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SUMMARY 

 

Various types of post-exercise recovery strategies have become part of the modern athlete’s 

daily routine. It is a well known that inadequate recovery will prolong the time it takes for the 

runner’s body to adequately adapt between training sessions and competitions. Anecdotal 

claims have been made about compression garments as a beneficial method to assist recovery 

after training sessions and competitions. Until now limited scientific research has addressed 

the influence that compression garments have on the recovery process after sporting activities. 

The benefits of compression garments, as a possible recovery modality, are that it is cost-

effective, practical and easily obtainable.  

 

This study endeavored to investigate the possible influence that compression garments may 

have on middle-aged long distance runners’ recovery rate after a prolonged run. This is the 

first study that has focused on compression garments as a post-exercise recovery modality for 

experienced middle-aged long distance runners. The other unique aspect of this study is the 

prolonged two-hour treadmill protocol that was used to induce muscle soreness.  

 

In addressing the aims, a randomized, crossover study design was used to investigate the 

possible benefits that the high pressure (CCL II 23-32 mmHg (mercury millimeter)) graduated 

compression garments may bring about. Seven competitive male long distance runners 

(height: 176.0 ± 8.6 cm; body mass: 92.5 ± 11.8 kg; VO2max: 45.7 ± 5.0 mL.kg-1.min-1) 

between the ages of 36 to 51 years volunteered for the study. The runners had to complete a 

two-hour treadmill run at 70 % of their predetermined maximum aerobic capacity, followed 

by a monitored 72-hour recovery period. The first part of the prolonged run was a 90–minute 

variant gradient run, followed by a 30-minute downhill run. Each subject acted as his own 

control and visited the Stellenbosch University’s Sport Physiology Laboratory (South Africa) 

on two occasions, separated by 7 to 28 days. One test was done with a compression garment 

(23 to 32 mmHg) and the other without.   

 

Testing included the measurement of lower limb circumferences (ankle, calf, mid- and 

proximal thigh), plasma lactate, lactate dehydrogenase and creatine kinase concentrations and 

the completion of subjective questionnaires on perceived muscle soreness (visual analog scale 

(VAS)). The lower extremities’ functional ability was determined with a time to exhaustion 

(TTE) step test, a vertical jump test (VJ) and modified sit-and-reach flexibility test. Pre-

exercise measurements were taken and immediately after and during the 72 hour after the 
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treadmill run and repeated for the second bout.  

 

The main outcomes of this study showed that the two-hour treadmill run induced delayed 

onset of muscle soreness, with and without the compression garment. Evidence of this was a 

significant rise in plasma creatine kinase (CKp) over the duration of both trials (P < 0.05). The 

compression garment significantly reduced swelling in the calf muscle (41.0 ± 0.2 vs. 41.5 ± 

0.5 mm; P < 0.002). Runners showed a lower perceived muscular pain and discomfort while 

performing functional knee movements at 24 and 48-hours after the two-hour run with the 

compression garment (1.2 ± 1.6 vs. 3.8 ± 2.4 cm and 0.9 ± 1.8 vs. 3.0 ± 2.6 cm on VAS, 

respectively; P < 0.05). Significant differences in perceived muscle soreness between the 

WCG and WOCG trials were observed at 24-hours after the run during rest (0.1 ± 0.2 vs. 0.4 

± 0.8 cm; P = 0.02) and with stretching (1.9 ± 1.2 vs. 3.5 ± 2.5 cm on VAS P = 0.02). The 

perceived pain associated with pressure was significantly lower with the compression garment 

at 24 (307 %) and 48-hours (237 %) after the run (P < 0.05).  

 

Blood lactate levels were reduced during the acute phase of recovery at 10 (1.8 ± 0.5 vs. 2.2 ± 

0.9 mmol.L-1; P = 0.05) and 30 minutes (1.8 ± 0.5 vs. 2.4 ± 0.4 mmol.L-1; P = 0.01) after the 

run, as well as plasma creatine kinase concentrations were statistically significantly lower at 

24-hours (238.3 ± 81.3 vs. 413.3 ± 250.8 units.L-1; P = 0.005) after exercise with the 

compression garment.  The two-hour treadmill run and the compression garment had no 

significant influence on the runners’ lower limb strength, power, endurance or flexibility (P > 

0.05). 

 

Compression garments demonstrated the potential to enhance recovery after prolonged 

strenuous exercise in well trained middle-aged runners. In addition, runners did not 

experience additional fatigue from the moderate to high pressure garments. The effect of 

higher pressure compression garments on athletic performance and the psychological 

influence of the garment need further investigation.  
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OPSOMMING 

 

Verskillende tipes naoefening herstelstrategië, vorm deel van die moderne atleet se daaglikse 

routine. Dit is wel bekend dat onvoldoende herstel sal beteken dat die atleet se liggaam langer 

sal neen om aan te pas tussen inoefen sessies en kompetisies. Sekere bewerings word al 

gemaak omtrent die voordeligheid van kompressiesokkies tydens die herstelperiode na 

oefening sessies en kompetisies. Tot nou toe was daar beperkte wetenskaplike navorsing oor 

die invloed van kompressie sokkies of die herstel proses van sport aktiwiteite. Die voordeel 

van kompressie sokkies as ‘n moontlike herstelmetode, is dat dit koste-effektief, prakties en 

maklik verkrybaar is. 

 

Hierdie studie poog om ‘n ondersoek in te stel na die moontlike invloed wat kompressie 

sokkies op middeljarige lang-aftstandatlete se herstelperiode sal hê na ‘n verlengde 

hardloopsessie. Hierdie is die eerste studie wat konsentreer op kompressie sokkies as ‘n 

naoefenings hersteltegniek vir ervare middeljarige lang-afstandatlete. Die ander unieke aspek 

van die ondersoek is die langdurige tweeuur trapmeul protokol wat gebruik word om spierpyn 

te veroorsaak.  

 

Om die doel te bereik, is ’n lukrake oorkruis studie gebruik om ondersoek in te stel na die 

moontlike voordele van die hoë druk (CCL II 23-32 mmHg) kompressie sokkies. Hierdie 

sokkies toon ’n progressiewe verhooging van druk vanaf die enkle tot onder die knieskyf. 

Sewe mededingende langafstand atlete (lengte : 176.0 ± 8.6 cm; liggaams massa: 92.5 ± 11.8 

kg; VO2maks: 45.7 ± 5.0 mL.kg-1.min-1) tussen die ouderdomme van 36 en 51 jaar, het aan die 

studie deel geneem.  Die wedlopers moes ‘n twee-uur lange trapmeul toets voltooi, teen 70% 

van hul vooraf bepaalde maksimum aerobiese kapasiteit. Dit is gevolg deur ‘n gemonitorde 

72-uur herstel periode. Die eerste deel van die twee-uur hardloop sessie was ‘n 90-minuut 

afwisselende opdraende en afdraende hardloop stel, wat gevolg is deur a 30-minuut afdraande 

deel. Elke deelnemer was sy eie kontrole en het op twee geleenthede die Stellenbosch 

Universiteit se Sport Fisiologiese  Laboratorium  (Suid Afrika) besoek. Die twee besoeke is 

tussen 7 en 28 dae geskei. Een toets is met kompressie sokkies gedoen (23 – 32 mmHg) en 

die ander sonder. 

 

Die toetse het die volgende behels: laer been omtrekke (enkel, kuit, middel- and bo dy), die 

versameling en ontleding van bloed monsters vir plasma laktaat, laktaat dehydrogenase and 

kreatine kinase konsentrasies en die voltooing van subjektiewe vraelyste oor die graad van 
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spierpyn ervaaring (“visual analog scale” (VAS)). Die onderlyf funksionele vermoëns is 

bepaal met ’n tyd tot uitputtings traptoets, ‘n vertikale sprong toets en ‘n gewysige sit-en-strek 

soepelheids toets. Data is voor die oefeninge in gevorder asook direk daarna, en gedurende 

die 72 uur na die trapmeul draf. Die metings vir die tweede sessie is herhaal. 

 

Die hoof uitkomste van die studie het gewys dat die twee-uur trapmeulsessie het spierpyn 

veroorsaak, met en sonder die kompressie sokkies. Die bewys hiervan was ‘n betekensvolle 

toename in plasma kreatien kinase (CKp) oor die tydperk van albei oefening toetse (P<0.05).  

Die kompressie sokkies het die swelling in die kuitspiere verminder, in vergelyking met die 

toetse sonder kompressie sokkies (41.0 ± 0.2 vs. 41.5 ± 0.5 mm; P < 0.002).  

 

Wedlopers met die kompressie sokkies het minder spierseerheid en ongerief aangeteken toe 

hulle knie beweegings gedoen het op 24 en 48-uur na die twee-ure trapmeul toets (1.2 ± 1.6 

vs. 3.8 ± 2.4 cm op VAS en 0.9 ± 1.8 vs. 3.0 ± 2.6 cm op VAS, onderskeidelik; P < 0.05). 

Betekenisvolle verskille is waargeneem tussen die toetse met en sonder kompressie sokkies, 

op 24-uur na die twee-ure toets gedurende rus (0.1 ± 0.2 vs. 0.4 ± 0.8 cm op VAS; P = 0.02) 

en met strek oefeninge (1.9 ± 1.2 vs. 3.5 ± 2.5 cm op VAS P = 0.02).  Die pyn wat ervaar was 

met drukking, was betekenisvol minder met die kompressie sokkies op 24 (307 %) en 48-uur 

(237 %) na die trapmeul sessie (P < 0.05). Bloed laktaat konsentrasie in die sirkulasie was 

verlaag gedurende die akute fase van die herstelings periode op 10 (1.8 ± 0.5 vs. 2.2 ± 0.9 

mmol.L-1; P = 0.05) en 30 minute (1.8 ± 0.5 vs. 2.4 ± 0.4 mmol.L-1; P = 0.01) na die hardloop 

sessie, sowel as die plasma kreatine kinase konsentrasie was statisties betekenisvol laer by 24 

uur (238.3 ± 81.3 vs 413.3 ± 250.8 eenhede L-1; P = 0.005) na die hardloop sessie met die 

kompressie sokkies.  Die twee-ure trapmeul toets en die kompressie sokkies het geen 

betekenisvolle invloed gehad op die wedlopers se onderlyf ledemate se plofkrag, 

uithouvermoë of soepelheid (P > 0.05) nie. 

 

Kompressie sokkies het gewys dat dit potensiaal het om met herstel te help na lang en harde 

oefening in geoefende middeljarige atlete.  Nietemin is daar verdere wetenskaplike navorsing 

nodig om dit te bevestig.  Wedlopers het nie addisionele vermoeienis van die drukking van 

kompressie sokkies ervaar nie. Sterker drukkende kompressie sokkies sowel as die 

sielkundige invloed van die sokkies benodig verdere navorsing.  
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CHAPTER ONE 

 

INTRODUCTION 

 

Long distance running is one of the most popular sports, not only in South Africa, but also 

throughout the world. In 2006 and 2007 about 28 599 runners participated in long distance 

events (21.1, 30, 36, 42.2 and 56 kilometers) in the Western Province alone (South Africa) 

(Jacobs, 2007). Soft tissue injury or damage is one of the most common problems associated 

with prolonged running. Typically, about 17 % of the reported injuries immediately after a 

marathon are related to musculoskeletal damage (Sanchez et al., 2006). Muscle damage may 

cause a 40 to 50 % reduction in a marathon runner’s functional ability immediately after a race 

(Ball and Herrington, 1998). The most popular age groups to participate in long distance 

events are between the ages of 30 and 50 years. In 2007, 5949 runners completed the 

Comrades marathon (about 89 km) in this age group, of which 49 % were between 40 and 50 

years old. In addition, the average age in the Comrades marathon is 40 years (Jones, 2007). 

 

The runners’ reduced muscular strength, power, and endurance as well as stiffness in their 

joints may limit subsequent athletic performance (Ball and Herrington, 1998; Byrne and 

Eston, 2002; Kraemer et al., 2004; Miller et al., 2004; Takahashi et al., 2006; Rimaud et al., 

2007). In addition, it has been suggested that lactate, acidosis and increased inorganic 

phosphate accumulation after strenuous exercise may be possible causes for muscle soreness 

(muscle tears or damage to the muscle wall) and fatigue (Rimaud et al., 2007). This may also 

inhibit muscular action and exaggerate the risk of injury. Recovery strategies have been 

investigated with regard to the ability to clear lactate and to lessen the symptoms associated 

with delayed onset of muscle syndrome (DOMS) (Barnett, 2006). 

 

If the athlete does not recover efficiently after a race or training, future problems may develop 

(Kraemer et al., 2004; Miller et al., 2004; Barnett, 2006; Gill et al., 2006). Thus, recovery 

after training and competition is an accepted practice by athletes and their management. 

However, the literature shows that there is a need for more scientific research on post-exercise 

recovery strategies, as most research has demonstrated inconclusive findings. A practical and 

inexpensive post-exercise recovery method will not only aid recovery in trained athletes but 

also will (i) prevent future injuries and (ii) indirectly improve athletic performance by 
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allowing the athlete to recover more efficiently and return to training sooner. Some of the most 

popular post-exercise recovery strategies include: active and passive recovery, water 

immersion, sport massage, stretching, and prophylactic therapies (ultrasound, iontophoresis, 

transcutaneous electrical nerve stimulation and microcurrent electrical stimulation).  

 

Traditionally passive recovery has been recommended for athletes after exercise. However, for 

some athletes this is not viable, since they cannot afford to take a day or even more off to 

recover. Hence, other possible strategies were investigated. Most of the available recovery 

studies have indicated that active recovery is the preferred recovery strategy after exercise 

(Martin et al., 1998; Hemmings, 2001; Chatard et al., 2004; Reilly and Ekblom, 2005; Gill et 

al., 2006). When active recovery is continued for long enough periods and not restricted by 

time constraints and resource limitations, it tends to aid lactate clearance, as well as, recovery 

after exercise. However, some researchers suggest that active recovery may deplete muscle 

glycogen stores in-between sessions (Wilcock et al., 2006). In addition, McAinch et al. (2004) 

concluded that active recovery does not aid athletic performance between subsequent aerobic 

sessions, regardless of the associated lower blood lactate concentrations shown.  

  

Water immersion, involving contrast therapy and separate cold, neutral, or warm water 

recovery sessions is another possible recovery strategy, which works in a similar fashion to 

active recovery. Possible benefits may be found with contrast water therapy, but further 

research is warranted. Standardized water temperature or the ratios between hot and cold 

therapies vary between studies and findings are inconclusive. This strategy is expensive and 

requires specialized equipment, which is not always readily available and may be impractical 

between repeated short intervals of exercise (Wilcock et al., 2006). 

 

Sport massage therapy may have a psychological and relaxing influence. However, results are 

conflicting as to whether massage aid the removal of lactic acid after exercise or reduce 

DOMS and related symptoms (Ernst, 1998; Hemmings, 2001; Zainuddin et al., 2005). The 

findings for prophylactic therapies show that these modalities do not aid acute post-exercise 

recovery, but does have a beneficial effect in rehabilitation of sport injuries (Stracciolini et al., 

2007). Traditionally, it was believed that stretching aids recovery after exercise. The latest 

research indicates that stretching may actually increase the risk of injury, as well as, impairs 

an athlete’s performance (Andersen, 2005; Dawson et al., 2005). 

http://scholar.sun.ac.za/



 3

 

In 2003, Paula Radcliffe broke her own woman’s world marathon record (2:15:25) by two 

minutes in her knee-high graduated compression socks. There has also been an increase lately 

in the popularity of compression garments across a range of sports, such as cricket, track and 

field, cycling and middle distance running (Doan et al., 2003; Gill et al., 2006; Ali et al., 

2007; Duffield and Portus, 2007). Little scientific evidence is available to support the 

anecdotal claims that have been made by manufactures, namely that compression garments aid 

post-exercise recovery and performance. 

 

There is however, a significant amount of research that shows the beneficial role of 

compression garments in conditions such as venous insufficiencies and other associated 

vascular problems. Athletes however, have adapted to their training and do not generally 

demonstrate problems related to the venous system or a weak calf muscle-pump function. On 

the other hand, several authors suggest that compression is a realistic approach in aiding 

recovery, limiting strength loss, reducing muscle damage and the perception of muscle 

soreness (Kraemer et al., 2001a; Kraemer et al., 2001b ; Kraemer et al., 2004; Bringard et al., 

2006b ; Trenell et al., 2006; Ali et al., 2007).  

 

To date only a small amount of research supports the notion that compression garments may 

provide some benefits in sports performance and aid recovery from exercise (Barnett, 2006; 

Gill et al., 2006). The advantage of compression therapy as an aid to post-exercise recovery 

and performance is that it is a cost-effective and practical method (Kraemer et al., 2004; 

Barnett, 2006). The question is whether compression garments would be an effective strategy 

to aid post-exercise recovery in training and competition.  

 

It is hypothesized that compression garments create an external pressure gradient favouring 

the removal of oedema through skeletal muscle action, local pressure gradients and the 

influence of gravity (Partsch, 2003; Kraemer et al., 2004). Furthermore, the compression 

garment exerts pressure on the lower limb thus reducing the diameter of the blood vessel. Both 

superficial and deep venous blood flow is accelerated, shunting the blood towards the heart, 

and increasing the cardiac output (Agu et al., 1999; Partch, 2003). Thus, the compression 

garments function in a similar way to the calf muscle-pump function. 
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To conclude, results from post-exercise strategies are conflicting and thus far have not 

revealed a modality as the “gold standard” for recovery. The most successful modalities are 

those mimicking the calf muscle-pump function and accelerating blood flow to the affected 

area, such as active recovery and contrast water therapy. This suggests that compression is a 

realistic post-exercise recovery strategy that warrants further scientific investigation. 
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CHAPTER TWO 

 

THE PHYSIOLOGY OF ENDURANCE TRAINING 

 

A. INTRODUCTION 

 

Legaz-Arrese et al. (2007) classified long distance runners as those trained in 5000m, 10 000m 

and marathon events, while middle distance runners are trained in 800m to 3000m distances. 

In exercise physiology the term endurance, according to Bergero et al. (2005), represent the 

physical and mental ability to withstand exhaustion. In addition, endurance training is 

characterized as activities lasting for more than 20 minutes, with a rise in heart rate up to 60 – 

80 % of the athlete’s maximum heart rate (Carter et al., 2003). Ball and Herrington (1998) 

more specifically define endurance training as low resistance and high repetition exercise.  

 

Training is a process of stress and adaptation. Therefore, one could also consider that 

prolonged distance running requires well-developed endurance ability of athletes, which 

entails immediate and numerous adaptations of the whole body to stressors (Sztajzel et al., 

2006). Stress might be a physical, chemical, or psychological stimulus or a combination of 

these factors, which pose a threat to an individual’s homeodynamic state. Adaptation, 

according to Väänänen (2004), is an individual’s non-genetic ability to respond to repeated 

stimuli over a prolonged period.  

 

Bergero et al. (2005) highlights the fact that to maximize the physiological performance of an 

athlete, sport scientists need to possess the necessary knowledge of the metabolic and 

functional processes, particularly the physiological adaptations involved in the specific athletic 

discipline. Endurance performance, however, does not rely solely on one physiological 

system, but rather a combination of physiological, biochemical, biomechanical, histological, 

and neurological characteristics of the athlete (McArdle et al., 2001; Myburgh, 2003). The 

closer these physiological systems get to the requirements of the specific event, the better the 

athlete is adapted for prolonged distance activities.  

 

On account of the difficulty to separate the physiological systems into compartments, as they 

have interactive characteristics, it is easier to first of all discuss the various physiological 
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variables that determine running performance and then the specific adaptations that occur with 

endurance training.  

 

B. PHYSIOLOGICAL PERFORMANCE DETERMINANTS 

 

Numerous authors discuss various characteristics of prolonged running performance that 

determines successful endurance performance and assist in differentiating between endurance 

trained (from elite to recreational athletes) and untrained individuals. They specifically 

mention maximal aerobic capacity (VO2max), running economy, fractional use of maximal 

aerobic capacity (% VO2max or submaximal VO2max), lactate threshold (LT) and peak treadmill 

velocity (PTV) (Noakes et al., 1990; Ball and Herrington, 1998; Bassett and Howley, 2000; 

Myburgh, 2003; Armstrong et al., 2006; Legaz-Arrese et al., 2007).  

 

More recent research suggests that skinfold thickness, muscle fiber typing (percentage slow 

compared to fast twitch fibers), oxidative enzyme activity, time to exhaustion at 100% of peak 

treadmill speed and end diastolic left ventricular (LV) internal diameter at rest are also good 

performance predictors (Myburgh, 2003; Armstrong et al., 2006; Legaz-Arrese et al., 2007).  

However, these variables are presently not often used to assess athletes due to impracticality 

and the high cost involved in these specialized tests. 

  

Consequently, it is important to understand the underlying physiological, biochemical and 

biomechanical mechanisms which produce these performance prediction factors. Failure in 

any of these mechanisms could lead to performance decrements (Ball and Herrington, 1998; 

Bassett and Howley, 2000; Myburgh, 2003; Armstrong et al., 2006; Legaz-Arrese et al., 

2007). Armstrong et al. (2006) identified the three primary factors, according to priority, 

which determine endurance performance, i.e. running economy, VO2max and % VO2max at race 

pace. 

 

1. Maximum aerobic capacity (VO2max) 

 

Maximum oxygen capacity (VO2max) is measured during a progressive incremental exercise 

test and is the greatest amount of oxygen that an athlete can extract, transport and utilize at 

maximal effort, during aerobic adenosine triphosphate (ATP) synthesis (Bassett and Howley, 
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2000; Shave and Franco, 2006; Corazza et al., 2007). In other words, VO2max is an indicator of 

how effective a runner’s cardiorespiratory system functions and is commonly used as a 

laboratory assessment tool for endurance capacity (Bassett and Howley, 2000; Corazza et al., 

2007).   

 

Several studies have shown that elite endurance athletes have very high VO2max values 

(Noakes et al., 1990; Bassett and Howley, 2000; Myburgh, 2003; Abbiss and Laursen, 2005; 

Shave and Franco, 2006; Legaz-Arrese et al., 2007). Therefore, VO2max can be used to 

differentiate between endurance trained and untrained individuals. According to Legaz-Arrese 

et al. (2007) and Shave and Franco (2006), there is a substantial relationship between VO2max 

and running performance among diverse groups of athletes competing in various distance 

events.  In spite of this, VO2max is not a choice predictor of performance in runners at the same 

level, in events like, 800m, 1500m and 3000m to marathons (Legaz-Arrese et al., 2007). Thus, 

the more homogenous the group of athletes (i.e. elite and subelite athletes), the weaker the 

relationship (r = 0.55 to – 0.86; P < 0.01) between VO2max and running performance (Noakes 

et al., 1990; Myburgh, 2003; Shave and Franco, 2006).   

 

Legaz-Arrese et al. (2007) analyzed their data, as well as, data from the literature to reveal the 

differences in VO2max values between various performance levels and gender in runners. The 

authors found that the VO2max values of athletes participating in events from 100 to 3000m 

events increased gradually in runners with the same performance levels. Thus a high VO2max 

value becomes increasingly more important the longer the distance and could even be used as 

a tool for talent identification. However, the VO2max values of athletes of the same 

performance level, who participated in 3000m to marathon events, do not differ considerably 

(Legaz-Arrese et al., 2007). This confirms the importance of a well developed aerobic 

capacity (VO2max) in long distance events, although the VO2max per se may not differentiate 

between athletes at the same level of performance. 

 

Legaz-Arrese et al. (2007) thus came to the conclusion that the total contribution of the 

aerobic energy system in an event determines the importance of VO2max in the various 

distances. In 3000m to marathon events the athlete relies predominantly on the aerobic system 

for energy, while the anaerobic system plays a lesser role. 
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2. Running economy (RE) 

 

Over time and with intense aerobic training, VO2max plateaus even though running 

performances seem to continue to improve. This is especially evident in elite endurance 

athletes, which indicates that there are other factors that play a role in endurance running 

performance (Myburgh, 2003; Legaz-Arrese et al., 2007). One of these possible factors 

influencing running performance is running economy, described as the mechanical efficiency 

of a runner to utilize oxygen to produce a specific running speed (Bassett and Howley, 2000; 

Shave and Franco, 2006; Chen et al., 2007).  

 

Running economy, along with the fractional utilization of oxygen (% VO2max), determines the 

athlete’s running velocity that can be sustained during a prolonged distance run (Bassett and 

Howley, 2000). A better running economy means a more economical athlete, given that 

running economy is associated with a lower fractional utilization (VO2max) of oxygen during 

exercise, with a lower rate of fuel consumption for a given speed, thus sustaining glycogen 

stores (Shave and Franco, 2006). 

 

Therefore it has been established that improved running economy is associated with better 

performances in well-trained distance runners (Bassett and Howley, 2000; Myburgh, 2003; 

Chen et al., 2007), but on the other hand, runners with similar race times, might have different 

running economies (Shave and Franco, 2006). According to Myburgh (2003), the ratio 

VO2:VO2max (the energy cost of running (VO2) at a set submaximal workload to the metabolic 

power at maximum workload (VO2max)), accounts for half the variability in subelite athletes’ 

performances in 1500 to 5000m distance events, with the same running times. In addition, 

several factors influence RE, i.e. muscle temperature, the respiratory exchange ratio (RER), 

catecholamine concentration in the circulation, muscle glycogen and muscle damage (Chen et 

al., 2007). 

 

Consequently, each athlete’s running economy differs from the next and it is obvious that 

running economy is velocity specific, for instance, endurance athletes tend to exhibit better 

running economy at a slower pace, and sprinters have a better RE at a fast pace (Bassett and 

Howley, 2000; Shave and Franco, 2006). This might explain the difference between running 
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performances in athletes with a similar VO2max (Bassett and Howley, 2000; Shave and Franco, 

2006).  

 

3. Fractional use of aerobic capacity (% VO2max) 

 

A greater fractional utilization of VO2max (% VO2max) at race pace, indicates a better running 

performance (Bassett and Howley, 2000; Myburgh, 2003; Shave and Franco, 2006) and is 

associated with the muscle’s ability to adapt to endurance training (Bassett and Howley, 

2000). Furthermore, percentage VO2max at lactate threshold improves with training (Bassett 

and Howley, 2000). This brings about improvements in the VO2max that can be sustained 

during a prolonged run (Bassett and Howley, 2000). In other words, a well-trained endurance 

athlete can sustain a higher % VO2max for a longer duration (Shave and Franco, 2006). The 

percentage of VO2max at 16 km.h-1 (r = 0.76 to 0.90; P < 0.01) in a treadmill incremental test 

could be used as a performance predictor in endurance trained runners, specifically marathon 

and ultramarathon runners (Noakes et al., 1990). 

 

However, Legaz–Arrese et al. (2007) and Bassett and Howley (2000) made a valid point, that 

runners do not run endurance races (3000m to marathon distances) at maximum velocity. 

Generally endurance athletes run races at the highest velocity that can be maintained before 

metabolic waste products accumulate (% VO2max at LT) (Shave and Franco, 2006). Usually 

this occurs at velocities below the athlete’s VO2max, since they can not sustain running velocity 

at VO2max for longer than approximately eight minutes (Shave and Franco, 2006). For 

instance, Bassett and Howley (2000) reported that trained athletes can run at 83 % of their 

maximum aerobic capacity for two hours.  

 

Additionally, a higher VO2max is necessary in these long distance events to achieve a greater 

race velocity from the same % VO2max and superior performance is determined by an athlete’s 

ability to run at a higher percentage of VO2max than his competitors (Bassett and Howley, 

2000; Legaz–Arrese et al., 2007). Myburgh (2003) also mentions a theoretical model which 

hypothesizes that if an athlete has optimal capacities in VO2max, running economy and lactate 

threshold, a sub two-hour marathon time is achievable.  
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4.  Lactate threshold (LT) 

 

Lactate threshold is the velocity, heart rate or fraction of VO2max (%VO2max) at the level of 

lactate accumulation (Shave and Franco, 2006). Four different lactate parameters exist to 

indicate the oxygen uptake (VO2) at various lactate concentrations, i.e. lactate threshold (at the 

initial increase of lactate above resting level during incremental test), LT1 (as blood lactate 

increases one millimole (mM) above resting value), LT2 (as blood lactate reaches two mM) 

and OBLA (at the onset of blood lactate accumulation at four mM) (Yoshida et al., 1987).  

 

However, even though all four of these parameters correlate well with one another (at least r = 

0.87), indicating the inter-related reliance of these parameters, lactate threshold (LT) correlates 

the best with endurance running performance (r = 0.73; P < 0.01) and aerobic capacity (r = 

0.84; P < 0.01) in a 12-mintute run according to Yoshida et al. (1987). A strong relationship of 

r = 0.88 and r = 0.99 exist between LT and a runner’s endurance performance at varying 

durations (Shave and Franco, 2006). The speed at lactate threshold (r = -0.80 to -0.92; P < 

0.01) integrates running economy, % VO2max and VO2max and is the best physiological 

predictor of an athlete’s normal marathon running pace (Noakes et al., 1990; Bassett and 

Howley, 2000; Shave and Franco, 2006).  

 

In a study by Coetzer et al. (1993), the authors investigated the superior performance and 

fatigue resistance ability of black South African long distance runners compared to white 

distance runners. What they found was that the black distance runners maintained a higher 

percentage of their VO2max at distances above five kilometers (km). Furthermore, the black 

distance runners were smaller and lighter than their white counterparts (69.9 ± 5.6 vs. 56.0 ± 

5.4 kg); as a result corrections were made for body mass and the authors illustrated that there 

was no significant difference in VO2max (71.0 ± 5.3 vs. 71.5 ± 4.6 mL.min-1. kg-1), maximal 

ventilation (VEmax; 1.9 ± 0.3 vs. 2.0 ± 0.3 L.min-1.kg-1) and submaximal running economy 

between the black and white runners. The only difference between the two groups was the 

lower lactate accumulation in the circulation (12.8 ± 2.2 vs. 8.7 ± 1.7 mmol.l-1; P < 0.001) at 

any running speed in the black long distance runners, which might contribute to their 

resistance to fatigue (Coetzer et al., 1993).  
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According to Bassett and Howley (2000) and Myburgh (2003), lactate threshold is the best 

physiological predictor of distance running over five kilometers. In addition, running velocity 

at OBLA correlates well (r = 0.96; P < 0.001) with marathon running performance (Sjodin and 

Jacobs, 1981). The ability to maintain a high running velocity goes hand in hand with 

sustained high oxidative ATP production rate (Bassett and Howley, 2000). Yoshida et al. 

(1987) pointed out that one of the reasons why LT is a better indicator of endurance 

performance is the closer relationship to muscle oxidative capacity (r = 0.94). Legaz-Arrese et 

al. (2007) also points out that a higher VO2max is necessary to obtain a greater velocity in 

competition from the same % VO2max.  

 

5. Peak treadmill velocity (PTV)  

 

Peak treadmill velocity (PTV) or maximum aerobic velocity is also an indicator of running 

performance (Myburgh, 2003).  PTV is determined during a progressive incremental test and 

is the velocity related to VO2max (Berthon and Fellmann, 2002). PTV is influenced by both 

running economy and maximal aerobic capacity (Bassett and Howley, 2000; Myburgh, 2003; 

Armstrong et al., 2006). The athletes that can achieve a higher running velocity during the 

maximal test are the most economical (Noakes et al., 1990). Noakes et al. (1990) defines PTV 

as the highest speed (km.h-1) maintained for 60 seconds during a maximum incremental test. 

In the situation that an athlete can not complete one minute at a set speed, the preceding 

workload is taken as the PTV. 

 

The objective of the study by Noakes et al. (1990) was to determine which factors are the best 

predictors of ten to 90 kilometer performance, in trained long distance runners (age: 32.1 ± 

7.2; VO2max 66.2 ± 8.0 mL.kg-1.min-1). Forty three experienced runners, specializing in 

marathon or longer distances, completed a progressive treadmill test. At a second visit, these 

athletes had to perform three, six minute submaximal runs. The middle interval was derived 

from the athlete’s average marathon velocities. The first and last six minute running bouts 

were 1.5 km.h-1 slower and faster, respectively, than this average marathon speed. Several 

other performance parameters were assessed besides PTV, such as blood lactate 

concentrations, running economy and VO2 at various speeds.  
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The researchers (Noakes et al., 1990) came to two important conclusions. Firstly, that 

performance at different distances are the best predictor (r = 0.91 to 0.97; P < 0.01) of running 

performances at any distance from 10 to 90 kilometers in trained long distance runners 

(marathon and ultramarathon). In other words, those runners that run shorter distances the 

fastest are most likely to have shorter running times over longer distances. Furthermore, this 

also meant that the physiological factors involved in longer races do not differ from shorter 

distances. The second finding was that PTV is the best laboratory performance predictor (r =  

-0.88 to -0.97) at all distances in ultramarathon runners. In marathon runners, PTV was a 

predictor of performance in all the distances except in marathons. As mentioned before, in 

respect to marathon performance and trained marathon runners, the lactate turnpoint was a 

better predictor of performance (Noakes et al., 1990; Bassett and Howley, 2000). 

 

C. ADAPTATIONS TO ENDURANCE TRAINING 

 

Long distance runners undergo various central, i.e. stroke volume and heart rate, and 

peripheral adaptations in the skeletal muscle with regular endurance training.  In the following 

sections these adaptations will be highlighted. 

 

1. Cardiorespiratory system 

 

The cardiorespiratory system consists of the heart, lungs and blood (Bassett and Howley, 

2000). For muscles to produce movement, energy (ATP) must be provided by these 

physiological systems. The respiratory and cardiovascular systems develop a synergy with 

similar mechanisms (pressure gradients), to supply fuel and oxygen, along with the removal of 

metabolic waste products to and from the mitochondria. Throughout prolonged activity the 

need for oxygen and nutrients increases and these two systems must therefore adapt to sustain 

muscle activity (Plowman and Smith, 2003). 

 

1.1 Respiratory system 

 

It is commonly believed that the respiratory system is not a limiting factor during maximal 

exercise in healthy individuals and because of the large breathing reserve, the respiratory 

system does not undergo major adaptations with endurance training (McArdle et al., 2001; 

http://scholar.sun.ac.za/



 13

Caine et al., 2001; Sheel, 2002; Plowman and Smith, 2003). In fact, according to Bassett and 

Howley (2000) arteries are 95 % saturated with oxygen during maximal exercises. Thus the 

respiratory system provides sufficient oxygen for all of the muscles’ metabolic needs. 

However, recent studies indicate that the respiratory system may possibly limit maximal 

aerobic capacity (Bassett and Howley, 2000; Spanoudaki et al., 2004; Sanchez et al., 2006). 

 

It seems that some well-trained (VO2max above 55 mL.kg-1.min-1) endurance athletes’ 

metabolic and cardiovascular capacities exceed their respiratory capacities (Stewart and 

Pickering, 2007). This is referred to as exercise-induced hypoxemia (EIH) (Bassett and 

Howley, 2000; McArdle et al., 2001; Hopkins, 2002; Spanoudaki et al., 2004) and affects 

about 50% of well-trained male endurance athletes, especially in events lasting longer than 15 

minutes (Stewart and Pickering, 2007). Previous studies suggest that EIH is more prevalent in 

treadmill running than in cycle ergometry in mixed groups. However, Laursen et al. (2005) 

have shown that triathletes show no difference between the two modalities, whereas Stewart 

and Pickering (2007) indicate EIH at a lower workload is more prominent and common in 

women and master endurance athletes, compared to young male subjects. 

 

EIH is the result of an increasing alveolar-arterial difference for oxygen and an inadequate 

increase in alveolar oxygen pressure (PAO2). It results in a drop in arterial oxygen partial 

pressure (10 mmHg reduction of PaO2) at the onset of exercise and oxygen saturation (SaO2) 

below resting values (Stewart and Pickering, 2007). This causes haemoglobin desaturation at 

exercise intensities nearing maximal oxygen consumption (Hopkins, 2002; Spanoudaki et al., 

2004; Laursen et al., 2005; Stewart and Pickering, 2007).  

 

McArdle et al. (2001), Hopkins (2002) and Spanoudaki et al. (2004) list possible causes for 

EIH, i.e. hypoventilation (mechanical restriction of breathing), impaired ventilation – 

perfusion ratio (difference between capillary blood flow in the pulmonary and alveolar 

ventilation), factors restricting gas diffusion (integrity of the alveolar capillary membrane, 

stress failure of capillary endothelium, interstitial pulmonary oedema), shunting (bypassing 

areas for diffusion because the blood is redirected between venous and arterial circulations), 

changes in cytokine concentration (which affects histamine degranulation), deformed red 

blood cells (influencing respiratory blood flow distribution and diffusion ability), pressure 

imbalances at the end-capillaries between alveolar oxygen pressure and oxygen pressure in 
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pulmonary capillaries and increased blood lactate concentration, histamine and blood 

viscosity.  

 

As aerobic exercise intensity and duration increase, the arterial desaturation worsens (McArdle 

et al., 2001; Stewart and Pickering, 2007). This means that during maximal and submaximal 

intensities less oxygen is transported to the active muscles and this reduces VO2 max and peak 

heart rate. This in turn diminishes performance in endurance athletes (Spanoudaki et al., 2004; 

Grataloup et al., 2007; Stewart and Pickering, 2007). EIH thus leads to an earlier onset of 

fatigue. The onset of VO2max deterioration differs between individuals. However, it is 

estimated to be where oxygen desaturation is three to four percent below resting values 

(Spanoudaki et al., 2004, Stewart and Pickering, 2007).  

