses are in play.

Conclusion

Our main results present non-trivial dilemmas for survey design, as recency data is
crucial for stabilising the more timely estimates, but of marginal benefit for the most
important sentinel group. We hope that adaptation of our analysis, to simulated sce-
narios closely aligned to specific contexts facing expensive choices, will support rational
investments in, and use of, precious surveillance opportunities and data sets.

7.2 Introduction

A global HIV epidemic has been raging for four decades, and still there is no clear
consensus on how best to estimate HIV incidence: i.e. the rate of new infections in a
population. Estimating prevalence (the proportion of infected individuals in a popu-
lation) is relatively straightforward, but not nearly as informative, especially about the
recent impacts of interventions, policies, and changing social norms. Incidence estima-
tion for chronic conditions is in general difficult - unlike for transient conditions, for
which prevalence and incidence are simply related.

Large scale population-level cross-sectional surveys that include HIV status determi-
nation, and in many cases also ascertainment of ‘recent infection’ as defined by objec-
tive laboratory procedures, have been conducted in many Sub-Saharan countries, and
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have become a/the headline data source for epidemiological assessments at the national
and supra-national regional level. Within the last two decades, variations of such sur-
veys have been executed multiple times in numerous countries, leading to rich data sets
tracking the prevalence of HIV infection and the ‘prevalence’ of ‘recent infection’ among
confirmed HIV positive subjects, over time and by age.

• We deployed a comprehensive demography/epidemiology/survey simulation plat-
form which we use again in the present work, and which is separately outlined in
more detail (ref to forthcoming)

• We proposed a generic approach to age/time regression in order to use the ap-
proach of Kassanjee et al. [4], which crucially relies on ascertainment of ‘recent in-
fection’ to leverage analysis which is inspired by the simple relationship between
incidence and prevalence for transient conditions.

• We demonstrated the applicability of a similar generic regression approach to the
estimation of incidence by the approach of Mahiane et al. [3], which crucially relies
on the estimation of a ‘prevalence gradient’, in conjunction with the estimation
of a specifically defined ‘excess mortality/attrition’ for HIV positives (which falls
under the broad umbrella of ‘synthetic cohort’ analysis).

Increasingly, numerous countries, or subnational regions, have data which allows the
applications of both the Kassanjee and Mahiane framework. The question which then
naturally arises is how best to combine the two methods, which provide nominally sep-
arate estimates, but which are correlated in complex ways as they both rely on the same
underlying serostatus data which always comprises the bulk of the database. We view
this question through the lens of the benefit of the recency data, seen as an add-on to the
main prevalence data set. This reflects the points that

• There is no sensible survey design that generates recency data but not prevalence
data, and

• At the design stage, before data is available to analyse, one will want to be clear
about the benefit of performing the recency ascertainments, which invariably im-
ply substantial increases in both cost and complexity of surveys that are already
major undertakings without this requirement.

In outline, the present work has the following high-level components:
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1. Simulating ‘realistic’ epidemics and cross-sectional surveys

2. Simulating realistic multiple cross-sectional surveys, where ’recent infection’ is de-
fined by a probability of testing ’recent’ (on some algorithm) which depends ex-
plicitly on a function of time-since-infection in a way that is inspired by actual
available tests of this kind.

3. Applying various smoothing algorithms to the survey data, in order to infer (age-
and time-structured) prevalence of HIV infection and (age-, time-, and time-since-
infection-structured) prevalence of ‘recent infection’.

4. Estimating incidence, and incidence differences/trends, from these smoothed func-
tions, using the Kassanjee and Mahiane frameworks, separately and in conjunc-
tion.

5. Evaluating the relative merits of the various combinations of approaches, by com-
paring estimates with the known incidence parameter values in the simulations

6. Proposing guidance on the use and value of ‘recent infection’ ascertainment (for
the purpose of HIV incidence estimation)

7.3 Methods.

7.3.1 Optimally Weighted (Midpoint incidence Estimation)

As noted, we are building on work reported in two companion pieces to this one, based
primarily on the simulation of a number of cross-sectional surveys in a South-Africa-
like epidemic. We have already systematically investigated ways to adapt the methods
of Mahiane et al. [3] and Kassanjee et al. [4], to estimate incidence based on survey data
from one or more cross sectional surveys, and incidence differences for cases with two/-
more cross-sectional surveys.

The functional forms of each of the incidence estimators are

IM =
1

1− P
· dP

dt
+ M · P (7.3.1)

IK =
P(R− β)

(1− P) · (Ω− β · T) (7.3.2)
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Where P is the prevalence of HIV, dP
dt is the gradient of the prevalence as seen from

the point of view of a cohort of individuals of identical age, R is the prevalence of ‘re-
cent infection’ (recency) among the HIV positive subjects, Ω is the Mean Duration of
Recent Infection (MDRI), β is the false recency rate (FRR), and T is the time cut-off for
being classified as recently infected without being ‘falsely’ recent. In our simulations,
the Mean Duration of Recent Infections (MDRI), false recent rate (FRR), and differential
mortality are known exactly, because they are explicitly specified, or emerge from (and
are evaluated in) the simulation platform.

To combine the information from the two estimators, we first define a general weighted
average of the two estimators:

IOpt = W · IM + (1−W) · IK (7.3.3)

se
(

IOpt
)
= W2 · σ2

IM
+ (1−W)2 · σ2

IK
+ 2 ·W · (1−W) ·COV (IK, IM) (7.3.4)

We find the optimal weight by differentiating Equation 7.3.4 with respect to W and set-
ting that to zero:

W =
σ2

IK
− ρ · σIK · σIM

σ2
Ik
+ σ2

IM
− 2 · CoV(IK, IM)

(7.3.5)

Where σIk and σIM are the standard errors for IK and IM respectively, and ρ is the pear-
son correlation coefficient of IK, and IM COV (IK, IM) is the covariance of IM, and IK.
According to delta method analysis [72, 73] the COV(IM, IK) is given by;

COV (IM, IK) =
∂IM

∂P
· ∂IK

∂P
· σ2

P (7.3.6)

∂IM

∂P
=

1

(1− P)2 ·
dP
dt

+ M

and

∂IK

∂P
=

(
P (R− β)

(1− P)2 · (Ω− β · T)

)
+

(
(R− β)

(1− P) · (Ω− β · T)

)
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Cov(IM, IK) =

[(
P (R− β)

(1− P)2 · (Ω− β · T)

)
+

(
(R− β)

(1− P) · (Ω− β · T)

)]
·[

1

(1− P)2 ·
dP
dt

+ M

]
· σ2

P

(7.3.7)

The covariance can be estimated either by equation 7.3.7, or by repeatedly simulating
the survey (for example 10,000 times) or resampling from a particular data set (i.e.
bootstrapping) and for each iteration estimating IK and IM, and hence estimating the
COV(IM, IK) from the iterates.

Stable approaches to the smoothing of survey data to estimate the prevalence P, the
prevalence of recency R, and crucially the gradient of prevalence, dP

dt , were discussed in-
depth in the two preceding companion papers. In short, a ‘one size fits most’ approach
can be summarised as follows:

• Use generalised linear models (GLM) to fit, in turn, the serostatus and the recency
data, with either third or fourth order polynomials in age and time.

• Repeat the fitting procedure for each age and time for which incidence estimates
are to be obtained, including data points by a simple proximity rule such as being
within some (temporal) ‘distance’ to the age of interest.

• Use a logit or identity link function for fitting P and a logit or complementary log
log link function for R, with some age or age/time inclusion-distance rule.

• By default, we settled on using a cubic order polynomial with an inclusion distance
of 6 years and link functions logit for P and complementary log-log for R.

• The prevalence of HIV, prevalence of recent infection among positives, and preva-
lence gradient dP

dt

(
= ∂P

∂t +
∂P
∂a

)
are extracted from the fitted models and inserted

into the Mahiane and Kassanjee estimators.

7.3.2 Single Cross-sectional Surveys.

In addition to the usual semi-realistic ‘South Africa - like’ scenario, we also simulated a
stable epidemic with a calendar-time invariant (but age dependent) incidence function,
and also used a calendar-time invariant excess mortality (resembling a ’no treatment’
scenario).
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7.3.3 Two Cross-sectional Surveys.

Realistically, two cross sectional surveys may utilise different ‘recency’ ascertainment
tests, leading to a different values for MDRI and FRR, as these two parameters are con-
text specific [9, 74, 75]. Hence, to avoid this distraction for the present purposes, surveys
are simulated with the same recency test.