 

Another possible mechanism which may lower running performance is exercise–induced 

respiratory muscle fatigue, particularly during high-intensity exhaustive and prolonged 

exercises in healthy subjects (Sheel, 2002; Verges et al., 2007). However, the physiological 

explanation of diaphragmatic fatigue and whether diaphragm fatigue occurs during or after 

exercise is controversial and needs further investigation (Sheel, 2002; Kabitz et al., 2007; 

Verges et al., 2007). Typically, no fatigue occurs at intensities below 80 % of VO2max (Sheel, 

2002). Kabitz et al. (2007) questioned the subject of exercise-induced diaphragmatic fatigue, 

since the diaphragm is the most fatigue-resistant skeletal muscle. It is highly oxidative and 

consists of a high volume of capillaries (Sheel, 2002).  Tidal volume, breathing frequency and 

thus minute ventilation progressively increase as exercise continues (Kabitz et al., 2007). 

Furthermore, during the final part of an event, athletes tend to increase their exercise 

performance and if diaphragmatic fatigue occurred, this would not be possible (Kabitz et al., 

2007). 

 

Theoretically, when an athlete exercises, an increasing demand is placed on the diaphragm, 

which may result in fatigue and limit performance (Kabitz et al., 2007). The respiratory 

muscles can fatigue during high intensity exercise owing to a reduced blood flow. The latter is 

caused by shunting the cardiac output to the active locomotor muscles instead of the 

respiratory muscles, or secondly by the circulating metabolic byproducts which might interfere 

with diaphragm contractility (Sheel, 2002). Verges et al. (2007) also explains that fatigue 

influences both inspiratory and expiratory respiratory muscles, in other words the diaphragm, 
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the abdominal muscles and intercostals. It has also been shown that respiratory muscle training 

reduces respiratory muscle fatigue and improves exercise performance, indicating that perhaps 

the respiratory muscles can limit athletic performance (Verges et al., 2007).  

 

1.2 Cardiovascular system 

 

The cardiovascular function of endurance trained athletes (i.e. heart, blood vessels and blood) 

is the key to performance capacity.  It has traditionally been recognized as the central and 

primary limiting factor and endures the most modification with exercise. Consequently, 

extensive research has been done by sport scientists on the cardiovascular system, as it is 

relatively easily measurable and predictable. Generally, structural, neural and local adaptations 

to the cardiovascular system are associated with exercise training (Carter et al., 2003).  

 

1.2.1 Maximum cardiac output 

 

Various authors (Bassett and Howley, 2000; Rowland and Roti, 2004; Vella and Robergs, 

2005; Midgley et al., 2007) suggest that maximal cardiac output (Qmax), or more precisely 

maximal stroke volume, is the predominant, though not the only limiting VO2max factor in 

well-trained athletes, as well as in normal, healthy individuals. In 2000, Bassett and Howley 

explained that cardiac output contributes about 70 – 85 % to maximum aerobic capacity 

(VO2max).  During exercise two factors influence cardiac output; namely an increased heart 

rate (HR) and augmented stroke volume (SV) (Plowman and Smith, 2003; Vella and Robergs, 

2005). Endurance training results in a further improvement in cardiac output (Krip et al., 

1997; Myburgh, 2003; Rowland and Roti, 2004) owing to enlarged hearts with superior 

pumping capacity and reduced heart rates at rest, when compared to untrained individuals 

(Bassett and Howley, 2000; McArdle et al., 2001; Rowland and Roti, 2004; Du et al., 2005).  

 

The classic theory (Bassett and Howley, 2000; Vella and Robergs, 2005) assumes that there is 

a linear relationship between VO2max and the cardiovascular variables (Q, SV and HR) during 

progressive, incremental load exercises. According to this theory VO2max is limited by central 

factors. However, it has not been established yet whether cardiac output plateaus as exercise 

intensity approaches maximal values (Vella and Robergs, 2005). In a more recent study (Vella 

and Robergs, 2005), it was suggested that there is a non-linear relationship (continued increase 
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in cardiac output), therefore suggesting that VO2max may be limited by peripheral factors, such 

as the skeletal muscles. 

 

1.2.1.1   Factors influencing cardiac output 

 

(a) Heart rate (HR):  Endurance training alters neural factors, i.e. central command, neural 

reflex and peripheral factors, which result in cardiovascular adaptation, specifically reducing 

the athlete’s heart rate (Carter et al., 2003).  

 

Nervous control during resting heart rate is mainly sustained by the parasympathetic nervous 

system’s (PNS) vagal tone (Freeman et al., 2006). With endurance training, the resting heart 

rate is lower when compared to untrained individuals.  It is attributable to a more pronounced 

vagal tone (increased parasympathetic hormone acetylcholine) and reduced sympathetic 

activity (Braith et al., 1999; McArdle et al., 2001; Carter et al., 2003; Freeman et al., 2006). 

Regular endurance training reduces sympathetic nervous activity, possibly due to the reduction 

of the reflex heart rate response to the associated myocardial stretch.  This reduction in the 

sympathetic activity decreases the efferent sympathetic neural outflow to the sinoatrial node in 

the heart (Carter et al., 2003).  

 

In 2003, Carter et al. reviewed the adaptations associated with endurance training and 

indicated that parasympathetic withdrawal occurs in activities at about 60 % of VO2max. 

Certain studies have shown that an increase of more than 12 mL.min-1.kg-1 in VO2max after 

regular endurance training is associated with an increase in parasympathetic control of an 

athlete’s heart rate, but this is not a universal finding. Carter et al. (2003) did not find 

increased parasympathetic activity in rowers. It might be that the training history of an athlete 

influences this particular training response (Carter et al., 2003).  

 

With low-intensity exercise the parasympathetic outflow increases the heart rate, and during 

moderate to high-intensity exercise the athlete’s heart rate increases up to a 100 beats per 

minute, primarily due to the sympathetic nervous system (SNS), accompanied by the 

withdrawal of the parasympathetic vagal tone (Coyle and González-Alonso, 2001; Plowman 

and Smith, 2003; Carter et al., 2003; Du et al., 2005; Carter et al., 2005; MacMillan et al., 

2006; Freeman et al., 2006). A further increase of the heart rate, above a 100 beats per minute 
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(bpm), is caused by the increase in noradrenalin by means of sympathetic stimulation of the 

cardiac ß-adrenergic receptors (Carter et al., 2003). This increase in heart rate contributes to 

an increase in cardiac output (Q) (Krip et al., 1997).  

 

Some studies (Braith et al., 1999; Rowland and Roti, 2004) have shown that there is no 

significant difference in maximal heart rate (HRmax) between endurance trained and untrained 

individuals. Carter et al. (2003), also highlights the fact that continuing endurance training 

decreases heart rate at submaximal exercise, by reducing sympathetic activity.  

 

A higher aerobic capacity and heart rate variability in trained compared to non-athletes is 

associated with a faster heart rate recovery (HRR) post-exercise in male and female marathon 

runners (Du et al., 2005). This is mainly owing to the athlete’s enhanced ability to reactivate 

parasympathetic activity and a further gradual withdrawal in sympathetic activity reduces the 

HR even more (Braith et al., 1999; Carter et al., 2003; Du et al., 2005; Freeman et al., 2006). 

The reduced resting heart rate, due to increased parasympathetic stimulation, could be 

responsible for the increased heart rate recovery (HRR) in trained runners (Du et al., 2005). 

The mechanism that results in lowering the heart rate during recovery is not well understood 

(Carter et al., 2005). A faster HRR indicates higher levels of heart rate variability (HRV), 

higher aerobic capacity and exaggerated blood pressure response to exercise in trained athletes 

compared to untrained individuals (Du et al., 2005). 

  

Heart rate recovery after exercise depends on several factors of which exercise intensity has a 

prominent influence (Du et al., 2005). For instance, heart rate during low-intensity exercise 

demonstrates an exponential decline when returning to resting levels, while heart rate during 

moderate to high-intensity exercise is characterized by two distinct phases, i.e. an initial 

exponential drop followed by a slower decline to resting level.  This is observed in untrained 

and trained groups (Du et al., 2005). Additionally, a trained runner’s cardiorespiratory fitness 

from long-term endurance training, cardiac neural modulation, specifically of the autonomic 

nervous system and baroreflex sensitivity, contributes to heart rate recovery (Du et al., 2005).  

Hormonal changes might also be a possible factor, although Du et al. (2005) pointed out that 

catecholamine concentrations increase during exercise and is not removed faster post–

exercise. 
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Besides this autonomic regulation during exercise, a change in baroreflex sensitivity and 

peripheral adaptations to exercise also accommodates the lower heart rate in endurance 

athletes (Braith et al., 1999; Carter et al., 2003; Du et al., 2005; Carter et al., 2005). Peripheral 

receptors in the muscles, blood vessels and joint proprioceptors stimulate the cardiovascular 

centre in the brain and either modifies the parasympathetic or sympathetic outflow (McArdle 

et al., 2001; Plowman and Smith, 2003; Freeman et al., 2006). This increases heart rate at the 

onset of exercise by 30 to 50 beats per minute (McArdle et al., 2001; Plowman and Smith, 

2003; Freeman et al., 2006).  

 

Circulatory steady state is regulated by a rapid response of the pressure-sensitive arterial 

baroreceptor reflex to a change in arterial blood pressure (McArdle et al., 2001; Du et al., 

2005). An excessive increase in blood pressure during exercise increases the firing rate of 

baroreceptors. These send negative feedback to the command centre to slow the heart rate, 

with an increase in efferent cardiac parasympathetic activity and a decrease in sympathetic 

activity.  Furthermore, the reflex inhibits vasoconstriction and vasodilates the blood vessels, 

thereby decreasing the blood pressure (McArdle et al., 2001; Carter et al., 2003). Baroreflex 

sensitivity is usually enhanced in well-trained runners (Du et al., 2005). In addition, in the 

active muscles the metabolic byproducts through chemoreceptors, the increase in temperature 

by means of the thermoreceptors and the contracting muscle (stretch and tension) also activate 

the neural reflex mechanism (Carter et al., 2005).  This intramuscular feedback stimulates the 

heart and increases peripheral perfusion. 

 

Central command also shifts the baroreflex response to a higher blood pressure threshold, 

which means that during exercise higher blood pressure levels are regulated more efficiently 

(McArdle et al., 2001; Carter et al., 2003). The carotid baroreflex is altered, during low to 

moderate intensity exercise, so that no gain or sensitivity of the baroreflex is obtained and the 

athlete’s physiological responses work around the blood pressure response. During dynamic 

exercises the reflex is reduced.  Furthermore, it is possible that long-term endurance modifies 

the autonomic function and reduces baroreflex control and decreases baroreceptors sensitivity 

(Carter et al., 2003). 

 

(b) Stroke volume (SV):  As mentioned before, endurance trained athlete’s heart rate is 

lower at rest and submaximal exercises intensities. Therefore, the athlete’s stroke volume is 
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augmented at the onset of exercise, to compensate for the reduced heart rate. The increased 

stroke volume contribute to the increase in the maximum oxygen uptake (Bassett and Howley, 

2000; McArdle et al., 2001; Rimaud et al., 2007).  

 

Endurance training improves the athlete’s stroke volume at rest and at maximum exercise 

more than in untrained individuals. Trained cyclists and distance runners, on average, exhibit a 

35 – 50 % greater maximal stroke volume than untrained individuals (Rowland and Roti, 

2004). This improved stroke volume is mainly due to an increase in ventricular preload and 

explains the larger aerobic capacity in trained compared to untrained athletes (Krip et al., 

1997; Rowland and Roti, 2004).  

 

According to Sundstedt et al. (2003 and 2004) stroke volume depends on a fine balance 

between left ventricular (LV) filling and systolic ejection (SE). Several mechanisms have been 

proposed to assist in this function, consequently increasing stroke volume.  They are: 

 

(a) Increased left ventricular diastolic function (LVDF):   Enlarged ventricular filling 

volume (preload) and filling rate may be two factors responsible for the increase in stroke 

volume (Plowman and Smith, 2003; Vella and Robergs, 2005; Kivisto et al., 2006; Midgley 

et al., 2007). Endurance training results in improved LVDF by enhancing left ventricular 

(LV) compliance, size, mass and relaxation rate (Krip et al., 1997; McArdle et al., 2001; 

Du et al., 2005; Kivisto et al., 2006). This in turn allows for greater ventricular filling.  

 

Increased end diastolic rate is a result of a decreased heart rate or an increased venous 

return (McArdle et al., 2001). Endurance trained athletes have a reduced diastolic filling 

time, but more improved diastolic filling rate at rest and during exercise (Krip et al., 1997; 

Kivisto et al., 2006). Additional cardiovascular adjustments to increase preload by means 

of increased venous return are a greater calf muscle-pump and higher transmural filling 

pressure.  This is as a result of decreased intrathoracic pressure at higher ventilations (Krip 

et al., 1997). 

 

(b)  Improved systolic empting:   Endurance athlete’s systolic emptying is enhanced by a 

combination of factors.  Either by longer ventricular ejection time, which allows more 

blood to be ejected, or a more forceful systolic ejection due to enhanced myocardial 
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contractility, or a reduced total peripheral resistance (TPR) that lessens the cardiac afterload 

(Krip et al., 1997; McArdle et al., 2001; Plowman and Smith, 2003; Vella and Robergs, 

2005; Midgley et al., 2007). Myocardial contractility is improved by endurance training 

(Krip et al., 1997; McArdle et al., 2001). This may either be the result of higher 

catecholamine levels during exercise, or an augmented Frank-Starling mechanism, which 

will produce a more forceful systolic ejection (McArdle et al., 2001). 

 

The advantage of these systolic and diastolic left ventricular modifications along with an 

increased diastolic reserve is that it produces a better-developed aerobic capacity that allows 

runners to increase their performance ability. Another possibility that increases stroke volume 

is increased blood volume to the heart (venous return), accompanied by reduced peripheral 

resistance. 

 

(c) Venous return:   Endurance athletes have greater blood volumes than their untrained 

counterparts (Krip et al., 1997; McArdle et al., 2001). The blood that returns to the heart 

(venous return), together with decreased venous pooling is possibly the greatest contributor 

of increased stroke volume during endurance activities (Saladin, 2001; Plowman and 

Smith, 2003; Rowland and Roti, 2004). Several authors have indicated that not only will a 

larger blood volume increase the athlete’s stroke volume, but also the cardiac output (Krip 

et al., 1997; Midgley et al., 2007).  

 

There are five possible mechanisms through which the body improves venous return, which 

results in an increased preload (Saladin, 2001; Plowman and Smith, 2003; Rowland and 

Roti, 2004): 

 

(i) Pressure gradient:   A pressure gradient throughout the circulation causes 

blood to flow from a high to a low pressure.  However, in the veins this 

pressure gradient is much lower than in the arteries. The pressure difference 

between the central venous pressure (average 4.6 mmHg) and average pressure 

in the veins (between 12 to 18 mmHg) is about seven to 13 mmHg, which 

supports blood flow toward the heart (Saladin, 2001; McArdle et al., 2001).   
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(ii) Muscle-pump function:   Muscular activity, specifically of the calf muscle, 

together with functioning venous valves as well as increased venoconstriction, 

improves venous return to the heart and is essential for healthy circulation 

(Plowman and Smith, 2003; Rowland and Roti, 2004; Qiao et al., 2005). 

Several authors compare the calf muscle-pump function (CMPF) to the action 

of the left side of the heart. In other words, the large deep veins surrounded by 

the Gastrocnemius and Soleus muscles form a compartment that includes a 

pump chamber and outflow tract comparable to the left ventricle and aorta of 

the heart (Qiao et al., 2005; O’Donovan et al., 2006 and 2005).  

 

The muscles massage the blood, with a rhythmical action towards the heart, and 

the valves prevent back flow, thereby increasing the preload (Frank – Starling 

mechanism) (McArdle et al., 2001; Saladin, 2001; Rowland and Roti, 2004). 

This mechanism supports venous return and prevents blood pooling. It works in 

a similar fashion as pressurized suits worn by pilots, and compression garments 

worn by individuals with varicose veins. When an individual stands upright, the 

calf muscle reduces hydrostatic shifts of blood in the veins of the lower 

extremities (McArdle et al., 2001), thus reducing oedema. Adequate 

functioning of venous valves, forceful muscular actions of the calf muscle, full 

range of motion in the ankle joint and normal muscle fasciae are essential for 

effective CMPF (Qiao et al., 2005).   
 

(iii) Respiratory pump:   The venous blood flows from the abdominal to the 

thoracic cavity by means of a drop in internal pressure during inhalation, and an 

increase in abdominal cavity pressure, due to the lowering of the diaphragm 

during expiration. Through pressure differences in the inferior vena cava, along 

with the help of the one–way valves, blood is returned to the heart (Saladin, 

2001). It is thus possible that if endurance training causes improved respiratory 

muscle function (i.e. respiratory muscle strength and endurance) that the 

function of the respiratory pump may also be enhanced. This will then 

contribute to the increase in venous return. 
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(iv) Cardiac suction: When the atrial opening enlarges, it creates a vacuum. 

This suction extracts blood from the venae cavae and pulmonary veins 

(Saladin, 2001). 

 

(v) Gravity: The force of gravity that works against the lower extremities, 

works in favour of the veins in the neck and head. Blood flows downhill 

towards the heart. In the upright position, however, gravity counteracts the 

return blood flow to the heart, which decreases preload diminishing stroke 

volume and cardiac output (McArdle et al., 2001; Saladin, 2001). 

 

1.2.2 Blood flow 

 

Regular endurance training increases muscle capillaries in the working muscle (Ball and 

Herrington, 1998; Nielsen et al., 2003). This allows for an improved distribution of blood flow 

to the exercising muscles, increases oxygen delivery to the active muscles and is paralleled by 

an elevated VO2max (Bassett and Howley, 2000).  

 

Furthermore, the increase in metabolic activity in muscle cells at the onset of exercise serves 

as a signal for increased blood flow to the active muscles via several stimuli that cause active 

vasodilation. These stimuli include a decrease in PO2 and an increase in PCO2, an increase in 

blood temperature and blood flow, a decrease in pH, adenosine, magnesium, potassium ions 

and an increase in nitric oxide, which are all associated with exercise (McArdle et al., 2001). 

 

2. Musculoskeletal system 

 

Internal muscle structure performs three main functions: it specifically causes force production 

in the myofibrils, it produces excitation–contraction coupling and its reversal within 

sarcoplastic reticulum (SR), and assists in oxidative ATP production in the mitochondria 

(Myburgh, 2003). Therefore one can conclude that muscle action provides the foundation for 

all human movement, by converting chemical energy (ATP) to mechanical energy. Endurance 

training is one of the three methods to stimulate an adaptive response, via the overloading 

principle, in the highly adaptable musculoskeletal system (Ball and Herrington, 1998). 
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2.1 Skeletal muscle fiber types 

 

Different muscle fiber types meet functional (muscle contractility) and metabolic demands, 

and it is these factors that classify muscle fibers into two main types i.e. Type I (slow twitch 

fibers) and Type II (fast twitch fibers) (Ball and Herrington, 1998; Saladin, 2001).  

 

Type I fibers have a high oxidative and low glycolytic capacity, with a slow twitch, are highly 

resistant to fatigue, and are therefore ideal for prolonged running (Ball and Herrington, 1998). 

Type I slow twitch fibers are thought to be more common in endurance athletes due to the 

increased capillary density (Ball and Herrington, 1998; Myburgh, 2003). Type II fibers are 

characteristically fast twitch, highly fatigueable and are used predominantly during activities 

where anaerobic metabolism (immediate or rapid glycolytic system) is used to generate 

energy; like stop-and-go, sprinting and /or vigorous activities. Muscle actions are fast and 

powerful during these activities and this is possibly due to the high content of myosin ATPase 

in Type II muscle fibers (Ball and Herrington, 1998; McArdle et al., 2001). 

 

Even though athletes recruit both fiber types during submaximal activities, it is traditionally 

accepted that slow-twitch fibers (type I) are the fibers that are predominant in prolonged 

activities (Ball and Herrington, 1998; McArdle et al., 2001; Myburgh, 2003). The reason for 

this is that type I fibers contract and relax more slowly, have a high oxidative capacity 

(oxygen-dependent metabolism), and low glycolytic ability (low ATPase activity), unlike the 

fast-twitch muscle fibers (Ball and Herrington, 1998; Noakes, 2001). This is further confirmed 

by the abundant and large mitochondria (with high concentration mitochondrial enzymes and 

myoglobin), as well as the fiber’s red colour due to the magnitude of capillaries in the fiber, 

allowing enhanced blood flow to the fibers (Noakes, 2001; McArdle et al., 2001).  

 

2.2 Musculoskeletal adaptations 

 

Increased capillary growth in the active muscles, oxidative enzyme activity (for example 

succinate dehydrogenase and cytochrome oxidase) necessary for aerobic energy production, 

mitochondrial number and volume (the site of energy production at cellular level), improved 

resting myoglobin and in some cases increased muscle fiber size, especially slow twitch fibers, 

which are linked with the improved oxidative capacity in skeletal muscle, are some of the 
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musculoskeletal adaptations associated with endurance training (Ball and Herrington, 1998; 

Noakes, 2001; Nielsen et al., 2003; Abbiss and Laursen, 2005; Mizuno et al., 2005). 

 

Oxidative enzyme activity as well as capillary density is related to enhancement of the central 

factors, like VO2max in sub-elite athletes (Myburgh, 2003; Abbiss and Laursen, 2005). Skeletal 

muscle mitochondrial capacity depends on training volume, training composition (duration, 

frequency and intensity) and associated intracellular signaling or gene transcription (Myburgh, 

2003). Furthermore, Myburgh (2003) observed that some individuals with the same VO2max 

might even have different mitochondrial capacity. The benefits of an enhanced oxidative 

capacity are sustained high intensity running and lower plasma lactate accumulation. All of 

these factors improve peripheral adaptation (Myburgh, 2003).  

 

Mizuno et al. (2005) described more training adaptations to cardiac and skeletal muscles. For 

instance, cardiac muscle demonstrates increased contractility as well as resistance to ischemia 

and skeletal muscle has augmented glucose uptake and reactive hyperemia. Some animal 

studies indicate that tendons demonstrate an increased collagen deposit as well as improved 

number and size of fibrils, after endurance training, which could make the tendons more 

elastic (Ball and Herrington, 1998). 

 

3. Metabolic system  

 

Prolonged activities are extremely  demanding on the metabolic system (Bergero et al., 2005). 

Aerobic and anaerobic endurance is specified according to the fuel utilized and energy 

metabolism involved (Legaz–Arrese, 2007; Bergero et al., 2005). Prolonged running activities 

primarily use carbohydrates for fuel, supported by fat metabolism, with no more than 5% from 

protein in marathon runners (Atwood and Bowen, 2007).  

 

During prolonged activities where the runner’s heart rate is below 70 % of his maximum 

(moderate intensity), ATP production is produced mainly via oxidative phosphorylation 

(Vander, 1998; Bassett and Howley, 2000). The oxygen utilized is equal to the ATP generated 

during submaximal endurance activities.  In other words, sport scientists can assess the ATP 

production rate by measuring the oxygen uptake (Bassett and Howley, 2000). For a runner to 
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maintain a high running velocity, he/she must have the ability to maintain a high oxidative 

ATP production rate (Bassett and Howley, 2000).  

 

In strenuous activities the oxygen consumption fails to keep up with the increasing oxygen 

demands of the metabolic processes.  Subsequently the energy supply shifts to predominantly 

oxygen–independent pathways, i.e. anaerobic glycolysis (Bassett and Howley, 2000). The 

glycolytic system is a multisubstrate and-enzymatic pathway.  It operates in the absence of 

oxygen, and lactic acid is produced as a by-product. This lactic acid dissociates in the 

circulation and forms hydrogen and lactate ions (Vander, 1998).  

 

3.1 Metabolic adaptations 

 

The intracellular (ATP):(ADP)(Pi) ratio that indicates the rate of ATP production to the rate of 

ATP breakdown is an import cellular metabolism signal (Noakes, 2001). For the first five to 

ten minutes of exercise at submaximal intensity, the body utilizes mainly muscle glycogen to 

produce ATP (adenosine triphosphate), followed by blood glucose and fatty acids. In exercise 

that lasts longer than 20 minutes, more and more fatty acids and less glucose are utilized 

(Lowery, 2004). Several metabolic adaptations take place with endurance training, which have 

a profound effect on the fuel utilization of the body and enhanced endurance performance. 

Abbiss and Laursen (2005) maintain that proof of all of these endurance-training adaptations 

is the elevated anaerobic threshold of endurance-trained athletes at a higher fraction of 

VO2max. In other words these adaptations are manifested in a rightward shift of the 

anaerobic/lactate threshold.  

 

3.1.1  Structural modifications  

 

With endurance training, the mitochondria in the active muscle develop an enhanced ability to 

utilize oxygen, due to the increase in size and number of the mitochondria, as well as 

increased mitochondrial enzymatic activity. These changes allow the long distance runner to 

produce more ATP aerobically (McArdle et al., 2001) and might result in a slightly improved 

VO2max in endurance athletes (Bassett and Howley, 2000; McArdle et al., 2001, Noakes, 

2001). Furthermore, the high enzyme activity allows an athlete to run for prolonged periods at 

a higher aerobic capacity, before lactate accumulates in the circulation (McArdle et al., 2001). 
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The reason for this is  that increased mitochondria allows the trained athlete to use more blood 

borne free fatty acids for fuel at any exercise intensity, whereas untrained individuals start to 

use carbohydrates at a low-intensity (Noakes, 2001). This means that endurance trained 

individuals’ mitochondria will work at a higher (ATP):(ADP)(Pi) ratio and use more fat for 

energy than carbohydrates at high-intensities (Noakes, 2001). 

 

3.1.2  Carbohydrate metabolism 

 

About 400 – 600g of carbohydrates are stored in the muscle and liver, but the energy input of 

carbohydrates depends on the intensity and duration of the exercise (Lowery, 2004; Atwood 

and Bowen, 2007). Even though fat contains more than double the energy (9 kcal) than 

carbohydrates (4 kcal) (Lowery, 2004), at higher intensity levels more energy is obtained from 

carbohydrate metabolism, owing to the greater production of ATP per O2 from glucose (ATP: 

O2 = 3), than the ATP per O2 from fat (ATP: O2 = 2.8) (Atwood and Bowen, 2007). The 

increase in exercise intensity parallels the progressive decrease in the (ATP):(ADP)(Pi) ratio, 

which signals the increase in carbohydrate metabolism via glycolysis (Noakes, 2001). Thus, 

carbohydrates are the preferred fuel during high-intensity exercise (Noakes, 2001). 

 

Endurance training leads to an enhanced capacity to oxidize carbohydrates during maximal 

exercise, but during submaximal exercises glycogen is spared and instead fatty acids are 

utilized (McArdle et al., 2001, Noakes, 2001; Myburgh, 2003; Lowery, 2004; Abbiss and 

Laursen, 2005). Possible reasons for this reduced carbohydrate metabolism is due to stored 

muscle and liver glycogen, as well as a glycogen sparing effect and increased rate of fat 

oxidization (Noakes, 2001; Myburgh, 2003; Abbiss and Laursen, 2005). As little as four days 

of endurance training enhances glycogen-storing capacity (Noakes, 2001).  

 

Regular endurance training leads to a further increase in insulin sensitivity in the skeletal 

muscles of the runner compared to untrained individuals (Nielsen et al., 2003). It is suggested 

that increased sensitivity to insulin shifts the catabolic environment to an anabolic state, with 

the right nutrients (Ivy, 2004). Theoretically the insulin assists glucose uptake and muscle 

damage recovery after exercise, by increasing amino acid uptake, protein synthesis and guards 

against further protein degradation (Ivy, 2004). (Nielsen et al., 2003; Ivy, 2004). Several 

authors assume that the enhanced glucose transporter protein (GLUT 4) might have a possible 
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impact on the improved insulin sensitivity. However, the mechanism, by which increased 

insulin sensitivity enhances glucose uptake, protein synthesis and amino acid uptake, is still 

not fully understood (Nielsen et al., 2003; Ivy, 2004).  

 

These aerobic training adaptations assist recovery, maintain glucose homeostasis and improve 

endurance in strenuous activities, since the amount and rate of glucose utilization is the 

limiting factor in long strenuous exercise where the perception of fatigue  and the “hitting the 

wall” effect affects athletes (McArdle et al., 2001; Ivy, 2004; Lowery, 2004; Atwood and 

Bowen, 2007).  

 

3.1.3  Fat metabolism 

 

The longer the duration and the lower the intensity of the exercise, the more energy supply 

relies on fat oxidation (Lowery, 2004; Atwood and Bowen, 2007). As mentioned in the 

previous section endurance training enhances fat utilization during submaximal activities 

(McArdle et al., 2001).  This is  a result of increased mitochondrial enzyme activity, improved 

blood flow in trained muscles, increased fatty acid metabolic enzymes, additional resting 

muscle and plasma fatty acids, more intramuscular utilization of triglycerides (McArdle et al., 

2001; Noakes, 2001; Atwood and Bowen, 2007) and attenuated catecholamine release for the 

same absolute power output (McArdle et al., 2001).   

 

In other words endurance training allows an athlete to run at a higher (ATP):(ADP)(Pi) ratio in 

mitochondria (Noakes, 2001). This will allow the athlete to utilize fat for longer as the main 

energy fuel and be less dependent on carbohydrate metabolism (Noakes, 2001). Therefore 

endurance-trained athletes will produce less and clear more acidic by-products of carbohydrate 

metabolism, like lactate. Furthermore, endurance training also enhances the ability of other 

organs like kidneys, liver and the heart as well as active and non-working skeletal muscle to 

remove and metabolize lactate during exercise (Noakes, 2001). 

 

Dietary glucose cannot sustain the glucose stores. Therefore increased fat metabolism 

conserves glycogen stores, which allows more glycogen during high intensity prolonged 

exercise, delays the accumulation of byproducts of glycolysis and aids recovery (McArdle et 

al., 2001; Shave and Franco, 2006; Atwood and Bowen, 2007). Furthermore, improvement in 
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fatty acid beta-oxidation and respiratory ATP production contribute to maintaining the cell’s 

integrity and high functioning level, thus enhancing endurance capacity independent of 

increases in glycogen reserves or aerobic capacity (McArdle et al., 2001).   

 

3.1.4  Metabolite accumulation 

 

During strenuous activities, such as the last stretch of a prolonged run or throughout high 

intensity activities, where the respiratory system cannot keep up with the energy demand, the 

glycolytic system is implemented. The abnormal accumulation of lactate and CO2 signifies the 

initiation of anaerobic energy metabolism (Vander, 1998; Corazza et al., 2007). Since it is the 

highest VO2 value where the focus shifts from aerobic energy production (at muscular level) 

to the anaerobic system (Corazza et al., 2007), this point is called the anaerobic threshold (AT) 

and above this point endurance capacity is compromised (Corazza et al., 2007).  

 

For this reason lactate is one of the exercise metabolites which have received a lot of attention. 

Traditionally it was thought that lactate causes muscle soreness and fatigue, and is a primary 

cause of O2 debt. Therefore, lactate was seen as a waste product of exercise with no additional 

purpose.  

 

Contemporary research suggest now that (i) skeletal muscle is not only the producer of lactate 

but also consumes lactate, (ii) skeletal muscle may be able to reverse the glycolytic pathway 

and convert lactate into glycogen, (iii) lactate is transported by a series of protein transporters, 

namely monocarboxylate transporters (MCT), and does not just diffuse through membranes, 

(iv) that lactate is not just produced due to inadequate oxygen supply, but also via the 

biochemical manipulation of glycolysis, increased sympathadrenal activity, recruitment of 

glycolytic motor units and the disrupted lactate removal: production ratio and finally (v) the 

Lactate Shuttle Theory, which stipulates that since lactate can be exchanged between tissues, it  

acts as an metabolic intermediate (Brook et al.,1985; Gladden, 2000a; Billat et al., 2003).  

 

In the recovery period from high intensity short duration or prolonged exercise, such as middle 

or long distance races, lactate is transferred from the blood, either to the resting muscles, 

moderately active muscles or previously active muscles. There are six possible factors that 
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enhance the consumption of lactate by skeletal muscle, i.e. the metabolic rate, blood flow, 

lactate and hydrogen concentration, the fiber type and the athlete’s level of exercise training.  

 

A high metabolic rate, which does not produce more extracellular lactate, assists lactate 

removal. Elevated metabolic rate is associated with a faster glycolytic rate and related lactate 

production. However, during steady state submaximal activities the metabolic rate is 

increased, but without the associated glycolysis. Lactate utilization is increased due to the 

faster rate of pyruvate and NADH oxidation. Furthermore, it has been suggested that exercise 

increases the lactate transport across the sarcolemma membrane, in a similar fashion as 

glucose transport (~62 to 400%). Nevertheless, metabolic rate only seem to have a minimal 

effect on lactate transport across the sarcolemma (0 to 28%) (Gladden, 2000b; Billat et al., 

2003).  

 

In addition, adequate blood flow should ideally be equal to the rate of net lactate uptake. This 

would mean the athlete would need an optimal lactate uptake/perfusion (L/Q) ratio, to 

consume lactate more efficiently. This will maintain the gradient difference between lactate 

and hydrogen concentration across the membrane (Gladden, 2000b). However, Gladden 

(2000b) explains that equivocal evidence exists that increased blood flow will assist lactate 

exchange. 

 

Lactate and hydrogen concentration also have an influence on lactate consumption in the 

skeletal muscle. For instance, an increased arterial lactate concentration stimulates an 

increased lactate uptake by the muscle. This elevated lactate concentration gradient continues 

up to the point of saturation, where it plateaus (~20–30 mM), for both the metabolic systems 

and/or the monocarboxylate transport system (Gladden, 2000b). It has been suggested that if 

the intramuscular hydrogen concentration ([H+]) is increased, which then inhibits lactate 

production, while enough extracellular lactate is available, then lactate consumption will be 

increased. This increased [H+] will not inhibit muscle contractility. The [H+] gradient will 

stimulate the uptake of lactate through the sarcolemma (Gladden, 2000b). 

 

The fiber type and the athlete’s level of exercise training also have an influence on lactate 

utilization by the muscle. Lactate is mainly produced by Type IIx fibers, and is then 

transported to type I or IIa to be oxidized. The oxidative muscle fibers will enhance lactate 
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consumption more than glycolytic fibers (Gladden, 2000b). The reason being that these fibers 

are more adapted to lactate oxidation. The slow twitch fibers have a greater capillary density 

with a high content of the enzyme lactate dehydrogenase (Martin et al., 1998). In addition, the 

oxidative fibers begin to oxidize lactate at a lower blood lactate concentration and at a faster 

rate, since the oxidative fibers have a greater ability to transport lactate across the sarcolemma 

(37 to 109%). This might be due to the fact that oxidative fibers have more type I 

monocarboxylate transporters (Gladden, 2000b). 

 

Then finally, endurance training increases lactate utilization by the skeletal muscles, as well as 

the clearance from the muscles and blood (Gladden, 2000b; Rimaud et al., 2007). The faster 

lactate clearance from the muscles and blood is mainly due to increased blood flow, i.e. higher 

cardiac output and improved redistribution of blood to the active muscles (Draper et al., 2006; 

Rimaud et al., 2007). Additionally, highly endurance trained athletes have a better ability to 

buffer H+. Even though research is inconsistent with regards to the relationship between 

lactate clearance and exercise performance, some authors believe that these changes contribute 

to a higher AT/LT threshold enabling the athlete to maintain a higher running pace for longer 

(McArdle et al., 2001; Noakes, 2001).  

 

The mechanism through which endurance training improves lactate consumption is not fully 

understood. The metabolic adaptations in the skeletal muscle due to training include (i) 

increased mitochondria with increased oxidative enzymes, which enhances the athlete’s 

oxidative capacity and leads to less lactate production (Noakes, 2001; McArdle et al., 2001; 

Myburgh, 2003; Abbiss and Laursen, 2005). , (ii) when lactate is converted to pyruvate, the 

athlete has an enhanced ability to utilize the pyruvate due to increased pyruvate 

dehydrogenase concentration; (iii) improved malate-aspartate shuttle activity which facilitates 

oxidation of NADH, resulting from lactate to pyruvate conversion and (iv) a shift in lactate 

dehydrogenase isozyme pattern from muscle isoform to heart isoform (Gladden, 2000b).  

 

4. Neuroendocrine system 

 

The neurohormonal systems act as a mediator between several physiological systems and the 

shifting environments from rest to exercise. The primary aim is to maintain homeostasis, while 

enough ATP is produced to meet the demands of the active muscles (Myburgh, 2003). 

http://scholar.sun.ac.za/



 31

 

The autonomic nervous system (ANS) consists of parasympathetic and sympathetic events.   

MacMillan et al. (2006) describes the autonomic nervous activity as the balance between these 

two actions. Endurance training enhances the autonomic effect, by increasing the 

parasympathetic nervous activity and reducing the sympathetic nervous activity (Braith et al., 

1999; Carter et al., 2003; MacMillan et al., 2006).  The evidence for this is the lower resting 

and recovery heart rates of endurance athletes (Väänänen, 2004; MacMillan et al., 2006).  

 

Catecholamine release improves left ventricle compliance and myocardial contractility 

(McArdle et al., 2001). This supports the heart’s ability to accommodate more blood during 

diastole and to enhance systolic ejection with a more powerful contraction (McArdle et al., 

2001). An increased catecholamine concentration is released during moderate to high-intensity 

exercise (Du et al., 2005) and is augmented by endurance training (McArdle et al., 2001). The 

removal post exercise however, does not seem to significantly change due to endurance 

training (Du et al., 2005). 

 

Another endogenous modulator of several physiological functions in the CNS and peripheral 

organs is the Adenosine receptor subtype, namely AdenosineA2A.  It is more abundant in 

skeletal and cardiac muscles of endurance athletes then in untrained groups (Mizuno et al., 

2005). In the myocardium AdenosineA2A limits ischemia and controls heart contractions, 

while in the cytosol and plasma membrane of skeletal muscle, specifically in type I fibers, 

Adenosine A2A helps to regulate glucose uptake, blood flow and contractile force production in 

the muscle (Mizuno et al., 2005). 

 

5. Conclusion 

 

To conclude, human endurance is potentially reaching its peak during the 21st century, in that 

athletes know how to train, to optimally develop all the physiological systems. This means that 

athletes will start to rely increasingly on supplementary or enhancement techniques in addition 

to mental staying power to improve their physical abilities (Noakes, 2006). Compression 

garments may be a possible method to enhance the circulation’s pressure gradient, assist calf 

muscle-pump function and counteract the forces of gravity, to reduce oedema and support 

blood flow toward the heart, thus enhancing performance.  
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CHAPTER THREE 

 

POST-EXERCISE RECOVERY 

 

A. INTRODUCTION 

 

Demanding running events like marathons and ultramarathons may deplete energy reserves 

and trigger exercise-induced muscle damage and injury (Myburgh, 2003; Ivy, 2004). The 

process and consequences of muscle damage and injury are associated with various 

physiological systems. Muscle damage may prompt inflammation and swelling (oedema) as 

well as decreased lactate clearance rates. These factors are associated with diminished 

muscular strength, impaired functional capacity (up to 40 – 50 % immediately post-marathon 

races), augmented muscle soreness and impaired range of motion (flexibility) (Ball and 

Herrington, 1998; Byrne and Eston, 2002; Kraemer et al., 2004; Miller et al., 2004; Dawson et 

al., 2005; Takahashi et al., 2006; Rimaud et al., 2007). 

 

When an athlete runs, the body has to absorb powerful forces up to two or three times the 

body mass of the individual (Sanchez et al., 2006). Mountainous endurance races place even 

additional stress on the athlete’s body. The reason is that mountainous runs involve steep 

inclines and descents that necessitate a specific running technique to compensate for the 

uneven, steep, and rough surface. This could further contribute to the onset of fatigue (Sztajzel 

et al., 2006). Furthermore, it places extreme stress on the cardiovascular system and is 

certainly associated with very high levels of catecholamines (Sztajzel et al., 2006). Running 

on uneven surfaces causes muscle action to generate unaccustomed repetitive and excessive 

forces, which produces overuse-injuries and muscle damage (Ball and Herrington, 1998).  

 

All of these factors may lead to a long recovery period, which would mean an extended 

absence from races and training sessions (Kraemer et al., 2004; Barnett, 2006). In addition, the 

more a runner trains, the less chance there is for injuries on the race day, provided that 

sufficient recovery is allowed. In other words, an extended absence from training would make 

the athlete more prone to muscle damage and injury when running long distance races (Miller 

et al., 2004; Sanchez et al., 2006). 
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Figure 1.  Post-exercise recovery and the impact on athletic performance 

 

In addition, ineffective recovery could be detrimental to running performance and cause injury 

in future endurance running activities (Figure 1.) (Kraemer et al., 2004; Miller et al., 2004; 

Barnett, 2006; Gill et al., 2006). Athletes and their management will seek any advantage when 

training and preparing for events. Optimizing post-exercise recovery from training and races 

may benefit the subsequent training and performance of competitive athletes over a period of 

time (Gill et al., 2006). 

 

B. RESEARCHING MUSCULAR RECOVERY 

 

To determine the factors involved in exercise-induced muscle damage and injury, sport 

scientists attempt to simulate muscle actions that lead to muscle damage, in a controlled 

environment. In addition, functional tests are used to establish whether the involved muscles 

have recovered. This helps sports scientist to determine if and how recovery techniques work 

and which are the best possible means, related to a specific type of sport. 

 

1. Delayed onset of muscle syndrome (DOMS) 

 

One of the common methods by which sport scientists study the recovery process, is to induce 

delayed onset of muscle soreness (DOMS) (Cleather and Guthrie, 2006). DOMS is the result 
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of eccentric, unaccustomed, and/or strenuous exercise that damages the skeletal muscle (Craig 

et al., 1996; Ernst, 1998; Hemmings, 2001; Cleather and Guthrie, 2006). This exercise-

induced muscle soreness is evident when the muscle is palpitated, stretched, or contracted 

(Zainuddin et al., 2005). There have been incidences were muscle soreness peaked as soon as 

ten hours post-exercise but generally it peaks between 24 – 72 hours and may possibly last as 

long as seven to ten days (Craig et al., 1996; Ball and Herrington, 1998; Miller et al., 2004; 

Cochrane, 2004; Zainuddin et al., 2005; Cleather and Guthrie, 2006; Takahashi et al., 2006).  

 

The exact process that leads to DOMS is not fully understood. However, DOMS is found to be 

more severe after eccentric muscle actions (Miller et al., 2004; Cochrane, 2004; Zainuddin et 

al., 2005). There are several theories with regard to the possible causes of DOMS. The most 

widely accepted aetiological mechanism of DOMS suggests that the repeated stretching of 

muscles during exercise results in severe mechanical stress and breakdown of the 

ultrastructure of muscle fibers, proteins and connective tissue (Cochrane, 2004; Miller et al., 

2004; Takahashi et al., 2006). This results in inflammation, cellular degradation and the 

perception of pain (Cochrane, 2004; Miller et al, 2004; Takahashi et al., 2006). DOMS may 

also be aggravated by direct physical impact, such as with contact sports (Reilly and Ekblom, 

2005). 

 

Interestingly, as the muscle soreness and discomfort associated with DOMS peak, the muscle 

tissue damage is almost completely healed (Miller et al., 2004). Another report points out that 

there is a time delay between the onset of muscle soreness and the peak of muscle soreness 

(Takahashi et al., 2006). A possible explanation for this is given by Zainuddin et al. (2005), 

which indicate that DOMS induced by eccentric exercise does not necessarily indicate muscle 

damage and that the level of DOMS does not reflect the extent of muscle damage. Conversely, 

other researchers do not agree with this assumption that DOMS do not indicate muscle 

damage, since biochemical markers i.e. creatine kinase, lactate dehydrogenase and glutamic 

oxaloacetic transaminase are released when DOMS occur (Cleather and Guthrie, 2006). 

 

Furthermore, the magnitude of DOMS depends on the intensity and the duration of exercise, 

as well as the physiological conditioning of the individual (Cleary et al., 2006). DOMS has a 

detrimental effect on athletic performance in that muscle endurance, strength and power are 

reduced (Cleary et al., 2006). 
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Additionally, the time course for DOMS does not always correspond to other indicators of 

muscle damage, such as swelling, pain, reduced ROM or muscle function. This means that 

some interventions might aid the recovery of DOMS, while others alleviate the symptoms of 

DOMS and restore functional capacity of the involved muscles. Further research needs to be 

done to study the exact causes of DOMS. 

 

1.1 Symptoms associated with DOMS 

 

DOMS is associated with several signs and symptoms, such as a dull and diffuse pain, 

tenderness and swelling that are generally linked with the inflammatory response. Individuals 

also show reduced muscular strength, stiffness and diminished length-tension in muscle 

(Cleary et al., 2006; Cleather and Guthrie, 2006). These signs and symptoms may last as long 

as 24 to 96 hours after exercise (Cleary et al., 2006). Sport scientists must therefore use 

practical and realistic tests to assess these factors and these tests are usually functional or sport 

specific. They allow the sport scientists to establish if exercise-induced muscle soreness has 

occurred and whether the intervention has an effect on recovery. 

 

Muscle soreness is related to the muscle tissue damage, which is characterized by decreased 

range of motion, pain with stretch and palpitation of exercised muscle, and swelling (Kraemer 

et al., 2001a). Muscle soreness due to eccentric muscle actions has demonstrated a decline in 

the muscle’s functional capacity and athletic performance (Gill et al. 2006). Therefore, 

diminished athletic performance is characterized by reduced muscle strength, limited 

flexibility and increases muscle stiffness (Stay et al., 1998; Almekinders, 1999; Stupka et al., 

2000; Cochrane, 2004; Takahashi et al., 2006). The inability to generate tension in muscle 

following eccentric protocols may be due to both pain (secondary to local accumulation of 

inflammation agents) and structural damage in muscle sarcomeres (Kraemer et al., 2001a). 

 

Eccentric exercises reduce athletes’ jumping ability (power and strength) due to the associated 

muscle damage (Wilcock et al., 2006). The decreased force-generation in the affected muscle 

could be assessed by the vertical jump test. The vertical jump test measures the stretch- 

shortening cycle of the quadriceps extensor muscles and muscle power. The stretch – 

shortening cycle describes the combination of eccentric and concentric muscle actions and 
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provides an indication of the ability to use the stored elastic energy in the muscle. Thus, the 

vertical jump test is used to assess muscular power or the impact of muscular fatigue. 

 

As mentioned in the first paragraph, muscle damage also results in a muscular tenderness and 

soreness, which is associated with inflammation (Stay et al., 1998; Cochrane, 2004; Cleary et 

al., 2006; Cleather and Guthrie, 2006). Inflammation causes swelling in the exercised 

extremities of the individual. Oedema may reduce the athlete’s range of motion, cause pain 

and muscular function may also be hindered (Kraemer et al. 2001b; Miller et al., 2004). 

Hence, subjective questionnaires such as the visual analog scale (VAS) are generally used to 

assess perceived muscle soreness, stiffness, functionality, and discomfort (Cleary et al., 2006; 

Cleather and Guthrie, 2006). Measurements of limb circumferences are typically used to 

determine if swelling has taken place in the athlete’s extremities (Kraemer et al., 2001b; 

Zainuddin et al., 2005). 

 

2. Eccentric muscle action 

 

The time (duration per velocity), displacement (changing muscle fiber length), and the ability 

to produce force, determine the type of muscle action i.e. isometric (static), concentric 

(shortening) and eccentric (lengthening) action. The lengthening actions, such as eccentric 

and/or plyometric, result in the most muscle damage (Plowman and Smith, 2003; Close et al., 

2005).  

 

Eccentric action produces powerful dynamic forces, at a low metabolic cost, due to the tension 

that develops while the muscle fibers’ lengthen (Ball and Herrington, 1998; Noakes, 2001). 

Isometric action demand the highest energy cost (Close et al., 2005). Repeated eccentric 

lengthening produces structural damage and mechanical disruption in the runner’s muscle 

filaments (z discs) as a result of the cross-bridges that are cycling (Ball and Herrington, 1998; 

Noakes, 2001; Kraemer et al., 2004; Takahashi et al., 2006). Fewer motor units are recruited 

than are required for the mechanical demands during the lengthening action of eccentric 

muscle action. Consequently the muscle under-performs, leading to an increased tensile load 

per motor unit (Kraemer et al., 2004). As a result the unequaled strain on the muscle fiber’s 

cross-bridges causes mechanical disruption of the myofibrils. This modifies the contractile 
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mechanism and leads to muscle damage (Kraemer et al., 2004; Miller et al., 2004). Therefore, 

it is the muscle’s ability to produce tensile force that damages the muscle.  

 

As a result the muscle’s Z-band malfunctions and disrupts the sarcomere’s integrity (Ball and 

Herrington, 1998; Kraemer et al., 2004; Miller et al., 2004). The multiphasic muscle injury 

mechanism is related to the initial damage to the myofiber structure, the sarcoplastic reticulum 

and the sarcolemma (myofibril). Within 15 minutes of eccentric actions disruptions to the 

cytoskeleton occurs (Stupka et al., 2000; Kraemer et al., 2004).  

 

Damage to the sarcolemma causes localized haemorrhage and a flood of calcium (Ca2+) into 

the cell, thereby compromising Ca2+ homeostasis (Stupka et al., 2000; Kraemer et al., 2004; 

Miller et al., 2004). The calcium accumulates in the mitochondria (Stupka et al., 2000; 

Kraemer et al., 2004; Miller et al., 2004). As the calcium concentration increases it inhibits 

cellular respiration as well as activates proteases and phospholipases and a further cellular 

organelle damage occur (Stupka et al., 2000; Miller et al., 2004). Subsequent to muscular 

damage, the proteolytic enzymes clear the injured cell of internal debris, along with the 

movement (via diffusion) of intracellular components into the interstitium and plasma 

(oedema) (Stupka et al., 2000; Miller et al., 2004). This signals monocytes macrophages to 

clear the area via phagocytosis (Miller et al. 2004). 

 

In addition, type II fibers are mostly damaged after muscle lengthening (eccentric) exercise 

and this is associated with an extensive reduction in muscle glycogen levels and GLUT 4 

transporters of the athlete (Byrne and Eston, 2002; Burke, 2006; Chen et al., 2007). Also, a 

reduction in the high-energy containing phosphate occurs at about 24 hours after muscle 

lengthening exercise. This influences the muscle’s ability to generate force (Byrne and Eston, 

2002). 

 

2.1 Downhill running 

 

Some of the methods to induce eccentric muscle actions include various resistance exercises, 

with isolated eccentric muscle actions. However, many of these eccentric exercises are not 

sport specific. Another method to induce DOMS is through downhill running (DHR) 
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protocols. Greater blood creatine kinase levels as well as myosin heavy chain activity are 

observed after downhill running compared to isolated muscle actions (Sanchez et al., 2006). 

 

Running involves lengthening of the muscle under tension (eccentric muscle actions) in the 

lower extremities of a runner. In addition, the runners’ muscles persistently have to work 

against gravitational forces and this leads to muscle damage (Kraemer et al., 2004; Takahashi 

et al., 2006; Chen et al., 2007). Throughout downhill running eccentric actions in the 

Quadriceps muscles act like a brake to slow down movement (Ball and Herrington, 1998; 

Noakes, 2001; Sanchez et al., 2006). Also, glycogen resynthesis is impaired after DHR 

although a 30 minutes DHR protocol will not deplete glycogen stores (Byrne and Eston, 

2002). Consequently, DHR protocols simulate the eccentric muscle actions experienced by 

runners, although the muscle damage caused by DHR protocols may differ from the painful 

and abrupt acute injuries, like strains and sprains, seen in races (Kraemer et al., 2004; Miller et 

al., 2004; Takahashi et al., 2006).  

 

Numerous authors indicate that downhill running ensue heightened muscular soreness and 

discomfort, owing to the more powerful lengthening forces of eccentric muscle actions (Ball 

and Herrington, 1998; Noakes, 2001; Byrne and Eston, 2002; Miller et al., 2004; Ivy, 2004; 

Takahashi et al., 2006; Chen et al., 2007). The extent of muscle damage from strenuous 

exercise is related to the maximum force produced by the eccentric muscle action (Kraemer et 

al., 2004). This means that the more forceful the eccentric actions the worse the associated 

muscle damage.  

 

The reason why the runner might experience more pain in the Quadriceps than in the 

Hamstrings muscles after downhill running protocols (DHR) is explained by the muscle 

activation pattern during the downhill run (Takahashi et al., 2006). A higher amount of stress 

(force) is placed on the anterior aspect of the thigh (Quadriceps muscles) during downhill than 

on level or uphill running, given that this muscle group must slow down the athlete’s 

descending body mass, which is transferred onto the swing leg, at the end of the gait cycle 

(Sanchez et al., 2006; Takahashi et al., 2006; Chen et al., 2007).  

 

Therefore, downhill running (DHR) produces more muscle damage, especially in the knee 

extensors, than during level or uphill running. As explained before, this is owing to the 
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repeated vigorous eccentric muscle lengthening, which absorbs the more forceful impact 

forces (Sanchez et al., 2006; Takahashi et al., 2006; Chen et al., 2007). In addition, the 

changes in the angle of the runner’s knee are more apparent during DHR at a decline of 10% 

(35. 1°) than during level running (Chen et al., 2007).   

 

Muscle soreness starts immediately after DHR and steadily increases over the next 48 hours 

(Miller et al., 2004). Furthermore, additional eccentric exercise (i.e. a light jog) after high 

intensity exercise which causes damage may aggravate existing muscle damage (Takahashi et 

al., 2006). The muscle damage that result from this eccentric muscle actions of DHR is 

associated with impaired muscle structure, metabolism, and function (Byrne and Eston, 2002; 

Braun and Dutto, 2003). As a result of this muscle damage the athlete’s running style and 

muscle function becomes compromised, which may diminish running economy for up to 72 

hours after the run (Byrne and Eston, 2002; Braun and Dutto, 2003; Miller et al., 2004; Chen 

et al., 2007). Muscle function is generally reduced immediately after eccentric exercise and 

could last up to a few hours to one week or one month (Byrne and Eston, 2002). It has 

therefore been shown that not only is DHR an effective method of inducing DOMS, it is also a 

realistic approach to test runners since it simulates the demanding influence of prolonged 

running (Chen et al., 2007).  

 

Braun and Dutto (2003) found after inducing DOMS with a downhill run protocol, in nine 

well trained male distance runners and triathletes, that muscle damage altered the athletes’ 

stride biomechanics. Furthermore, subjects relied more on their anaerobic energy system, 

which meant an increase in metabolic stress. Thus the athletes’ running economies were 

compromised due to DOMS after running downhill. Eston et al. (2000) also found small 

changes in stride mechanics after a downhill run following an initial downhill run, which was 

ran five weeks prior. Eston et al. (2000) showed that plasma creatine kinase was significantly 

lower (P < 0.05) during the second downhill run, which would suggest a repeated bout effect. 

 

3. Creatine kinase kinetics 

 

Exercise-induced muscle damage causes cellular disruption and the loss of muscle membrane 

structure. This brings about a temporary increase in cytoskeletal and myofibrillar proteins (for 

example myosin heavy chain and actin), along with an increase in inflammatory mediators in 
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the circulation (Kraemer et al., 2004). Increased enzyme activity in the circulation serves as 

indicators of injury and/or muscle damage and are often included in testing batteries assessing 

exercise-induced muscle soreness (Stupka et al., 2000; Byrne and Eston, 2002; Väänänen, 

2004; Kraemer et al., 2004; Cleather and Guthrie, 2006; Takahashi et al., 2006; Gill et al., 

2006). Some of the biochemical markers that might be used to assess DOMS are lactate 

dehydrogenase (LDH), myoglobin, myosin heavy chain fragments, glutamic oxaloacetic 

transaminase activity and creatine kinase (CK) (Kraemer et al., 2004; Cleather and Guthrie, 

2006; Takahashi et al., 2006).  

 

Plasma creatine kinase (CKp) is the most frequently used marker of muscle damage (Kraemer 

et al., 2004; Cleather and Guthrie, 2006; Sanchez et al., 2006; Takahashi et al., 2006). The 

enzyme creatine kinase is the catalyst involved in the metabolism of adenosine triphosphate 

(ATP) and creatine phosphate (CP). The enzyme aids in maintaining ATP homeostasis. For 

instance, creatine phosphate is a high-energy phosphorylated compound, and is found in 

greater concentrations (five to six times) than ATP in the resting muscles. When ATP is 

hydrolyzed to ADP in the muscle, CP rephosphorylates the adenosine diphosphate (ADP) with 

another inorganic phosphate (Pi). This reaction releases immediate energy in power activities 

that last less than 10 to 15 seconds. The creatine kinase enzyme has a very low KM (Michaelis-

Menten constant) and a very high Hmax (maximum velocity) characteristic. Both of these are 

kinetic factors of the enzyme, which describes the rate at which the enzyme functions. This 

means that there is a low interaction between the substrate and the enzyme creatine kinase, 

with a fast functioning rate. In other words, creatine kinase is not sensitive to the physiological 

changes in ATP. When there is a high concentration of ATP, creatine kinase activity will be 

inhibited (Brooks et al., 2005). 

 

When microtrauma is inflicted, the enzyme creatine kinase, along with other substances, seeps 

through the sarcolemma into the circulation. Creatine kinase starts to accumulate in the blood 

and is visible within one to twelve hours after muscle damage has occurred. The plasma CKp 

reaches a peak between 24 to 72 hours after and then returns to baseline values (Byrne and 

Eston, 2002; Väänänen, 2004; Reilly and Ekblom, 2005; Sanchez et al., 2006). Plasma 

creatine kinase is the most sensitive muscle damage marker, as it shows the best relationship 

with perceived muscle soreness scores (Kraemer et al., 2004; Reilly and Ekblom, 2005; 

Cleather and Guthrie, 2006; Sanchez et al., 2006; Takahashi et al., 2006). In other words, the 
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highest subjective muscle soreness scores on a rating scale are related to a high amount of 

plasma creatine kinase level for each individual (Reilly and Ekblom, 2005).  

 

The normal reference values for creatine kinase are between 38 – 174 IU.L-1 (Chen et al., 

2007). Creatine kinase (CKp) levels have been found to be elevated by 540% four hours after a 

marathon race. Evidence suggests that enhanced blood flow and distribution, along with 

reduced stiffness may possibly increase the CKp clearance rate after exercise (Gill et al., 

2006). Consuming fluids may also contribute to the removal of excess CKp (Sanchez et al., 

2006). Furthermore, creatine kinase levels can be reduced when athletes taper seven days prior 

to a half marathon event, by reducing training volume to 15% of the normal training volume 

(Myburgh, 2003).  

 

4. Conclusion 

 

To investigate exercise induced muscle soreness and to assess the effectiveness of various 

recovery strategies, sport scientists induce delayed onset of muscle soreness (DOMS) via 

eccentric protocols. However, most of these protocols are not sport-specific. Downhill 

running, however, is an effective means to investigate exercise-induced muscle soreness and 

its associated symptoms. This means that studies generally include tests for muscular strength, 

endurance, and power as a measure of functional performance. In addition, swelling, range of 

motion, perceived muscle soreness, pain, and discomfort together with markers of 

inflammation, i.e. plasma creatine kinase are also assessed. Plasma creatine kinase activity is 

the most frequently used and sensitive marker of muscle damage. 

 

C. POST-EXERCISE RECOVERY 

 

Most athletes nowadays, especially elite athletes, have very strenuous training programs. 

These programs generally involve one or more prolonged and/or high intensity bouts per day. 

This typically allows about six to 24 hours for recovery between the workouts (Burke, 2006). 

In addition to these demanding programs, some sports have competitions that are conducted in 

series of events or in stages. For instance, sports like swimming as well as track and field 

events frequently include a number of short races or heats, which may also happen on the 

same day.  

http://scholar.sun.ac.za/



 42

 

Prolonged endurance events have become increasingly popular, which may involve seven to 

21 days of exercise, for instance in cycling, the road races Tour de France and the Giro d’Italia 

and the Cape Epic mountain bike race or in running, the Iron man or Comrades (~ 89.9 km). 

Other examples are training camps that may last from seven to 14 days. Then there are weekly 

matches, events, or races in which athletes participate.  

 

The athlete’s musculoskeletal, nerve, immune, and metabolic systems are stressed by these 

consecutive training bouts or events (Reilly and Ekblom, 2005).  Therefore, athletes need 

optimal recovery to adapt, prevent injuries and to allow the athlete to train in-between races or 

matches. The main objective of post-exercise recovery is to restore athletic ability to normal 

levels as soon as possible (Cochrane, 2004; Reilly and Ekblom, 2005; Burke, 2006; Shave and 

Franco, 2006). Ineffective recovery is harmful to the athlete and will lead to further reduced 

athletic performance, fatigue, and/or injury or in the worst cases, to overtraining or burn out 

(Reilly and Ekblom, 2005; Burke, 2006; Lambert and Borresen, 2006).  

 

1. Post-exercise recovery rate 

 

The rate of post–exercise recovery after prolonged exercise differs between the various 

physiological systems that are exhausted or injured (Miller et al., 2004). Furthermore, inter-

individual differences exist in recovery rates amongst runners when they dramatically increase 

their training volume and intensity (Myburgh, 2003). This means, depending on the affected 

functions or areas, some athletes might need a longer recovery time than others. Other factors 

that may play a role in recovery rates are intrinsic and extrinsic factors such as physical 

conditioning, experience, age, sex, external conditions, nutrition and time between events, 

certain hormones, type as well as the level of exertion of the exercise (Bompa, 1999; Burke, 

2006; Shave and Franco, 2006). More experienced athletes will also recover faster than 

inexperienced athletes. Furthermore, endurance trained athletes have a better adapted 

physiological system as explained in chapter two (pages 12 to 31), which means that they will 

remove blood lactate faster and transfer energy more efficiently than untrained individuals 

(Bompa, 1999). 
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The multidimensional process of recovery has a series of consecutive responses, which takes 

place in a curvilinear pattern (see Figure 2.). Within the initial third time period (~30 minutes 

to 6 hours) the recovery response is quick and 70% of the biological factors are restored. In the 

next 6 to 24 hours, the process slows down and the athlete only recovers by 20% in the second 

period.  

 

Then finally about 10% of the affected factors take 24 hours or more to recover. The recovery 

process from the first to the third phase might take several minutes to several months. The 

recovery rate depends on the energy system(s) that were utilized or exhausted and if the 

athlete is recovering from short-term fatigue and exhaustion or long term overtraining 

(Bompa, 1999; Koutedakis et al., 2006). 

 

 

 

 

 

 

 

 

 

 

Figure 2. The recovery curve lasting from a few hours to several days or even months if 

the athlete is overtrained or depending on energy system used (adapted from 

Bompa, 1999).  

 

Within the initial seconds post-exercise, the electrical properties of nerves and muscle speedily 

return to resting values (Sesboüé and Guincestre, 2006). The heart rate and blood pressure 

generally return to resting values within 20 to 60 minutes post-exercise (Bompa, 1999; 

Koutedakis et al., 2006). Phosphagen stores take three to five minutes to fully recover and 

lactate, together with pH, will take about 60 minutes or more (Cochrane, 2004).   

 

However, the sluggish aerobic energy system and mechanical properties of the damaged 

muscle, take longer (Koutedakis et al., 2006; Sesboüé and Guincestre, 2006). O’Reilly et al. 
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(1987) stated that muscle glycogen, as well as the ultrastructure of the muscle may take up to 

10 days to recover after eccentric exercises. Generally with activities, such as prolonged and 

exhausting endurance running, the glycogen stores may return to resting values within ten to 

48 hours, at the earliest. The intensity and the duration of the aerobic activity have an 

inversely proportional relationship with the recovery rate. In other words, the more intense and 

the longer the training or the race, the slower the recovery process to return the used glycogen 

to pre-exercising levels. With anaerobic interval activities only five to 24 hours are needed to 

recover. Protein regeneration takes twelve to 24 hours, while more than 24 hours is needed for 

fat, vitamin and enzyme restoration (Bompa, 1999). 

 

Activities involving eccentric muscle actions, such as resistance training, generally require 24 

to 36 hours to recover from muscle damage and injury. Muscle damage has a severe impact on 

runners, since performance is influenced until the muscle damage and soreness are fully 

recovered (Miller et al., 2004). Several authors suggest that muscular recovery is a multiphase 

response (Miller et al., 2004; Burke, 2006; Tarnopolsky, 2006; Koutedakis et al., 2006; 

Sesboüé and Guincestre, 2006). This two-fold process is accomplished when (i) pain is 

reduced and the athlete’s feeling of well–being is restored, and (ii) the muscle structure is 

repaired (Miller et al., 2004). The reduction in muscle function could be evident for as long as 

seven days post-events (Ball and Herrington, 1998).   

 

It has been said that swelling and microtrauma to tissue are acute responses and with sufficient 

recovery, it may resolve from one training bout to the next (Ball and Herrington, 1998). After 

strenuous training or events, however, the athlete will need a longer recovery period, or this 

will lead to overuse and overtraining (Ball and Herrington, 1998). Then finally the nervous 

system might take up to 48 hours to recover, depending on the intensity of the exercise 

(Koutedakis et al., 2006).  

 

When recovery techniques are usually applied within the initial nine hours post-exercise, 

supercompensation and adaptation of the athlete’s functional capacity is improved (Bompa, 

1999). Successful post-exercise recovery strategies usually entails either (i) the restoration of 

muscle and liver glycogen stores, (ii) the replacement of fluid and electrolytes lost in sweat 

and (iii) the regeneration and repair following the catabolic stress and damage caused by the 

exercise, or a combination of these factors (Tarnopolsky, 2006). 
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Post-exercise recovery may be acute (hours), medium (about two weeks) or long term (months 

to years). The objective of post-exercise recovery is to restore the athlete’s homeostasis. This 

occurs when the runner’s body adapts to the stress inflicted by the earlier exercise bout 

(Myburgh, 2003; Väänänen, 2004). Hereafter, supercompensation follows, thus the athlete not 

only adapts but also improves (Myburgh, 2003; Väänänen, 2004). The recovery strategy that 

will be used depends on the type of activity. For instance, endurance training mostly exhausts 

the nutritional factors (i.e. rehydration and fuel stores) of the athlete, then the physiological 

(muscle cell) and neurological (peripheral nervous system) factors and finally the 

psychological factors (central nervous system) (Cochrane, 2004).  

 

Optimal recovery involves replenishing muscle glycogen and fat reserves, with or without 

protein supplementation along with repairing the muscular damage sustained during prolonged 

running events (Myburgh, 2003; Ivy 2004; Atwood and Bowen, 2007), which leads to 

adaptation (Ivy, 2004). Optimal recovery allows an athlete to run longer and for more intense 

periods, which improves endurance performance (Burke, 2006; Atwood and Bowen, 2007). 

Optimal training, on the other hand, is coupled to recovery and will lead to the greatest 

adaptation and thus enhance the athlete’s running performance. 

 

2. Post-exercise musculoskeletal recovery 

 

Athletics is associated with eccentric and repetitive prolonged muscle actions that result in 

muscle injury and damage. Predominantly this is due to the abrupt and vigorous contractions, 

mechanical overload, and severe structural disruption of the muscle fibers. These repetitive 

impact forces might be two to three times the runner’s body mass (Sanchez et al., 2006). 

 

Muscular soreness due to the lengthening muscle action is associated with ultrastructural 

damage and an increase in muscle enzyme activity in the blood, such as creatine kinase. 

Athletes also experiences reduced muscular strength, endurance and power as well as 

flexibility (Miller et al., 2004; Close et al., 2005; Cleary et al., 2006; Takahashi et al., 2006). 

All of these actions are associated with the reduction in the muscle’s ability to generate 

tension and therefore interferes with the athletic performance of the athlete (Kraemer et al., 

2001; Kraemer et al., 2004; Miller et al., 2004; Takahashi et al., 2006).  
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Sanchez et al. (2006) reviewed some of the medical problems associated with marathon 

running. Seventeen percent of the injuries observed during a specific marathon event (Twin 

Cities marathon), over a 12-year period, were as a result of musculoskeletal problems. 

Typically, the problems included cramps, blisters, and serious ankle and knee injuries. In 

addition, it was found that knee injuries are more common in road racing and ankle injuries 

are found in track races. There is currently no evidence linking regular running with chronic 

musculoskeletal disability. Furthermore, the dehydrated marathon runners rarely demonstrated 

swelling, tenderness, and weakness (Sanchez et al., 2006). 

 

Immediately after eccentric muscle action, microtrauma occurs in the athlete’s muscle fiber. 

This happens because the lengthening muscle action tears the smaller vulnerable areas, which 

leads to necrosis of the muscle fiber. Three to four days after the trauma immune cells 

infiltrate the portion of tissue that has died. These tears are manifested as disrupted sarcomeres 

in the myofibrils, Z-line streaming, over extended or half sarcomeres, damage to the t-tubule 

and local disorganization of myofilaments (Close et al., 2005).  

 

2.1 Inflammatory response 

 

Musculoskeletal injury is accompanied by the well-investigated inflammatory response 

(Miller et al., 2004; Kraemer et al., 2004; Stupka et al., 2000). Inflammation increases over 

the following 24 to 48 hours after eccentric exercise has ceased (Kraemer et al., 2004). Within 

the next three to five days the inflammation response levels off, before returning to normal at 

day seven (Kraemer et al., 2004). A study by Real et al. (2005) indicated that within four 

hours after a race, middle-aged male marathon runners demonstrated an increase in the 

inflammatory response and prothrombotic markers.  

 

Even though inflammation is the first step in the healing process (Kraemer et al., 2004) and an 

essential part of the recovery process, uncontrolled inflammation according to Miller et al. 

(2004) may delay healing from skeletal muscle injury. Kraemer et al. (2004) pointed out that 

the inflammatory mechanism is triggered by mechanical as well as chemical injury. The 

mechanical mechanism is the physical disruption in the muscle fiber, whereas the chemical 

mechanism involves the mediators of inflammation.  
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Signs and symptoms of inflammation involve localized redness, heat, pain and loss or 

reduction in functional capacity (Prentice, 2001; Kraemer et al., 2004; Zainuddin et al., 2005). 

Furthermore, upon palpitation, contracting and/ or stretching of the damaged muscle, pain is 

apparent (Ball and Herrington, 1998). This is similar to DOMS induced by eccentric exercise, 

with the only exception that DOMS does not reveal signs of redness and heat (Zainuddin et 

al., 2005). The degree of inflammation in the injured area depends on the extent of the muscle 

damage (Kraemer et al., 2004).  

 

Stupka et al. (2000) studied the differences in the inflammatory response between healthy 

university male and female students after performing unilateral eccentric exercises. Previous 

human and animal studies indicated that there is a difference in the muscle inflammatory 

response between male and females. Females tend to have an attenuated response to muscle 

damage compared to males. Possible reasons for the lower CKp in females were attributed to 

the female hormone 17ß-estradiol and its anti-oxidant properties and some speculate that 

woman do not work as hard as men, and therefore have a lower CKp concentration (Stupka et 

al., 2000).  

 

Stupka et al. (2000) showed that even though there was a difference in the CKp response 

between the untrained men and women, it was not statistically significant. Furthermore, men 

had a significantly greater total number of bcl-2-positive inflammatory cells.mm-2 of tissue, 

than the women. The LCA bcl-2-positive cells.mm-2 demonstrates that females had an overall 

reduced cellular infiltrate compared to the men. Stupka et al. (2000) came to the conclusion 

that there is no difference in muscle damage between the two genders, in spite of the 

weakened inflammation response in females. 

 

2.2 Peripheral oedema 

 

The role of the lymphatic system is to collect and remove fluid and proteins from the 

interstitial tissues, which is then returned to the venous system (Cho and Atwood, 2002; 

Partsch, 2003). When the athlete’s muscle is damaged, chemical mediators, e.g. creatine 

kinase and myoglobin are released into the circulation (Kraemer et al., 2004) and an 

inflammation response is produced. The capillary walls become more permeable and proteins 
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are released into the intercellular fluid (Kraemer et al., 2001b; Kraemer et al., 2004).This alters 

the gradient between the two compartments by increasing the tissue oncotic pressure and 

elevating the hydrostatic pressure in the veins (Kraemer et al., 2001b; Cho and Atwood, 2002; 

Kraemer et al., 2004). In an attempt to equalize the osmotic gradient across the capillary 

membrane, fluid is drawn out of the veins into the interstitial compartment (Kraemer et al., 

2001b; Cho and Atwood, 2002). This in return disturbs homeostasis and oedema will form 

(Kraemer et al., 2001b; Cho and Atwood, 2002 Kraemer et al., 2004; Miller et al., 2004).  

 

Thus, oedema (swelling) is the result of an imbalance between the plasma volume 

(intravascular) and interstitial compartment (extravascular) (Cho and Atwood, 2002). This 

imbalance leads to an uncharacteristic accumulation of fluid in the interstitial space (Saladin, 

2001; Cho and Atwood, 2002). Oedema in the muscular compartment leads to increased intra-

compartmental pressure, which in return inhibits lymphatic and venous drainage of the area, 

promoting further swelling. As the muscle compartment becomes more turgid, motion is 

reduced (Kraemer et al., 2001b; Cho and Atwood, 2002). About one-hour post-exercise, the 

mechanical alteration that brings about a transfer of plasma volume and the extracellular 

compartment can be observed (Maton et al., 2006). Swelling is intramuscular during the first 

24 to 48 hours, however in the following 72 hours it becomes subcutaneous (Kraemer et al., 

2004).  

 

Kraemer et al. (2004) also explained that the inflammatory mediators’ bradykinin, serotonin, 

and histamine augment the responsiveness of the pain afferents in the injured areas and may 

contribute to the pain stimulus to some extent. Additionally swelling may also have part in 

producing pain, by increasing intramuscular pressure and stimulating the pain receptors (type 

IV sensory neurons) (Ball and Herrington, 1998; Miller et al., 2004; Kraemer et al., 2004). 

 

Severe swelling often persists long after muscle soreness has subsided. Kraemer et al. (2004) 

stated that the pain receptors may adapt to the swelling response, or otherwise swelling might 

be a secondary response to the primary cytokine and histamine mediators (Kraemer et al., 

2004). Swelling hampers the function of muscle and cause pain (Miller et al., 2004). Therefore 

diminished swelling and the decrease in stimulation of the pain receptors are used by sport 

scientists as recovery indictors (Miller et al., 2004).  
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An increase in blood flow to these areas will help to reestablish the equilibrium between the 

two compartments, by lowering the hydrostatic pressure and aiding the lymphatic system. In 

other words, the fluid and proteins are then collected via the lymphatic system and returned to 

the venous system (Cho and Atwood, 2002; Partsch, 2003). This will result in a reduced 

oedema and inflammatory response and allow the athlete to start to heal (Cochrane, 2004; 

Dawson et al., 2005; Gill et al., 2006). 

 

3. Post-exercise metabolic recovery  

 

All the energy systems are stressed during strenuous events or training bouts. This means that 

liver and muscle glycogen, as well as muscle triglycerides are either depleted or reduced post-

exercise. Below average glucose levels are related to cognitive impairments. This could make 

the athlete feel drained or mentally exhausted (Reilly and Ekblom, 2005). When glycogen 

levels are not restored by the following event or training session, athletic performance will be 

negatively affected (Ivy, 2004; Reilly and Ekblom, 2005). 