7.3.4 Incidence Trends.

Incidence trends are a crucial indicator of whether interventions or emergent changes in
habits and services are reducing the transmission of HIV. We investigate the prospects
for estimation of an incidence trends from two cross sectional surveys. We show how to
yield accurate and informative age specific and age range incidence difference estimates
and the effect of sample size on the precision of the estimates.

In cases where we attempt to estimate incidence difference from two cross sectional sur-
veys, we estimate age specific incidence at the two survey dates using a shared estimate
of ∂P

∂t in both IM estimates.

7.4 Results

7.4.1 Single Cross-sectional Surveys

Figure 7.1 shows the incidence estimates from a single cross sectional survey in a sce-
nario in which there is no time dependence to any parameters or prevalences. The key
point appears to be that even when the correct value of dP

dt is provided, the highest and
most age dependent values of incidence are not being estimated without significant bias
by the Mahiane estimator, i.e. when the recent infection data is being ignored. In prac-
tice, sample sizes (or sampling density) is likely to be smaller, and the bias shown here
may be substantially swamped by poor precision.
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Figure 7.1: The plot compares 3 incidence estimates (Kassanjee et al, Mahiane et al., and
optimally weighted estimators) to the true incidence in the platform. Each survey has a
sample size of 4000 per 5 year age range with link functions logit for P and clog-log for
R using a cubic order polynomial with an inclusion distance of 6. The input incidence
function is time invariant and the excess mortality function does not include treatment.

7.4.2 Midpoint Incidence Estimates Comparison (IK, IM, and IOpt).

Figure 7.2 and 7.3, shows the incidence estimates at 4 time points corresponding to either
an early epidemic (1994.5 and 1999.5) or a mature epidemic stage (2010.5 and 2015.5).

While a logit link function for prevalence provides some stability by automatically con-
straining the prevalence to values between 0 and 1, it appears that an identity link func-
tion may offer superior fitting at various epidemic stages, so this should be explored in
simulations adapted to mimic any context in which there has been a major investment
in data of this kind.

These results also show the consistent trend that, for young ages, the Mahiane estima-
tor provides most of the information about incidence, and for older ages the Kassanjee
estimator provides most of the information.
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Figure 7.2: Midpoint incidence estimates from a pairs of simulated cross-sectional sur-
veys (1992, 1997), and (1997, 2002)). The incidence estimates are based on 3 approaches,
namely Kassanjee et al, Mahiane et al., and optimally weighted incidence estimators.
Generous sample sizes of 4000 per 5-year age range were used with link functions iden-
tity and logit for P, and c log-log for R using a cubic order polynomial with an inclusion
distance of 6.
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Figure 7.3: Midpoint incidence estimates from pairs of simulated cross-sectional surveys (2008,
2013), and (2013, 2017)) estimated using the link functions identity (left) and logit (right). The
incidence estimates are based on three approaches, namely Kassanjee et al, Mahiane et
al., and optimally weighted incidence estimators. Generous sample sizes of 4000 per
5-year age range were used with link functions identity and logit for P, and c log-log for
R using a cubic order polynomial with an inclusion distance of 6.

7.4.3 Comparison of Methods for Estimating the Optimal Weight W (Delta
Method vs Bootstrap)

We compared the two approaches of calculating W (an analytical delta method versus
the numerical bootstrap approach) and their effect on IOpt and the resulting standard
errors. The results are shown in Table 7.1.

There is no substantial (indeed hardly any) difference between the estimates derived
from the bootstrap approach and the analytical approach. The concordance of both the
standard error and the realised point estimates shows that for computationally intense
investigations, the delta method is a good proxy to estimate the standard error. On the
other hand, once a major investment has been made in a complex survey, there is no
obstacle to implementing an ultimately more robust bootstrap based calculation.
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Table 7.1: IOpt estimates derived from two estimates of W. W1 is the Optimal weight cal-
culated from delta method (analytical function) COV(IM, IK) versus W2 is the derived
from 10000 bootstrap estimates of IM and W1to estimate COV(IM, IK). To demonstrate
this point we use ages 18, 20, 30, and 40, for a single epidemic stage epidemic stage with
surveys simulated in 2015 and 2020 and the incidence is estimated at midpoint (2017.5).

Incidence Point estimate Incidence Standard Error
Age Delta Method Bootstrap Concordance Delta Method Bootstrap Concordance
18 2.72 2.75 98.9 0.255 0.265 96.1
20 3.33 3.35 99.4 0.267 0.272 98.4
30 1.98 2.00 99.0 0.266 0.271 98.4
40 1.09 2.00 99.1 0.195 0.199 97.9

7.4.4 Sensitivity of the Standard Error IOpt to W (Midpoint)

Figure 7.4: Relative standard error of the optimally weighted incidence estimators as a function
weights ranging for 0 to 1 weighted to the ‘Recency’ estimator. The plot shows the relative
standard errors for ages 18, 20, 30, and 40 epidemic stages 1994.5, 1999.5, 2010.5, 2012.5,
and 2015.5.
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Figure 7.4 expresses the relative standard error of IOpt as a function of the normalised
weight (W). For all 5 epidemic stages, and selected, ages, there is no sharply defined
optimal weight required to estimate IOpt. For example, the relative error at age 20 is
almost flat for a range of W values (0 to 0.5), and hence any value between 0 and 0.5
yields much the same value of IOpt. The weighting scheme in early epidemics (1992.5)
somewhat favours IM and, as the epidemic matures, and at older ages, the weighting
scheme favours IK.

7.4.5 Incidence Estimates at Survey Times

Figure 7.5: Incidence estimates at the simulated survey dates rapidly rising epidemic (1994.5
and 1999.5). The incidence estimates are derived from fitting one model to two cross sec-
tional surveys simulated in an epidemic stage with an incidence function that is rapidly
rising in time (1994.5, 1999.5). Each survey has a sample size of 4000/5 year age bin. The
fit was done using a cubic polynomial with an inclusion distance of 6. Each row depicts
the link function (logit vs identity) used for the fitting P. R is fitted using a clog-log link
function.

Stellenbosch University https://scholar.sun.ac.za



135 7.4. Results

Figure 7.6: Incidence estimates at the simulated survey dates steadily declining epidemic
(2010.5, 2015.5). The incidence estimates are derived from fitting one model to two
cross sectional surveys simulated in an epidemic stage with an incidence function that
is steadily declining in time (2010.5, 2015.5). Each survey has a sample size of 4000/5
year age bin. The fit was done using a cubic polynomial with an inclusion distance of
6. Each row depicts the link function (logit vs identity) used for the fitting P. R is fitted
using a clog-log link function.

Figure 7.6 and 7.5 show incidence estimates at the cross sectional survey dates, derived
from combining two cross sectional surveys. The cross sectional surveys are simulated
from particular epidemic stages: either an increasing incidence (between 1994.5 and
1999.5) or a declining incidence (between 2010.5 and 2015.5). For comparison, we once
more show the use of both an identity and a logit link function for fitting prevalence.

Incidence estimates (IM) from the survey dates are more precise compared to the mid-
point incidence estimates, in Figure 7.2 and 7.3, probably because incidence is being
estimated where the data points are, unlike the midpoint incidence estimates. But this
comes at the cost of accuracy - the incidence estimates (IM) are biased at the cross sec-
tional survey dates due to the challenges of estimating the gradient of prevalence away
from the mid time of the data set. Note: just one model is fitted simultaneously to both
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cross sectional survey datasets (which is not the conventional use for recency data); and
IM is fundamentally designed to estimate the midpoint incidence and not the incidence
at the cross sectional survey dates.

7.4.6 Incidence Trends

Two Surveys

Our attempts to estimate incidence trends/difference from two cross sectional surveys,
using all 3 approaches IK, IM and IOpt are shown in Figure 7.7. Apparently, estimating
incidence differences using the Mahiane et al approach requires luck, as it is mostly bi-
ased even if they are precise, while incidence difference estimates from IK are unbiased
if not highly informative. It would seem that all the usable information is in the Kassan-
jee estimate, and a variance minimising IOpt is not necessarily of any additional value,
given the exposure to substantial bias.