 

During the post-exercise recovery phase, the athlete’s oxygen consumption (aerobic 

metabolism) is elevated. The oxygen consumption returns to pre-exercise levels via a 

curvilinear response. This is known as excess post-exercise oxygen consumption (EPOC) 

(Cochrane, 2004; Brooks et al., 2005; Laforgia et al., 2006). The purpose of this elevated 

metabolism is to restore the fuel stores, after they are depleted or lowered by exercise.  

 

Excess post-exercise oxygen consumption is a two part recovery-mechanism, by first restoring 

immediately, within 30 seconds, 70% of the energy stores (ATP and PCr) and supplying 

oxygen to haemoglobin and muscle myoglobin and then restoring the energy stores after 

prolonged exercise by the slow component that could take up to 24 hours to recover. This 

sluggish recovery rate is associated with an increase in the functions of the cardiorespiratory 

system, increased body core temperature and aiding in metabolic clearance, such as lactate and 

phosphate (Cochrane, 2004; Laforgia et al., 2006). 
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3.1 Glycogen restoration 

 

Endurance training alters the relationship between the ventilatory respiratory exchange ratio 

(R) and the relative exercise intensity in well-nourished individuals, by shifting it to the right. 

This means that fewer carbohydrates are used as a source of fuel by trained individuals as by 

untrained, at the same exercise intensity. However, glycogen remains the main source of fuel 

for muscle exercise, especially during demanding aerobic training bouts and/or prolonged 

races (Ivy et al., 2002; Ivy, 2004; Brooks et al., 2005; Burke, 2006).  

 

When soccer players, trained hard the day before a game, they experienced the onset of fatigue 

earlier, than their teammates who rested (Reilly and Ekblom, 2005). In other words, the 

amount of glycogen present before the onset of exercise will determine the athlete’s endurance 

time (Ivy et al., 2002; Reilly and Ekblom, 2005; Brooks et al., 2005). Therefore, an athlete 

needs to have recovered glycogen stores prior to the following event or training session for 

optimal performance (Ivy et al., 2002; Burke, 2006). The athlete will need 20 to 24 hours at an 

average rate of five to six mmol/kg wet weight (ww) per hour, to restore his glycogen stores 

(Burke, 2006).  

 

Ivy (2004) substantiates this by stating that aerobic endurance is linked to the initial muscle 

glycogen stores and that demanding exercise cannot be sustained once these stores are 

depleted. Therefore, when glycogen stores are returned to pre-exercise levels an athlete can 

train at the same intensity and/or volume the following day. Furthermore, glycogen restoration 

improves the anabolic: catabolic ratio of metabolic processes in endurance athletes (Myburgh, 

2003). An athlete will demonstrate underperformance when homeostasis is not returned and 

catabolism overpower the anabolic processes (Reilly and Ekblom, 2005). Thus, athletic 

performance depends on the athlete’s ability to restore glycogen (Burke, 2006).  

 

Muscle glycogen stores are favoured and thus replaced before the liver’s stores. The 

exhaustion of muscle glycogen stores, stimulate the resynthesis of glycogen by activating 

glycogen synthase. For example, after high-intensity exercises, where the athlete’s lactate 

concentration is elevated and no additional carbohydrate supplementation is taken, glycogen is 

quickly restored. However, after moderate-intensity exercise athletes need to consume 

additional carbohydrates post-exercise to aid glycogen restoration (Burke, 2006).  
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Muscle glycogen synthesis is a sluggish process of at least 1 – 2 mmol/kg wet weight (ww) of 

muscle per hour without additional carbohydrates. A maximum of 5 – 10 mmol/kg wet weight 

per hour during the initial twelve hours post-exercise have also been reported (Ivy, 2004, 

Burke, 2006). The rate of resynthesis is influenced by the factors controlling glucose uptake 

into the cell and/or those involved with glucose removal (Burke, 2006).  

 

This explains why the optimal time for glycogen replacement is within two hours of cessation 

of exercise. As the enzymes associated with glycogen synthesis are most active during this 

period. Moreover, during this initial post-exercise period, glucose sensitivity is increased and 

greater GLUT 4 transporters are available in the muscle (Reilly and Ekblom, 2005). 

Nutritional guidelines suggest a carbohydrate intake of 1.5 g. kg-1 body mass within the first 

30-minutes of recovery. 

 

This type of recovery strategy is more applicable to events or exercise sessions that are only 

separated by four to eight hours. For other activities that are separated by more than twelve 

hours, this strategy has less of an impact. For longer periods it is more important to take in the 

required carbohydrates, until glucose threshold is reached (Burke, 2006). The amount of 

carbohydrates consumed affects the storage of glycogen in a direct and positive way post-

exercise, up until the muscle’s storage threshold of about seven to ten gram per kilogram of 

the athlete’s body mass is reached (Burke, 2006).  

 

The type of carbohydrates consumed after exercise, warrants further investigation, however to 

date, it is recommended to consume moderate to high GI (glycemic index) foods (Reilly and 

Ekblom, 2005; Burke, 2006). The higher GI food increases glycogen storage by about 30% 

during the 24 hours post-exercise. The reasons are not clear, but it has been purposed that the 

higher GI foods enhance glucose and insulin responses or that low GI foods are not properly 

digested. In addition, the form of carbohydrate loading, i.e. liquid or solid or the frequency of 

meals or regular snacks does not seem to have an influence on glycogen storage (Burke, 

2006).  

 

In contrast to concentric exercise or rest, eccentric muscle actions alters the previously active 

muscle’s metabolic properties (Byrne and Eston, 2002; Ball and Herrington, 1998) by giving 
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rise to more insulin resistant muscles and reduce glucose clearance by 37 % (Ball and 

Herrington, 1998) and an extended reduction in muscle glycogen levels(Byrne and Eston, 

2002). It is thought that the inability of the metabolism to complete its function could result in 

decreased force production, especially during high intensity activities, which utilizes the 

anaerobic energy system (Byrne and Eston, 2002). Prolonged runs, on the other hand, place 

immense stress on the athlete’s physiological systems, which may harm muscle glycogen 

restoration post-exercise. Glycogen storage is impaired by damage to the injured fiber, such as 

that caused by eccentric exercise or direct contact injury. Increased glycogen consumption 

within the 24 hours post–exercise, might be partially overcome this reduced glycogen 

restoration (Burke, 2006). In addition, a decrease in glycogen replenishment has been 

associated with the greater tendency for injury in runners (Ball and Herrington, 1998).  

 

3.2 Dietary fat and athletic recovery 

 

The role of fatty acid and recovery post-exercise is equivocal. Some studies report no effect on 

DOMS and CKp, while other studies have indicated that it aids post-exercise CK levels. A 

chronic high fat intake may support the endurance athlete’s immune system (Lowery, 2004). 

 

3.3 Protein supplementation 

 

Additional protein intake is not necessary for recreational athletes or for exercise at low to 

moderate intensities (≤ 50% VO2max). These athletes consume enough total energy during their 

training or do not reduce their protein content enough, to justify additional protein intake. 

However, it has been suggested that for exercise intensities above 65 to 85% of VO2max, and 

elite endurance athletes that train at very high intensities for long durations might benefit from 

protein supplementation (Tarnopolsky, 2006).  

 

Additional dietary protein is usually only necessary at the onset of an endurance program and 

to aid the recovery of muscle degradation in well-trained athletes (Reilly and Ekblom, 2005, 

Tarnopolsky, 2006). Well-trained athletes are those athletes that train at intensities of 60 % of 

their VO2max, four or five times a week for 45 minutes. These athletes need to consume 20 to 

25% more dietary protein, while elite athletes may increase their protein intake by 1.6 grams 

per kilogram (g.kg-1) per day (Tarnopolsky, 2006). 
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Muscle damage induced by exercise is associated with unaccustomed or strenuous exercise. 

Therefore, muscle degradation is also coupled with metabolic recovery, since post-exercise 

muscle break down continues due to protein utilization, such as amino acids (Myburgh, 2003; 

Ivy, 2004; Tarnopolsky, 2006), inflammation, delayed hormonal regulation and augmented 

free radicals (Ivy, 2004). This means that the hormonal changes which aids in protein, fat and 

glycogen break down for fuel, may cause muscle damage (Ivy, 2004).  

 

It has been recommended to consume extra proteins in conjunction with carbohydrate intake 

within four hours post-exercise. This combination would assist muscle repair, replenish 

glycogen stores, and result in adaptation in athletes (Myburgh, 2003; Ivy, 2004; Reilly and 

Ekblom, 2005; Burke, 2006; Tarnopolsky, 2006). Greater protein synthesis is associated with 

protein supplementation with carbohydrates as soon as one to three hours immediately post-

exercise (Reilly and Ekblom, 2005). Previous studies suggested that the additional protein 

consumption with the carbohydrates causes a greater insulin response. As a result, 

carbohydrates are absorbed at a greater rate and this leads to a faster restoration of glycogen 

stores. Others suggest that this combination provided a greater total energy intake compared to 

just consuming carbohydrates on its own (Ivy et al., 2002).  

 

3.4 Post-exercise lactate kinetics 

 

Anaerobic breakdown of glycogen leads to intracellular accumulation of inorganic acids 

(lactic acid and inorganic phosphate) (Maton et al., 2006). Generally during rest the muscle 

releases lactate, but to some extent also takes up a small concentration of lactate (Gladden, 

2000b). Conversely, training and races result in an increased lactate production and hydrogen 

ions ([H+]) accumulation (Connolly et al., 2003; Draper et al., 2006). The accumulated [H+] 

will make the blood pH more acidic. When the body’s pH drops below the normal 7.4, it is 

known as metabolic acidosis (Martin et al., 1998). The amount of accumulated lactate and 

[H+] will depend on the duration, intensity and the recovery time.  

 

The accumulated lactate, acidosis and increased inorganic phosphate are believed to be 

responsible for muscular fatigue by interfering with the metabolic function and muscular 

contractility. This reduces the muscles ability to produce force, as well as retards the transport 
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and functioning of the metabolic pathways (Martin et al., 1998; Cochrane, 2004; Maton et al., 

2006). For optimal performance it would make sense that lactate exchange and removal are 

critical (Connolly et al., 2003; Draper et al., 2006; Maton et al., 2006). Whether lactate 

concentration per se is a contributor of fatigue is debatable (Connolly et al., 2003; Draper et 

al., 2006; Wilcock et al., 2006). The exact mechanisms of muscle fatigue are complex and not 

fully understood. Accumulated lactate, and the associated hydrogen ions, is at least partially 

responsible for slowing down the recovery from fatigue (Hemmings, 2001).  

 

According to Martin et al. (1998) several mechanisms have been proposed to explain how 

metabolic acidosis diminishes muscular ability. When the pH drops due to lactate and 

hydrogen ions accumulation it inhibits two of the important regulating enzymes of anaerobic 

energy production, i.e. lactate dehydrogenase and phosphofructokinase. This reduces the 

mobilization of free fatty acids and delays glycolysis. Furthermore, the increased hydrogen 

ions disrupt muscle action by dislodging calcium from troponin. It also stimulates the pain 

receptors and increases the athletes perceived level of exertion.  

 

Following the cessation of strenuous exercise lactate still continuously filters into the 

circulation from the earlier working muscles, and then for several minutes increases 

exponentially to a maximum value where after it progressively returns to the baseline level, 

via the same exponential decline (Fukuba et al., 1999). Therefore, post-exercise recovery 

strategies aim to speed up the removal of lactate and H+ (Martin et al., 1998; Cochrane, 2004; 

Rimaud et al., 2007). Optimal lactate recovery immediately after strenuous exercise is very 

important, especially if there are more exercise bouts or matches to follow (Martin et al., 

1998).  

 

Although a large amount of lactate is removed during the exercise, the majority of lactate 

removed during recovery is by direct oxidation or gluconeogenesis and some lactate is shunted 

to other sites, such as the heart, liver, kidneys and skin. Lactate clearance is further influenced 

by the internal metabolism. For instance, if there is normal liver glycogen and blood glucose 

levels, increased lactate will be oxidized. After prolonged activities, such as long distance 

running, glycogen is depleted or severely exploit (hypoglycemia), then converting lactate into 

glucose precursors is favored (Brooks et al., 2005).  
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Enhanced blood flow is suggested to be an important factor in the removal of lactate post-

exercise, as it enhances oxidation and diffusion out of the muscles (Hemmings, 2001; Brooks 

et al., 2005). Active recovery strategies increase blood flow more compared to passive 

recovery, and is believed by some to be more beneficial for lactate metabolism and subsequent 

performance (Chatard et al., 2004). Both Connolly et al. (2003) and Fukuba et al. (1999) 

maintained that lactate concentrations are reduced promptly by active recovery, more so than 

with passive recovery.  

 

As mentioned before, several organs, including the skeletal muscles, actively and inactively, 

aid lactate clearance. The skeletal muscle transforms lactate back to pyruvate, which then re-

enters the Krebs cycle. Thus, the suggested reasons why active recovery is more effective than 

passive recovery is that (i) a greater lactate concentration is oxidized by the moderately active 

muscles and (ii) a swift transfer of lactate to the site of removal, either to the liver, heart and/or 

inactive muscle, as a result of improved or maintained blood flow take place (Draper et al., 

2006; Connolly et al., 2003; Fukuba et al., 1999).  

 

4. Post-exercise rehydration 

 

The athlete’s core temperature increases proportionally to the intensity of the exercise and the 

environmental temperature (Reilly and Ekblom, 2005). About 75 % of the energy runners 

generate, dissipate from the body as heat, primarily as sweat loss (Reilly and Ekblom, 2005; 

Sanchez et al., 2006; Burke, 2006). About one liter of water from the skin equals 580 kcal of 

heat from the body (Burke, 2006). Individual sweat rates vary among athletes, but athletes 

might lose more than 1800 ml sweat per hour during a marathon (Sanchez et al., 2006). 

Moreover, exercising at an intensity of about 75% of one’s VO2max could result in a rate of two 

liters per hour of sweat loss (Reilly and Ekblom, 2005). It is this loss in plasma volume that 

affects thermoregulation and athletic performance as well as places strain on the 

cardiovascular system (Carter et al., 2005; Burke, 2006). 

 

Endurance performance is impaired when an athlete is dehydrated by about one to two per 

cent of body mass (BM) (Reilly and Ekblom, 2005; Burke, 2006). Five percent dehydration 

could reduce the athletic ability by 30%. Some athletes have demonstrated a 45% impairment 

in their performance capacity during prolonged activities, with a 2.5% loss in body weight 

http://scholar.sun.ac.za/



 56

(Burke, 2006). Hypohydration is not only detrimental to the athlete’s running performance, it 

also debilitates thermoregulation, alters muscle metabolism, reduces gastric emptying, affects 

baroreceptor responsiveness, arterial blood pressure is not sustained, catecholamines levels are 

increased and also cognitive function is influenced in such a way that perceived exertion is 

increased (Carter et al., 2005; Burke, 2006). The more dehydrated the athlete becomes, the 

more progressively the effects worsen (Burke, 2006). 

 

Athletes do not generally ingest enough fluids during competitions and cannot keep up with 

the rate of fluid loss (Reilly and Ekblom, 2005).  They usually only replace 30 to 70 % of their 

sweat loss during exercise and are limited between exercise bouts (six to eight hours) to 

replace loss fluids. Moderate to severe hypohydration (two to five percent BM), may take four 

to 24 hours to recover the body’s fluid levels (Burke, 2006). 

 

Post-exercise rehydration is therefore an important strategy to restore fluid losses between 

exercise bouts and events. The aim would be to restore the athlete’s autonomic control, as well 

as to start the next exercise session or event euhydrated (Carter et al., 2005; Burke, 2006). 

Some of the recommendations specify that for moderate fluid loss, athletes should consume 

150% of fluid over the following hours post-exercise. In other words, the athlete needs to 

consume more volume of fluid than what he has lost during and post-exercise Generally, to 

restore the fluid balance the athlete needs to rehydrate by 50 to 70% over two to four hours 

post-exercise (Burke, 2006).  

 

About seven grams of sodium may be lost through sweating after exercising in hot 

environments (Burke, 2006). Sodium losses via sweat are typically between 20 to 80 mmol.L-

1, but this varies between individuals (Burke, 2006). Sweat rates are dependent on factors such 

as body size, physiological differences, exercise intensity and duration, ambient temperature, 

humidity and acclimatization. This makes sodium the main electrolyte of concern for long-

distance runners (Sanchez et al., 2006; Burke, 2006). 

 

Various recommendations are given about the correct amount of sodium given post-exercise. 

However, Burke (2006) suggests that athletes should preferably ingest 50 to 90 mmol.L-1 of 

sodium. The sodium facilitates the absorption of water through the intestinal wall and 

therefore restores plasma volume more rapidly than just plain water. The reason being that 
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pure water dilutes the plasma osmolality and the sodium content in return, urination increases 

and thirst is reduced. This inhibits the success of the rehydration process. In other words, 

sodium aids optimal rehydration by maximizing the retention of consumed fluids. Sodium 

may be ingested in the form of fluids, such as sports drinks, food or salty snacks (Reilly and 

Ekblom, 2005; Burke, 2006).  

 

5. Neural recovery 

 

During exercise, the parasympathetic activity is reduced and sympathetic activity is increased, 

as explained in chapter two (pages 16 to 18). During exercise the athlete’s heart rate and 

myocardial contractility increases, the periphery vasodilate and the airways constrict and dilate 

via nervous stimulation. After exercise, with efficient recovery the heart recovers to resting 

levels.  

 

However, when athletes train repeatedly and at high intensities or prolonged durations, the 

sympathetic nerve stimulation increases due to insufficient recovery or rest (Cochrane, 2004). 

In addition, after matches or events, the central nervous system might still be stimulated and 

this could lead to reduced sleep or disturbed sleeping patterns. Active recovery strategies may 

lessen the nervous systems response and thereby promote sleep (Reilly and Ekblom, 2005).  

 

Athletes are endangered by the possibility of conditions such as overreaching and/or staleness 

(overtraining), if they do not give the nervous system time to recuperate (Bompa; 1999; 

Cochrane, 2004). The sympathetic nervous system is predominantly affected when an athlete 

experience overtraining. This in return affects the endocrine function and recovery may take 

months to restore the neural input (Ball and Herrington, 1998).  

 

More flexible muscles post-exercise, improved reflexes and positive feelings and/or reduced 

perceived muscle soreness are associated with an improved neurological recovery, specifically 

in the CNS. Appropriate recovery techniques, such as contrast therapy and hydrotherapy, 

might assist the restoration of the peripheral and central nervous system (Cochrane, 2004).  
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6. Conclusion 

 

Therefore, strategies to aid recovery after training or events have become increasingly 

important for modern athletes. The intention is to restore muscle and liver glycogen; replenish 

fluid and electrolyte loss in sweat as well as aid regeneration, repair and adaptation to 

catabolic stress (Burke, 2006). Furthermore, recovery depends on the exercise intensity and 

duration. The more strenuous the activity and effort demanded from the athlete, the longer the 

recovery period. 

 

D. RECOVERY STRATEGIES 

 

Recovery is defined as the return of the muscle to its pre-exercise condition after exercise 

(Cochrane, 2004). In other words, recovery is a method by which the athlete’s body restores 

homeostasis. Recovery also allows the athlete to adapt its physiological functions and systems 

at a higher level (Shave and Franco, 2006). Optimal recovery permits an athlete to train for 

longer and harder (Barnett, 2006; Atwood and Bowen, 2007). However, the rate of post–

exercise recovery after prolonged exercise depends on which physiological systems are 

debilitated (Miller et al., 2004). This means that some athletes might need longer recovery 

time than others.  

 

Myburgh (2003) refers to the non-biological factors that influence endurance performance, for 

instance optimal training, years of training, performance level, pace and optimal recovery. 

Very little research has actually been done on post-exercise or in-between training recovery 

techniques; if one considers that it is an accepted practice after competitions and training for 

most athletes (Myburgh, 2003; Dawson et al., 2005).  

 

Overreaching is generally used as a training tool when the athletes are building up to a big 

event. Overreaching results in a temporary decrease in athletic performance, this may take a 

few days to several weeks to recover. Approximately 15–50% of competitive endurance 

athletes experiences overreaching during their competitive training phase (Coutts et al., 2007). 

Athletes, who train on a regular basis at these high–intensities or for prolonged periods 

(overreaching), together with limited recovery might be at risk of overtraining syndrome 

(Väänänen, 2004).  

http://scholar.sun.ac.za/



 59

 

Overtraining occurs when an excessive repeated training stimulus is applied with limited 

recovery, in such a manner that the athlete does not make any positive adaptations to the 

stimulus, but rather responds negatively through injury or overreaching (Ball and Herrington, 

1998; Väänänen, 2004).It is therefore evident that sufficient recovery is an important part of 

an endurance-trained athlete’s training program. The perfect balance between training volume 

and duration of recovery is necessary to optimize athletic performance and minimize injury.  

 

Endurance training mostly exhausts the nutritional factors, physiological, neurological, and 

psychological properties of the athlete (Cochrane, 2004). Cochrane (2004) gave possible 

examples of recovery techniques, which are used for these above-mentioned aspects. To aid 

the recovery of the metabolic factors, for example, techniques like rehydration and carbo-

loading, might be employed.  

 

With muscle fatigue, injury or damage athletes could make use of hydrotherapy, cooling down 

and massage techniques to increase the blood flow to the areas affected, and this will help with 

neurological recovery, together with passive rest. For psychological recovery visualization 

techniques, progressive muscular relaxation, meditation, flotation and massage are 

recommended (Cochrane, 2004). 

 

1. Active recovery 

 

Active recovery is a form of tapering involving low intensity aerobic activities, such as light 

jogging, swimming, and/or walking, which is one of the two most common methods for 

facilitating recovery in athletes after strenuous exercise (Martin et al., 1998; Myburgh, 2003; 

Gill et al., 2006). With active recovery, the athlete continues submaximal exercise after the 

exercise bout for 7.5 to 20 minutes. Some studies have used intensities of less than 65% of the 

athlete’s VO2max for active recovery (Wilcock et al., 2006). However, the typical criteria for 

active recovery are suggested to be at intensities of about 30 to 40% of the athlete’s VO2max. 

Several authors state that active recovery is the preferred recovery modality over passive 

recovery (Martin et al., 1998; Myburgh, 2003; Gill et al., 2006).  
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The suggested mechanism of active recovery is that it increases blood flow through the active 

muscles, increases the turnover of metabolic substrates, distributes blood better and removes 

lactate and creatine kinase faster. Active recovery also improves flexibility and reduces 

muscle cramping (Berry and McMurray, 1987; Martin et al., 1998; McArdle et al., 2001; 

Chatard et al., 2004; Reilly and Ekblom, 2005; Gill et al., 2006). The removal of both lactate 

as well as creatine kinase after exercise from the damaged muscle is important contributors to 

the recovery of athletic performance post-exercise. Since these aspects retard the post-exercise 

recovery rate of soft tissue injury and possibly contribute to fatigue (Berry and McMurray, 

1987; Gill et al., 2006).  

 

Additionally, numerous authors suggest that active recovery increases lactate removal faster 

than passive recovery and reduces body temperature and blood flow more gradually (Martin et 

al., 1998; McArdle et al., 2001; Chatard et al., 2004; Reilly and Ekblom, 2005). When the 

athlete continues to exercise at a low intensity after events or training the increased heart rate 

and the active muscles improves blood flow. It has been proposed that it is this improved 

blood flow that clears lactate faster, by shuttling the lactate to the elimination sites. At these 

sites, such as the heart and skeletal muscle, the lactate is used as a source of fuel (Brooks et 

al., 2005).  

 

Additionally, the increased metabolic rate aids lactate metabolism via oxidation and 

gluconeogenesis (Martin et al., 1998; Chatard et al., 2004; Draper et al., 2006). As much as 

70% of the athlete’s lactate is cleared by oxidation (Martin et al., 1998). At intensities below 

50% of the individual’s VO2max the lactate clearance is directly related to the exercise 

intensity. In other words, active recovery will remove lactate from the circulation faster than 

no activity, such as passive recovery (Reilly and Ekblom, 2005). This may indicate that active 

recovery post-exercise is a better strategy than the traditional rest. However, it is important to 

realize that passive recovery also allows lactate clearance, but according to some authors not 

as efficient as active recovery. 

 

Gill et al. (2006) investigated the effects of four post-match recovery techniques on interstitial 

creatine activity in 23 elite rugby players (age: 23 ± 3 years). Subjects had to be injury free 

and played for at least 20-minutes to be included in the study. Creatine kinase activity is not 

only greater due to the running aspect of rugby, but also due to the collisions in the game. The 
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four recovery strategies i.e. compression garments, active, passive, and contrast water therapy 

were monitored over a four-week period in the competition season.  

 

Subjects were randomly assigned to one of the four recovery techniques. Interstitial creatine 

kinase samples were collected three and a half hours prior to matches and then immediately 

after, 36 and 84-hours post-exercise. The recovery strategies were applied after each of the 

matches. All of these strategies, except in the cases were the subjects had to wear compression 

garments, were executed before showering, rehydration, snacking, and getting ready for the 

post-match function. With the passive recovery (PAS) protocol subjects had to sit for nine 

minutes after a match. Subjects in the active recovery group (ACT) cycled for seven minutes 

at a low-intensity (150 Watts; 80 to 100 rpm) on a stationary bicycle. The contrast water 

therapy (CWT) and compression garments (WCG) protocols will be discussed under the 

appropriate sections. 

 

Post-match interstitial creatine kinase activity was significantly higher (Pre: 1023.0 ± 308.3 

u.L–1 vs. post: 2194 ± 833.7 u.L–1; P < 0.01). No significant differences were noted, 

throughout the experiment, between the ACT, CWT, and WCG recovery strategies in the male 

rugby players. There was a significant difference between passive recovery (PAS) and in the 

individuals participating in the other three recovery modalities, at 36 and 84-hours post-

exercise (P < 0.05). At 84-hours passive recovery indicated a 39.0% improvement in 

interstitial creatine kinase activity, while active recovery was 49.2% more pronounced than 

passive recovery with a 88.2 % recovery (P < 0.05).  

 

According to Gill et al. (2006), active recovery is one of the best recovery interventions to 

increase blood flow and distribution to the active muscles. Gill et al. (2006) hypothesized that 

active recovery would yield the greatest reduction in post-match creatine kinase concentration. 

Even though active recovery showed the highest relative percentage of recovery (88.2 %) at 

84–hours, no significant difference was found when compared to contrast water and 

compression garment strategies (85.0% and 84.4 %, respectively; P < 0.05). Due to the time 

constraint and resource limitations seven minutes were selected for active recovery, but the 

authors suggest that a longer active recovery period would be even more beneficial.   
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Martin et al. (1998) performed a counterbalance experimental study with repeated measures, 

in which they investigated the effectiveness of three experimental conditions, namely i.e. 

active recovery (ACT), sport massage (MAS) and rest (C). The subjects were competitive 

male cyclist with ages ranging from 21 to 34 years (n = 10; age: 24.5 ± 3.98 years; VO2max: 

55.87 ± 3.87 mL.kg-1.min-1). Prior to the main testing subjects had to perform a VO2max, to 

obtain baseline values. 

 

They were randomly requested to complete three supramaximal Wingate cycling tests. Each 

Wingate test entailed a 30-second all out sprint at a high braking force that was related to body 

weight, followed by a two minute rest. The third Wingate test was followed by a five minute 

rest period and then the 20-minute experimental procedure, which involved active recovery, 

sport massage or rest. Subjects participated in all three conditions, separated by 48 hours and 

acted as their own control.  

 

Blood lactate was assessed 10 minutes before exercise and immediately after, then five 

minutes after the last Wingate and every five minute interval in the 20-minute experimental 

condition. The active recovery protocol required that the cyclist pedaled at a rate of 80 rpm at 

an intensity of 40% of his VO2max. For the sport massage intervention, athletes were massaged 

for 20 minutes using typical post-exercise recovery techniques. For the resting condition, the 

subjects lay supine for 20 minutes. 

 

The Wingate tests significantly increased the athlete’s lactate concentration for all conditions 

(P < 0.05).  Active recovery significantly reduced lactate concentration by 59.38% (6.79 ml.L-

1 decrease) compared to the sport massage reduction of 36.21% (4.39 ml.L-1 decrease) and 

resting conditions by 38.67% (4.33 ml.L-1 decrease). 

 

One of the possible problems with a long active recovery between bouts is that it depletes 

muscle glycogen stores. This may be harmful to athletic performance. McAinch et al. (2004) 

investigated the difference between passive and active recovery in repeated 20-minute aerobic 

sessions. Each aerobic session was separated by a 15-minute active (ACT) or passive (PAS) 

recovery bout. For the passive recovery the subjects laid supine. In the active recovery bout 

the subjects continued to cycle at 40% of their VO2max after the aerobic exercise. Each session 

was repeated on a separate occasion.  
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The subjects were seven trained men (age: 22 ± 4 years; VO2max: 58.3 ± 9.4 mL.kg-1.min-1). 

The investigators collected blood samples and muscle biopsies to assess glycogen levels in 

addition to blood and muscle lactate samples. Muscle samples were collected before and 

immediately after the first experimental bout. Blood samples were collected at rest and every 

five minute interval throughout each main trial.  

 

Before the main exercise bout on a separate visit, the subjects’ VO2max values were obtained 

via an incremental exercise test. Seven days after the initial test, subjects visited the laboratory 

for a familiarization time trial. In this session the subjects had to perform as much work as 

possible for 20 minutes, which was similar to the main testing sessions. The 48 hours before 

both the main sessions, subjects cycled at 70 % VO2max for 60 minutes. For each of the main 

experimental trials the subjects completed two 20-minute full out cycle sessions, separated by 

15 minutes. In this 15-minute interval the subjects randomly performed active or passive 

recovery. After five days the same protocol was repeated for the second experimental trial. 

Between exercise and recovery periods, there was a one-minute transition interval. In this 

interval blood samples and biopsies were collected. Both trials showed a significant decrease 

in performance in the second 20-minute bout (ACT: ~320 W vs. ~300 W; PAS: ~319 W vs. 

~299 W; P <0.01). Muscle glycogen did not significantly differ between the two conditions at 

any point (P < 0.05).  

 

Blood lactate concentrations were higher in the passive recovery group (7.7 ± 1.4 mmol.L-1), 

while the active recovery group demonstrated a lower blood lactate level before starting the 

second bout of each trial (4.4 ± 0.7 mmol.L-1). The difference was statistically significant 

between active and passive recovery (P < 0.05). No significant difference was found between 

the active and passive group’s muscle ATP (26.0 ± 0.72 mmol.kg-1dry weight vs. 25.8 ± 0.85 

mmol.kg-1dry weight, respectively) before and after each bout. Muscle PCr was reduced in 

both ACT and PAS by ~228 % (P < 0.05). After the first bout the Cr was elevated by ~164% 

and ~144 % in the active and passive recovery group, respectively (P < 0.05) compared to 

before the exercise.  Nevertheless, there was no difference between the two main trials. 

McAinch et al. (2004) concluded that active recovery does not aid improvement in 

performance between subsequent aerobic sessions, regardless of decreased lactate circulation 

levels.  
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Some of the associated methods of conventional active recovery include: stretching, low 

intensity weight training and aqua walking/running. These methods predominantly function in 

a similar fashion as active recovery (Dawson et al., 2005; Gill et al., 2006; Stracciolini et al., 

2007).  

 

Young (2007) defines static stretching as an activity by which the body position is taken to the 

end of the joint’s range of motion and held for about ten to 30 second intervals. Traditionally it 

has been suggested that stretching the involved muscles post–exercise, would assist recovery, 

prevent injury, reduce perceived muscle soreness, and improve performance in the athlete. 

Apparently stretching would apply tensile force to the affected tissue and if applied 

progressively this will aid in tensile strength of the damaged area (Ball and Herrington, 1998).  

 

Recent research however, indicated little or no effect of stretching on muscle strength, delayed 

onset of muscle soreness (DOMS) and muscle damage (assessed by creatine kinase 

concentration) (Dawson et al., 2005). In addition, pre-exercise static stretching has been 

associated with impaired athletic performance, such as reduced muscle strength, strength 

endurance and power. The reasons for this negative influence on athletic ability are associated 

with reduced neural activation, lesser musculotendinous stiffness or even a combined neural 

and muscular effect (Young, 2007).  

 

A review by Andersen (2005) on pre- and post-exercise stretching also concluded that 

stretching does not produce any additional benefits. Specifically post-exercise stretching only 

showed a two per cent reduction in muscle soreness over the initial 72 hours post-exercise. 

This is not significant or practical in athletic populations (Andersen, 2005). The protocols 

assessed in this review typically involved a post-exercise stretching routine of four to ten 

repetitions held for about 30 to 120 seconds. Anderson (2005) suggested that the risk of injury 

would be less than 5% in athletes who followed a stretch routine. In fact, by stretching the 

muscle up to 120% of its resting length, may lead to muscle damage in some cases. However, 

protocols that sustained stretching for longer intervals might produce different results.  

 

Aqua walking or -running at low intensities also require further investigation (Dawson et al., 

2005). Theoretically, water places less strain on the body and the joints and aids venous return 
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via hydrostatic pressure differences (Dawson et al., 2005). It has also been suggested that the 

subtle massage-effect of the water resistance reduces muscle stiffness and the increase in 

temperature and blood flow in the muscle could reduce muscle soreness. Water furthermore 

limits eccentric muscle action and therefore it will not augment existing muscle damage. Thus, 

water-exercise, such as walking or running might aid recovery from DOMS (Reilly and 

Ekblom, 2005; Takahashi et al., 2006).  

 

Takahashi et al. (2006) provided evidence for aqua exercise as a therapeutic modality that 

improves DOMS after a downhill run. Ten male long-distance runners (age: 20 ± 1 years) 

were included into the study. The study consisted of two groups, i.e. the intervention group, 

which was the aqua-exercise group, and the control group, which performed no recovery 

strategies.  

 

Subjects were requested to perform three sets of five-minute downhill runs (DHR) at – 10%. 

Each subject ran at speeds that corresponded to his best 5000m-race time (335.7 ± 6.1 meters 

per minute). In addition, each set was separated by a five-minute rest-interval. Immediately 

after the DHR and during the following 48-hours after the DHR protocol, the aqua- exercise 

group performed 30-minutes of walking, running and jumping in a pool (29 ± 0.8ºC) 

everyday. The control group performed no recovery exercises.  

 

The DHR protocol caused significant muscle damage, since the 24-hour post-exercise creatine 

kinase levels were increased in both groups (Pre: C: 347 ± 195 u.L-1and Aqua: 278 ± 137 u.L-

1vs. 24-hours: C: 555 ± 155 u.L-1 and Aqua: 615 ± 337 u.L-1; P < 0.05). Muscle power in the 

control group was reduced 24-hours after the DHR (1652 ± 418 W vs. 1379 ± 477 W; P < 

0.05), but not in the intervention group (1568 ± 148 W vs. 1504 ± 130 W; P > 0.05). At 72-

hours post-exercise the perceived muscle soreness was greater in the calf muscles of the 

control group (P < 0.05). The sit and reach, stride length and ankle range of motion to assess 

flexibility were not significantly different between the groups (P > 0.05). Both groups 

demonstrated reduced flexibility after the DHR, but it was returned to baseline values by 72-

hours. Reaction time followed a similar pattern, but was not returned to baseline values within 

72-hours (P > 0.05).  
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This study demonstrated that aqua-exercise aids the recovery rate of muscle power, stiffness, 

and perceived soreness, compared to just rest. According to the authors, these results support 

the assumption that water exercise mildly massages the legs; increase muscle temperature and 

blood flow and the non-eccentric contractions associated with water- exercises helps to reduce 

muscle damage (Takahashi et al., 2006). 

 

2. Passive recovery 

 

Traditionally passive recovery or inactive recovery as it is sometimes called is when the 

athlete lies down or ceases activity after exercise. Athletes believe that the complete rest 

reduces the resting energy demand and this permits more oxygen to the muscles for the 

recovery processes (Cochrane, 2004). In other words, the inactivity restores the physiological 

homeostasis (Wilcock et al., 2006).  

 

Traditional forms of passive recovery include sleeping, doing nothing, or staying seated, 

standing and lying supine post-exercise. With long-term passive recovery an athlete continues 

to perform daily activities (McArdle et al., 2001; Wilcock et al., 2006). More contemporary 

forms of passive recovery might be used in conjunction with other post-exercise recovery 

strategies, such as massage, contrast therapy, and flotation (Cochrane, 2004).  

 

3. General therapeutic interventions 

 

Therapeutic interventions are traditionally used to aid the recovery of acute sporting injuries 

and for rehabilitation purposes. However, athletes want to recover as quickly and as 

effectively as possible, so that they can participate in the following event or training bout. As a 

result, athletes use various additional recovery methods, which includes prophylactic or 

therapeutic techniques (Cochrane, 2004; Dawson et al., 2005). In other words, athletes might 

use preventative or therapeutic modalities associated with injury-recovery, to aid post-exercise 

recovery for muscle damage and/or to prevent injury. Some of these therapies include: sauna 

or spa treatments, iontophoresis with anti – inflammatory medication, acupuncture, flotation, 

hyperbaric oxygenation, various ultrasound and electrical stimuli, alternating hot/cold 

(contrast baths) therapy or separate cryotherapy (cold) and thermotherapy (hot) (Cochrane, 

2004; Dawson et al., 2005; Gill et al., 2006; Stracciolini et al., 2007).  
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3.1 Electrotherapeutic and associated techniques 

 

Examples of electrical stimulation are transcutaneous electrical nerve stimulation (TENS) and 

microcurrent electrical stimulation (MES). It is believed that both of these strategies reduce 

pain, oedema and increase strength, ROM as well as aid the healing of fractures. Various 

electrical waves are utilized. These waves have different physiological responses, which are 

associated with the characteristics of the waveforms (Stracciolini et al., 2007).  

 

However, Craig et al. (1996) demonstrated no significant improvement in recovery from 

DOMS with TENS. The subjects (n = 48; 24 male and 24 female) of this test first had to 

complete a concentric exercise, to obtain a one repetition maximum. To induce DOMS they 

had to perform three sets of eccentric exercises to exhaustion in their non-dominant arm. The 

subjects were randomly divided into four groups, i.e. the control, placebo, low TENS (200 

µsec; 4Hz) and high TENS (200 µsec; 100Hz) groups. During the 72 hours after the eccentric 

exercises, the subjects received treatment and investigators assessed range of motion and pain 

in the upper arm. 

 

All of the measurements indicated no significant differences between the four groups. All the 

groups, however, reported increased pain and reduced range of motion after the eccentric 

exercise (P < 0.05 for all measurements over time). Thus, the authors concluded that TENS do 

not aid recovery form DOMS. Almekinders’ review (1999) supported this observation that 

TENS and MES showed no conclusive indication of recovery after exercise-induced muscle 

damage. 

 

Another form of an electrophysical technique is the high ultra frequency sound waves, namely 

ultrasound. With ultrasound the electrical energy is converted into inaudible high-frequency 

mechanical vibrations (Speed, 2001). Ultrasound is frequently used and widely available in 

sports medicine, but mainly in a rehabilitation context to aid injury recovery (Warden, 2003).  

 

Ultrasound varies in frequency, intensity, amplitude, focus, and beam uniformity. This means 

that the amount of energy that reaches the specific site depends on these characteristics and the 

tissue through which the waves must propagate. Therapeutic ultrasound tends to have a 

frequency range between 0.75 to three MHz. For deeper injuries (three to five cm), 
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frequencies at one MHz are utilized. Tissues that are rich in protein, such as skeletal muscle, 

have a high absorption ability. Ultrasound could be continuous or pulsed, where the pulsating 

ultrasound alternate between on and off intervals (Speed, 2001). 

 

The physical effects exerted by ultrasound might be thermal or non-thermal. The thermal 

ultrasound increases the tissue temperature up to 40 – 45ºC. Increased blood flow, reduced 

muscle spasms, less stiff collagen fibers, and a mild inflammatory response are induced by 

thermal ultrasound. Non-thermal ultrasound involves cavitation and acoustic microstreaming. 

It is this non-thermal ultrasound that is used on soft tissues. Cavitation results in accelerated 

flow, due to the gas-filled bubbles that expand, and compress in tissue fluid because of the 

pressure changes associated with ultrasound waves. Stable cavitation is beneficial for tissue 

injury, while unstable cavitation could result in soft tissue damage. Microstreaming could 

change a cell membrane’s structure, function and permeability, due to the mechanical pressure 

that cause a one-way movement of fluids along cell membranes (Speed, 2001).  

 

It is assumed that the mechanical effects, stable cavitation, and the microstreaming of the 

ultrasound aids tissue regeneration and healing. The acoustic microcurrent and cavitation 

accelerate the diffusion of ions and metabolites across the membrane of the damaged tissue. 

Ultrasound increases the cell membrane’s permeability to calcium and sodium ions, which 

aids the healing process and lessens pain and spasms, respectively (Stay et al., 1998). In 

addition, ultrasound helps to increase mobility and limits scar tissue formation, by limiting 

fibroblastic activity and reducing acute inflammation. All of these factors supposedly augment 

the tissue renewal process (Ball and Herrington, 1998; Stay et al., 1998; Speed, 2001; 

Stracciolini et al., 2007). 

 

Even though ultrasound is a common practice in soft tissue injuries, little evidence exists that 

it actually assists soft tissue damage recovery (Stay et al., 1998; Speed, 2001). According to 

Speed (2001), some studies found that ultrasound increases tissue tensile strength; while 

others found no evidence that ultrasound modify the structure or mechanical characteristics of 

the connective tissue. This would mean that it does not strengthen tensile strength when 

applied to the damaged or injured tissue (Ball and Herrington, 1998). Warden (2003) insists 

that the effect of ultrasound in a clinical sports medicine setting is minor, but does indicate 
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improvement in fractures and associate musculoskeletal injury and inflammation. Almekinders 

(1999) also reported no improvements in DOMS related symptoms via ultrasound. 

Modified forms of ultrasound are phonophoresis and extracorpeal shock wave therapy 

(ESWT). Phonophoresis is similar to Iontophoresis. The difference is ultrasound waves are 

used instead of electrical currents. ESWT is focused high-energy ultrasound energy (Speed, 

2001). Iontophoresis is a painless method of delivering medication via electrical currents, 

through the skin, to the injured or damaged area. Generally, it is used in conjunction with anti-

inflammatory drugs, like dexamethasone, to treat the inflammatory response and muscle 

soreness. These inflammatory responses might be manifested as bursitis, tendonitis, and 

enthesopathy (Stracciolini et al., 2007). 

Athletes often use anti-inflammatory medication (nonsteroidal anti-inflammatory drugs 

(NSAID) and/or corticosteroids) to alleviate pain and muscle discomfort post–exercise. 

However, the treatment of eccentric exercise-induced muscle soreness with anti-inflammatory 

drugs has been shown to be mainly ineffective (Reilly and Ekblom, 2005). Almekinders 

(1999) reviewed some of the studies that have investigated the effects of anti-inflammatory 

medication, and found contradictory results. Overall, it seems that NSAID interventions are 

associated with only a small inhibition of the initial inflammatory response and related 

symptoms.  

The NSAIDs hinders the enzyme cyclo-oxygenase’s function, which then inhibits the 

inflammatory mediator prostaglandin. Furthermore, some animal studies show a reduction in 

oedema by NSAIDs. Even though improved muscle contractility has been associated with 

NSAID, it seems to be only temporary and is related to retarded muscle regeneration 

(Almekinders, 1999). In other words, it appears that the NSAID medication helps to control 

the inflammation, but lengthens the natural recovery time-line, since a prolonged low grade 

inflammatory response is evident (Ball and Herrington, 1998). Conversely, corticosteroids 

have demonstrated an adverse effect in the recovery process of muscle injuries and contusions 

(Almekinders, 1999). 
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3.2 Hot and cold therapy  

 

Hot and cold therapy could be used either individually or in combination, such as in contrast 

therapy. Cryotherapy is the application of a cold stimulus like ice packs, cold baths or 

whirlpools and ice massage (Cochrane, 2004; Stracciolini et al., 2007). Generally cold therapy 

is applied during the acute recovery phase (24 – 48 hours) (Cochrane, 2004; Stracciolini et al., 

2007).  

 

Cryotherapy (cold) reduces the skin, subcutaneous and muscle temperature and this reduced 

temperature stimulates the sympathetic cutaneous receptors. The sympathetic stimulation 

constricts the blood vessels, which reduces the swelling and inflammation by slowing the 

metabolic rate (Cochrane, 2004). Furthermore, it is believed that the cold therapy diminishes 

the sensation of pain and reduces muscle spasms, by reducing the rate by which the nerve 

impulse is conducted (Cochrane, 2004).   

 

Thermotherapy assists in the recovery of chronic conditions, spasms, reduced range of motion 

and scar tissue formation; it is the opposite of cold therapy (Stracciolini et al., 2007). Heat is 

applied to the injured area, such as heat packs, infrared lamps, warm baths, showers and 

paraffin wax (Cochrane, 2004; Stracciolini et al., 2007). Thermotherapy increases tissue 

temperature. The heat reduces sympathetic nerve stimulation and this dilates the blood vessels. 

Blood flow is accelerated to the area to which heat is applied (Cochrane, 2004). The increase 

in local circulation carries more oxygen and antibodies to the affected area and also assists in 

the removal of metabolites. Thermotherapy also increases muscle flexibility and reduces 

muscle spasms (Cochrane, 2004).  

 

Water immersion is another therapeutic modality that improves recovery of athletic 

performance. There are four possible types of water immersion strategies, i.e. contrast therapy, 

separate hot or cold techniques and neutral water temperature. Water immersion varies in 

temperature and usually ranges between six to 20 minutes (Wilcock et al., 2006). It is assumed 

that water immersion works in a similar fashion as active recovery (Wilcock et al., 2006). 

Thus, water immersion increases blood flow and blood lactate removal. Furthermore, the 

additional benefit of water immersion is that it does not expend additional energy as with 

active recovery (Wilcock et al., 2006). It is important with water immersion that a large 
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portion of the body is submerged, since this will increase the extra-intravascular movement of 

fluid and cardiac output and blood flow. Smaller body segments may not have the same 

impact (Wilcock et al., 2006). 

 

In the review by Wilcock et al. (2006) the authors concluded that ten to 20 minutes of water 

immersion will not have a negative impact on athletic recovery. Furthermore, some of the 

reviewed studies indicate a sustained strength and jumping ability due to water immersion, but 

no influence was observed in cycling or running performance. Furthermore, athletes who 

experienced prolonged fatigue associated with muscle damage after strenuous exercise 

indicated that water immersion helped. Oedema was also reduced in some of the studies, and 

this might also contribute to aid performance recovery.  

 

Of the four types of water immersion strategies, contrast therapy is one of the most popular 

post-exercise recovery techniques (Wilcock et al., 2006). With contrast water therapy (CWT) 

hot and cold techniques are alternated, like ice baths/showers alternating with warm 

baths/showers, or warm spas with cool pools. Hot-cold therapy, as it is also known, has 

become increasingly popular in sport as a post-exercise recovery modality. 

 

Some speculate that the temperature changes created by contrast therapy lets the blood vessels 

dilate and constrict, thereby creating a mechanical shunting or pumping action. The result is 

that blood flow is increased to the affected area and hydrostatic pressure lowered and this 

reduces the swelling (Cochrane, 2004; Dawson et al., 2005; Gill et al., 2006). It has also been 

proposed that this pumping action may aid in the clearance of exercise-induced metabolites 

(i.e. lactate), repair muscle damage and reduce muscle spasms. In addition, it is thought that 

contrast therapy slows down the athletes’ metabolic rates and revitalizes their psychological 

state (Cochrane, 2004). This will mean that a lesser amount of metabolites are produced. 

 

In the previously mentioned study by Gill et al. (2006) (pages 60 to 61) elite rugby players 

had to randomly participate in four different recovery strategies. The subjects in the CWT 

group were immersed for nine minutes, up to their anterior superior iliac spine, in alternating 

warm (two-minutes at 40 to 42 ºC) and cold-water baths (one-minute at 8 to 10 ºC). They 

found that contrast therapy enhanced interstitial creatine kinase recovery after the rugby match 

compared to passive recovery. Eighty-four hours after a rugby match subjects showed a 46% 
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greater recovery with CWT (85 %) than with passive recovery (39 %; P < 0.05) (Wilcock et 

al., 2006). 

 

The ratio of hot vs. cold application, for injury and post-exercise treatment is usually 3:1 or 

4:1, and the therapy always ended with the cold treatment. This final cold application allows 

the blood vessels to constrict in the injured area. The temperature and application time 

between hot and cold spas/baths differs from showers. Baths are heated up to 37 – 43 ºC and 

the athlete stays in the bath for three to four minutes, and then alternates with 12 – 15 ºC cold 

baths for 30 to 60 seconds. Treatments generally last for 20 – 30 minutes twice a day. Whereas 

with showers it is usually one to two minutes hot, and alternated with ten to 30 seconds of cold 

therapy. The reason for these time differences between the two methods has not been specified 

(Cochrane, 2004). Some of the studies reviewed by Cochrane (2004) did indicate that 60 

minutes of cold therapy after warm therapy is not enough time to lower the tissue temperature.  

  

Further research, to indicate whether contrast therapy is an effective post-exercise recovery 

technique and the most effective application time, mode and ratio between hot and cold, is 

warranted (Cochrane, 2004; Gill et al., 2006).  

 

3.3 Sport massage therapy 

 

Massage therapy involves the manipulation, precise pressure application, friction, rubbing and 

kneading of the body (Hemmings, 2001). Sport massage also incorporates Swedish massage 

strokes together with other techniques, such as compression, trigger points and cross fiber 

friction (Martin et al., 1998; Hemmings, 2001). Though evidence supporting sport massage is 

limited and conflicting, it is still a very common post-exercise technique (Martin et al., 1998; 

Almekinders, 1999; Reilly and Ekblom; 2005; Zainuddin et al., 2005).  

 

Massage incorporates mechanical and reflectory effects. The mechanical effect of massage 

shunts blood, stretch soft tissue and breaks scar tissue and fibrous adhesions, which would 

improve microcirculation, tissue flexibility and also increase tissue permeability. The 

reflectory aspects of massage lead to relaxation and improved microcirculation (Ernst, 1998; 

Hemmings, 2001). 
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Certain studies show that massage improved the athlete’s flexibility, lymph drainage, oedema 

and blood flow in the previously active muscles, while other studies demonstrated no 

improvements in recovery (Ernst, 1998; Martin et al., 1998; Almekinders, 1999; Zainuddin et 

al., 2005). Additionally, it is believed that massage helps to improve performance, reduce 

fatigue and aid relaxation as well as recovery from injury (Hemmings, 2001; Zainuddin et al. 

2005).  

 

Theoretically, sport massage facilitates lactate removal by improving and accelerating skeletal 

muscle blood flow. Blood flow is accelerated to the involve tissue by the direct mechanical 

pressure on the blood vessels and the indirect influence on the circulation of the muscle, like 

the mechanoreceptor stimulation that releases vasodilators and decreases sympathetic tone. 

Even though most studies produced conflicting results, it has been reported that the 

compression technique increased blood flow significantly (Martin et al., 1998).  

 

As described in the active recovery section (page 61 to 63), Martin et al. (1998) compared 

sport massage, active recovery and rest and the influence these treatments had on blood lactate 

clearance. The results demonstrated no significant difference between sport massage (36.21%) 

and conventional rest (38.67%) interventions in absolute or relative decrease in blood lactate. 

As mentioned before, there was a significant reduction in blood lactate with active recovery, 

compared to massage recovery (decrease: 4.39 vs. 6.79 ml.L-1, sport massage and active 

recovery, respectively; P < 0.05).    

 

The fact that sport massage did not have an influence on lactate clearance in the circulation 

could be attributed to several possible factors. For example the increased blood flow to the 

involved skeletal muscle might not be substantial enough to impose a reduction in blood 

lactate. Additionally, it has been suggested that increased blood flow does not aid lactate 

clearance. This could mean that massage does not have an influence on the processes that 

accelerate lactate clearance or metabolism (Martin et al., 1998). 

 

Zainuddin et al. (2005) showed that a ten-minute massage three hours after maximal elbow 

flexion exercises had a significant effect (30 % reduction) on muscle soreness and reduced 

swelling. No significant differences were noted in maximal isometric and isokinetic strength. 

After massage range of motion decreased by 30 % immediately post-exercise and did not 
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recover to pre-exercise values by day four in the massage group. Massage thus showed no 

significant effect on muscle function and reduced stiffness in the muscle joints.  

 

A review by Hemmings (2001) of the scientific literature, on massage as a therapeutic 

intervention in sport, addressed the possible influences of massage on the athlete’s physiology, 

psychology and performance. The review indicated that massage has demonstrated conflicting 

results on the physiological aspects, such as improved blood flow, lactate clearance and 

alleviating delayed onset of muscle syndrome (DOMS). Hemmings (2001) and Martin et al. 

(1998) is in agreement that active recovery seems to be more effective than massage in 

accelerating lactate removal. Massage seems to have a positive psychological effect on the 

athlete’s perceptions of recovery. However, evidence is lacking for the support of massage as 

a performance enhancing aid. The author concluded that the literature reports conflicting 

evidence on the possible effects of massage and that further research is needed (Hemmings, 

2000). Furthermore, both Ernst (1998) and Hemmings (2000) pointed out that methodological 

flaws in past studies may have contributed to this uncertainty about the benefits of massage 

therapy. 

 

E. CONCLUSION 

 

Various physical, psychological and nutritional recovery techniques are recommended by 

coaches, athletes, and trainers to speed up the recovery process. These strategies are intended 

to aid recovery of the athlete’s athletic performance and functional capacity immediately to 

seven days post –event or training bouts. This will theoretically allow the athletes to return to 

training or events as soon as possible, without experiencing fatigue, overreaching, burnout, or 

poor performances (Cochrane, 2004).  

 

However, research on the various post-exercise recovery practices are contradicting. The 

conflicting results in the literature could be attributed to the methodological variation in mode 

of inflicting muscle damage, interindividual differences or the duration of therapy employed. 

This makes it difficult for sport scientist to compare results and to draw conclusions. Thus, 

recovery treatments and outcome measure depend on a combination of factors, including 

interindividual differences, lifestyle, and the type of activity. It is recommended that post-

exercise recovery should be seen as a holistic approach and not as an isolated recovery 
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technique (Cochrane, 2004; Reilly and Ekblom, 2005). Prevention is better than cure, which 

means that athletes would benefit a lot from more research in post-exercise recovery.  
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CHAPTER FOUR 

 

COMPRESSION GARMENTS 

 

A. INTRODUCTION 

Compression therapy (intermittent or continuous) is typically used in clinical settings, for 

instance physical therapy and rehabilitation, to prevent oedema and to enhance blood 

circulation in individuals with chronic venous insufficiencies such as deep vein thrombosis, 

venous stasis, and varicose veins. Furthermore, it is also used in patients with spinal cord 

injuries, patients with certain cancers (i.e. breast cancer), orthostatic hypotension, and chronic 

inflammatory problems, like lymphoedema. It is used extensively in the treatment of burns 

and scars (Brennan and Miller, 1998; Choucair and Phillips, 1998; Gniadecka et al., 1998; 

Bergan and Sparks, 2000; Benkö et al., 2001; Harris et al., 2001; Hirai et al., 2002; Doan et 

al., 2003; Partsch, 2003; Chatard et al., 2004; Kraemer et al., 2004; Van den Kerckhove et al., 

2005; Maton et al., 2006; Trenell et al., 2006; Ali et al., 2007; Rimaud et al., 2007). 

Compression garments may also protect the limbs from burns, insect bites, or lacerations 

(Harris, et al., 2001). 

In a clinical setting, compression has been shown to reduce or manage oedema, diminish the 

effect of venous hypertension and associated symptoms, assist or restore calf muscle-pump 

function, increase the velocity of venous return and support and protect the injured limb 

(Choucair and Phillips, 1998; Bergan and Sparks, 2000; Blecken et al., 2005). In addition, 

compression, in conjunction with other components (i.e. rest, ice, compression and elevation), 

is one of the most common treatments of acute injuries, like strains.  However, limited 

research has been done on these simple modalities (Prentice, 2001; Kraemer et al., 2004; 

Trenell et al., 2006). 

Recently the focus of the application and utilization of compression therapy has shifted from 

the clinical setting to sports-related rehabilitation and injury management. However, according 

to several authors, more research is necessary to determine whether compression garments are 

a practical and effective recovery method in sports medicine, especially for subelite and elite 

athletes (Kraemer et al., 2004; Barnett, 2006; Trendell et al, 2006; Rimaud et al., 2007). In 
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other words, it needs to be established whether there is any truth in anecdotal evidence that 

compression garments enhance post-exercise recovery and athletic performance.  

B. ANECDOTAL CLAIMS 

 

For some reason it has simply been accepted by trainers and athletes that compression 

garments enhance recovery after exercise. These anecdotal claims are subjective or are based 

on isolated case studies. Athletes motivate their reasons for wearing compression garments by 

claiming that the garments are fashionable, lessen chaffing, prevent injury and enhance 

performance (Doan et al., 2003; Bringard et al., 2006a; Duffield and Portus, 2007).  

 

Modern internet marketing claims that compression garments have the following benefits: it 

improves circulation in the lower body, thus attenuating muscle fatigue; it increases aerobic 

capacity, proprioception and power production; it lowers perceived exertion; diminish 

swelling, reduce muscle soreness and lessen the enzyme marker serum creatine kinase (“What 

Marathon Runners Know about Healthier Legs.” GFIT (graduated compression) 

TECHNOLOGY.“ [Hyperlink http://www.healthylegs.com/whmaruknabhe.html]. Accessed on 

2 August 2007). Other claims that have been made are that compression garments, together 

with individualized exercise programs, may enhance lymphatic drainage, restore muscle 

strength, flexibility and lower limb endurance, as well as reduce the energy cost of running 

(Bringard et al. 2006a). 

 

C. TYPES OF COMPRESSION GARMENTS 

 

Compression garments can be custom made or prefabricated and are either elastic or non-

elastic (Brennan and Miller, 1998; Bergan and Sparks, 2000). These garments can be worn as 

upper, lower or full body pieces (Duffield and Portus, 2007). The three types of compression 

garments currently available are: (i) graduated compression stockings with a pressure gradient 

(Brennan and Miller, 1998; Agu et al., 1999; Iwama et al., 2000; Barnett, 2006), (ii) 

compression sleeves worn over limbs and joints for support, as well as to limit swelling 

(Barnett, 2006); these garments can be inflatable as well (Brennan and Miller, 1998), (iii) 

elastic garments generally used for exercise (Barnett, 2006), which apply a uniform 

http://scholar.sun.ac.za/



 78

compression and have the ability to recover its size and shape after it has been deformed (Agu 

et al., 1999; Bergan and Sparks, 2000).  

 

Elastic garments are the traditional type of graduated compression garments. Graduated 

compression garments are generally worn by individuals suffering from venous 

insufficiencies, i.e. deep vein thrombosis and other lower limb circulatory problems (Bergan 

and Sparks, 2000; Barnett, 2006). However, more recently graduated compression garments 

have been used during exercise. As mentioned above, graduated compression creates a 

pressure gradient over the length of the limb. In other words, the distal compression (i.e. 

ankle) is greater than the proximal compression (i.e. calf or thigh), thereby applying various 

degrees of gradual pressure to different segments of the limb (Agu et al., 1999; Brennan and 

Miller, 1998; Iwama et al., 2000). Graduated compression garments have three main 

advantages, i.e. (a) it reduces ambulatory venous pressure, (b) increase venous filling time and 

(c) assist or restore the calf muscle-pump function (CMPF). Graduated compression garments 

are available in different sizes and with various  pressure gradients.  

 

Compression garments may also exert mechanical pressure, either intermittently or 

continuously (Brennan and Miller, 1998; Blecken et al., 2005). Intermittent pneumatic 

pressure pumps usually exert pressures between 30 - 80 mmHg (Partsch, 2003). Other forms 

of compression therapy include orthotic devices and bandages (Choucair and Phillips, 1998; 

Bergan and Sparks, 2000; Blecken et al., 2005). 

 

D. EXTERNAL COMPRESSION MECHANISM 

 

Various therapeutic modalities, as mentioned in chapter three (page 58 to 73), are questionable 

treatments for post-exercise recovery. Compression therapy, on the other hand, may possibly 

be a cost-effective and practical method to aid post-exercise recovery and performance 

(Kraemer et al., 2004; Barnett, 2006). One could hypothesize that compression accelerates 

effective recovery, thereby allowing more training bouts and, as Sanchez et al. (2006) 

suggested, the more the athlete runs during training, without overtraining, the lower the risk of 

injury on the race day. Kraemer et al. (2004) suggested that compression is a realistic 

approach in aiding recovery, limiting strength loss, reducing muscle damage and the 
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perception of muscle soreness. However, compression as a possible post-exercise recovery 

strategy has received little attention in scientific research. 

 

It has been shown in previous studies that compression garments assist in reducing perceived 

pain (Kraemer et al., 2001a; Kraemer et al., 2001b), minimize peripheral swelling and 

inflammation associated with muscle damage (Gniadecka et al., 1998; Kraemer et al., 2001a; 

Kraemer et al., 2001b; Kraemer et al., 2004; Trenell et al., 2006); enhance peripheral 

circulation and increase venous return (Partsch, 2003; Ali et al., 2007; Duffield and Portus, 

2007), support scar tissue healing (Kraemer et al., 2001b; Kraemer et al., 2004), enhance blood 

lactate clearance (Berry and McMurray,1987; Chatard et al., 2004; Rimaud et al., 2007), 

reduce muscle oscillation (Bringard et al., 2006b) and improve proprioception in injured joints 

as a consequence of eccentric exercises (Kraemer et al., 2001 b; Kraemer et al., 2004). 

Furthermore, compression garments have been shown to reduce markers of muscle damage 

(Kraemer et al., 2001 b; Doan et al., 2003; Gill et al., 2006; Trenell et al., 2006) and maintain 

functionality of the muscle (Kraemer et al., 2001 a; Kraemer et al., 2001 b). 

 

       (a)    (b)  

 

Figure 3.  (a) Factors involved in the formation of oedema. (b) Compression mechanism 

working against filtration and enhances reabsorption of fluid. 
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It is believed that compression influences the lymphatic system by creating an external 

pressure gradient favouring oedema attenuation through skeletal muscle action, local pressure 

gradients and the influence of gravity (Kraemer et al., 2004). Kraemer et al. (2001b) suggested 

that the pressure that the external compression creates and stimulates mechanical as well as 

chemical processes, consequently lessening muscle damage. Both of these mechanisms are 

supported by various studies. 

 

The compression mechanism is very simple and may be explained by the Starling equation 

which states that the filtration force (F) is equal to the filtration coefficient (c) times the 

pressure difference between the capillary (Pc) and tissue (Pt) as well as the difference in 

oncotic pressure of the capillary (πc) and tissue (πt) (Partsch, 2003). Due to an oncotic 

pressure gradient that exists across the semi permeable capillary wall, water is drawn across 

the membrane until the concentrations on both sides of the wall is equal.  

 

The amount of lymph fluid that is drained depends on (i) the permeability of the capillary 

wall, (ii) the hydrostatic pressure gradient and (iii) the oncotic pressure gradient between the 

blood and tissue. The hydrostatic pressure difference causes filtration and the oncotic pressure 

causes reabsorption. According to Starling’s equation, external compression acts against the 

forces of filtration by increasing the local pressure and therefore assists reabsorption of fluid 

into the veins and the lymph system (Figure 3b)(Partsch, 2003). Thus, compression of various 

pressures influences the volume of the various vessels in the circulation system, i.e. the veins, 

arteries, and the lymphatic system (Partsch, 2003). 

1. Reduced swelling and muscle injury 

Prentice (2001) consider compression the single most important technique for controlling 

swelling. Research indicates that external compression therapies, such as compression 

garments (20 to 60 mmHg) are one of the most common methods to treat individuals with 

lymphoedema. These patients experience, among other problems, pain and impaired function 

in the affected lymph. This is due to an abnormal accumulation of tissue proteins, oedema, and 

chronic inflammation in the extremity. Compression lessens the formation of oedema and 

removes excess lymph fluid accumulated within the limb (Brennan and Miller, 1998; Harris, 

et al. 2001). 
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The roles of the lymphatic system are to collect and remove fluid from the interstitial tissues 

and then return it to the vascular compartment of the veins (Cho and Atwood, 2002; Partsch, 

2003). Swelling reduction requires the removal of debris and fluid via the lymphatic system. 

Thus, the increase in local blood flow alone will not reduce oedema. The lymphatic system 

requires muscle action and gravity to move fluid contents and is independent on changes in the 

circulation (Cochrane, 2004). Partsch (2003) believes that the compression garments reduce 

oedema by the attenuation of the tissue’s lymphatic fluid and not because it accelerates the 

lymphatic drainage (Partsch, 2003). 

 

In the upright position, as in running, a healthy individual’s calf muscle reduces the 

hydrostatic shifts (filtration) of the venous blood in the lower extremities, thus reducing 

oedema (McArdle et al., 2001). Previous studies have speculated that the oedema, caused by 

the difference in osmotic gradient, is counteracted due to an increase in the tissue hydrostatic 

pressure from the mechanical pressure applied by the compression garment. The increase in 

tissue hydrostatic pressure, as well as by minimizing the available space for fluid 

accumulation (Figure 3a and b.), may stop or reduce the swelling. Furthermore, it may 

decrease haemorrhage and haematoma formation and enhanced lymph drainage (Brennan and 

Miller, 1998; Kraemer et al., 2001a; Kraemer et al., 2001b; Prentice, 2001; Kraemer et al., 

2004). 

 

As pointed out in the section on recovery (page 47), reduced oedema is accompanied by 

decreased inflammation, less inflammatory markers and a lower perception of pain. Plasma 

creatine kinase concentration (CKp) is attenuated, either because of an increased creatine 

clearance, or because less creatine kinase is released by the muscle fiber (Kraemer et al., 2004; 

Trenell et al., 2006). In other words, by preventing or reducing oedema with external 

compression, circulating CKp is reduced and therefore muscle function is maintained 

(Kraemer et al., 2004; Trenell et al., 2006).   

  

Standing for hours (~ eight hours) or long periods of sitting, generally results in oedema, 

muscle fatigue, discomfort in the lower extremities and it negatively affects venous function. 

These problems are mainly due to orthostatic stress, such as an increase in capillary 

hydrostatic pressure and gravity (Hirai et al., 2002; Bringard et al., 2006a). Kraemer et al. 

(2000) assessed the physiological responses in healthy women (n = 12; 23.0 ± 2.1 years) while 

http://scholar.sun.ac.za/



 82

wearing various light to moderate graduated compression garments. The same subjects 

participated in four identical eight-hour standing protocols, separated by seven days. In one of 

the four sessions, the subject acted as her own control.  

 

While standing on a hard surface, subjects had to perform various tasks such as carrying a 4.54 

kilogram (kg) plate held overhead for fifteen minutes, playing cards and board games, 

watching videos for eight hours. A 30-minute seated lunch break was allowed with a 

standardized meal and fluid consumption. Each session took place at 22ºC room temperature 

on the same hard surface and all the subjects wore the same shoes (3.81 centimeter (cm) heel).  

 

Body mass and water content significantly increased throughout the day in all the conditions, 

possibly due to fluid and food intake. Average heart rate did not differ between those wearing 

compression garments (WCG) and those who did not wear compression garments (WOCG). 

There were significant reductions in both ankle (WCGall: ~ 2.0 ± 0.2 mm vs. WOCG: ~ 4.0 ± 

0.9 mm; P ≤ 0.05) and calf circumferences (WCGall: ~ 3.7 ± 0.9 mm vs. WOCG: ~ 6.8 ± 1.0 

mm; P ≤ 0.05). However, no statistically significant difference was noted in the thigh (P > 

0.05). The data also indicated a significant reduction in all of the garments for the popliteal 

diameter (WCGAll ~ 0.7 mm2 vs. WOCG: ~ 2.25 mm2; P ≤ 0.05) and posterior tibial vein 

(WCGAll: ~ 0.126 mm2 vs. WOCG: ~0.276 mm2; P ≤ 0.05). A reduction in the size of the 

veins indicates a reduction in venous pooling. 

 

There was a significantly lower perceived muscle soreness rating in the lower limb in subjects 

wearing the compression garment (WCGA: ~ 232 vs. WOCG: ~ 455 rating; P ≤ 0.05). Blood 

creatine kinase concentration was significantly reduced with all three compression garments 

(WCGAll: - ~24.3 % vs. WOCG: ~14 %; P ≤ 0.05), as well as plasma volume (WCGAll: ~8 % 

vs. WOCG: ~5 %; P ≤ 0.05) over the eight hours. Vertical jump performance was not 

improved by wearing compression garments over the eight-hour trial. This study shows that 

compression garments may reduce oedema in the ankles and legs, as well as venous pooling 

and may cause less perceived discomfort in the muscles. These findings also suggest that the 

type of garment, as well as the specific pressure should be carefully considered. 

 

Kraemer et al. (2001a) demonstrated that compression garments (Raschell fabric and 25 % 

Lycra; 10 mmHg) aid recovery of soft tissue damage. Twenty non-strength trained healthy 
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women (21.3 ± 2.9 years WCG and 21.1 ± 3.3 years WOCG) were matched according to age, 

anthropometric data, and one repetition maximum (1 RM) concentric arm strength. They were 

randomly assigned to a control (n = 10; no intervention (WOCG)) and an experimental group 

(n = 10; with compression sleeves (WCG)). Subjects were requested to perform two sets of 50 

passive elbow flexor exercises (Biodex System 2 isokinetic dynamometer). To inflict DOMS, 

every fourth repetition was a strenuous eccentric repetition muscle action. After each set the 

subject rested for three minutes. Immediately after the eccentric protocol the compression 

garment was applied to the exercised arm and worn for 120-hours post-exercise. The subjects 

were allowed to take the garment off once a day when bathing, and to collect measurements.  

 

Plasma creatine kinase activity was significantly lower from day two to five in the recovery 

period in those subjects wearing compression garments (~20 % increase), compared to the 

subjects not wearing any compression garments (~117 %; P ≤ 0.05). No significant changes 

were observed in cortisol and LDH levels (P > 0.05). A significant improvement in force 

production (power and strength) was observed in the WCG group from day three to five, 

compared to the WOCG group (P ≤ 0.05). Subjects in the experimental group also maintained 

their elbow flexibility, showed significantly reduced circumference measurements, and 

perceived muscle soreness (P ≤ 0.05). The relaxed elbow angle in those subjects WCG was 

unchanged, while the WOCG group demonstrated a significant flexion (P ≤ 0.05). This was 

consistent with the reduced circumference measurements thus indicating a reduced swelling 

response in the WCG group. 

 

In a different study by Kraemer et al. (2001b) non-strength trained men performed two sets of 

50 arm curls (1 RM elbow flexion at 60°/s) and were then matched and randomly divided into 

two groups (n = 8 WCG and n = 7 WOCG). The continuous compression sleeves (Raschell 

fabric and 25 % Lycra) exerted a pressure of 10 mmHg. They followed the same protocol as in 

the previous study of Kraemer et al. (2001a), but post-exercise follow up was limited to a 72-

hour recovery phase.  

 

Plasma creatine kinase activity was significantly increased in both groups at 72-hours post-

exercise (~490 vs. ~1390 u.L-1; P ≤ 0.05), however the increase was significantly less in the 

compression sleeve group. Furthermore, both groups showed reduced elbow extension 

flexibility in the three days post-exercise (P ≤ 0.05). However, the compression sleeve group 
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(WCG) had significantly less elbow extension stiffness at 48-hours (WCG: ~ 158° vs. WOCG: 

~ 153°) and 72-hours (WCG: ~ 158.5° vs. WOCG: ~ 154.5°) post-exercise, compared to the 

WOCG group. Biceps circumferences were significantly increased in the WOCG group at 24 

hours (WCG: ~0.52 cm vs. WOCG: ~0.65 cm; P ≤ 0.05) and 48-hours (WCG: ~0.4 cm vs. 

WOCG: ~0.9 cm; P ≤ 0.05). The swelling in the subjects’ upper arm were less in the WCG 

group at 24 and 48 hours (hrs), but it was only significantly reduced at 48-hours post-exercise 

(~0.4 cm vs. ~0.98 cm increase; P ≤ 0.05).  

 

Both groups reported a greater perception of muscle soreness throughout the study. During 

active range of motion, there was a significant increase in pain in both groups from pre-

exercise levels, but significantly less perceived soreness in those subjects WCG, between 60 

and 72-hours post-exercise (60hrs: ~22 vs. ~30 ratings; 72 hrs: ~21 vs. ~30 ratings; P ≤ 0.05). 

At 72-hours all ratings of perceived muscle soreness were less in the WCG group compared to 

the WOCG group (P ≤ 0.05). Furthermore, peak-force and power production was not 

significantly altered in the compression garment group after the protocol. There were 

indications that the WCG-group had a faster recovery of force production during the one RM 

elbow flexion test.  

 

In chapter three (pages 60 to 61) a study by Gill et al. (2006) was briefly reviewed, which 

investigated the effects of four post-match recovery techniques on plasma creatine activity in 

23 elite male rugby players. Compression garments were amongst the four strategies 

monitored over a four-week period in the competition season. Subjects were randomly 

assigned to one of the four recovery techniques (i.e. compression garments, active, passive, 

and contrast water therapy).  

 

Interstitial creatine kinase samples were collected three and a half hours prior to matches and 

then immediately after and at 36 and 84-hours post-exercise. Unlike most of the other studies 

on compression garments, the compression garment was not worn immediately after or during 

the match. Players went about their normal post-match routines before applying the 

compression garment. The garment was then worn for approximately twelve hours.  

 

Interstitial creatine kinase activity was significantly greater after matches (1023.0 ± 308.3 u.L–

1 vs. post: 2194 ± 833.7 u.L–1; P < 0.01). This indicates that muscle damage occurred. When 
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compression garments (WCG) were compared to active (ACT), passive (PAS), and contrast 

water (CWT) recovery-techniques after a game, no significant differences were noted between 

these recovery modalities overall. However, there was a significant difference (P < 0.05) 

between passive recovery and in the individuals wearing compression garments at 36 and 84-

hours post-exercise. The subjects with the compression garments showed an 84.4% 

improvement in muscle damage while passive recovery only indicated a 39.0% improvement 

at 84-hours post-match. Even though not significant (NS; ~ 67% CG; ~ 59 % ACT; ~ 55% 

CWT and ~ 28% PAS), compression garments had a greater recovery response at 36-hours 

post-match than all of the other strategies. However, when compression garments were 

compared to the contrast (85.0% recovery) and active recovery (88.2% recovery) modalities at 

84-hours, compression garments yielded a lower recovery response (Gill et al., 2006).  

 

The creatine kinase activity levels were far greater in the study by Gill et al. (2006) than 

usually observed in studies. Possible reasons for this may be that interstitial creatine kinase 

concentration ([CK]) was assessed (which may be more sensitive than plasma [CK]), 

methodological differences and incomplete recovery of the players after matches or training. 

 

1.1 Conclusion 

 

All of the above studies suggest that compression garments reduce muscle soreness. In three 

of the four studies the compression garments showed a significant reduction in the swelling of 

the extremities over the recovery period, compared to those individuals not wearing the 

compression garments. This could be contributed to either the decreased release of muscle 

damage markers, for instance CK from the ultrastructure of myocytes, or the aided clearance 

of myofibrillar proteins from the injured area. Blood creatine kinase concentration was 

significantly attenuated after exercise in all of the studies. In the three studies that assessed 

plasma creatine kinase, the reduced CKp levels were associated with significantly lower ratings 

of perceived muscle soreness.  