Figure 7.7: Incidence difference estimate for pairs of surveys simulated (1993, 1998) - a rapid rise
and (2010, 2015) - decline. The plot depicts the incidence difference estimates from two
pairs of cross sectional surveys each depicting a particular epidemic stage. Each survey
has a sample size of 24000 (4000/5 year age bin) either logit /identity link functions
(columns) are used to estimateP and clog log link functions for R.
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Figure 7.8: Incidence difference estimates from midpoint incidence estimates of three cross sec-
tional surveys. The plot shows the incidence difference estimates from two epidemic
stages - rapid increase (1993, 1998, and 2003) and rapid decrease (2005, 2010, and 2015).
The incidence estimates are calculated from the midpoint of the two consecutive sur-
veys and consequently the difference between the two incidence estimates is calculated.
P and R were fitted using a logit and clog log link functions, respectively. The 95% range
is estimated through 10000 bootstrap samples

Three Surveys

Figure 7.8 shows incidence difference estimates, based on 3 cross sectional surveys when
incidence is steadily rising (1993, 1998, and 2003) and also when incidence is in steady
decline (2005, 2010, and 2015). As expected, both the primary approaches (IK and IM)
yield accurate incidence difference estimates that closely track the incidence difference
at all ages, though they are uninformative, in turn, at various ages. Once again, the ad-
ditional effort of obtaining recency data mainly improves the estimates at older ages.

We can improve the precision of the incidence difference estimates by adding the post-
hoc age averaging (see Figure 7.9), which we previously introduced in our companion
piece [71, 76], based on two cross sectional survey with recency ascertainment. Figure
7.9 compares the post hoc age averaging for selected age groups to the age specific in-
cidence difference of the central age of that age bin. Generally, the incidence difference
estimates at the selected age bins are accurate and most importantly the post hoc av-
eraging yields is significantly more informative for all methods, compared to the age
specific incidence difference estimates. Note that the age-weighted IOpt is consistently
distinguishable from 0, but the less sophisticated estimates are not.
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Figure 7.9: Post hoc average incidence difference estimates from midpoint incidence estimates
of three cross sectional surveys (2007.5 and 2012.5). The plot shows the post hoc age aver-
ages from an epidemic stage on a rapid decline (2005, 2010, and 2015). The incidence
difference estimates are the weighted averages (total population in the age bin from the
platform) of the age specific incidence difference estimates.

7.5 Conclusion

In our preceding companion pieces, we explored the fine points to consider when esti-
mating P, dP

dt , and R for use in each of the incidence estimators Mahiane [3] and Kassan-
jee [4]. This present work explores the benefits of combining IK and IM into a (variance)
optimised weighted average. We have done this primarily from the point of view of
asking what additional benefit is obtained in having the recency data.

With the additional insights gained from the present work, we now regard it as a straight-
forward matter to implement contextually adapted versions of a well-defined stable
approach that consistently yields near-optimal extraction of HIV incidence estimates,
based on whatever data is available from substantial population-based surveys of the
kind which are being performed on a large scale in the heavily HIV affected countries
of sub Saharan Africa.

The question of whether to expend resources on adding recency ascertainment to large
population based surveys presents us with a difficult quandary. In general, reliable in-
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formative incidence estimation requires very large sample sizes (i.e. very high sampling
densities across some age range) and works best when incidence is very high. This, cou-
pled with the epidemiological/sociological importance of incidence among the young,
suggests, as we have previously noted [71, 76], that one consider focusing on this group
as an informative and important sentinel population, rather than attempting to obtain
incidence estimates for all ages, which may simply not be feasible. For these younger
ages, recency ascertainment does not really improve single time point estimates. How-
ever, we are usually even more interested in incidence differences and trends, than in
single estimates, and we have seen that difference estimates based on just two survey
rounds are not stable without recency data. By the time one has three rounds of major
household surveys, and is in a position to obtain a robust incidence difference estimate
without recency data, the better part of a decade will usually have elapsed from the first
survey, and the incidence difference estimate will refer to a trend that was applicable to
the epidemic some years in the past.

These considerations suggest that before embarking on a multi-year high budget com-
mitment to one or more major surveys with intent to estimate HIV incidence, it is worth
investigating the specific situation by means of carefully adapted simulations in which
various designs can be simulated, and the specific analysis for burning epidemiological
questions can be explored. For example, one may consider surveying just young women
(age 15-30, for example) and pursuing the headline estimate of mean incidence in the age
group 20-25. Recent infection testing will not yield impressive incidence estimates from
one survey round, but without recency testing, there will be very little evidence on inci-
dence changes even after two surveys - at which point the mean incidence estimate over
this time will be largely driven by a Mahiane analysis.

There are other detailed loose ends we have not systematically investigated, such as:

• The impact of non-zero values for false recent rate. While it is fashionable among
some analysts to presume that FRR is always zero - this is not a safe bet, and there
should always at least be a sensitivity analysis on this point.

• When there are multiple surveys which each perform some sort of recent infection
testing, it is not obvious that the MDRI and FRR of the test or tests should be taken
as having precisely the same value in each survey round. In practice, the best
estimates of these test properties may be weakly or strongly correlated, depending
on whether the difference is primarily one of choice of assay or epidemic context.
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These kinds of additional considerations are not just minor points, and they may war-
rant very careful investigation in some variation of the analyses we have been describ-
ing. Fortunately, the simulation and analysis code we have developed for our present
purposes, which is available upon request, can be flexibly and straightforwardly used
to adapt the analyses we have presented to many finely specified alternative scenarios.

7.A Appendix: Alternative Derivation for the Covariance of
Mahiane and Kassanjee Estimators

Given two normal random variables X and Y such that they can be presented as X =

r1 · σX and Y = r1 · σ
(y)
1 + r2 · σ(y)

2 . By definition the expectation E(x, y) is given by;

Cov(x, y) = E(x, y)

Cov(x, y) =
∫ ∞

0

∫ ∞

0
x · y · P(x) · P(y)dydx

=
∫ ∞

0

∫ ∞

0
(r1 · σ(x)

1 ) · (r1 · σ
(y)
1 + r2 · σ(y)

2 ) · P(r1) · P(r2)dr1dr2

=
∫ ∞

0

∫ ∞

0
[r2

1σ
(x)
1 σ

(y)
1 + r1r2σ

(y)
1 σ

(y)
2 ] · P(r1) · P(r2)dr1dr2

=
∫ ∞

0

∫ ∞

0
r2

1σ
(x)
1 σ

(y)
1 · P(r1) · P(r2)dr1dr2 +

∫ ∞

0

∫ ∞

0
r1r2σ

(y)
1 σ

(y)
2 ] · P(r1) · P(r2)dr1dr2

(7.A.1)

Based on the knowledge that r1 and r2 are standard normal random variables, it follows
that E(r) =

∫ ∞
0 r · P(r)dr = 0 and E(r2) =

∫ ∞
0 r2 · P(r)dr = 1 and consequently,

Cov(x, y) = σ
(x)
1 σ

(y)
1

∫ ∞

0

∫ ∞

0
r2

1 · P(r1) · P(r2)dr1dr2 +
∫ ∞

0

∫ ∞

0
r1r2σ

(y)
1 σ

(y)
2 ] · P(r1) · P(r2)dr1dr2︸ ︷︷ ︸

0

= σ
(x)
1 σ

(y)
1

∫ ∞

0

∫ ∞

0
r2

1 · P(r1) · P(r2)dr1dr2︸ ︷︷ ︸
1

= σ
(x)
1 σ

(y)
1

(7.A.2)

Given the functional forms of the Mahiane (IM) and Kassanjee (IK) Equation 7.A.3, we
seek to find the covariance of the two estimators.