 

Furthermore, in two of the studies by Kraemer et al. (2000 and 2001b) force production 

(power and strength) by the individuals wearing compression garments did not show 

significant changes. However in Kraemer et al. (2001a) significant improvements in force 

production were reported when subjects wore compression garments.  Similarly Kraemer et al. 
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(2001a) also found an improvement in flexibility, but this was not supported by the other 

studies. When contrast water and active recovery were compared to compression therapy, no 

significant differences were found between the modalities. However, compression garments 

increased recovery after a match faster than passive recovery.  

 

2. Improved venous function and microcirculation 

 

When a healthy individual stands upright, the venous pressure is about 80 – 100 mmHg and 

the blood flows slowly through the veins. However, when an individual starts to walk the 

venous pressure drops to between 10 – 20 mmHg in the foot (Partch, 2003). This is due to the 

calf and foot muscle–pumps that accelerate the blood flow in the veins, thus preventing blood 

pooling. In addition, when compression exerts pressure on the lower limb, the pressure 

reduces the diameter of the vein vessel. For instance, a pressure of 15 mmHg exerted on the 

limb results in a 20% reduction of the venous luminal diameter (Agu et al., 1999). This also 

causes a significant acceleration in both superficial and deep venous blood flow, which shunts 

the blood away from the periphery towards the heart (Agu et al., 1999; Partch, 2003). The 

heart’s preload is enhanced and may increase the cardiac output by about 5% (Partch, 2003). 

Compression garments function in a similar way than the calf muscle-pump function. The only 

requirements for the compression garments to increase venous blood flow are that arterial flow 

must be maintained and sufficient pressure needs to be applied (Agu et al., 1999). 

 

Previous research on conditions such as venous insufficiency, showed that the compression 

garments’ ability to improve the venous return function is probably related to the reduction of 

blood pooling in the lower limbs of these patients, as well as the faster clearance of muscle 

damaging and metabolic by-products (Berry and McMurray, 1987; Agu et al., 1999; Kraemer 

et al., 2001b; Doan et al., 2003). Compression garments may improve the femoral blood flow 

velocity by 138 % in healthy recumbent subjects and decrease venous pressure from 65 mmHg 

to 25 mmHg while standing upright (Berry and McMurray, 1987). 

 

More recent research is consistent with the findings of previous studies and agrees that elastic 

compression garments enhance venous function (Chatard et al., 2004; Trenell et al., 2006; 

Rimaud et al., 2007). By applying mechanical compression to the extremities, the pressure 

theoretically increases the intramuscular pressure, thereby reducing venous transmural 
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pressure and also obstructing the blood flow in the cutaneous veins or limiting venous wall 

expansion of the lower extremities (Figure 3a and b). This prevents cutaneous venous pooling 

and the shunting of blood to the deeper femoral veins, thereby increasing blood flow back to 

the heart (Iwama et al., 2000; Chatard et al., 2004; Trenell et al., 2006; Maton et al., 2006 

Rimaud et al., 2007). In addition, Rimaud et al. (2007) suggested that refilling rates and 

ejection fractions of the heart may also be enhanced and venous pressure reduced by 

compression garments.  

 

It has also been speculated that compression garments could enhance the calf muscle-pump 

function (CMPF) during rest and exercise. Furthermore, the garments may improve venous 

valve function in the case of valve insufficiencies (Maton et al., 2006; Rimaud et al., 2007). 

Maton et al. (2006) explains that the compression garment acts like an unyielding fascia in the 

muscle during dynamic activities. This improves the efficiency of the calf muscle-pump as 

explained in chapter two (page 21). This mechanism supports venous return and prevents 

blood pooling. It works in a similar fashion to pressurized antigravity suits worn by pilots 

(Rimaud et al., 2007). 

Iwama et al. (2000) investigated the effect of intermittent pneumatic compression therapy on 

the lower extremity’s peripheral circulation. The study assessed the bilateral deep plantar and 

tympanic temperature, average blood pressure, and heart rate at 15-minute intervals. Deep 

plantar temperature reflected the lower limb’s peripheral circulation. Subjects included in the 

study were adult patients (n = 70; 20 – 85 year old) who had received major gastrointestinal 

surgery one day before the experiment. Subjects with unsteady circulatory parameters or signs 

and symptoms of deep vein thrombosis or arteriosclerosis obliterans were excluded. At 09:00 

on the day following surgery, a single-pulse calf-length compression garment was fitted to 

both legs. The subject was requested to lie in the supine position and the thermometers were 

placed on both plantae. After 30-minutes when deep plantar temperature reached steady state, 

the experiment started. The intermittent pneumatic compression (IPC) device connected to the 

garments applied 40 mmHg for 150 minutes at a cycle of 10 seconds of compression and 50 

seconds of decompression. Only one of the calves, which were randomly selected, received 

IPC treatment and the other acted as a control.  

http://scholar.sun.ac.za/



 88

A total of 31 left and 39 right calves received IPC treatment. The tympanic temperature, heart 

rate and mean arterial blood pressure did not change during the course of the experiment. 

However, there was a significant ~1.6ºC increase in deep plantar temperature between the calf 

receiving compression therapy and the control calf (P < 0.05). Temperatures increased by 

almost ~ 5% in the calf receiving IPC treatment. The authors concluded that compression 

garments enhanced the peripheral circulation. The evidence for this was that no circulatory 

changes were observed and higher temperatures were found in the compressed calf.  

Iwama et al. (2000) proposed another possible mechanism by which intermittent pneumatic 

compression (IPC) prevents deep vein thrombosis. They suggested that the femoral vein blood 

flow is augmented by the function of nitric oxide (NO) synthesis. As mentioned in chapter two 

(page 22), nitric oxide production is stimulated by venous compression and causes the 

vascular endothelium to vasodilate. Furthermore, NO also increases fibrinolytic activity 

(Iwama et al., 2000; Dai et al., 2002). This prevents blood pooling in the veins of the lower 

extremities, increases venous return to the essential veins, and impedes thrombosis (Iwama et 

al., 2000). In animal studies mentioned by Dai et al. (2002), external pneumatic compression 

caused vasodilation in arteries and veins possibly due to NO stimulation. This vasodilation 

effect increases the peripheral and central circulation (Dai et al., 2002). This could also be a 

possible mechanism of graduated compression garments, and needs further investigation. 

 

Ali et al. (2007) assessed the physiological and perceptual effects of knee-length graduated 

compression garments (18 to 22 mmHg) in two randomized counterbalanced experiments, i.e. 

intermittent and continuous trials. Both of these experiments were repeated after at least three 

days. The objective of this study was to determine whether compression garments worn 

throughout a running bout, similar to a training bout, would affect the subsequent recovery 

period. Subjects randomly wore a compression garment (WCG) with a normal sport sock (no 

compression ankle-height) or just a normal sport sock in the control group (WOCG). 

 

The first experiment was the intermittent running trial. Subjects were recreational athletes (n = 

14; age: 22 ± 0.4 years; VO2max: 56.1 ± 0.4 mL.kg-1.min-1) and had to participate in at least two 

running sessions of 30 to 60 minutes per week and/or in running activities like soccer, tennis, 

and rugby. This experiment consisted of two multi-stage shuttle runs with a one-hour recovery 

period between each run. Subjects had to complete as many 20-meter shuttle runs as they 
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could. The initial shuttle was at a slow pace (2.22 m.s-1) and the pace progressively increased 

by 0.14 m.s-1 every 60 seconds. If subjects failed to reach the end of the 20-meter line before 

the next beep (audible signal), they had to stop.  

 

Subjects wore the compression garment before the first shuttle run and removed it after all the 

measurements were collected at the end of the second shuttle run. The authors only wanted to 

assess the effects on recovery when graduated compression garments were worn during 

exercise. Thus, the garments were removed after the second bout and not worn during the 24-

hour post-run assessment. 

 

In the second experiment, another group of subjects, similar to those in the intermittent trial, 

completed a continuous protocol (n = 14; age: 23 ± 0.5 years; VO2max: 55.0 ± 0.9 mL.kg-1.min-

1). These subjects had to perform a fast paced continuous ten-kilometer (km) road run. Prior to 

the main 10-km run subjects had to complete a 10-km tarmac route once. These times were 

then used to determine the running pace during the main run. The athlete’s pace was regulated 

by frequent time checks and with an investigator cycling next to the athlete.  

 

Unfortunately, the intermittent protocol did not succeed in causing muscle damage and the 

authors speculated that the protocol was not long enough. There were no difference in total 

distance completed between subjects wearing compression garments and those not wearing 

compression garments (2213 ± 77 meter (m) vs. 2272 ± 75 m (first bout) and 2247 ± 84 m vs. 

2225 ± 67 m (second bout)). Mean heart rate and maximum heart rate did not differ during the 

experiment or between those WCG and WOCG. Perceived soreness, RPE and the comfort-

and-feel rating of the compression garments did not change throughout the experiment and 

were not different between WCG and WOCG. 

 

In the second continuous exercise bout, no difference was found in RPE ratings between those 

subjects WCG (17 ± 0.5 rating) and WOCG (17 ± 0.5 rating), and the comfort-and-feel ratings 

of the compression garments were the same as in experiment one. Perceived muscle soreness 

was significantly (3 ± 0.6 rating vs. 5 ± 0.4 rating; P < 0.05) lower at 24-hours after the run in 

the WCG group. A difference was also noticed in the frequency and location of soreness in 

those with compression garments and those without. A higher running pace (44.7 minutes 

(min) vs. 45.0 min; P = 0.15) and lower heart rate (~ 176 bpm vs. ~180 bpm; P = 0.15) were 
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noticed in runners wearing compression garments, although the differences were not 

statistically significant. The authors speculated that the lower heart rate might be an indication 

of improved venous return. 

 

Bringard et al. (2006a) investigated the effects of compression garments (CG) compared to 

Lycra® elastic tights (ET) and no compression shorts (C) on calf muscle oxygenation and 

venous pooling in resting conditions in twelve endurance trained men (age 26.5 ± 2.6 years). 

Subjects’ tissue oxygenation index, deoxyhemoglobin and the right Gastrocnemius Medialis’ 

blood pooling were monitored continuously by two-hertz (Hz) near-infrared spectroscopy in 

supine and standing positions. The protocol stated that subjects had to lay supine and stand for 

five minutes in each position while alternating the different garments in one single session, 

under a constant room temperature. The compression garment’s pressure was also assessed 

with a homemade transducer and the mean pressure over the calf was 5.6 (ET) and 23.2 

mmHg (CG) in the supine position and 5 mmHg (ET) and 24.1 mmHg (CG) during standing. 

This indicated that there was a significant difference in the exerted pressures of the different 

clothing (CG>ET>shorts). 

 

The tissue oxygenation index was significantly higher, and deoxyhemoglobin and 

Gastrocnemius Medialis’ blood pooling were significantly lower (P < 0.001) in CG compared 

to ET and were similar for the supine vs. standing positions. The compression garments thus 

had a positive effect on the athlete’s calf muscle oxygenation and venous stasis during rest in 

supine and standing positions, compared to the ET. The improved oxygenation in the muscle 

might be due to several possible mechanism, such as (i) increased blood flow in the capillary 

bed, this supplies more oxygen, (ii) better perfusion of the muscle which would mean that the 

muscle utilized oxygen more efficiently and then (iii) changes in skin blood flow which could 

lead to an enhanced oxygenation in the muscle. The authors recommended that compression 

garments be used post-exercise to oxygenate the muscles. This might reduce recovery time 

from fatigued muscles as well as enhance lactate clearance. 

 

Compression accelerates blood flow in the microcirculation, favours white cell detachment 

from the endothelium, and prevents further adhesion. As mentioned before in Section D of this 

chapter (page 78) the capillary filtration is reduced and reabsorption is increases due to the 
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applied mechanical pressure. Compression therapy accelerates blood flow by increasing this 

pressure gradient (Dai et al., 2002; Partsch, 2003).  

 

When comparing the compression shorts with the elastic tights and the standard shorts 

(Bringard et al., 2006a), the results indicate statistically significant differences for all measures 

(P < 0.001), except HbO2. Those subjects wearing compression shorts demonstrated lower 

deoxyhaemoglobin. This indicates that the compression garment did reduce blood pooling 

during both body positions. The authors speculated that the drop in total hemoglobin might be 

due to a reduction in venous compliance when the subjects wore compression tights. The 

significance of this is that venous return will improve, thus leading to an enhanced cardiac 

output.  

 

2.1. Conclusion 

 

All of the studies showed that compression garments tend to improve venous return as well as 

peripheral circulation. In one of the studies (Bringard et al., 2006a) a reduced blood pooling 

and increase oxygenation to the calf muscles were demonstrated when the compression 

garments were worn. However, this was a resting protocol, which eliminated the effect of the 

calf muscle-pump function. Iwama et al., (2000) established that deep plantar temperature 

significantly increased when wearing compression garments, and suggested that this is 

evidence for improved peripheral circulation. Conversely, Ali et al. (2007) found that 

compression garments reduced their subjects’ heart rate and improved their running pace, but 

this was not statistically significant. The methodology differs between all three of these 

studies, with regards to subjects and protocols that were used. Thus, more research is needed 

to confirm that compression garments will aid venous return and increase blood flow and 

distribution to the periphery after exercise, especially during prolonged exercise.  

 

3. Enhanced metabolic recovery 

 

Very little is known about the possible effects of compression garments on intramuscular 

metabolic functions (Trenell et al., 2006). For instance, factors associated with muscular 

fatigue and pain, such as intracellular lactate and inorganic phosphate accumulation, as well as 
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acidosis as a result of anaerobic breakdown of glycogen, have not been studied (Maton et al., 

2006).  

 

It is known that lactate exchange and clearance is associated with performance and that 

reduced lactate concentration depends on several factors, such as a (i) reduced lactate 

production; (ii) increased plasma volume and/or (iii) altered lactate kinetics. Two possible 

ways to change lactate kinetics is by either quickly clearing lactate via a fast circulation and 

thereby increasing lactate oxidation or preserving the lactate within the muscle and not 

allowing it to diffuse from the muscular bed (Berry and McMurray, 1987; Chatard et al., 2004; 

Maton et al., 2006).  

 

Consequently, an increased blood flow will assist clearance of metabolic by-products, thus 

enhancing muscle recovery and reducing fatigue. As mentioned before, active recovery 

increases blood flow when compared to passive recovery (Chatard et al., 2004). In a similar 

fashion, the calf muscle-pump function increases blood flow. If compression therapy 

successfully enhances the function of the calf muscle-pump, this would further increase the 

restoration of muscle metabolism after exercise, thus aiding recovery and reducing muscle 

fatigue (Maton et al., 2006; Rimaud et al., 2007). However, other authors like Berry and 

McMurray (1987) support the theory that compression garments inhibit the release of lactate 

from the muscle. 

 

Twenty years ago Berry and McMurray (1987) were one of the first researchers to investigate 

the effects of wearing compression garments on lactate recovery. They hypothesized that the 

use of compression garments would either (i) lower the production of lactate, (ii) reduce the 

lactate retained within the muscle, or (iii) improve the blood flow and thus clear and oxidize 

lactate more efficiently. In their study, well-trained healthy male subjects (n = 12) performed 

two different experiments. The two experiments were completed as a separate but related 

study.  

 

In the first experiment investigators wanted to establish if compression garments have an 

effect on maximum oxygen consumption (VO2max), time to exhaustion (TTE) and lactate 

recovery, by using a treadmill VO2max test. The subjects (n = 6; age: 22.5 ± 5.4 years; VO2max: 

52.8 ± 8.0 mL.kg-1.min-1) performed the same protocol on two separate visits to the laboratory, 
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once with graduated compression stockings (WCG) and once with no garment (WOCG). The 

compression garments provided graduated compression, which was the highest at the ankle 

(18 mmHg) and lowest just below the knee (8 mmHg). During the recovery period the subject 

walked for five minutes at a speed of ~5.63 kilometers per hour; thereafter the subject rested 

for 55 minutes in a seated position. 

 

Blood samples to assess the lactate concentration and haematocrit levels were collected at rest 

and at five, 15, 30, 45 and 60-minutes post-exercise. Oxygen uptake was measured at rest and 

during the test at the last minute of the 15-minute steady state exercise, in each of the two-

minute intervals during the second minute and during the last minute of the test. Furthermore, 

oxygen uptake was also assessed during the first five minutes of the recovery period and then 

at 15, 30, 45 and 60 minutes post-exercise. The reason behind this was that if lactate levels 

were reduced significantly together with increased oxygen consumption post-exercise in the 

subjects WCG, this would indicate that the CG improved blood flow to the active muscles. 

The lactate concentration is therefore cleared via the accelerated venous return velocity. 

 

There were no significant differences in VO2max or TTE between the WCG and WOCG trials. 

The compression garments caused no difference in oxygen uptake recovery for 60-minutes 

post-exercise. Although lactate concentrations were lower, throughout the entire 60-minute 

recovery period, in those subjects WCG, only the values at 15–minutes post-exercise was 

significantly lower (~ 30.6 %) compared to those WOCG. Plasma volume only demonstrated 

small, but not significant changes. 

 

In the second experiment, investigators studied the effect of compression garments on lactate 

retention. The subjects (age: 21.4 ± 4.3 years; VO2max: 59.9 ± 6.8 mL.kg-1.min-1; n = 6) visited 

the laboratory on four separate occasions. The first visit was a baseline visit to obtain the 

subjects’ VO2max and to familiarize them with the protocol. During visits two to four the 

participants cycled on an ergometer for three minutes at 110% of their VO2max. Afterwards 

subjects rested for 30-minutes in a supine position. The only difference between visit two to 

four was that subjects randomly wore graduated compression stockings. Subjects either wore 

CG (i) during the exercise (WCG) or (ii) during the exercise and recovery period (WCGexercise) 

or (iii) not at all (WOCG). Oxygen consumption was measured 5-minutes prior to exercise and 
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during recovery. Blood samples were collected for lactate and haematocrit levels prior to and 

five, 15 and 30 minutes post-exercise.  

 

There were no significant differences in post-exercise VO2 in any of the three trials. However, 

subjects WOCG tended to have the highest post-exercise oxygen consumption. There were 

also no significant differences in plasma volume between the groups. The mean lactate 

concentration was significantly lower in the subjects WCG during the exercise and recovery 

period (WCG: 47.0 ± 13.79 vs. WCGexercise: 57.6 ± 20.17 and WOCG: 53.5 ± 18.54 mmol; P < 

0.05). When the compression garment was removed during recovery (WCGexercise), there was a 

~ 53 % increase in lactate levels in the post-exercise period.  

 

As mentioned before, the two proposed lactate-clearance mechanisms of the compression 

garment is by (i) shunting the blood away from the muscle so that the diffusion medium is 

removed, thus lactate stays in the muscle or (ii) the venous blood flow is increased, thus 

clearing and oxidizing lactate faster. This study provided evidence to suggest that blood lactate 

concentrations were reduced when wearing compression garments due to the metabolite being 

preserved intramuscularly and that lactate was not cleared. The compression garment created 

an inverse pressure gradient or increased the intramuscular hydrostatic pressure, which 

retained the lactate in the muscle. The evidence for this is that when the garment was removed 

during the recovery period, the lactate concentration increased. In addition, the oxygen uptake 

during experiment one would have increased post-exercise if the blood flow increased through 

the previously active muscle. However, experiment 1 did not show any significant increase in 

post-exercise oxygen uptake. Furthermore, both experiments indicated that the plasma volume 

was maintained in those athletes wearing the compression garments. 

 

Chatard et al. (2004) found similar results as Berry and McMurray (1987). They tested twelve 

trained elderly cyclists (age: 63 ± 3 years) for the effect of compression garments (Ganzoni-

Sigvaris; 60% polyamide and 40% Lycra) on the recovery of muscle soreness in the lower 

limbs and the effect on performance. Subjects performed two five-minute maximal exercise 

bouts, twice a week, for two consecutive weeks on a cycle ergometer at 50 - 60 % of their 

PPO. Between the two maximal exercise bouts was an 80-minute recovery period, in which 

the subjects had to sit with their legs elevated. Therefore, all subjects performed four maximal 
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exercise bouts per week, with two rest days between the two tests. This was repeated for the 

second week. 

 

Subjects randomly wore the elastic compression stockings (WCG) or not (WOCG), during the 

80-minute recovery period. This meant that the subjects each completed two of the four 

sessions with compression garments, during the two weeks. The compression garment’s 

pressure decreased by 40% from ankle to mid-thigh (33 mmHg (ankle); 18 mmHg (calf); 

12.75 mmHg (mid-thigh)). The subjects’ perceptions of leg sensations were assessed during 

the 80-minute recovery period. RPE did not differ significantly between the test weeks 

meaning that the exertion during all of the maximal bouts was the same. 

 

After both conditions, i.e. with compression garments and without, the maximum power 

maintained (249 ± 19 W vs. 154 ± 17 W; P < 0.01), heart rate (second: 152 ± 11 bpm vs. first: 

155 ± 11 bpm) and blood lactate concentration (second: 10.6 ± 2.2 first: 11.5 ± 2.2 mmol.L-1) 

were statistically significantly lower during the second bout, compared to the first bout. 

However, those subjects that wore compression garments had a 2.1 ± 1.4 % (P < 0.01) lesser 

reduction in maximum power in the second bout, compared to those WOCG. 

 

The study demonstrated that subjects who wore the compression garment had significantly 

reduced blood lactate and haematocrit levels from 20 to 80 minutes after the two five-minute 

maximal exercises. In addition, those wearing compression garments had a 20 % lower lactate 

concentration than those without compression garments before the second bout. Furthermore, 

the blood lactate difference, before and after the second maximal bout, in subjects WCG, was 

higher than those WOCG, (8.8 ± 2.0 vs., 8.0 ± 2.0 mmol.L-1, respectively; P < 0.03).  

 

A relationship was shown between blood lactate clearance and an individual’s VO2max (r = 

0.37; P < 0.01). This was found in all of the subjects and during the entire recovery period. In 

other words, the higher the subject’s VO2max, the more efficient or faster blood lactate is 

cleared. This supports the hypothesis that compression garments acts in a fashion similar to 

active recovery strategies, which would suggest that the compression mechanically increases 

the blood flow in the veins (Figure 3b). This would help to clear lactate from the muscles, and 

increases lactate oxidation. Furthermore, the increased blood lactate clearance might have 
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contributed to the higher maximum power during the second bout, indicating an improvement 

in anaerobic performance.  

 

Subjective opinions of the cyclists indicated that the compression garments reduced perceived 

leg pain. Ten of the twelve subjects thought that the compression garments contributed to their 

performance. The investigators concluded that the subjects’ performances, together with 

haematocrit concentrations and lactate removal were enhanced compared to the control group, 

after the recovery period.  

 

Barnett (2006) reviewed popular recovery strategies in elite athletes and was unconvinced 

about the practicality and effectiveness of compression garments. He pointed out that passive 

recovery will also return lactate levels to pre–exercise levels before the following exercise 

bout, and that sitting with your legs elevated for 80-minutes is not regarded as a practical 

technique for elite athletes, as an in-between training recovery technique. 

 

In a more recent study, Trenell et al. (2006) investigated the benefits of compression garments 

on the metabolic recovery of eleven recreational male athletes. The subjects (age: 21.2 ± 3.1 

years) performed a 30-minute downhill walk protocol (6 km.h-1 at 25 % decline). Compression 

garments (76% Nylon and Meryl Microfibre, 24% Roica Spandex), covering the calf and thigh 

muscle of only one leg were worn immediately after exercise until 48-hours. Thus, each 

subject served as his own control. Muscle metabolites (phosphomonoester (PME), 

phosphodiester (PDE), phosphocreatine (PCr), inorganic phosphate (Pi) and ATP) and 

perceived muscle soreness were assessed pre-exercise, one-hour and 48-hours post-exercise.  

 

Although there was a significant increase in the perception of muscle soreness in both legs 

after the exercise, there were no significant difference in perceived muscle soreness between 

the WCG and WOCG leg. A significantly lower pH was observed at one hour after the 

downhill walking exercise in both groups. However, no significant differences were found in 

the pH values between the two legs throughout the experiment (P > 0.05). The leg with the 

compression garment compared to WOCG indicated an increase of [PDE] (~0.653 vs. 0.550, 

respectively; P < 0.05) in the thigh one-hour post exercise. The PCr/Pi relations reflected non-

specific muscle damage, but in this study, no significant alteration in PCr/Pi, Mg2+, or PME 

was found throughout the study in either of the legs (P > 0.05).  
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This study showed that the compression garment had no treatment effect. Thus, the garments 

did not benefit metabolic recovery from eccentric exercise, although, the elevated [PDE] after 

the downhill protocol in the leg with the compression garment, could indicate an increased 

skeletal muscle membrane turnover. This may show a changed phospholipid metabolism, 

which is involved in the tissue regeneration process. Consequently, Trenell et al. (2006) 

suggested that the increased [PDE] indicates an accelerated inflammatory and repair process. 

It may also be argued that changes in [PDE] are due to under perfusion. Since vasoconstriction 

results in an increased [PDE], less oxygen is supplied to the muscle and protons are not 

cleared.  In the end, this stress activates the break down of muscle fibers. Trenell et al. (2006) 

points out that elevated pH is associated with this proton retention and vasoconstriction. 

However, compression garments did not cause vasoconstriction, since both legs demonstrated 

an elevated pH after the exercise. They concluded that the 30-minute downhill walk did not 

significantly influence the creatine kinase equilibrium and it appears that compression 

garments improve the inflammatory responses to muscle damage and aid intramuscular repair. 

However, more research is needed to confirm this. 

 

Interestingly Rimaud et al. (2007) performed a randomized study on fourteen well-trained 

subjects with spinal cord injuries (SCI), who were divided into two groups (low SCI n = 9; 

age: 36.9 ± 11.79 years and high SCI n = 5; age: 36.6 ± 11.3 years). Subjects had to complete 

two progressive incremental exercise tests to exhaustion on a wheelchair ergometer. These 

were separated by seven days. Both tests were similar, except that the subjects randomly 

performed the exercise either with a graduated compression garment or without. After the 

maximal exercise, a passive recovery period followed where the subjects rested in the 

wheelchairs. 

 

The crossover design demonstrated that low pressure (21 mmHg) elastic graduated 

compression garments enhanced recovery after maximal wheelchair exercises in only low-

level SCI. There was a twelve percent difference in the subjects’ blood lactate concentrations 

with compression garments compared to the subjects without compression garments at three 

minutes after the exercise (10.9 ± 3.9 mmol.L-1 vs. 12.5 ± 4.6 mmol.L-1, respectively; P < 

0.05). Apparently, wheelchair athletes often strap their lower extremities to prevent venous 

pooling and enhance cardiac output (Rimaud et al., 2007). However, in this study no 
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improvement was found in performance and cardiovascular responses with compression 

garments. They concluded that lactate recovery is accelerated in well-trained SCI individuals 

(low-level) wearing graduated compression garments after maximal exercises. Furthermore, 

the low pressure exerted by the garments might be responsible for the lack of improvement in 

the athlete’s performance. 

 

3.1 Conclusion 

 

Studies have reported significant reductions in lactate, with associated lower haematocrit and 

heart rate. This suggests that improved blood flow aids the removal of lactate. Berry and 

McMurray (1987) had a different theory. They also showed lower blood lactate concentrations 

in athletes who wore compression garments. However, the researchers suggested that lactate 

was trapped inside the muscle due to the reverse pressure gradient created by the compression 

garment. The evidence for this was that when the garment was removed during the recovery 

period, the lactate concentration increased; also post–exercise oxygen consumption did not 

increase significantly in the recovery period.  

 

Blood lactate concentrations were found to be lower in individuals with lower lesion spinal 

cord injuries, but performance was not enhanced. The researcher speculated that the pressure 

exerted by the compression garment was not enough to improve venous return (Rimaud et al., 

2007). Trenell et al. (2006) on the other hand, suggested that compression garments aid 

muscle repair, but found no significant evidence that it aids metabolic recovery. 

 

4. Enhanced functional performance 

 

Muscle soreness and structural damage after strenuous eccentric exercise contribute to loss of 

muscle function (Kraemer et al., 2001b; Bernhardt and Anderson, 2005). Kraemer et al. 

(2001b) observed that subjects with compression garments regained muscle strength quicker 

after exhausting elbow-flexion exercises. Furthermore, this was consistent with the improved 

recovery of damaged muscles in the subjects.  It has also been shown that compression 

garments enhance repetitive jumping performances, which might be due to reduced muscle 

oscillation, improved proprioception, and possible resistance to fatigue (Doan et al., 2003). 
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Prentice (2001) suggested that intermittent compression provides an active mechanical support 

to injured extremities. Kraemer et al. (2001b and 2004) refer to this as a dynamic 

immobilisation. This dynamic form of mechanical support by the external compression 

garment facilitates the removal of by-products (Prentice, 2001). Additionally, it also reduces 

the limb’s movement. This in return, lessens the inflammatory response and the structural 

damage in the particular muscle (Kraemer et al., 2001b).  

 

Kraemer et al. (2004) explained that the advantage of active mechanical support is that it 

allows some degree of movement in the limb while immobilising the injured extremity, unlike 

an unyielding cast. This suggests that more motor units can be activated, therefore enhancing 

the neural input to the involved limb (Kraemer et al., 2004; Kraemer et al., 2001b). However, 

increased muscle firing while wearing compression garments has not been observed in all 

studies (Bernhardt and Anderson, 2005). The compression garment also reduces the end range 

of motion, which is believed to prevent injuries, but still allows functional movement. This in 

return will enhance performance or aid recovery after injuries.  

 

Proprioception aids the athlete’s performance by contributing to body awareness in relation to 

space, direction, and speed. A number of complex factors stimulate an individual’s 

proprioception, such as mechanoreceptors in the skin, muscles, tendons, ligaments, and joints. 

The literature indicates that tactile mechanoreceptors increase the sensitivity of an individual’s 

proprioception. Some authors speculate that compression garments enforce this tactile 

stimulation, which increases proprioceptive sensitivity. Evidence for this is, however, lacking 

(Bernhardt and Anderson, 2005). Furthermore, it has been said that the effectiveness of the 

garment will depend on the pressure exerted and the type of compression garment, as well as 

the athlete’s inherent proprioception ability (Bernhardt and Anderson, 2005). 

 

To this end, Doan et al. (2003) investigated the effect of custom-fit compression tights (shorts) 

on the athletic performance of experienced track athletes, specializing in jump and sprint 

events. A secondary objective was to investigate the mechanical characteristics of these 

garments. Twenty university track athletes were included in the study (age men: 20.0 ± 0.9 

years and women: 19.2 ± 1.3 years). A randomized block design was used, where subjects 

wore standardized gym shorts (loose fitting) during the control tests.  
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The compression tights were unlike those seen in other studies. The garment ran from just 

above the knee to the waist, and similar to other studies it was custom fitted for each subject. 

In addition, the garment was 15 to 20 % smaller than the participant’s lower body and at 100% 

expansion it was the same as the subject’s original measurements. They were 4.76 mm thick 

and made from 75% closed cell neoprene and 25% butyl rubber, with a sticky inner to support 

and enhance compression. The subject’s thigh muscle oscillation, skin temperature, jump 

power, and 60–meter sprinting performance, including ROM, were assessed. Thereafter, the 

mechanical characteristics of the compression garment were investigated, including elasticity 

and the ability to reduce impact forces. 

  

Wearing the compression tights (WCG) did not significantly change 60-meter sprint speed, 

compared to the control group. However, skin temperature was significantly higher during the 

warm-ups (WCG: 1.09ºC vs. C: 0.07ºC; P = 0.003). An increase in skin temperature usually 

indicates an improved blood flow. In addition, hip flexion during sprints were significantly 

reduced WCG (WCG: ~72º vs. WOCG: ~78º; P = 0.04). Furthermore, vertical jump height 

was statistically significantly improved by 5.2 % (P = 0.015) in the compression group 

(WCG), compared to those WOCG, while the total squat depth was statistically significantly 

less (1.8 cm; P = 0.02) WCG. 

 

The results demonstrated that those subjects wearing the compression garment had reduced 

impact forces by 26.6% (P < 0.001), at a drop height of 38.1 cm and by 11.6% (P = 0.066) at a 

drop height of 76.2 centimeter (cm). The anterior–posterior as well as longitudinal oscillation 

in the thigh was statistically significantly lower with the compression tights (P = 0.01). This 

would mean that muscle tissue damage may be reduced as well as repetitive jump performance 

enhanced, by the reduced oscillation on landing from the vertical jump test. 

 

The elasticity of the garment increased the hip joint torque (N.m) by 191 - 285% during 

extension at 200º and 195º and 53 - 91 % at 127º and 158º flexion (P ≤ 0.05). In other words, 

the elasticity of the garment allows more flexion and extension torque in the hip joint at the 

end of the flexion and extension movement. Additionally, those athletes with the compression 

shorts might be less injury prone, especially in the hamstrings, due to the considerable torque 

that is generated during hip flexion and extension (Doan et al., 2003).  
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The results suggest that these compression tights might enhance athletic performances and 

reduce the risk of injuries, by several possible means.  For example, the reduced hip flexion 

indicates a possible increase in average stride frequency and the elasticity might even increase 

the acceleration of the leg after the swing phase. It is clear that the garment does not interfere 

with the athlete’s sprinting biomechanics, except for a small obstruction near full hip 

extension (> 180º extension). It was also noted that the materials of which the compression 

shorts are made can ease impact forces during contact sports, such as rugby.  

 

The improvement in muscle oscillation might reduce injuries as well as increase repetitive 

jump performance. The garments provided mechanical support during jump power tests, and 

an enhanced proprioception might also contribute to this. The increased skin temperature 

could reflect increases in dynamic strength, blood flow and muscle temperature. If the garment 

raises the muscle temperature during warm ups, the muscle will function better and be less 

prone to injury. One may speculate that these results are mainly due to more compressive, 

elastic, and impact-absorbing characteristics of this specific compression garment compared to 

traditional compression garments. The authors recommend that more research should be aimed 

at longer sprinting events, such as 100 to 400 meter (m). 

 

Bernhardt and Anderson (2005) assessed 13 healthy active university students (age: 25.7 

years) in a crossover randomized study design. The objective was to establish whether 

moderate compression tights (elasticized) would have an influence on several performance 

determinants and proprioception at the hip joint. The hypothesis was that increased support 

around the hip would aid injury prevention. 

 

Subjects performed two sessions, with a series of performance tests, either with the 

compression tights (WCG) or without (WOCG). Similar to Doan et al. (2003), compression 

tights caused significant reduction in active range of motion during hip flexion (WCG: 88.50 ± 

8.8º vs. WOCG: 98.25 ± 8.9º). All the other performance tests (balance, vertical jump agility, 

speed and endurance) were not statistically significant when WCG was compared to WOCG. 

Hyperextension of the hip WCG was 2.7 % and hip abduction WCG was 6.8% degrees more, 

compared to WOCG, but the results were not statistically significant. No differences were 

observed between WCG and WOCG with regards to flexion, hyperextension and abduction. 
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The results indicate that compression garments did not have an influence on a healthy 

individual’s proprioception. The investigators speculated that this might be because these 

subjects did not have any injuries and that different results may be seen with injured athletes. 

They reasoned that individuals with the worst inherent proprioception usually gain the most 

benefit from additional support. However, further research is needed to confirm this. 

 

Maton et al. (2006) investigated the effects of elastic compression garments (European class I; 

23.6 ± 3.2 mmHg to 6.8 ± 1.5 mmHg) on muscular fatigue and recovery after fatigue. Fifteen 

healthy subjects (32 ± 6 years) participated in the study. During the experiment the force 

produced by static ankle dorsiflexion and the pressures exerted by the compression garment on 

the lower limb (anterior and posterior) were measured.  

 

The investigators recorded surface electromyograms (EMGs) to examine muscle fatigue in the 

Tibialis Anterior (TA), Gastrocnemius (GA), Rectus femoris (RF), and Biceps femoris (BF). 

For the fatiguing protocol, subjects were requested to sit with their right knee flexed at a 70-

degree (º) angle and the ankle in dorsiflexion at a 70º angle (with respect to the tibial line). 

Subjects had to complete two trials, one without a compression garment (WOCG) and the 

other with compression garments (WCG).  

 

Each subject had to sustain 50% of his/her maximum voluntary force (MVF), while 

performing ankle dorsiflexion for as long as possible (WOCG). Then the subject rested for 30-

minutes. Within the first 10 minutes of the resting period, the subjects had to perform static 

maximum ankle dorsiflexion every 30 seconds. Then the protocol was repeated WCG. 

Thereafter, the subject again had to rest for 30 minutes and perform 10 minutes of static 

maximum ankle dorsiflexion every 30 seconds. The pressure exerted by the compression 

garment was measured (Salzmann apparatus) after this final 30-minute rest period.  

 

The endurance time with the compression garments, tended to be sustained for a 5.6% shorter 

time than WOCG; however, this difference was not statistically significant. No statistically 

significant difference was noted in the MPF or TP values between WCG and WOCG. The 

velocity at which the muscle fiber’s action potential is conducted affects the mean power 

frequency (MPF) in the muscle. Peripheral (i.e. metabolic changes) or central fatigue (i.e. 

motor unit recruitment) may delay this conduction. What this means is that fatigue occurred in 
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both muscles and in both conditions (WCG and WOCG), because the results indicate a 

reduction in MFP, together with an increase in total muscle power. However, no difference 

was noticed between wearing compression garments and not wearing compression garments.  