Stellenbosch University https://scholar.sun.ac.za



141
7.A. Appendix: Alternative Derivation for the Covariance of Mahiane and Kassanjee

Estimators

IM =
1

1− P
· dP

dt
+ M · P (7.A.3)

IK =
P · (R− β)

(1− P) · (Ω− β · T) (7.A.4)

We adapt the exposition in Equation 7.A.1 and Equation 7.A.2 where we show that when
two functions x and y share a variable then the Cov(x, y) is given by σ

(x)
1 σ

(y)
1 . We define

P, dP
dt , and R as a random variables given by

P = µP + r1 · σP

dP
dt

= µ dP
dt
+ r2 · σdP

dt

R = µR + r3 · σR

Substituting P, dP
dt , and R into Equations 7.A.3 and Equation 7.A.4 yields Equations 7.A.5

and 7.A.6, below;

IM = (1− (µP + r1 · σP))
−1 · (µ dP

dt
+ r2 · σdP

dt
) + M · (µP + r1 · σP) (7.A.5)

IK =
(µP + r1 · σP)((µR + r3 · σR)− β)

(1− (µP + r1 · σP)) · (Ω− β · T) (7.A.6)

Rearranging IM in 7.A.1 and factoring out
µ dP

dt
1−µP

+ M · µP which is the mean of IM, we
have,

IM =

( µ dP
dt

1− µP
+ M · µP

)
·
[(

1− r1 · σP

1− µP

)−1

·
(

1 +
r2 · σdP

dt

µ dP
dt
]

)
+

(
1 +

r1 · σP

µP

)]
(7.A.7)

Using the approximation (1− x)−1 = 1 + x + O(∆2) gives us Equation 7.A.8 below;

IM =

( µ dP
dt

1− µP
+ M · µP

)
·
[(

1 +
r1 · σP

1− µP
+ O(∆2)

)
·
(

1 +
r2 · σdP

dt

µ dP
dt
]

)
+

(
1 +

r1 · σP

µP

)]
(7.A.8)

Expanding and simplifying, and ignoring the higher order terms and treating dP
dt as a

constant the second term of Equation 7.A.8 yields,
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IM =

( µ dP
dt

1− µP
+ M · µP

)
·
[(

1 +
r1 · σP

1− µP

)
+

(
1 +

r1 · σP

µP

)]
=

µ dP
dt

1− µP
·
(

1 +
r1 · σP

1− µP

)
+ M · µP ·

(
1 +

r1 · σP

µP

) (7.A.9)

Simplification of the last expression in Equation 7.A.9 yields

IM =
µ dP

dt

1− µP
+ M · µP︸ ︷︷ ︸

IM estimate

+

[ µ dP
dt

(1− µP)2 + M
]

σP·︸ ︷︷ ︸
coefficient of r1 which we equate to σ1

r1 (7.A.10)

Applying the same sequence of steps we can show that IK is given by

IK =
P(R− β)

(1− P) · (Ω− β · T)

=
(µP + r1 · σP)((µR + r3 · σR)− β)

(1− (µP + r1 · σP)) · (Ω− β · T)

=
(µP · (µR − β))(1 + r1·σP

µP
) · (1 + r3σR

µR
)

(Ω− β · T) · (1− µP)(1− r1σP
1−µP

)

=

[
µP(µR − β)

(1− µP)(Ω− β · T)

] 
(

1 + r3σR
µR

)
·
(

1 + r1·σP
µP

)
(

1 + r1·σP
1−µP

)


Using the linear approximation we have;

=

[
µP(µR − β)

(1− µP)(Ω− β · T)

] [(
1 +

r3σR

µR

)
·
(

1 +
r1 · σP

µP

)(
1 +

r1 · σP

1− µP
+ O(∆2)

)]
ignoring the higher order terms and simplifying;

=

[
µP(µR − β)

(1− µP)(Ω− β · T)

]
︸ ︷︷ ︸

IK estimate

[
1 +

r1σP

µP
+

r1σP

1− µP
+ . . .

]

=

[
µP(µR − β)

(1− µP)(Ω− β · T)

]
+

[
µP(µR − β)

(1− µP)2 · (Ω− β · T) +
µR − β

(1− µP)(Ω− β · T)

]
· σP︸ ︷︷ ︸

coefficient of r1 in IK which we equate to σ2A

r1

Based on the exposition that results in Equation 7.A.2 we know that Cov(x, y) = σ
(x)
1 σ

(y)
1 ,

therefore it follows that the covariance of IK and IM is,
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Estimators

Cov(IM, IK) = σ1 · σ2A

=

[
µP(µR − β)

(1− µP)2 · (Ω− β · T) +
µR − β

(1− µP)(Ω− β · T)

]
· σP ·

[ µ dP
dt

(1− µP)2 + M
]

σP

=

[
µP(µR − β)

(1− µP)2 · (Ω− β · T) +
µR − β

(1− µP)(Ω− β · T)

]
·
[ µ dP

dt

(1− µP)2 + M
]
· σ2

P

This hold under the assumption that the covariance in IK and IM is due to the preva-
lence (P) which is a shared input parameter. The formula derived here is the same as
in Equation 7.3.7 derived from the error propagation formula presented in Ku et al. [72]
i.e., µP = P, µR = R, and µ dP

dt
= dP

dt .
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Chapter 8

Spin off - Covid prevalence
smoothing

Introduction

While work was ongoing to develop the analyses which make up the bulk of this thesis,
the Covid-19 epidemic presented an opportunity to engage in some prevalence/inci-
dence surveillance applications. We collaborated with SANBS, and used some of the
code developed for HIV prevalence smoothing. We investigated the prospects of esti-
mating SARS-CoV-2 infection incidence by using time as a predictor for serostatus - but
it turns out that one would need even more data than we had, given the need to strat-
ify by province and race, even if trying to fit a single ‘relative prevalence growth rate’
parameter. The two primary sections of this chapter reproduce, verbatim, two preprints
which were generated from this collaboration with the national blood services. These
two preprints Sykes et al. [77], Mhlanga et al. [78] contributed significantly to the na-
tional debate on the state of the COVID-19 epidemic, and a unified manuscript with all
this work is under preparation and will soon be submitted to Transfusion Journal.

The candidate did the statistical analysis in both the preprints and presented the work
at Virtual Conference on Retroviruses and Opportunistic Infections (2021) Virtual CROI
(2021).
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8.1 Prevalence of anti-SARS-CoV-2 antibodies among blood
donors in South Africa during the period January-May
2021.

8.1.1 Abstract

Background

Population-level estimates of the prevalence of anti-SARS-CoV-2 antibody positivity
(seroprevalence) are crucial epidemiological indicators for tracking the Covid-19 epi-
demic. Such data are in short supply, both internationally and in South Africa. The
South African blood services (the South African National Blood Service, SANBS and the
Western Cape Blood Service, WCBS) are coordinating nationwide surveillance of blood
donors.

Methods

Leveraging existing arrangements, SANBS human research ethics committee permis-
sion was obtained to test blood donations collected on predefined days (in January and
May 2021) for anti-SARS-CoV-2 antibodies, using the Roche Elecsys Anti-SARS-CoV-2
assay on the cobas e411 and e801 platforms currently available in the blood services’
donation testing laboratories. Using standard methods, prevalence analysis was done
by province, age, time, sex and race.

Results

We report on data from 16762 donations. Prevalence varied substantially across race
groups and between provinces, with seroprevalence among Black donors consistently
several times higher than among White donors, with the other main population groups
(Coloured and Asian) not well represented in all provinces. There is no clear evidence
that seroprevalence among donors varies by age or sex. The weighted national estimate
of prevalence (in the core age range 15-69 years) is 47.4% (95% CI 46.2-48.6). From Jan-
uary to May, we noted a slight but statistically insignificant increase in seroprevalence in

This section is available as a preprint: authors: Vermeulen M, Mhlanga L, Sykes W, Coleman C,
Pietersen N, Cable R, Swanevelder R, Glatt TN, Grebe E, Welte A, van den Berg K., Title: Prevalence of
anti-SARS-CoV-2 antibodies among blood donors in South Africa during the period January-May 2021.,
DOI: 10.21203/rs.3.rs-690372/v2

Stellenbosch University https://scholar.sun.ac.za



Chapter 8. Spin off - Covid prevalence smoothing 146

those provinces (Gauteng and Free State) where sufficient data were available to make
such an estimate.

Conclusions

Our study demonstrates substantial differences in dissemination of SARS-CoV-2 infec-
tion between different race groups and provinces, in patterns consistent with known
differences in historically entrenched socio-economic status and housing conditions.
As has been seen in other contexts, even such high seroprevalence does not guarantee
population-level immunity against new outbreaks, as evidenced by a substantial third
wave that has emerged almost contemporaneously with the end of sampling in this
study. The relative importance of various contributions to this resurgence (notably viral
evolution, waning of antibody neutralization efficacy, and infection control fatigue) are
unclear. Despite its limitations, notably a ‘healthy donor’ effect and the possible wan-
ing of detectable antibodies over the time scale of the COVID-19 pandemic, it seems
plausible that these estimates are reasonably generalisable to actual population level
antiSARS-CoV-2 seroprevalence. The interpretation of occasional seroprevalence sur-
veys as a proxy for total attack rates, over the ever-lengthening pandemic time scale is
likely to become ever more complex. More frequent sampling, including linked repeat
observations of frequent donors, could substantially improve the utility of blood donor
surveillance.