 

The average time to recovery 95 % of the muscle force was four minutes WCG and five 

minutes WOCG. The WCG subjects recovered 28.9 % faster than WOCG, but there were no 

statistically significant differences between recovery times of WCG and WOCG. The authors 

explained that both peripheral fatigue, which involves the whole leg, and central fatigue, might 

also have contributed to the results. The authors speculated that compression garments may 

aid the recovery of short dynamic fast activities, which activates the calf muscle-pump 

function. Maton et al. (2006) also pointed out that these recovery values correspond roughly to 

the time required for removing lactic acid.  

 

There was a statistically significant difference between the posterior (PS) and anterior (AS) 

pressures of the lower limb (P < 0.001). The anterior side experienced more pressure from the 

compression garments (AS: 14.5 ± 6.2 mmHg vs. PS: 12.8 ± 4.3 mmHg). The reason for this 

is that the curvature of the leg is greater at the tibial process than at calf level (Laplace’s law). 

As the investigator pointed out, this might indicate that the influence of the compression 

garments might be greater on the anterior side, with respect to muscle venous dynamics, 

recovery of force and muscle fatigue. The variation of pressure exerted between subjects 

indicated that limb morphology influenced the pressure exerted, even though the garment was 

specifically fitted for the individual. Maton et al. (2006) explained that the average pressures 

of the garments are not enough to cause fatigue, since the pressures exerted by the muscles are 

still more pronounced. They concluded that the elastic compression garments did not enhance 

recovery of force production post-testing, nor imposed fatigue on the lower limbs of healthy 

subjects.   

 

Aerobic energy cost is an important aspect of long-distance athletic performance. The change 

in energy cost over time, fatigue, and the clothing that a runner wears might influence running 

economy. Therefore, Bringard et al. (2006b) assessed, in a two-part experiment, the effect of 

compression tights, compared to normal elastic tights or normal shorts (control). They 

assessed indicators of muscle efficiency, such as aerobic energy cost and the slow component 

or energy cost over time expressed as the surplus in oxygen uptake over time (VO2 SC) in two 

http://scholar.sun.ac.za/



 104

groups of healthy trained middle distance runners (age: 31.2 ± 5.4 years; n = 6 and 26.7 ± 2.9 

years; n = 6).  

 

Bringard et al. (2006b) hypothesized that compression garments would reduce the energy cost 

and VO2 SC in trained middle-distance runners at submaximal prolonged running and 

furthermore enhance comfort, thermal and fatigue sensations. A repeated-measures 

experimental design was used and subjects were their own control during both experiments. 

Subjects wore the compression garment during indoor runs till exhaustion and over a 15 

minute run at 80 % of the runner’s VO2max. 

 

Energy cost was assessed at set speeds (10, 12, 14 and 16 km. h-1) in part one. In part two the 

runner’s energy cost was assessed at a constant speed for 15 minutes (80% of VO2max). No 

significant difference was observed WCG, shorts and/or elastic tights for thermal stress, loss 

of body mass, subjective ratings of perceived clothing comfort, exertion and of sweating in 

either of the two parts. The subjects in part one that wore compression garments and tights 

showed a significantly lower aerobic energy cost at 12 km.h-1 and a similar trend at 10 and 14 

km. h-1, compared to just wearing shorts. No differences were noticed in heart rate, VE or in 

the VO2max values between WCG, shorts and elastic tights. In addition, part two (II) 

demonstrated a significant difference between the three garments’ energy cost over a time 

(VO2 SC) (P = 0.01). The increase of VO2 SC was significantly reduced (P = 0.01) in 

compression tights by 26% compared to normal shorts by 36%. Furthermore, VO2 SC was 

also lower in compression garments than in elastic tights (P = 0.04).  

 

The conclusion made from part one was that compression garments reduced the athlete’s 

running economy at some submaximal speeds, but it was only significantly different from 

conventional shorts. Elastic tights and compression garments, on the other hand, demonstrated 

similar energy costs during running. Part two illustrated that compression garments used 

during running could improve the runner’s overall circulation, and reduce muscle oscillation. 

This would result in less muscle fatigue and improved endurance capacity due to a lower 

energy cost at a prolonged submaximal speed (~12 km.h-1 at 80 % VO2max). The authors 

speculated that compression garments and elastic tights may improve the runner’s 

proprioception, muscle coordination, and propulsive force. Moreover, these factors would 

result in a lower energy cost during running. The authors also pointed out that these 
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experimental protocols might have been too short to demonstrate the advantages of 

compression garments above elastic tights (Bringard et al., 2006b).  

 

In a more recent study Duffield and Portus (2007), investigated the effects of three different 

types of compression suits (full body) on cricket performance. Well-trained club level male 

cricket players (age: 22.1 ± 1.1 years; n = 10) were included in the study. Subjects had to 

participate in a maximal- and accuracy-throwing test as well as in a 30-minute repeat-sprint 

test. The three different garments had to been worn during all the tests, as well as 24-hours 

post-exercise.  

 

The subjects first had to complete five maximal cricket ball throws for maximal distance (DT). 

Between each throw, the cricketer rested for 20 seconds. Next was the accuracy-throwing test 

(AT), in which the aim was to throw two 10, 20, and 30 meter target throws. The target was a 

diagram of the actual size wickets, with scoring zones allocated. The objective was not just 

accuracy but also speed, thus the subject achieved a score according to time to complete 

(speed) and accuracy of the throws. Wearing the three compression garments did not result in 

any significant improvement in the repeated-sprint and throwing performances (WCG1, WCG 

2 and WCG 3), compared to WOCG. There were also no differences in the heart rate, body 

mass, capillary blood lactate, pH, CK, haemoglobin, and oxygen partial pressures post-

exercise. 

 

The only statistically significant changes noted were (i) an increase in skin temperature in all 

three WCG – trials , (ii) the 24-hour post-exercise CK levels in WCG1 and WCG3 compared to 

WOCG were significantly less and (iii) perceived muscle soreness in the arms and legs WCG 

was less 24-hours after exercise, compared to the those WOCG. Perceived muscle soreness 

was assessed with subjective rating scales, thus it may indicate that the compression garments 

had a psychological impact. Furthermore, the authors suggest that compression garments 

might be able to reduce post-exercise trauma and perceived muscle soreness 24 to 48-hours 

post-exercise. 
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4.1. Conclusion 

 

It has been suggested that compression sleeves supply mechanical support to the injured 

extremity and enhanced the repair of the contractility of the involved muscle group. This 

might restore the athlete’s ability to produce muscle action. However, this is not supported by 

the studies investigated here. More evidence suggests that compression could be used as a 

recovery tool to reduce muscle soreness after exercise. Thus, more research is needed on the 

ability of compression to enhance functional capacity of the previously active muscles. 

 

E. SIDE-EFFECTS 

 

It is clear from the previously studies that the correct amount of pressure needs to be applied 

to the limb to obtain an effective response (Agu et al., 1999; Rimaud et al., 2007; Bringard et 

al., 2006a). In the clinical setting the optimal pressure varies according to the individual’s 

condition, although no consensus has been reached on the preferred pressure. Some authors 

are of the opinion that compression garments between 30 to 40 mmHg will prevent fluid from 

escaping through the capillary wall and enhance venous blood flow in the lower extremities of 

individuals with severe venous insufficiency conditions (Gniadecka et al., 1998; Bringard et 

al., 2006a).  

 

Nevertheless, pressures as low as eight mmHg (distal) to 18 mmHg (proximal) have also been 

shown to be beneficial in preventing oedema in individuals with varicose veins and other 

lower limb circulatory problems (Agu et al., 1999; Benkö et al., 2001; Hirai et al., 2002). 

Hirai et al. (2002) maintains that compression garments with pressures of 22 mmHg and/or 30 

to 40 mmHg in the ankle are more superior in preventing oedema, than the lower compression 

garments. However, pressures that are beneficial for individuals with peripheral conditions, 

may actually be harmful for healthy or active individuals.  

 

Pressures exerted through compression garments differ according to body position, such as 

standing or lying supine. For example, in the supine position a pressure of more than 10 

mmHg will limit blood pooling in the veins, by reducing the volume and increasing the blood 

flow velocity in the veins (Partsch, 2003). However, pressure exceeding 30 mmHg in the 

supine position will not have any effect, since the venous blood volume cannot be reduced 
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more or shunted to the heart. On the other hand, in the upright position, pressures in the lower 

leg varies between 20 to 100 mmHg, and thus a higher compression garment (40 - 50 mmHg) 

is needed to exert an effect on venous blood flow. This might indicate that a different garment 

will be needed for different types of body positions in different sports. 

 

Berry et al. (1990) investigated whether elastic tights would have the same effect on the blood 

lactate concentrations and the post-exercise response as compression garments. Eight male 

subjects (age: 27.0 ± 1.8 years; VO2max: 56.5 ± 1.5 mL.kg-1.min-1) ran on a treadmill at 110% 

of their VO2max for three minutes. This was repeated three times, with the only difference 

being three random conditions, i.e. with the elastic tights during the exercise and recovery, 

only during the exercise bout, or without any elastic tights. 

 

No statistically significant differences were found in post–exercise heart rates, VO2, lactate or 

haematocrit levels in any of the three conditions. Thus, elastic tights did not alter blood lactate 

concentrations post-exercise, which could have been because of the lower pressures of the 

elastic tights (Berry et al., 1990). Gniadecka et al. (1998) used light compression garments (10 

- 20 mmHg) and found no increase in venous return. Similarly, Rimaud et al. (2007) found no 

significant enhancement of performance, or increase in venous return in their study with low 

compression (21 mmHg) socks. 

 

Kraemer et al. (2004) explained that it is important that the garment does not exceed diastolic 

blood pressure (40 to 60 mmHg for the upper extremities and 60 to 100 mmHg for lower 

extremities). Since pressures that exceed these limits would occlude venous flow and would 

delay the recovery process of tissue injury and damage. In healthy individuals higher pressures 

of 35 to 55 mmHg may increase the venous flow velocity by 175%, and aid waste product 

removal better. A pressure of 30 mmHg would increase the venous velocity by more than 18 

mmHg in chronic venous deficiencies, but the lower pressure is considered as being safer and 

less likely to compromise subcutaneous oxygenation (Agu et al., 1999). According to 

Bringard et al. (2006a), healthy individuals do not require high compression, such as 30 – 40 

mmHg during recovery. Pressures of 10, 30 and 64 mmHg reduce cutaneous blood flow by 10, 

25 and 84 %, respectively. This illustrates the importance of the correct fitting and size of the 

garment. 
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One of the suggested contra-indications of compression therapy is that the increased 

intramuscular pressure and associated ischemia could lead to circulatory problems, fatigue 

(peripheral or central) and/or ischemic damage, such as necrosis and compartmental 

syndromes (Ogata and Whiteside, 1982; Prentice, 2001; Maton et al., 2006). This ischemia is 

due to the limited perfusion and blood flow in venous cutaneous and/or muscle capillaries. 

Ischemic complications have been reported when individuals with arterial insufficiencies wore 

elastic compression garments (Bergan and Sparks, 2000). Researchers speculate that the 

increased pressure exerted on the limb, by the compression garment, restricts perfusion (Ogata 

and Whiteside, 1982; Maton et al., 2006).  

 

Furthermore, it has been suggested that blood flow ceases even when the pressure applied to 

the tissue is less than that of diastolic pressure. It also seems that blood circulation in the 

cutaneous capillaries might be more vulnerable than in the muscle (Ogata and Whiteside, 

1982). Ogata and Whiteside (1982) performed an animal study and established that blood flow 

to the skin ceased when external compression exceeded 30 mmHg, while in the muscle blood 

flow was sustained up to 50 mmHg. Thus, even when high external pressures do not reduce 

muscle perfusion, it could be debilitating for skin circulation.  

 

Other possible problems, which are associated with ischemic conditions, and have been 

noticed in the long term use of compression garments, is that pressures above 40 mmHg might 

cause a spontaneous burning, prickle or numbness sensation (paresthesia). In addition, the 

skin’s integrity needs to be checked regularly, since the garment might soften the skin 

(maceration) or irritate the skin, causing a rash (Brennan and Miller, 1998; Van den 

Kerckhove et al., 2005). 

 

Some tight compression garments have been found to be difficult to manage or to put on and 

are uncomfortable, especially in elderly, obese or arthritic patients (Choucair and Phillips, 

1998; Gniadecka et al., 1998; Harris, et al. 2001). Other authors indicated that both knee and 

thigh-length graduated compression garments have been reported as difficult to use, even 

though both significantly reduce venous stasis of the lower limb. However, it has been 

indicated that knee-length garments are more affordable, comfortable to wear and wrinkle less 

(Agu et al., 1999; Benkö et al., 2001). 
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Graduated compression garments need to be replaced at least every three to six months or as 

soon as the garments loose its elasticity. Generally, it is recommended to replace garments at 

least three times a year in individuals who wear garments daily. This will ensure efficient 

compression, since the garment might loose its elasticity over time and due to washing 

(Brennan and Miller, 1998; Choucair and Phillips, 1998; Bergan and Sparks, 2000; Harris, et 

al., 2001; Van den Kerckhove et al., 2005).  

 

F. CONCLUSION 

 

Most research mainly investigated the effects of compression garments on individuals with 

vascular disorders. They concluded that compression garments initiate a series of complex 

physiological and biochemical effects concerning the venous, arterial and lymphatic system. 

Theoretically, the compression garment mechanism is multifactorial. By increasing the tissue 

hydrostatic pressure and by the actual mechanical compression, the garment creates a pressure 

gradient favouring fluid reabsorption and reduces possible space for oedema and the venous 

blood vessel diameter. These two mechanisms shunt the blood towards the deeper venous 

system and enhance venous return as well as the blood flow velocity. One could make the 

assumption that compression garments mimic the function of the calf muscle-pump function 

during exercise, similar to the active recovery technique. 

 

The latest research focuses more on compression as a post-exercise recovery and performance 

enhancement strategy. Even though some of the evidence for compression garments is still 

equivocal, several studies indicate that compression garments may possibly enhance blood 

flow, reduce oedema and pain, attenuate the inflammatory response, lessen DOMS symptoms, 

assist waste product clearance and increase proprioceptive sensitivity. However, an 

appropriate garment according to pressure, materials, body type, sport modality, and level of 

athletic performance must be considered. This will avoid detrimental effects on the peripheral 

and subcutaneous circulation’s oxygenation and ensure effectiveness of the garment. Further 

research is warranted, to determine whether compression therapy is an effective post-exercise 

recovery method. 

http://scholar.sun.ac.za/



 110

CHAPTER FIVE 

 

PROBLEM STATEMENT 

 

A. COMPRESSION GARMENTS AND ITS CONTEXT  

 

Compression garments are not a novel idea in the clinical setting, where they are used to treat 

inflammation and associated pain or swelling, as well as to improve venous return. Two 

decades ago Berry and McMurray (1987) conducted the first research investigating 

compression garments as a post-exercise recovery modality. However, it is only in the last 

seven years that the focus has shifted more to compression garments as a recovery modality 

after strenuous exercise. 

 

A significant amount of research exists showing the beneficial role of compression garments 

on vascular distribution in diseased patients with venous insufficiencies. However, these 

individuals usually have venous reflux and weak calf muscle strength, as well as calf muscle-

pump dysfunction. Trained runners, especially long distance runners, do no demonstrate any 

of these problems, and their physiological systems are usually well adapted to strenuous 

events, such as prolonged running. 

 

More evidence is needed to show whether compression garments aid post-exercise recovery 

and athletic performance. To date only a small amount of research supports the notion that 

compression garments may provide some benefits in sports performance and aid recovery after 

exercise.  

 

B.  EXISTING LITERATURE ON COMPRESSION GARMENTS  

 

A few problems and limitations arise when the available literature is reviewed on compression 

garments as a post-exercise recovery strategy. Manufacturers of commercial compression 

garments have made several anecdotal claims. However, little scientific evidence is available 

to support their claims.  
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The majority of the literature that was reviewed addressed the possibility of compression as a 

post-exercise recovery strategy or performance enhancement aid in a younger population (22.3 

± 1.87 years) (Berry and McMurray, 1987; Kraemer et al., 2000; Kraemer et al., 2001a; 

Kraemer et al., 2001b; Doan et al., 2003; Bernhardt and Andersen, 2005; Gill et al., 2006; 

Bringard et al., 2006a; Ali et al., 2007; Trenell et al., 2006; Duffield and Portus, 2007). Only 

one other study involved elderly cyclists (63 ± 3 years) (Chatard et al., 2004). Three studies 

were done on subjects older than 30 years (Bringard et al., 2006b; Maton et al., 2006; Rimaud 

et al., 2007). Rimaud et al. (2007) investigated the influence of compression garments in the 

recovery of well trained athletes with spinal cord injuries. Maton et al. (2006) assessed fatigue 

in healthy untrained individuals, while Bringard et al. (2006b) studied middle distance runners.  

Therefore, to date no study has been done on middle-aged long distance runners. 

 

There has been an increase lately in the popularity of compression garments across a range of 

sports. The literature, however, shows more research on compression therapy in team sports 

and activities of short duration, such as cricket, sprinting and jumping events and rugby (Doan 

et al., 2003; Gill et al., 2006; Ali et al., 2007; Duffield and Portus, 2007). Most protocols 

involved either short bouts of eccentric or maximal exercise (Berry and McMurray, 1987; 

Kraemer et al., 2001a; Kraemer et al., 2001b; Chatard et al., 2004; Bernhardt and Andersen, 

2005; Trenell et al., 2006; Maton et al., 2006; Rimaud et al., 2007). Subjects were also 

assessed after games or with functional tests of a short duration (< 15 minute or 10 km events) 

(Doan et al., 2003; Bringard et al., 2006b; Gill et al., 2006; Duffield and Portus, 2007; Ali et 

al., 2007). In a few cases, experiments included standing or resting protocols (Kraemer et al., 

2000; Bringard et al., 2006a). None of the protocols thus far involved prolonged continuous 

activity of more than 60 minute. 

 

Most individuals that have been included in studies were healthy untrained or recreational 

athletes (Kraemer et al., 2000; Kraemer et al., 2001a; Kraemer et al., 2001b; Bernhardt and 

Andersen, 2005; Maton et al., 2006; Trenell et al., 2006; Ali et al., 2007). A few studies 

assessed trained athletes (Berry and McMurray, 1987; Doan et al., 2003; Chatard et al., 2004; 

Gill et al., 2006, Duffield and Portus, 2007; Rimaud et al., 2007), of which only three were 

performed on runners (Berry and McMurray, 1987; Bringard et al., 2006a; Bringard et al., 

2006b). However, none of these studies tested long distance runners competing in regular 
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marathon races and only Berry and McMurray (1987) assessed the compression garments for 

post-exercise recovery. 

 

C. THE OBJECTIVE OF THE CURRENT STUDY 

 

The present study endeavors: 

 

1. to determine whether compression garments aid the recovery process of experienced 

middle-aged long distance runners, after a prolonged two-hour treadmill run. 

 

Specific questions: 

 

(i) Are compression garments an effective metabolic recovery modality after prolonged 

runs. In particular, would compression garments reduce the time it takes to recovery so 

that the runner may return to training as soon as possible?  

 

(ii) Will compression garments prevent skeletal muscle damage? In other words, will 

compression garments show attenuated response in muscle damage markers, such as 

plasma creatine kinase and lactate dehydrogenase activity? 

 

(iii) Do compression garments reduce the associated symptoms of exercise induced-muscle 

soreness, i.e. swelling, perceived muscle soreness, diminished muscular strength, 

power and endurance and limited range of motion? 

 

(iv) Do blood lactate concentration decrease as a result of compression garments? 
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CHAPTER SIX 

 

METHODOLOGY 

 

A. STUDY DESIGN 

 

In this crossover controlled experimental study the effect of compression garments on selected 

parameters of muscle recovery was studied in long distance runners after a prolonged run, in a 

controlled laboratory environment.  

 

The following parameters of recovery were assessed, namely 

1. blood lactate concentration  

2. muscle soreness 

3. lower limb oedema 

4. muscular strength and endurance  

5. lower limb range of motion 

 

The following tests were administered to assess the aforementioned parameters: 

1. blood lactate concentration assessment with a portable Lactate Pro analyzer 

2. VAS questionnaires 

3. enzyme markers: LDH and CKp analysis 

4. lower limb circumferences 

5. vertical jump test and time to exhaustion (TTE) step test 

6. modified sit and reach flexibility test 

 

B. SUBJECTS 

 

Seven injury free male long distance runners, aged 36 to 51 years, volunteered to participate in 

the study. Each subject acted as his own control and therefore completed two trials in random 

order, namely with and without compression socks. Since it was impossible to blind 

participants to the intervention (compression garment), subjects were never informed of the 

true purpose of the study, so as to avoid prejudiced views which could interfere with the 

subjective questionnaires.  
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Recruitment: All registered running clubs (Boland and Western Province), within a 70 km 

radius from the testing facility, were approached for subject recruitment. This was done via 

word of mouth and advertisements. Informative pamphlets, stating the study design and tests 

involved, were handed out or faxed to each club. Electronic correspondence was also sent to 

the members of the respective clubs. If an athlete was interested in participating in the study, 

they could place their names, contact details and dates available on a list at their club 

representatives. After two to four weeks the lists and electronic replies were collected and 

followed up by phone or electronic correspondence. If the athlete met the inclusion criteria, an 

appointment was scheduled for the baseline visit to the Sport Physiology Laboratory, 

Stellenbosch (South Africa). 

  

Inclusion and exclusion criteria: Subjects were healthy male volunteers, between the ages of 

35 to 55 and without a history of musculo-skeletal, metabolic, cardiovascular or endocrine 

disorders. Subjects were excluded if they participated in any lower body weight training 

exercises in the three months prior to the study, or were dependent on chronic medication. 

Subjects needed to train on a regular basis (four to five times a week) in order to be sure that 

they will be able to complete the laboratory exercise test. Competitive athletes were included 

but they were not elite, professional and/or ultra marathon athletes.  

 

C. EXPERIMENTAL DESIGN 

 

Subjects performed testing at the Sport Physiology Laboratory, Stellenbosch University 

(Stellenbosch, South Africa) on five different occasions. All the visits, except the initial 

laboratory visit (visit one), were repeated twice for each subject (with and without 

compression socks).  

 

1. Laboratory visits 

 

Visit one:  One to three weeks prior to the treadmill test subjects were familiarized with the 

testing procedures, i.e. the treadmill (h/p/cosmos/Saturn Nussdorf-Traunstein, Germany), heart 

rate monitor (POLAR®, Polar Electro Oy, Finland), vertical jump and time to exhaustion 

(TTE) step test. Furthermore, athletes were given an explanation of the study protocol, dietary 
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guidelines, and exercise guidelines for the 24 hours prior to the 120–minute treadmill run. 

Subjects were requested to complete a general questionnaire about training methods, best 

marathon times in last 6 months and injuries in the last three months. After informed written 

consent was acquired, the subject’s anthropometric profile, maximum aerobic capacity 

(VO2max) and flexibility (modified sit-and-reach test) were tested to obtain baseline values. 

The baseline VAS questionnaire, assessing muscle soreness, was also completed. 

 

Visit two:  Blood samples were taken prior to the 120-minute treadmill run, along with a 

resting VAS questionnaire. Thereafter the athletes ran a 90 minute simulated mountainous 

trail, in the controlled environment of the Sport Physiology Laboratory (18 – 20 °C), on a 

treadmill (h/p/cosmos/Saturn Nussdorf-Traunstein, Germany), followed by a 30 minute 

downhill run (DHR) at a ten percent gradient. The resistance (speed) of the treadmill was 

adjusted to keep the runner’s effort level at 70 percent of his VO2max. Blood samples were 

taken after the 30-minute DHR at three, ten and 30-minute post-exercise for lactate analysis 

with a Lactate Pro lactate analyzer (ARKRAY, Inc. Kyoto, Japan). A second blood sample 

was collected ten minutes after the downhill run (DHR), for enzyme analysis. At 15 minutes 

the subject completed the VAS questionnaires and flexibility test. Subsequently, the 30-minute 

lactate sample was taken and then subjects performed two lower body strength tests: the 

vertical jump and a TTE step test. 

 

Visit three to five:  All subjects were followed up for three days, during which blood samples 

were taken at 24, 48 and 72 hours post-run for lactate, CKp and LDH analysis. On each 

occasion the subject also completed the VAS questionnaires, TTE step test and the modified 

sit–and-reach flexibility tests to assess muscle fatigue and tightness. Four limb girths were also 

measured to quantify possible oedema in the lower extremities. 

 

Visits one and two were separated by a one to three week preparation phase, in which the 

participants were allowed to train and participate in their normal running program. However, 

the seven days prior to the two-hour treadmill run (visit two), subjects were asked not to 

perform any hill training, running up or down stairs, jumping or plyometrics, lower body 

resistance training, strenuous training (heart rate above 70% of maximum heart rate) and 

running races. In the 72 hours after the treadmill run, the athletes had to refrain from any form 

of exercise, until the last blood sample was taken at 72 hours post-exercise. In addition, 
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subjects were requested to abstain from taking any oral pain medications (including non-

steroidal anti-inflammatory drugs (NSAID)), as well as any additional interventions to 

alleviate pain, i.e. cold–or-heat therapy, massage, stretching, and ultrasound. Subjects were 

asked not to consume any food or drink fluids, except water, two to three hours before, as well 

as no physical activity 24 hours prior to each assessment. They were instructed to record their 

daily activities, and fluids and food intake in a journal. Both the with (WCG) and without 

compression garment (WOCG) trials for each subject were separated by seven to 28 days. All 

subjects performed all their tests at approximately the same time of the day. 

 

2. Place of study 

 

Data were collected at Stellenbosch University, in the fully equipped Sport Physiology 

laboratory of the Department of Sport Science. All testing were done at temperatures between 

18 and 20 º C. 

 

3. Ethics 

 

During visit one the informed consent form (see Appendix A) was verbally explained to each 

subject and opportunities for questions were allowed. The subjects read through the consent 

form in their own time as well. The researcher educated the subjects with regards to the 

relevance as well as the associated risks of the study. Subjects were kept blind to the purpose 

and benefits of the compression garments. Research was conducted to the Declaration of 

Helsinki medical research council (MRC) and GCP. 

 

4. Compression garments 

 

During the initial baseline meeting each subject’s lower leg length, ankle and mid-calf 

circumference were documented. These records were used to select the correct compression 

garment; one which covered the widest circumference of the calf muscle in a standing 

position, up to just below the patella. A moderate pressure sock was selected for this study. 

The highest pressure (32 mmHg) was at the foot and ankle and the lowest pressure (23 mmHg) 

was just below the knee. 
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The selected compression garments (C-Sock) are designed by Pardes (Maintal, Germany) 

according to the European RALL guidelines, and are composed of Elasthane (spandex) and 

Polyamide (nylon). Subjects wore the compression garments throughout the two hours 

treadmill run, as well as over the three-day recovery period. Socks were removed when the 

participants’ dominant limb and circumferences were measured. Subjects were permitted to 

remove the garment during bathing or showering and whilst sleeping. 

 

D. MEASUREMENTS AND TESTS 

 

1. Anthropometric measurements 

 

Anthropometrical measurements were taken during the initial baseline consultation, as well as 

during the 24, 48 and 72 hours follow-up assessments by a HPCSA registered (health 

professional council of South Africa) and qualified Biokineticist. Anthropometrical 

measurements included i.e. stature, body mass, lower leg length and four girths (calf, ankle, 

proximal and mid-thigh). The latter two measurements were necessary for the compression 

sock fitting. Bioelectrical impedance analysis was used to assess percentage body fat. 

 

For all assessments, subjects were bare feet and were dressed in tight fitting clothes. All 

testing were done two hours post-prandial and prior to any physical activity. All 

anthropometrical measurements were taken on the right-hand side of the body, according to 

the ISAK protocol (Marfell–Jones et al., 2006). 

 

Body mass:  Body mass was determined by using a calibrated electronic scale (UWE BW – 

150 freeweight, 1997 model, Brisbane Australia), and recorded to the nearest 0.1 kilogram 

(kg). The weighing scale was zeroed on a level surface before the measurement was recorded. 

The subject was then asked to stand in the centre of the scale, distributing his weight evenly 

without support.  

 

Stature:  This determines the distance between the transverse planes of the highest point on 

the skull and the inferior aspect of the feet, at right angles. Stature was measured with a sliding 

steel anthropometer (Siber-Hegner GPM, Switzerland), while the subject was positioned 

against a wall. The anthropometer was held vertically to a wall and perpendicular to the floor.  
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The subject stood bare feet with his heels together and upper back, buttocks and heels against 

the wall. The mid-line of the body was positioned in-line with the measuring tape, in front of 

the subject. The sliding anthropometer was placed firmly on the highest point of the subject’s 

skull (Vertex), while the head was in the Frankfort plane, with the lower edge of the eye 

socket (Orbitale) in line with the indentation superior to the tragus of the ear (Tragion), in the 

horizontal plane. The subject was requested to inhale while the measurement was taken. 

Measurements were taken to the nearest 0.1-centimeter (cm). 

 

Bioelectrical impedance analysis (BIA):  A portable body composition monitor was used to 

assess the subjects’ lean and fat mass (Bodystat CC BCM 1000, South Africa, 1991). Lean 

mass comprises the bony skeleton, muscle mass, innards and entire water content of the body, 

while fat mass is only the adipose tissue. Subjects were requested to lie in the supine position, 

and the electrodes were connected to the right hand and foot.  

 

The skin was wiped with an alcohol swab before placing the electrodes on the standard 

anatomical sites. The first electrode was placed on the dorsal side of the hand, one centimeter 

proximal to the knuckle of the middle finger, with the second electrode on the wrist next to the 

wrist joint (between the head of the ulnar and radius). The remaining two electrodes were 

placed on the dorsal surface of the foot, on the base of the foot and one centimeter proximal to 

the joint of the second toe (next to the big toe), and on the ankle at the level of the protruding 

bones (medial and lateral malleoli) on the side of the ankle.  

 

The subject’s limbs were not to touch his or her center body or one another; the subjects were 

also requested to empty their bladders beforehand and to avoid exercise and drinking diuretics 

like alcohol, coffee and certain teas 24-hours prior to testing (nutritional guidelines). The leads 

were paired into red and black attachments, with the red lead always connected to the current 

– introducing electrode and the black lead connected to the detector electrode. After the 

electrodes were positioned, the paired leads were connected to the corresponding electrodes. 

All measurements were taken while the subject was relaxed for approximately 20 minutes. 

 

Girths:   All circumference measurements were taken by the same investigator, in the 

anatomical position, according to the standard ISAK (International Standards for 
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Advancement of Anthropometry) protocols. All measurements were obtained without the 

compression garment. Four girths were taken to determine the circumferences of the athletes’ 

lower limbs: calf, ankle, and proximal-and-mid-thigh. Two sets of measurements were 

obtained. If a set differed by more than 2 mm from the other, subsequent measures were taken. 

This would indicate whether swelling was present in the lower body of the athlete, after the 

two-hour treadmill run.  

 

Girths were measured with a spring-loaded, non-extensible anthropometric tape measure 

(Rosscraft, Canada). The flexible steel tape is seven millimeters (mm) wide and two meters 

(m) long, with four centimeters (cm) blank before the zero line. All measurements, except the 

ankle, were recorded at the point where the circumference was the greatest. The measuring 

tape was held horizontally, at right angles to the limb and so as not to compress the 

subcutaneous tissue with a constant tension. A cross–hand technique was used, with the zero 

mark on the more lateral side of the subject at the designated anatomical landmark. 

Measurements were recorded to the nearest millimeter (mm). All measurements were taken 

while the athlete stood upright, with legs slightly apart and weight evenly distributed. 

 

(i) Proximal thigh:  The subject stood with arms crossed at the chest, on a 25cm 

step (© 2000 Reebok International LTD, Taiwan), so that the measurement could be 

taken at eye level. The anthropometric tape was placed firmly around the lower thigh, 

and moved up to one centimeter (cm) distal to the gluteal fold, horizontal to the 

vertical long axis of the limb.  

 

(ii) Mid-thigh:  The subject stood on a 25cm step with arms crossed at the chest. 

The measurement was taken midway between the trochanterion and lateral border of 

the tibia, at the mid-trochanterion-tibiale laterale site. 

 

(iii) Calf:  The subject stood on a 25cm step, with arms hanging by the sides. The 

steel tape was applied perpendicular to the long axis of the leg, around the maximum 

girth of the calf muscle (the medial calf site). The anthropometric tape was moved up 

and down the calf, until the maximum girth was obtained.  
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(iv) Ankle:  The subject stood on a 25cm step, with arms hanging by the sides. The 

steel tape was placed tightly around the minimum circumference, proximal to the 

malleolus of the tibia and fibula of the leg and superior to the sphyrion tibiale. The 

anthropometric tape was moved up and down the lower leg, until the minimum girth 

was obtained.  

 

Circumferences were taken during the initial meeting (baseline), after the two hour prolonged 

run and at 24, 48 and 72 hours and during both trials (with and without compression socks). 

 

Lengths:  Lengths are the vertical distances from the standing surface, while the subjects stood 

with their feet together, with their arms hanging at their sides in the upright position. The 

direct method was used; thus the measurement was taken from landmark to landmark. Only 

one length was assessed; the tibiale laterale height, by using a segmometer (Rosscraft, 

Canada) and a 25 cm step (Reebok aerobic step).  

 

(i) Lower leg length:  The vertical distance was taken from a standing position (the 

fixed part of the segmometer), on a 25 cm step, from the step surface to the tibiale 

laterale site (sliding part of the segmometer). 

 

2. Assessment of perceived muscle soreness 

 

Visual analog scale:  The subjective Visual Analog Scale (VAS) was used, which rated the 

perceived muscle pain or discomfort before the exercise commenced, directly after the 

treadmill run and at 24, 48 and 72 hours following the run protocol.  

 

The VAS consists of a ten centimeter (0 to 10 cm) line labeled with “no pain” on the extreme 

left end (0 mark) and “unbearable pain” on the extreme right end (10 mark). To quantify the 

perceived muscle pain, the subject marked the VA scale, with a pencil. The score was rounded 

off to the nearest one millimeter from the left (Figure 4.). 
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No pain              Unbearable 

pain 

_________________________________________________________________________ 

0 1 2 3 4 5 6 7 8 9 10 

 

Figure 4.  A schematic representation of the visual analog scale, which was used to assess 

perceived muscular pain and discomfort. 

 

The VA scales assessed muscular pain or discomfort in the front knee extensor muscles, i.e. 

the Quadriceps. Perceived muscle soreness scores were taken while (i) the athlete was in a 

resting state, lying supine on a plinth. This gave the subject the opportunity to be familiarized 

with the questionnaire. Furthermore, (ii) while stretching the Quadriceps in both legs, (iii) 

whilst pressure was applied to the muscle belly and (iv) after the TTE step test to assess pain 

after functional flexion-and-extension movements in the knee joint.  

 

(i) At rest:   Subjects were seated and asked to relax. The subject was then questioned 

about muscular pain or discomfort in his Quadriceps whilst he was inactive. Subjects 

were not allowed to move or stretch the relevant muscle group. 

 

(ii) Pressure response:  Subjects stood upright with their body weight evenly distributed. 

Pressure was applied to the muscle belly site of the Quadriceps muscles. The muscle 

belly is a more suitable site for measuring pain related to pressure than the musculo-

tendinous sites (Baker et al., 1997). Subsequently muscle discomfort due to the 

pressure was assessed. Pressure was standardized by pressing inwards into the muscle 

for three seconds (Medalist stopwatch, South Africa) and then immediately released. 

  

(iii) During stretching:  Subjects were asked to assess the muscular distress, irritation, 

and/or soreness during stretching in the Quadriceps muscles. The Quadriceps were 

stretched in both legs and held for 15 seconds. 
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(iv) Functional movement in knee joint:  Subjects were asked to rate their muscle soreness 

after the time to exhaustion (TTE) step test that specifically involved flexion and 

extension of the knees.  

 

3. Blood sample collection 

 

Enzyme analysis:  Blood samples for enzymatic analysis were obtained before the two-hour 

treadmill run, 10 minute post-run as well as at 24, 48 and 72 hours post-exercise, under resting 

and three hours post-meal conditions (Figure 5.).  

 

Blood samples, of about five milliliters per sample, were drawn from an antecubitial vein in 

the forearm using a needle, syringe, and Vacutainer set-up, by a trained phlebotomist. EDTA 

was used as an anticoagulant. Samples were transported to the pathology laboratories within 

one hour after collection. Serum creatine kinase (CKp) and lactate dehydrogenase (LDH) 

concentrations in the blood samples were analyzed by qualified pathologists (PathCare 

laboratories).  

Figure 5.  Collection of blood samples (photograph by J. Barnard) 

 

The laboratories processed and centrifuged the blood samples (1500 x g) and analyzed it for 

the specific enzyme markers, with either the Beckman Synchron LX/CX (United States of 
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America) or Roche Hitachi 911 analyzers. Both of these procedures employed the Lactate to 

Pyruvate method to analyze LDH and the original Rosalki method for CKp analysis.  

 

Blood lactate analysis:  Whole blood lactate concentrations were measured with an automated 

blood lactate analyzer (Lactate Pro, Arkray Inc., Kyoto, Japan). The Lactate Pro was chosen 

for its practicality, accuracy, reliability and demonstrates a strong correlation with other 

analysers ( r = 0.98 – 0.97) with a range of mean difference of -0.06 mM to 0.52 mM , over a 

physiological range of 1.0 – 18.0 mM (Pyne et al., 2000).  

 

A resting blood sample was collected prior to the two-hour treadmill run, by means of a finger 

prick with a lancet device (Softclix ®, Boehringer Mannheim). Lactate samples were also 

collected following the two-hour treadmill run, at three, ten and 30–minute intervals, as well 

as at 24, 48 and 72 hours.  