8.1.2 COVID-19 Seroprevalence in South Africa.

Coronavirus disease 2019 (Covid-19) caused by the virus SARS-CoV-2, manifests in a
plethora and range of symptoms, varying from asymptomatic to severe disease which
may lead to death. It is this range of severity as well as limited access to health care
that makes it difficult to determine how many people have been infected with the virus.
After contracting SARS-CoV-2, the majority of people will develop antibodies as part of
their immune response. These antibodies last from between 6 and 12 months and can
therefore provide an indication of the number of people who have been infected during
that time. Given the substantial uncertainties around the true counts of cases of SARS-
CoV-2 infection, and prior studies indicating that in many settings the confirmed case
count is only a small proportion of all laboratory confirmed infections, it is of ongoing
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importance to obtain credible estimates of the prevalence of anti-SARS-CoV-2 antibody
positivity (seroprevalence), at the community level [79, 80].

8.1.3 Method

The South African National Blood Service (SANBS, serving 8 of 9 provinces in South
Africa) and Western Cape Blood Service (WCBS, servicing the Western Cape) obtained
ethics clearance from the SANBS Human Research Ethics Committee to perform a SARS-
CoV-2 seroprevalence study among South African blood donors. The protocol allowed
for the testing of routinely collected donor screening samples on predefined ‘collection
days’ in January, March and May; which were internally communicated to blood centre
staff at participating collection sites, but without prior notice to potential donors. All
donors underwent routine screening through a self-administered questionnaire, one-
on-one assessment and a mini-health screening by blood centre staff. Donors who did
not meet the routine donor eligibility criteria were excluded from donation and there-
fore from the study. Contact with persons infected by COVID-19, unresolved COVID-19
infection or COVID-19-like symptoms in the preceding 14 days resulted in temporary
deferral of potential donors

Samples collected at the time of donation were tested for anti-SARS-CoV-2 antibodies,
using the Roche Elecsys Anti-SARS-CoV-2 total immunoglobulin nucleocapsid assay
on the cobas e411 and e801 platforms already in use at the blood services. This assay,
according to the package insert, has diagnostic specificity in excess of 99.5%, and near
perfect sensitivity (point estimate of 100%) at 16 days post PCR positivity. It detects only
anti-nucleocapsid antibodies, and so does not detect antibodies mounted in response to
any of the vaccines in use, which only present (and stimulate production of antibodies
against) viral spike proteins. We do not here explore various nuances of how to define
and estimate test performance characteristics by distribution of cases (defined primar-
ily by severity of infection and time since infection/symptoms/PCR detection), but we
note:

• Sensitivity and specificity ‘in our hands’ was investigated by testing 618 samples
from the pre-COVID-19 era (1 marginal false positive precisely at the diagnos-
tic threshold) and 50 samples confirmed as positive in a COVID-19 convalescent
plasma study protocol (with 1 false negative).

• For epidemiological interpretation, we take seroprevalence as a close proxy of the
prevalence of having been infected with SARS-CoV-2 at some point. The Elecsys
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Anti-SARS-CoV-2 assay appears to have particularly good durability of antibody
detection for months post PCR reversion and symptom resolution, with no evi-
dence of antibody waning and seroreversion over more than four months in a US
COVID-19 convalescent plasma cohort [81].

• We ignore, for now, the effects of 1) the donor deferral rule that people with con-
firmed SARS-CoV-2 infection, or COVID-19-like symptoms, are precluded from
donation for a period of two weeks after PCR test and/or symptom resolution,
and 2) deferral of regular donors who were in quarantine due to a positive con-
tact, and who therefore skipped their routine donation. Given the high rate of
asymptomatic infection, this is a relatively minor limitation.

We did not perform structured sampling in the sense of selecting a subset of donation
sites or regions within a province. The study merely observed all consenting donors
who happened to present themselves at any donation facility on collection days.

Prevalence was estimated by typical categorical and continuous predictors (age, sex,
race and province) by standard methods, using the R platform for statistical computa-
tion. Although we are not aware of any biological basis for expecting racial differences-
in South Africa, as elsewhere, race is, for historical reasons, a strong correlate of socio-
economic status, living conditions, and social circumstances, and therefore a suspected
predictor of prevalence. As freely downloadable data sets from Statistics South Africa do
not disaggregate sufficiently for our purposes, our provincial weighted seroprevalence
estimates are based on population size estimates from Machemedze et al [82], interpo-
lated to March 2021, and a racial breakdown of provinces as observed in the 2011 census
[83]. The level of (dis)aggregation for headline estimates was chosen based on the re-
sults of exploratory analysis, as reported below.

Each province was sampled primarily in either January or May, with only Gauteng (GP)
and Free State (FS) having a statistically meaningful number of specimens from another
month (GP-January, FS-May). To understand the time dimension in our data, we per-
formed a regression in which the data for White and Black donors, from the FS and from
GP, was fitted to a model that assigns each of the four subgroups their own prevalence,
but with an exponential time dependence that is governed by a single universal rate
shared by both provinces and race groups.
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8.1.4 Results

The demographic breakdown of the sampled donors is displayed in Figure 8.1. There
were slightly more male donors (51.2%). The large majority of donors in our study were
White (51.4%) and Black (35.6%) with the remainder distributed mainly between donors
self-identifying as Asian (4.2%) and ‘Coloured’ (8.1%)- a uniquely South African racial
label indicating persons with a significant mix of ancestry from, amongst other lineages,
South Asia, Indonesia, Southern Africa and Europe [84]. Only 0.8% did not report a
racial identification.

Table 8.1: The demographic breakdown of seroprevalence specimens by anti-SARS-
CoV-2 antibodies reactivity.

Reactive Non-Reactive Total (%) Reactive
Sex

Female 2567 (50.4%) 5611 (48.1%) 8178 (48.8%) 31.4
Male 2527 (49.6%) 6057 (51.9%) 8584 (51.2%) 29.4

Province
Eastern Cape 569 (11.2%) 896 (7.7%) 1465 (8.7%) 38.8

Free State 289 (5.7%) 793 (6.8%) 1082 (6.5%) 26.7
Gauteng 1988 (39%) 4216 (36.1%) 6204 (37%) 32.0

KwaZulu Natal 663 (13%) 1444 (12.4%) 2107 (12.6%) 31.5
Limpopo 217 (4.3%) 494 (4.2%) 711 (4.2%) 30.5

Mpumalanga 563 (11.1%) 1132 (9.7%) 1695 (10.1%) 33.2
Northern Cape 100 (2%) 367 (3.1%) 467 (2.8%) 21.4

North West 202 (4%) 530 (4.5%) 732 (4.4%) 27.6
Western Cape 503 (9.9%) 1796 (15.4%) 2299 (13.7%) 21.9

Race
Asian 156 (3.1%) 539 (4.6%) 695 (4.1%) 22.4

Black African 3155 (61.9%) 2810 (24.1%) 5965 (35.6%) 52.9
Coloured 448 (8.8%) 908 (7.8%) 1356 (8.1%) 33.0

White 1288 (25.3%) 7317 (62.7%) 8605 (51.3%) 15.0
Unreported 47 (0.9%) 94 (0.8%) 141 (0.8%) 33.3

Age
16 - 29 1789 (17.6%) 3270 (14%) 5059 (15.1%) 35.4
30 - 39 1380 (13.5%) 2312 (9.9%) 3692 (11%) 37.4
40 -49 955 (9.4%) 2364 (10.1%) 3319 (9.9%) 28.8

50+ 970 (9.5%) 3722 (15.9%) 4692 (14%) 20.7
Total 5 094 11 668 16 762 30.4

Figure 8.1 shows the age distribution of donors included in the present analysis, further
decomposed by race and province. The provincial totals are shown in Table 8.2.
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Figure 8.1: Age and sex structure of surveyed donors. The Age and sex structure of sur-
veyed donors, broken down by race and province (EC-Eastern Cape, FS-Free State, GP-
Gauteng, LP-Limpopo, MP-Mpumalanga, NC-Northern Cape, NW-North West, WC-
Western Cape, ZN-KwaZulu Natal)

Table 8.2: Weighted provincial estimates of prevalence and the implied number of infections.
Weighted provincial estimates of prevalence; the implied number of infections; the num-
ber of laboratory confirmed cases; and the (multiplicative) discrepancy between our es-
timate and the official count.

Province Prevalence (%) Estimated Infections Official Dx-Cases Underestimate (Fold)
Eastern Cape 62.5 (58.8, 65.9) 2,724,350 176,902 15.4

Free State 47.8 (42.8, 53.0) 925,093 81,622 11.3
Gauteng 43.8 (42.3, 45.4) 4,926,044 434,495 11.3

Limpopo 46.3 (41.3, 51.2) 1,687,558 64,966 26.0
Mpumalanga 47.6 (44.5, 50.8) 1,523,296 81,758 18.6

Northern Cape 31.8 (25.7, 38.0) 235,156 25,007 9.4
Northwest 48.5 (42.5, 54.6) 1,302,318 69,328 18.8

Western Cape 37.4 (33.4, 41.4) 1,855,484 294,201 6.3
KwaZulu-Natal 52.1 (49.1, 55.1) 3,950,784 249,703 15.8
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Figure 8.2: Prevalence by age group, broken down by province and race for four
provinces (EC-Eastern Cape, FS-Free State, GP-Gauteng, LP-Limpopo)

Figure 8.3: Prevalence by age group, broken down by province and race for five
provinces (MP-Mpumalanga, NC-Northern Cape, NW-North West, WC-Western Cape,
ZN-KwaZulu-Natal)

Stellenbosch University https://scholar.sun.ac.za



Chapter 8. Spin off - Covid prevalence smoothing 152

Figure 8.4: Prevalence comparison between sexes, by race and province (EC-Eastern
Cape, FS-Free State, GP-Gauteng, LP-Limpopo, MP-Mpumalanga, NC-Northern Cape,
NW-North West, WC-Western Cape, ZN-KwaZulu-Natal)

After categorizing by either broad or narrow age bins in all provinces and the major
race groups, there was no association between seroprevalence and age (see Figure 8.2
and 8.3 for broad age bins). There was no association between seroprevalence and sex.
See Figure 8.4 for disaggregation by sex, race and province. Therefore, for the remain-
ing analysis, we do not disaggregate by either age or sex. The regression of data from
GP and FS against time provided an estimate of a (relative) 1.6% per month growth in
prevalence, which, at a p value of 0.3, is not statistically significant, but is large enough
(and in the right direction) to be consistent with the crude growth in case detections, in
the absence of seroreversion.

Figure 8.4 shows the seroprevalence estimates by the remaining meaningful disaggregation-
race and province. The large differences, by both race and province, are highly statisti-
cally significant as well as epidemiologically meaningful. Note also the race-weighted
overall provincial prevalence estimates (which we interpret as provincial ‘attack rates’),
and the official prevalence of having been diagnosed, based on reporting of positive
PCR diagnostic test results, according to the National Institute for Communicable Dis-
eases (NICD) [85, 86] in the dominant month of sampling: January for the Eastern Cape
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Figure 8.5: Prevalence by race (W-White, A-Asian, C-Coloured, B-Black) and province
(EC-Eastern Cape, FS-Free State, GP-Gauteng, LP-Limpopo, MP-Mpumalanga, NC-
Northern Cape, NW-North West, WC-Western Cape, ZN-KwaZulu-Natal), showing
also the race weighted provincial estimates (Tot), and the prevalence implied by diag-
nosed cases reported to the National Institute for Communicable Diseases (Dx).

(EC), Free State FS, Northern Cape (NC), KwaZulu Natal (ZN); May for Gauteng (GP),
Limpopo (LP), Mpumalanga (MP), Northwest (NW), Western Cape (WC). The NICD
reports on testing performed both in the private and public sector.

Table 8.2 shows our provincial estimates of attack rates, as a percentage; the implied
number of infections; the number of laboratory confirmed cases according to the NICD
[85]; and the (multiplicative) discrepancy between our estimate and the official count.
Note that our estimated number of infections is conservatively based on our estimated
prevalence being applied only to the age group 15-69, so these factors are not quite as
large as implied by Figure 8.5. The estimated seroprevalence ranges from 31.8% in NC
to 62.5% in the EC and ranges from 6 (WC) to 26 (LP) fold higher than the official case
count.

8.1.5 Discussion

Our study confirms high seroprevalence rates, particularly among Black donors, with
little sign of significant population level immunity among other race groups. These sub-
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stantial differences can most likely be explained by historically based socio-economic
factors which hinder the implementation of COVID-19 preventative measures at a com-
munity level. The generally high levels of seroprevalence across the whole country are
consistent with expectations, given the high burdens experienced on the health care sys-
tem, and generally low proportion of SARS-CoV-2 infections which present as serious
illness.

Previous seroprevalence estimates from South Africa, specifically the WC already found,
before the second wave: 1) a very high prevalence (30-40 percent) among pregnant
women attending state sector antenatal care, and people living with HIV presenting
for routine viral load assessment [87]; and 2) higher prevalence among workers with
lower socioeconomic status [88]. A household cohort study performed in a rural setting
in Mpumalanga and an urban setting in North West province found a seroprevalence of
7% (95% CrI 5-9%) and 27% (95% CrI 23-31%), after the first wave of infection, and 26%
(95% CrI 22-29%) and 41% (95% CrI 37-45%), respectively, after the second wave [89].

For an indication of the meaning of such high seroprevalence values, in a one year old
epidemic, consider: a prevalence of 50%, accumulated over 50 weeks, of a condition with
a duration of infectiousness of 1 week, implies an average ‘prevalence of infectiousness’
of 1% of the population, with inevitable significant elevations above this average value
during peaks. For people reliant on public transport, or working in public spaces, it will
be difficult to limit close encounters to fewer than 100 people on any given day- i.e. it
will be difficult to encounter fewer than one infectious person per day.

We do not claim that blood donors are perfectly representative of the South African pop-
ulation. Firstly, Black and White donors each account for roughly half the total partici-
pants of this study, though South Africa’s population is about 80 percent Black African
and only 8 percent White/European [83]. Other population groups are generally in-
significantly small except Asian in ZN (about 20%) and Coloured in the WC (about
50%). Of course, our analysis explicitly weights for racial representativeness. The age
weighting we adopted to estimate total infections also produces a face value underesti-
mate for population totals, as it assigns no cases in the age range 0-14 years, which ac-
counts for about 30 percent of the population. Furthermore, repeat blood donors (who
supply the majority of donations) are pre-selected to have recently been negative for
pathogens included in routine blood safety screening. In South Africa this selection for
being HIV negative is certainly relevant, given the country’s extraordinary HIV preva-
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lence. Communities which are economically stressed, or without ease of access to blood
donor centres, will be under-represented among the study population.

Survey dates represented in this analysis are either:

• Barely past South Africa’s ‘second wave’ in COVID-19 incidence- whence deferral
rules based on confirmed infection or COVID-19-like symptoms should slightly
depress seroprevalence estimates relative to ‘true’ prevalence; or

• Shortly before the emergence of the ‘third wave’, whence the interpretation of all
these samples, as being from a fairly well-defined epidemiological stage, is not
entirely unreasonable.

The Elecsys Anti-SARS-CoV-2 antibody assay appears to have particularly good detec-
tion sensitivity for months post PCR reversion [81], though there may be some serore-
version. Therefore, while further investigation of the issue of representativeness will
clearly need to be done, our estimates are subject to downward bias by at least some
obvious considerations.

With due consideration to both the patent and latent limitations of our study, the key
observations we wish to make at this point are:

• The particularly high attack rates in majority Black communities points to the lim-
itations, thus far, of non-pharmaceutical interventions in the context of economic
deprivation and high population density, and the urgency of making vaccines
available in all communities.

• The high seroprevalence (especially amongst Black donors) also raises interesting
and important questions about the level of collective immunity thus far obtained
through the two primary infection waves to date - but we caution against simplis-
tic interpretations, given that substantial outbreaks have been seen in cities after
the observation of very high seroprevalence [90], and more recent concerns about
vaccine efficacy against new variants.

• The low seroprevalence amongst White donors suggests that predominantly White
suburban communities lack meaningful collective immunity, and should take in-
fection control measures very seriously for the foreseeable future, especially at
the time of writing, when the third wave is presenting many communities with
rapidly increasing incidence.
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• Given the relatively low marginal cost of leveraging the infrastructure of the blood
services, we are keen to further probe the representativeness of blood-donor-based
seroprevalence surveys, and to see to what extent surveillance in the blood services
can be a valuable and efficient ongoing activity during major infectious disease
outbreaks.
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8.2 SARS CoV 2 Infection Fatality Rate Estimates for South
Africa.

This is a brief report. The intention is simply to communicate findings and thereby trigger dis-
cussion and further work - not to provide a substantial contextual, comparative, or interpretive
narrative.

It is of course important to ascertain the risk of death that comes with SARS-CoV-2 in-
fection (the ‘Infection Fatality Rate/Ratio’ or IFR) but it is difficult to observe directly,
as the majority of infections go undiagnosed. Using a positive clinical diagnosis as the
defining element of a ‘case’, leads to the related ‘Case Fatality Rate’, or CFR. While CFR
is relatively simple to assess, within a study or a stable clinical record keeping or case re-
porting system, it is less clear what it means, and its meaning will inevitably vary from
place to place, due to structural inequities; and from time to time, as testing systems
adapt to the evolving epidemic.

There has been some speculation that African and some other developing nations have
been affected less severely than developed countries, in particular seeing fewer than ex-
pected deaths from Covid-19. It has also been suggested that the paucity of data, and
the very different age structures of the populations in different parts of the world, might
largely explain the apparent differences seen in crude CFRs, which mask distributions
of (primarily) age and other key risk factors for severe disease from SARS-CoV-2 infec-
tion.

The Blood Services in South Africa (SANBS and WCBS) have recently published na-
tional SARS-CoV-2 seroprevalence estimates based on a substantial, approximately na-
tionally representative, sample of blood donors [91]. This analysis indicates no depen-
dence of seroprevalence on sex or age (in the sampled age range of 16 to 80), but alas, as
is typical for many health and welfare indicators in South Africa, race and province are
strong predictors of seroprevalence.

The Medical Research Council has been producing weekly excess deaths estimates for
some time. These are not disaggregated by either race or age. As it is well known that
age is a very strong, indeed probably the strongest, predictor of severity of Covid-19, it

This section is available as a preprint: authors: Mhlanga L, Vermeulen M, Grebe E, Welte A, Title:
SARS CoV 2 Infection Fatality Rate Estimates for South Africa., DOI: 10.21203/rs.3.rs-707813/v2
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is largely meaningless to discuss CFR or IFR without paying attention to age.

Given that the just-published donor-based South African seroprevalence estimates, re-
flecting prior SARS-CoV-2 infection, vary sharply by race, and substantially by province,
and that we know fatality depends strongly on age, it would be optimal to have excess
deaths reported by race, precise age, and province. We understand that the vital regis-
tration system in South Africa does not report deaths by race, and that the MRC only
occasionally publishes disaggregation by age. Indeed, we are aware of a single South
African report on excess deaths by age [92] and even then only in decade age bands, and
not simultaneously by province.

It would be a simple matter to estimate age specific IFR, nationally averaged, if the ex-
cess deaths estimates and the prevalence estimates applied to the same point in time.
As it is, the published age disaggregated excess deaths estimates are as of the end of
2020, and our prevalence estimates are representative of the period of January to May
2021 - which we will interpret, for the present purposes, as an estimate applicable to
late March. Incidence was not very high from January to May, as this was between the
second and third wave - but the delay seen with deaths means that deaths more than
doubled between December and March.

For the sake of this preliminary estimate, we rescale the December 2020 age specific ex-
cess deaths by a factor of 2.12, to obtain a cumulative, national, excess deaths estimate
which has the correct total for March 2021. For provincial, age aggregated estimates, we
use the provincial cumulative deaths reported by the MRC in March 2021 - not rescaled
provincial estimates from December 2020.

We are choosing to interpret the reported estimated excess natural deaths as Covid-19
deaths. As far as we can tell, this could as credibly be argued to be an under- or over-
estimate. Some have highlighted collateral deaths of various kinds, and others have
noted the reduction in other infection related deaths during lockdown periods.

In order to have a well-defined age aggregated IFR, we allocated neither cases nor deaths
to the age group <10 years, and we allocated the observed (non-age dependent) preva-
lence from the blood donor study to all ages from 10 up. These estimates, then, are a
population averaged IFRs for persons aged 10 and over.
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Table 8.3 indicates our nationally aggregated, age disaggregated, infection fatality rates,
which used the population estimates from [82]. These IFR estimates for are broadly
comparable with previous estimates of which we are aware, such as from a locale-based
study from South Africa [89] and a meta-analysis of estimates from the Global North
[93]. For visual representation, we interpret the numbers from Table 8.3 as mid-decade
estimates, and fit an exponential curve (see Figure 8.6). It seems reasonable to say that
the relationship between age and IFR is heuristically characterisable as a doubling of
fatality for every ten years of age.

Table 8.3: Age specific estimates of SARS-CoV-2 Infection Fatality Rates in South Africa,
as of March 2021

Age Range Population Size
Excess Natural

Deaths

Scaled Excess

Natural Deaths
SARS-CoV-2 Infections IFR (%)

1-9 11,217,099 0 0 0 N/A
10-19 10,280,989 332 705 4,873,189 0.014
20-29 9,954,072 1,194 2,535 4,718,230 0.054
30-39 10,333,318 4,213 8,944 4,897,993 0.183
40-49 7,211,051 6,509 13,819 3,418,038 0.404
50-59 5,020,135 13,881 29,470 2,379,544 1.238
60-69 3,327,195 19,724 41,875 1,577,090 2.655
70-79 1,602,572 14,102 29,939 759,619 3.941

80- 725,977 11,010 23,375 344,113 6.793
Total 59,672,408 70,965 150,663 22,967,816 0.656

Table 8.4 shows the provincial age aggregated IFR estimates. The actual estimate, based
on the available data, is the column ‘estimated IFR’. To better understand differences in
IFR between provinces, we calculated a so called ‘expected IFR’ by province, which is
what we would observe if provinces all share the national age dependent IFRs, in each
case averaged over the province-specific age distribution. This way, we can compare
the actual estimate with the ‘expected’ estimate, and thus not unnecessarily interpret a
provincial IFR to be ‘relatively high’ simply because that province has a relatively older
population. What is not clear is to what extent these various indicators reflect 1) dif-
ferences in the relationship between blood donors and the provincial population which
bias the provincial seroprevalence estimates in different ways, 2) differences in actual
age-specific fatality between provinces, and 3) differences in the quality of death data
and excess deaths estimates.
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Figure 8.6: Fitted SARS-CoV-2 Infection Fatality Rate as an exponential function of age,
in South Africa, as of March 2021.

Table 8.4: South African Provincial, age aggregated, SARS-CoV-2 Infection Fatality Rates. The
‘expected IFR’ (%) column indicates what the provincial IFR (%) would be if the national
age specific IFR estimates apply to each province, and are adapted to the province only
by age-averaging the IFR using the provincial age distribution.

Province Population Excess Natural Deaths Infections Estimated IFR Expected IFR
Eastern Cape 5,430,323 33,900 3,392,727 0.999 0.771

Free State 2,353,101 6,884 1,077,680 0.639 0.654
Gauteng 12,907,289 24,411 5,661,984 0.431 0.615

Limpopo 4,610,507 13,731 2,132,791 0.644 0.736
Mpumalanga 3,874,435 10,617 1,846,066 0.575 0.617

Northern Cape 919,620 3,067 29,253 1.048 0.697
North West 3,255,572 5,212 1,580,355 0.330 0.641

Western Cape 5,882,400 16,179 2,200,998 0.735 0.720
KwaZulu Natal 9,222,061 36,661 4,802,063 0.763 0.583

Total 59,672,408 70,965 150663 22,967,816 0.656

In fact, we are also not sure whether deaths may end up being allocated to provinces
differently than the provincial allocation of the deceased persons during life, given sig-
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nificant mobility of people of working age.

Our analysis is not optimal, mainly because the mortality data which one would ideally
use, and which forms the basis of the routine MRC reports, is not publicly available.
When this limitation is addressed, it is hard to imagine that the fatality rate estimates
will change substantially. Since estimates of IFR are clearly important as part of the over-
all epidemiological assessment, scenario projections, and health system evaluation, we
are disseminating these estimates at the present time in the hope that they will stimulate
discussion and epidemiological thinking.
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8.3 Concluding Remarks / Ongoing Work

The collaboration with the blood services is ongoing. This work involves support for
further study design details, analysis of data from forthcoming rounds, and also the
production of a manuscript [94] based on the preprints which have been reproduced
in this chapter. We do plan an additional analysis, aimed at estimating the prevalence
gradient and incidence (using Mahiane et al. [3] with excess mortality = 0).
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Chapter 9

Discussion, Recommendations, and
conclusions

9.1 Discussion

The main aim of the thesis is to optimize and benchmark population-level HIV incidence
estimation methods. Our exploration and exposition was limited to the Mahiane et al.
[3] and Kassanjee et al. [4] frameworks and further explored the optimally weighted in-
cidence estimator (a hybrid of Mahiane and Kassanjee estimators).

We chose the Mahiane et al. [3] and Kassanjee et al. [4], estimators because they do not
make unnecessary epidemiological/demographic assumptions, are easily adaptable to
yield age-specific incidence estimates and have proved their robustness to give accurate
and relatively informative incidence estimates. Below we broadly recap and summarise
the high-level points and recommendations made in each chapter.

We used a custom simulation platform to simulate an SA-like epidemic under var-
ied conditions to investigate method validity, applicability, and robustness. The thesis
presented a custom-designed simulation platform for these and other purposes and is
adaptable to similar benchmarking exercises. We gave detailed reports on our inves-
tigations, including validated conclusions and sound recommendations to smoothing
population-level survey data to yield incidence estimates.

In the case of the recency incidence estimator (Kassanjee et al. [4]), we show that there
are subtle points to consider if one seeks to estimate age-specific incidence;
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1. A “one size fits most" is a moving window approach with higher-order polyno-
mials and a wide enough inclusion distance (> 5) to estimate the prevalence and
prevalence of recency and consequently incidence.

2. Continuous fitting of the age structure of the prevalence data yields more infor-
mative age-specific incidence estimates versus the binning approach which yields
accurate incidence estimates but are uninformative.

3. Post hoc age averaging is one way of improving incidence and incidence trends
estimates, a caveat is that it hides the age structure in the incidence estimate which
is more epidemiologically interesting.

4. In cases where incidence is truly high, we show that one can derive informative in-
cidence trends and statistically significant age-specific incidence trends estimates
from just two cross-sectional surveys. The incidence around the crucial ages are
informative and further benefit from post hoc age averaging.

Our explorations focused on using simulated datasets to address some missed opportu-
nities available via Mahiane et al. [3] incidence estimator. We investigated the applica-
bility of the estimator in a world where HIV surveillance data (population-level survey
and excess mortality) is abundant. We made some methodological improvements and
showed that;

1. Similar to the recency approach summarising population survey data into preva-
lence and gradient of prevalence to yield age-specific incidence estimates requires
using a moving window approach. Our analysis suggest that, an investigator
should consider using higher-order polynomial (cubic/quartic) and a wide inclu-
sion distance (>5) to estimate the prevalence and its derivative.

2. Similar to Mahiane et al. [3], Grebe et al. [9] the synthetic cohort yields informative
incidence estimates at younger compared to the older ages, which suggest focus-
ing resources on younger ages or key populations for surveys meant for incidence
estimation.

3. Mahiane framework is most reliable in estimating incidence at the midpoint where
the gradient of the prevalence is accurate versus the actual survey dates. Unless
one believes prevalence was time-invariant at the survey dates in that time leading
to the survey then incidence from the date will be an optimal estimate.
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4. Incidence trends from three cross-sectional surveys are reliable (accurate and in-
formative) compared to the incidence trends from two cross-sectional surveys.

Chapter 7 adopts the methodological improvements made in the previous chapters (??)
as optimal approaches to handle the survey data, and based on these improvements we
simultaneously used both the Kassanjee and Mahiane analyses on data sets to which
both are applicable, and demonstrated that;

1. It is straightforward to implement the “one size fits most" polynomial order and
inclusion distance permutation to extract near-optimal incidence estimates from
the Kassanjee and Mahiane methods. Based on the Kassanjee and Mahiane meth-
ods one can apply the inverse variance method to yield an estimate that is accurate
and informative than either of the two.

2. Recency ascertainment does not really improve the time incidence estimates in
young ages i.e., most of the information is in the synthetic cohort (given accurate
and precise information on excess mortality).

3. Incidence difference estimates from just two cross-sectional surveys are unstable
without recency information. If the aim is to estimate incidence differences then
the recency approach alone yields accurate, but uninformative estimates unless
the sample sizes are relatively huge. In such cases one should use the recency esti-
mator in conjunction with post hoc age averaging to yield an age-range incidence
trend with reduced uncertainty.

4. Three surveys are optimal in estimating incidence differences, but unfortunately,
the time elapsed may be too long to derive any exciting epidemiological inferences.

5. There is no exact weight required for the optimally weighted estimator, but any
value in a stipulated range of values does yield sub-optimal incidence estimates.

9.2 Conclusion

We showed how the simulation platform can be used systematically to compare inci-
dence estimators that are either of “synthetic cohort” or “recency” form. Most impor-
tantly the simulation platform is not only meant for HIV epidemics any chronic condi-
tion is likely to benefit from the use of this platform and not for predictive/mechanistic
purposes but for method development and validation. We recommend the use of the
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simulation platform to compare the various HIV incidence estimators and determine
the optimal approach, which may lead to a consensus on how best to estimate HIV inci-
dence.

Estimating HIV incidence and incidence trends will remain a challenge if we continu-
ously view this problem through the same lens. Our emphasis has been on the perspec-
tive of an analyst in possession of substantial survey data, like PHIA [12], HSRC [13],
KAIS [14], and DHS [22]. For such datasets, we demonstrated that the same ideas and
tools developed here are applicable at the onset of the survey process, for example, by
investigating the impact of key design elements like survey intervals, age ranges, and
sampling density.

As far as we know this is the first study that systematically compares the performance
of two incidence estimators from different frameworks and we show that the methods
are comparable. The method gave similar results and confidence intervals, especially at
young ages.

The following details that were not systematically investigated, and were exhaustively
discussed in the body of the thesis and we again recap them as limitations below:

1. Excess mortality is known precisely: With real data this is not the case and it is crucial
that for purposes of the Mahiane and optimally weighted incidence estimators ac-
curate and precise “mean excess attrition/mortality" should be supplied to reduce
bias and improve precision.

2. The impact of non-zero values for false recent rate: This is a context specific measure
and in our investigations we tailored the PR(t) functions so that it yields an FRR =

0 and hence we advise researchers to use the correct FRR which can be determined
from Kassanjee et al. [74].

3. Multiple estimates of recency test properties: The survey simulations for incidence
estimation at midpoint, using the Kassanjee framework, where designed to have
the same ‘recency’ test properties which in most real surveys is not the case. And
hence investigations on interpolation and/or averaging methods of the MDRI and
FRR is necessary to address this conundrum and forms an interesting question to
investigate.
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9.3 Limitations

We did not investigate the effect of complex-sampling strategies on the incidence. But if
an experimenter has population-level survey data ( with a complex sampling strategy)
we recommend using bootstrapping approaches that reproduce the complex sampling
strategy, to estimate the standard errors.

The Mahiane approach requires accurate and precise excess mortality measures and
there is need for further research to address the question of excess mortality. But again
in an era were ART is available the second term reduces considerable. Currently some
studies Grebe et al. [9] rely on excess mortality estimates from the Thembisa model
[57]. Also it is crucial with real data for one to consider a sensitivity analysis of the
incidence estimator to misspecification or uncertainty about the excess mortality com-
ponent. The thesis did not engage with the uncertainty of the MDRI, FRR, and excess
mortality, which we consider as potential future work. Approaches to estimating inci-
dence from population-level surveys have emerged, for example, Fellows et al. [95].

Arguably, the sequence of steps to yield an optimal incidence estimator are cumber-
some therefore, an alternative approach would be to express a single likelihood for the
trinomial survey observation recent infection, long-term infection, HIV negative, which
depends on the prevalence, incidence, excess mortality, MDRI and FRR, note similar ap-
proaches were implemented in Eaton et al. [52], and Le Bao and Hallett [96].

As previously highlighted these challenges are easily addressed by using the code de-
veloped in this work. The code is readily available on request and will make way into
Inctools [60]. Currently, work is on going to apply these methodological improvements
to real life data, and we are aiming to have our simulation platform package (on GIT
[68]) hosted on CRAN soon.
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