 

Before each sample was collected the subject was requested to warm up his hands, by 

pulsating his fingers to enhance blood flow to his fingertips. For each sample, the subject’s 

fingertip was cleaned with an alcohol swab prior to the finger prick. To prevent damaging 

blood cells and to prevent leakage of interstitial fluid into the sample obtained, the subject’s 

fingers were on no account compressed for blood. This would prevent a false readings of the 

blood lactate concentrations. 

 

A cotton swab was used to wipe off the first blood droplet and then the next droplet of blood 

was sampled on the lactate strip. Alternate fingers were used with each finger prick and cotton 

swabs were used to stop any additional bleeding of the subject’s finger.  

 

4. Maximum aerobic capacity test 

 

A progressive incremental exercise test to exhaustion was performed on the h/p/cosmos Saturn 

treadmill (h/p/cosmos/Saturn Nussdorf-Traunstein, Germany), to assess maximum aerobic 

capacity during the baseline session.  
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Figure 6. Subject on h/p/cosmos/Saturn (Nussdorf-Traunstein, Germany) treadmill 

completing a VO2max test (photograph by K. Welman) 

 

The treadmill (h/p/cosmos/Saturn Nussdorf-Traunstein, Germany) is interfaced with 

specialized computer software (Cosmed Quark b2 2000, Italy). By using breath-by-breath 

analysis together with a telemetric heart rate monitor (POLAR®, Polar Electro Oy, Finland), 

the Quark b2 software calculates and records exercise intensity and selected cardiorespiratory 

parameters continuously throughout each test (Figure 6.). 

 

Maximum aerobic capacity protocol (VO2max):  Subjects were fitted with an adjustable safety 

harness. The test commenced with a five minute warm up from speeds starting at seven 

kilometers per hour (km.h-1) for two minutes, one minute at eight km.h-1 and ending at nine 

kilometers per hour for two minutes. Thereafter the subject was allowed to drink water, before 

the mask was placed over his face.  

 

A maximal test to exhaustion was performed, with increments of one kilometer per hour, 

every three minutes, up to thirteen kilometers per hour. Thereafter both the speed and incline 

was increased by one kilometer per hour (km.h-1) and one percent every minute until the 

subject reached exhaustion. The test was terminated when the subject reached exhaustion, 

which was verified if (i) the VO2 did not increase by more than 150 ml per successive 
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workload, (ii) a respiratory quotient (RER) value equal or above 1.15 was reached, (iii) heart 

rate was more than 90 % of the theoretical maximal heart rate (bpm) and (iv) the rating of 

perceived exertion (RPE) was above 19. 

 

Throughout the incremental test, breath-by-breath gases were continuously recorded. Expired 

gases, flow and volumes were sampled through the turbine flow meter and gas sampling line 

and analyzed by a cardio-pulmonary metabolic system (Cosmed Quark b2, Rome, Italy). The 

gas analyzers were calibrated prior to each test with atmospheric gas and known gas 

concentrations (16 % O2, 4% CO2, balance N2) and the turbine flow meter was calibrated with 

a 3 L calibration syringe. Heart rate was measured through telemetry (POLAR®, Polar Electro 

Oy, Finland) interfaced with the metabolic system.  

 

Anaerobic threshold (AT): The anaerobic threshold was detected at the same time as the 

VO2max through the specialized computer software analysis (Cosmed Quark b2, Rome, Italy), 

during the incremental maximum aerobic test. Anaerobic threshold, or ventilatory threshold as 

it is also known, was defined as the point where a non-linear increase in the consumption of 

carbon dioxide (VCO2) occurred when plotted against the subject’s oxygen consumption 

(VO2) (Wasserman et al., 1973). The AT value was expressed as a percentage of VO2max 

(%VO2max). The heart rate (HR) and velocity at which AT occurred were also determined 

through computer software analysis.  

 

5. The two-hour prolonged treadmill run 

 

Participants completed a simulated two-hour undulating run on a h/p/cosmos/Saturn 

(Nussdorf-Traunstein, Germany) treadmill. The protocol consisted of a 90-minute gradual 

mountainous trail followed by 30-minute downhill run (-10 % equivalent to 35. 1 °). In the 

initial part of the run, the objective was to simulate an extended run at a moderate tempo, on 

an up–and–down route (see Appendix B).  
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Figure 7.  A schematic representation of the prolonged simulated two-hour treadmill run 

 

90-Minute simulated mountainous run on the h/p/cosmos/Saturn treadmill:  The elevation of 

the treadmill was either increased or decreased in one to two-minute intervals (Figure 7.). The 

treadmill velocity was adjusted so that subjects maintained a pace equal to 70% of their 

VO2max. After the 90 minute run, the treadmill was stopped and the subject stepped off the 

treadmill for a maximum of two minutes. During this period, the treadmill belt was reversed 

and the safety barrier moved to enable the athlete to run downhill. The downhill run started on 

a level surface and decreased progressively to minus ten percent (Figure 7.).  

 

Prior to the run the athletes were informed once more of the safety and emergency equipment 

and allowed to empty their bladders.  Next a heart rate monitor (POLAR®, Polar Electro Oy, 

Finland) and an adjustable safety harness were strapped on, and positioned according to the 

athlete’s comfort. The subject was allowed to consume isotonic liquids throughout the two-

hour run. Each subject had to complete two prolonged treadmill run sessions, at separate 

occasions and in random order, with and without a compression garment.  

 

Pre-run warm up:  To make sure the athletes were properly warmed up, prepared, and 

accustomed to the treadmill, each participant had to warm-up for five minutes. The treadmill 

speed was progressively increased from eight km.h-1 to nine km.h-1.  
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Post test recovery:  To prevent blood pooling subjects were cooled down for five minutes 

from eight to zero km.h-1, until their heart rate dropped to 130 bpm or lower. 

 

6. Flexibility and range of motion 

 

One practical and portable flexibility test was used to assess rigidity associated with DOMS. 

The flexibility test was implemented at baseline (visit one) and after the two-hour treadmill 

run at 15 minutes, 24, 48 and 72 hours. 

 

Modified sit-and-reach test:  A portable wooden sit-and-reach box (dimensions: height 30.5 

cm; width: 35.5 cm length: 43.5 cm), with a 1.21 meter detachable plastic ruler and nylon 

carpet, was used to assess the flexibility of the hamstrings and lower back muscles (Figure 8.). 

Subjects were seated on the carpet with their legs extended and buttocks, shoulders and head 

against a wall. The participant’s feet (without shoes) were then placed against a 30 cm high 

sit-and-reach box.  

 

To start the subject was asked to reach with their arms in front of them, hands on top of one 

another, while the head, shoulders and buttocks pressed against the wall. They then had to 

inhale and slowly exhale, while the initial measurement was taken, by placing the plastic ruler 

at the tip of the middle finger (Dactylon). This was the starting point and was taken before 

each measurement.  

 

 

Figure 8.   A modified sit-and-reach hamstring flexibility test (photograph by J. Barnard) 
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Subjects then had to reach forward as far as possible, by sliding their fingers on top of the 

ruler, while maintaining their hands on top of one another, palms facing down and legs in 

extension throughout the test. The athlete’s shoulders and head were allowed to move away 

from the wall. Three practice trials were given to each athlete, to correct any inaccurate 

technique. Three measurements were recorded at the furthest distance, where the subject could 

hold the position for at least three seconds. Units of measurement were in centimeters and the 

best of the three trials was taken as the final score. 

 

7. Muscle strength and endurance 

 

By conducting a vertical jump test and time-to-exhaustion functional step test (TTE) explosive 

leg power and functional strength in the lower extremities were measured. 

 

Vertical jump test:  For this test the subject stood with the dominant hip against the wall-

mounted vertical jump; this is the starting position. The subject’s heels and feet were on the 

ground, hip-width apart. Each participant was instructed to reach up with his dominant hand as 

high as possible (shoulder at 180 degree extension) and to hold this position for three seconds.  

This is the standing-reach-height or baseline height measurement. Subsequently they were 

instructed to dip only their index and middle finger of the dominant hand into a chalk 

container. The next three jumps were recorded.  

 

The objective was to jump as high as possible, using a double foot take-off and knee flexion, 

swinging the arms and touching the vertical jump panel. At the top of the jump, the subject 

marked the wall with the chalk on his two fingertips. The score for the jump is the difference 

between the baseline height (Hbaseline) and the height achieved at the top of the jump (Htop). All 

three trials were recorded to the nearest centimeter and the best of the three trials was taken as 

the final score. The vertical jump test was conducted during the initial baseline meeting, after 

the two-hour treadmill run and immediately following the 30-minute lactate measurement. 

 

Time to exhaustion step test (TTE):  After the vertical jump test, the subjects progressed to the 

TTE test. Athletes were asked to step up and down a 25 cm Reebok aerobic step to a 

moderate–fast pace (152 beats per minute), set by an electronic metronome (Seiko DM10, 

Digital Metronome, Japan).  
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During the test participants needed to keep up with the pace or rhythm of the metronome, 

place their whole foot on the step (not just the balls of their feet) and they were not allowed to 

run. If they were unsuccessful, the stopwatch (Medalist, South Africa) was terminated and 

they were brought to a halt by the researcher. The objective was to continue stepping to the 

pace of the metronome, until fatigue set in. The test was discontinued when the subjects felt 

they could not adhere to the specific criteria of the test or were too exhausted to continue. The 

test was conducted during the initial baseline meeting (30 minutes after the maximum capacity 

test) as well as after the two-hour treadmill run, following the vertical jump tests and 30–

minute lactate assessment, and at 24, 48 and 72 hours, with and without compression hosiery.  

 

E. STATISTICAL ANALYSIS 

 

Statistical analysis was performed with SPSS 14.0 Windows (SPSS inc., Chicago Illinois) and 

Microsoft Office Excel (Windows 2003). Descriptive data are reported as mean ( x ) and 

standard deviation (SD) unless otherwise specified. The possible influence of a repeated bout 

effect was assessed by inspecting for a learning effect. A two-way ANOVA for repeated 

measures were performed on all outcome variables, to assess the effect of compression 

garments on recovery. The main group effect and the time effect were the two independent 

factors, with the interaction effect (group*time) as the dependent factor. Significant 

differences among mean values were identified using the Fischer LSD (Least Significant 

Difference) test. The level of significance was set at P < 0.05 for all analysis.  
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CHAPTER SEVEN 

 
RESULTS 

 

A. INTRODUCTION 

 

The present study aimed to investigate the possible influence(s) of graduated compression 

garments on experienced long distance runners’ recovery responses after a prolonged run. 

A crossover controlled experimental study design was used, in which each runner acted as 

his own control. Selected parameters of muscle recovery were documented after a two-

hour treadmill run, in a controlled laboratory environment. The parameters included lower 

limb oedema, perceived muscle soreness, indices of muscle damage i.e. plasma creatine 

kinase and lactate dehydrogenase, as well as, blood lactate concentration, and functional 

lower limb ability, which included strength, power, endurance and flexibility.  

 

B. DESCRIPTIVE CHARACTERISTICS 

 

1. Subjects 

 

The runners’ physical characteristics and running experience are presented in Table 1. The 

subjects were middle-aged (between 36 and 51 years), club-level runners with about 13 

years competitive running experience.  

 

Table 1.  The physical characteristics of the subjects (n = 7). 

Variables Mean ( x )      SD  

Age (years) 43.7                       5.5 
Height (cm) 176.0                       8.6 
Body mass (kg) 92.5                     11.8  

Body fat (%) 24.6                       4.0  

BMI (kg.m-2) 29.9                       3.0 
BMT (hh:mm:ss) 04:04:43             00:16:48 
Training (days/week) 4.6                       0.5 
Running experience (years) 12. 6                       7.3 
BMI, body mass index; BMT, best marathon time 
 

On average, subjects trained four to five times per week and participated in at least three 

marathons in the six months prior to the study. In this time the athletes’ best marathon 

times were just above four hours, demonstrating a pace of about six minutes per kilometer. 
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The runners’ body fat percentages on average were 4.9 % above the upper limit of the 

reference values for their age (14 ± 1.0 % to 19.7 ± 0.5 %) and the average body mass was 

also 5.9 kilograms (kg) above the age predicted range (80.8  9.2 kg to 86.6  9.9 kg).  

 

2. Maximum aerobic capacity  

 

Table 2. summarizes the maximal exercise responses to the VO2max testing performed on a 

treadmill in the laboratory during the initial visit. All the subjects performed a maximum 

test in accordance with the criteria for a maximum aerobic capacity test, as indicated in 

Chapter six (pages 124-125). The average maximum aerobic capacity (VO2max in mL.kg-

1.min-1) of the subjects falls within the “excellent” category with respect to gender and age 

(Heyward, 1998; Brooks et al., 2005). 

 

Table 2.  The maximum exercise capacity of the runners (n = 7). 

Variables Mean ( x )      SD  

VO2max (mL.kg-1.min-1) 45.7     5.0  
VO2max (L.min-1) 4.2     5.0  
HR max (bpm) 177.6     6.2  
VE max (L.min-1) 146.9   14.7  
RER  1.17     0.1  
AT (% VO2max) 65.9    4.3   
PTV (km.h-1) 14.6     0.5  
VO2max, Maximum aerobic capacity; HR, heart rate; VE, minute ventilation; AT, anaerobic threshold; PTV, 

peak treadmill velocity; RER, respiratory exchange ratio 

 

3. The two-hour treadmill run 

 

During the two-hour treadmill run the subjects ran at 70 % of their predetermined 

maximum aerobic capacity. Three of the subjects randomly wore the garments during their 

first two-hour treadmill run and four without. The average total distance achieved was 18.9 

 1.1 km with compression garments and 19.0  1.2 km without compression garments. 

Athletes were able to maintain an average speed of 9.9  0.4 km.h-1 with compression 

garments (WCG) and 10.2  0.8 km.h-1 without compression garments (WOCG).  

 

There were no statistically significant differences in treadmill performance between the 

with and without compression garment trials. The downhill section of the run placed less 

stress on the athletes, since the average heart rate was lower, but the athletes ran at a faster 
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average pace during the 30-minute downhill section compared to the 90-minute variable 

gradient run (Table 3.). 

 

Table 3.  Two-hour treadmill run variables, with and without the stockings (n = 7). 

Variables 
WCG 

x     SD
WOCG 

 x     SD 
P - values 

Distance90 minutes (km) 13.3  0.5 13.4  0.9 P > 0.05 

HRave at  90 minutes (bpm) 146.4  7.4 146.5  6.5 P > 0.05 

TV90 minutes (km.h-1) 8.8  0.3 9.1  1.2 P > 0.05 
   
Distance30 minutes (km) 5.6  0.9 5.7  0.6 P > 0.05 

HRave 30 minutes (bpm) 137.3  7.5 139.9  5.0 P > 0.05 

TV30 minutes (km.h-1) 11.00  0.6 11.4  0.6 P > 0.05 
   
DistanceTotal (km) 18.9  1.1 19.0  1.2 P > 0.05 

HRave. total (bpm) 141.9  6.9 143.2  5.7 P > 0.05 

TV Total (km.h-1) 9.9  0.4 10.2  0.8 P > 0.05 
TV, average treadmill velocity; HRave, average heart rate; WCG, with compression garment (s); WOCG, 
without compression garment(s) 
 

C. DETERMINANTS OF POST-EXERCISE RECOVERY 

 

1. Lower limb oedema 

 

Swelling in the lower limbs of the athletes were assessed before the run, 40–minutes, 24, 

48 and 72-hours after the two-hour treadmill run by measuring ankle, calf, mid- and 

proximal thigh circumferences. Reduced swelling is associated with a smaller 

circumference in the limb. Figure 9.1 to 9.4 show the relative changes (%) in the lower 

limb circumferences from one assessment to another, with (WCG) and without 

compression garments (WOCG), while the absolute changes are reported in Table 4.  

 

After the two-hour treadmill run swelling in the ankles, calf, mid- and proximal thigh 

changed statistically significantly over time in both trials from baseline to 72-hours after 

the exercise (P < 0.01). In addition, no repeated bout effect was found in the ankle or calf 

muscle circumferences.  
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Table 4. The average circumferences of the lower extremities with and without 

compression garments from pre-exercise to 72-hours after exercise (n = 7). 

Circumferences (mm) Ankle Calf Mid-thigh Proximal thigh
WCG 

Pre- exercise 
 23.7 ± 1.7  40.7 ± 2.0  55.6 ± 3.5 60.9 ± 4.0 

WOCG  23.7 ± 1.7  40.7 ± 2.0  55.6 ± 3.5 60.9 ± 4.0 
      

WCG 40-minutes 
post-run 

 † 23.9 ± 1.7 * 41.0 ± 2.0 *55.9 ± 3.6 61.2 ± 3.7 
WOCG   24.3 ± 1.6   41.4 ± 2.2  56.6 ± 4.1 61.7 ± 4.5 

      

WCG 24-hours 
post-run 

 † 23.9 ± 1.7  † 41.3 ± 2.0 † 56.8 ± 3.5 61.8 ± 4.0 
WOCG   24.5 ± 1.8   41.9 ± 2.1  57.6 ± 4.1 62.4 ± 4.1 

      
WCG 48-hours 

post-run 

 † 23.8 ± 1.7  † 41.1 ± 2.2 ~56.7 ± 3.6 61.5 ± 3.9 
WOCG   24.4 ± 1.7   41.9 ± 2.2 57.3 ± 3.5 62.1 ± 3.8 

      

WCG 72-hours 
post-run 

 † 23.8 ± 1.7 † 40.9 ± 2.0 *56.1 ± 3.4 61.5 ± 3.8 
WOCG   24.8 ± 1.7   41.7 ± 2.1 56.9 ± 3.3 61.7 ± 3.6 

* P < 0.05 and †P < 0.01 Comparison of WCG and WOCG; ~P = 0.06 - 0.09 trend between WCG and 
WOCG 
WCG, with compression garments; WOCG, without compression garments 
 

The ankle circumferences of the subjects peaked at 24-hours in both the WCG and WOCG 

trials (23.9 ± 1.7 mm and 24.5 ± 1.8 mm; P = 0.001). The ankle circumferences of the 

runners WOCG trial were 2.4 % more elevated than the WCG, at 24-hours. The following 

48-hours the ankle circumferences reached a plateau in the WOCG trials, whereas the 

ankle circumferences of the subjects WCG started to return to almost pre-exercising 

values. By 72-hours the ankle circumferences of those WCG returned to baseline, while 

the subjects not wearing the compression garment still showed an increased ankle 

circumference. 

 

 

 

 

 

 

 

 

 

 

Figure 9.1  The relative change (%) in the ankle circumferences with (WCG) and 

without compression garments (WOCG). (†P < 0.01 WCG and WOCG; ∆ P < 0.05 

Change over time for all graphs). 
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According to the two-way ANOVA analysis, the individuals WCG showed on average a 

significantly lower ankle circumference compared to those not wearing the garment (main 

group effect; P = 0.002). There was an average difference of 1.8 ± 1.0 % in ankle 

circumferences from pre-run to 72-hours post-exercise between WCG and WOCG (Figure 

9.1). The interaction between the compression garment’s influence and recovery time 

shows that those with compression garments tend to have more reduced ankle 

circumferences (interaction effect; P = 0.09, NS).  

 

Figure 9.2 illustrates the relative changes in calf circumferences (%). In the trials WCG 

and WOCG the calf circumferences peaked at 24-hours (41.3 ± 2.0 mm and 41.9 ± 2.1 

mm, respectively; P = 0.0003). The subjects not wearing garments then plateau until 48 

hours after the run, before starting to return to baseline. The WCG returned to baseline 

values (40.9 ± 2.0 mm) by 72-hours, unlike those subjects WOCG who did not return to 

baseline values by 72 hours (41.7 ± 2.1 mm; P = 0.0001). A statistically significant 

difference exists between the average circumferences of the WCG and WOCG groups 

(main group effect; P = 0.002). The interaction between the intervention and recovery time 

of the subjects WCG showed a significantly lower calf circumference, compared to those 

WOCG (interaction effect; P = 0.0002). 

 

 

 

 

 

 

 

 

 

 

Figure 9.2  The relative change (%) in calf circumferences with (WCG) and without 

compression garments (WOCG). (*P < 0.05; †P < 0.01 WCG and WOCG; ∆ P < 

0.05 Change in time). 

 

There was no significant influence of the compression garments on the recovery rate of the 

mid-thigh circumferences (interaction effect; P > 0.05). There were, however, significantly 

higher average circumferences in the WOCG trials, compared to all the WCG trials (main 
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group effect; P = 0.02). This is illustrated in Figure 9.3, where the WCG trials were 

always showing reduced circumferences, compared to the WOCG trials from 40 minutes to 

72 hours after the run. 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.3  Mid-thigh circumferences with (WCG) and without compression garments 

(WOCG). (*P < 0.05; †P < 0.01 WCG and WOCG; ∆ P < 0.05 Change in time). 

 

Both the mid- and proximal thigh circumferences peaked at 24 hours after the run in WCG 

(56.8 ± 3.5 mm and 61.8 ± 4.0 mm, respectively) and WOCG trials (57.6 ± 4.1 mm and 

62.4 ± 4.05 mm, respectively). Only the mid-thigh circumferences showed a significant 

difference WCG compared to WOCG at 24–hours after the run (Table 4.; P = 0.008). 

Neither of the WCG and the WOCG mid- and proximal thigh circumferences returned to 

baseline by 72-hours after the run.  

 

 

  

 

 

 

 

 

 

 

Figure 9.4  The relative change (%) in proximal thigh circumferences with (WCG) and 

without compression garments (WOCG). (∆ P < 0.05 Change in time). 

-2

-1

0

1

2

3

4

5

Baseline 40 min 24 hrs 48 hrs 72 hrs

Assessments

R
el

at
iv

e 
ch

an
g

e 
(%

)

WCG

WOCG* 

* 

†

∆ 

∆ 

∆ 

∆ 

http://scholar.sun.ac.za/



 136

 

There was a tendency towards statistically significant difference between the average 

values of the two trials (main group effect; P = 0.07). No effect was noticed in the WCG 

compared to WOCG trial over time (P > 0.05). Thus, from the relative changes of all the 

circumferences (Figure 9.1 to 9.4) it shows that the average circumferences were 

significantly more pronounced, in the ankle, calf and mid-thigh from 24 to 72 hours into 

recovery in the WOCG, compared to WCG trials.  

 

2.  Perceived muscle soreness and discomfort 

 

Perceptual responses of perceived muscle soreness and discomfort in the Quadriceps 

muscles were documented before the two-hour treadmill run and up to 72-hours into 

recovery. Perceptual responses indicated an increase from no pain experienced before the 

run, with the most pronounced effect between 24 and 48-hours post-exercise.  

 

 

 

 

Figure 10  The average perception of pain in Quadriceps throughout the trial (baseline 

to 72 hours post exercise), while (a) seated, (b) stretching, (c) performing 
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functional knee movements and (d) applying pressure. (* P < 0.05 Comparison 

of WCG and WOCG). 

 

Figures 10.1 (a) to (d) illustrates the development of perceived pain in the Quadriceps 

muscles, while seated, with stretching, while performing lower body activities and while 

applying pressure to the belly of the muscle, respectively. The two-way ANOVA showed a 

significant change across time in the VAS data when subjects were asked to stretch (time 

effect; P = 0.01) and to perform functional knee movements (time effect; P = 0.03).  

 

The WCG trial showed significantly lower perceived muscle pain and discomfort after 

performing functional knee movements, compared to the WOCG trial at 24 and 48-hours 

after the run (1.2 ± 1.6 vs. 3.8 ± 2.4 cm and 0.9 ± 1.8 vs. 3 ± 2.6 cm, respectively; P < 

0.05). The two-way ANOVA disclosed a significant interaction for time and group during 

the functional knee movement questionnaire (interaction effect; P = 0.04).  

 

Significant differences between the WCG and WOCG trials were observed at 24-hours 

after the run during rest (0.1 ± 0.2 vs. 0.4 ± 0.8 cm; P = 0.02) and with stretching (1.9 ± 1.2 

vs. 3.5 ± 2.5 cm; P = 0.02). The perceived pain associated with pressure was significantly 

lower with the compression garment at 24 (307 %) and 48-hours (237 %) after the run (P < 

0.05). 

 

3. Blood analysis 

 

Blood samples were analyzed for enzyme markers (LDH and CKp) and blood lactate 

concentrations, to establish if muscle damage has occurred. LDH and CKp samples were 

collected before the treadmill run, 10 minutes after, and at 24, 48 and 72 hours after the 

run. Blood lactate samples were collected at the same intervals, as well as 3 minutes after 

the run. No statistically significant (P > 0.05) repeated bout effect was found in the blood 

lactate and creatine kinase concentrations between the first and the second two-hour 

treadmill run.  

 

3.1 Blood lactate concentration  

 

Blood lactate concentrations significantly changed over time in both groups (time effect; P 

= 0.01). Figure 11.1 demonstrates the relative percentage change over the experimental 
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period, WCG and WOCG (from one collection point to another). The relative percentage 

change was calculated from one time point to another. Blood lactate concentrations 

reached a maximum value immediately after the two–hour run in both trials. At three 

minutes there was a trend for the compression garment trials to have lower blood lactate 

concentrations (P = 0.07). The WCG and WOCG trials both demonstrated a plateau 

hereafter up until 30-minutes. At 10 minutes (1.8 ± 0.5 vs. 2.2 ± 0.9 mmol.L-1; P = 0.05) 

and 30 minutes (1.8 ± 0.5 vs. 2.4 ± 0.4 mmol. L-1; P = 0.01) there were significantly lower 

lactate levels in the circulation.  

 

Subjects wearing compression garments had 45 % lower blood lactate levels 30-minute 

after exercise, compared to trials where subjects did not wear compression garments. After 

30-minutes, the WCG trial illustrated a gradual return to below baseline by 72 hours, while 

the WOCG started to return to baseline, but at 72–hours the lactate concentrations were 

still elevated above baseline values. Figure 11.1 also shows that at 24-hours after the 

exercise the blood lactate concentrations dropped swiftly in the WOCG trials; this is the 

result of one subject which indicated an extremely low blood lactate value (when the 

measurement was retaken, the same value was obtained). 

  

Even though the blood lactate values after the treadmill run were lower throughout the 

experiment when the compression garments were worn (main group effect; 28.8 ± 17.0 %; 

P = 0.02), the compression garments did not result in a significant interaction effect 

(group*time; P > 0.05). In other words, when the two trials are compared, the mean blood 

lactate concentrations of the WCG trials were significantly lower compared to the WOCG 

trials, even though both trials started with similar pre-exercise lactate concentrations. 

However, the compression garment did not aid the recovery effect over the experimental 

period. 
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Figure 11.1  The relative percentage change in blood lactate concentrations (mmol. L-1) 

with (WCG) and without compression garments (WOCG). (* P < 0.05 Comparison of WCG and 

WOCG). 

 

3.2 Muscle damage markers: LDH and CKp analysis 

 

Both plasma creatine kinase (CKp) and lactate dehydrogenase (LDH) concentrations 

increased statistically significantly from pre-exercise to 72 hours after the run, in both 

groups (time effect; P < 0.01).  

 

 

 

 

 

 

 

 

 

Figure 11.2  The relative change in plasma (a) creatine kinase concentrations and (b) 

lactate dehydrogenase levels; with  (WCG) and without compression garments (WOCG). 

(*P < 0.01 WCG and WOCG; ∆ P < 0.05 Change in time). 

 

There were no significant difference in lactate dehydrogenase concentration between the 

two trials (Figure 11.2 (b); P > 0.05). The compression garments also did not have an 

influence on recovery over time (interaction effect; P > 0.05). LDH peaked at 10 minutes 

after the run in both trials. 
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The data that are illustrated in Figure 11.2 (a) indicates the relative changes (%) in plasma 

creatine kinase concentrations. There is a 5.4 % difference from pre-exercise to 72-hours in 

the trials WCG, whilst the WOCG showed a 14.3 % difference. The CKp levels were on 

average 8.8 % lower in the WCG trials compared to the WOCG trials (P > 0.05). WCG 

trials showed a tendency to return quicker to pre-exercising levels. However, there were no 

statistical significant differences in the CKp levels between the individuals wearing 

compression garments and without, throughout the test from resting to 72 hours after the 

run (P > 0.05).  

 

The only significant difference observed when the WCG trials are compared to WOCG 

trials was at 24 hours after the run (P = 0.005).  This was also the maximum concentration 

of CKp in both trials. Plasma creatine kinase peaked at 24-hours post–exercise WCG and 

WOCG (81.7 %, 238.3 ± 81.3 u.L-1 vs. 189.3 %, 413.3 ± 250.8 u.L-1). At 48 hours, the 

creatine kinase concentration in the WCG trial also showed a tendency to be lower (P = 

0.09; Table 5.).  

 

Table 5. Circulating creatine kinase and lactate dehydrogenase levels from pre-

exercise to 72-hours post–exercise in subjects WCG and WOCG (n = 7). 

Blood analysis (u.L-1) 
WCG WOCG 

P- values x                SD x               SD 

Pre-exercise 
[CKp] 131.1  ±  48.3 142.9  ±   86.2 P > 0.05 
[LDH] 155.1  ±  53.8 156.3  ±   54.8 P > 0.05 

  
10-mins post-

exercise 
[CKp]   194.9  ±  45.5  227.1  ± 109.4 P > 0.05 
[LDH] ~193.4  ±  48.4 ~209.6  ±   61.7 NS; P = 0.09 

  
24-hours post-

exercise 
[CKp] *238.3  ±  81.3 *413.3  ± 250.8 P = 0.005 
[LDH]  156.4  ±  51.4  152.4  ±   40.3 P > 0.05 

  
48-hours post-

exercise 
[CKp] ~168.9  ±  57.9 ~263.7  ± 123.2 NS; P = 0.09 
[LDH]  149.6  ±  47.5  146.9  ±   38.2 P > 0.05 

  
72-hours post-

exercise 
[CKp]  163.3  ±  48.9  138.3  ±   44.2 P > 0.05 

[LDH]  145.7  ±  42.3  147.3  ±   40.6 P > 0.05 
* P < 0.05 Comparison of WCG and WOCG; ~P = 0.06 - 0.09 trend between WCG and WOCG 
WCG, with compression garment(s); WOCG, without compression garment (s); [CKp], Plasma creatine 
kinase concentration; [LDH], plasma lactate dehydrogenase concentration  
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4. Functional ability 

 

The functional tests were intended to be non-invasive, practical and a measure of some of 

the fitness components relevant to running performance, i.e. muscle power, strength, 

endurance, and flexibility.  

 

The absolute changes are reported in Table 6. and Figure 12.1 to 12.3 show the average 

differences in the lower extremity functional tests, with (WCG) and without compression 

garments (WOCG). No statistically significant differences or improvements were found in 

the subjects, while wearing compression garments (P > 0.05), compared to the trials 

WOCG in any of the three functional tests. 

 

Table 6. Summary of functional capacity tests WCG and WOCG (n = 7). 

Functional tests 
WCG WOCG 

P-values 
x      SD x      SD 

Vertical jump 
test (m) 

Pre - exercise 0.2   ±     0.2 0.2   ±     0.2 P > 0.05 
Post- run 0.4   ±     0.1 0.4   ±     0.1 P > 0.05 

 

TTE step test 
(s) 

Pre - exercise  244.8 ± 209.6 244.8 ± 209.6 P > 0.05 
Post- run  225.2 ± 250.8 207.9 ± 122.0 P > 0.05 

24-hrs post-run 228.2 ± 245.9 238.6 ± 218.5 P > 0.05 

48-hrs post-run 
‡278.2 ± 234.4 ‡301.9 ± 243.0  *P > 0.05; ‡ P 

= 0.05 
72-hrs post-run  388.5 ± 285.0 357.9 ± 288.7  P > 0.05 

 

Modified sit-
and-reach (cm) 

Pre - exercise 32.4   ±    9.1 32.4   ±    9.1 P > 0.05 
Post- run 32.9   ±    7.4 32.1   ±    7.4 P > 0.05 

24-hrs post-run 33.0   ±    4.9 31.1   ±    3.6 P > 0.05 
48-hrs post-run  33.3   ±    5.8 32.1   ±    7.5 P > 0.05 
72-hrs post-run 34.4   ±    5.1 32.7   ±    5.1 P > 0.05 

* Comparison of WCG and WOCG; ‡ Change over time from baseline 
WCG, with compression garment(s); WOCG, without compression garment (s); TTE, time to exhaustion 
 

4.1 Lower body explosive power and strength 

 

The two-hour treadmill run did not significantly (P > 0.05) reduce power and strength in 

the lower extremities from pre-exercising values to post-exercising values (Table 6.). 

Furthermore, no interaction effect was observed between the garment and recovery time (P 

> 0.05).Vertical jump (VJ) scores improved 4% and 2.8% from pre-exercising scores 

WCG and WOCG, respectively (Figure 12.1). VJ scores, however, did not significantly (P 

> 0.05) improve with compression garments compared to without compression garments.  
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Figure 12.1  Vertical jump tests prior to run compared to post-run with (WCG) and 

without compression garments (WOCG). 

 

4.2 Lower body muscle endurance 

 

Both trials (WCG and WOCG) showed a progressive increase in the step-test time from 

baseline to 72 hours (Figure 12.2 and Table 6.). Both trials peaked at 72-hours (388.5 ± 

285.0s and 357.9 ± 288.7s, respectively; P > 0.05). No statistical significant difference was 

found in the average times (seconds) between wearing compression garments and no 

compression garment trials (main group effect; P > 0.05).  

 

With respect to recovery, the step test did not show a statistically significant change over 

time from pre-exercise (baseline) to 72 hours (time effect; P > 0.05). No statistically 

significant (P > 0.05) interaction effect (group*time) between the groups and time were 

observed. 
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Figure 12.2 The average measurements of the time to exhaustion (TTE) step test with 

compression garments (WCG) compared to without (WOCG). 

 

4.3 Range of motion 

 

The modified sit-and-reach flexibility test was used to determine the subject’s range of 

motion of the lower extremities. Figure 12.3 shows that the subjects not wearing 

compression garments (WOCG) seems to have experienced a slightly more restricted range 

of motion compared to the WCG group. However, no statistically significant difference is 

shown between the two groups (P > 0.05).  

 

Whilst the subjects with compression garments (WCG) indicated a six per cent 

improvement in range of motion over time, peaking at 72-hours (34.4 ± 5.1 cm; P < 0.05) 

after the two-hour run. The largest differences between the groups were noted at 24-hours 

after the run, with a 5.8 percentage difference between the trials with compression 

garments and without. However, no statistically significant differences were observed over 

time (time effect; P > 0.05), as well as when the compression garments trials were 

compared to without the garment trials (see Table 6. group effect; P > 0.05). 
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Figure 12.3  The average scores in the modified sit-and-reach flexibility test, with 

(WCG) and without compression garments (WOCG). 

http://scholar.sun.ac.za/



 145

CHAPTER EIGHT 

 

DISCUSSION 

 

A. INTRODUCTION 

 

The current study endeavored to investigate the possible influence of compression 

garments on the recovery process of middle-aged long-distance runners. Compression 

garments are generally worn to prevent venous blood pooling, post-operative deep venous 

thrombosis and orthostatic hypotension and associated oedema. 

 

The main findings of the current study are that wearing compression garments were 

effective in attenuating the swelling in the calf muscles of long distance runners. The 

compression garments reduced the swelling only to the applied limb, which suggests a 

reduction in the inflammatory response of trained long distance runners. Runners also 

experienced less perceived discomfort and pain in the Quadriceps muscles of the lower 

limb. In addition, blood lactate concentrations in the circulation were lower in the 

participants within the initial 30 minutes after the run with the compression garments. In 

addition, the DOMS protocol was successful in causing muscle damage. The results 

suggest that compression garments may have an influence on the acute metabolic 

responses by either increasing the removal of blood lactate concentration or suppressing 

muscle lactate. However, further research is needed to distinguish which mechanism the 

compression garment is responsible for.  

 

Long distance runners are continuously exposed to strenuous training sessions and 

demanding races. These activities not only places stress on the cardiovascular and 

metabolic systems, but also cause repeated eccentric lengthening of muscles in the lower 

extremities. The sarcomere becomes over stretched and eventually disrupts. The structural 

damage to the membranes of the sarcoplasmic reticulum, transverse tubule and 

sarcolemma, releases calcium into the cytoplasm.  Proteolysis is signaled and thus begins 

the break down of the muscle fibers. This is associated with the infiltration of macrophages 

and monocytes accompanied with oedema. The degree of inflammation in the injured area 

depends on the extent of the muscle damage (Kraemer et al., 2004).  
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Delayed onset of muscle soreness is associated with several signs and symptoms, such as a 

dull and diffuse pain, tenderness and swelling that are generally linked with the 

inflammatory response (Kraemer et al., 2004; Zainuddin et al., 2005). Individuals also 

show reduced functional capacity, i.e. muscular strength, power, endurance and muscular 

stiffness (Cleary et al., 2006; Cleather and Guthrie, 2006). These signs and symptoms may 

last as long as 24 to 96 hours after exercise (Cleary et al., 2006). Compression garments 

function in a similar fashion as active recovery and mainly supports the calf muscle pump 

function. The compression creates pressure gradients which accelerate blood flow to the 

working muscles and increases the metabolic turnover of lactate. 

 

B. DATA IN PERSPECTIVE 

 

1. Descriptive characteristics 

 

Previous studies that investigated compression garments and the role in sport recovery or 

performance were mainly conducted on untrained individuals or recreational athletes 

(Rimaud et al., 2007). Furthermore, of all the studies that included highly trained 

individuals, only three investigated runners. None of the other studies have investigated the 

middle-aged long distance runner with a prolonged running protocol.  

 

It has been noted that exercise-induced muscle soreness are magnified in older individuals 

(McArdle et al. 2001; Prentice and Voight, 2003). In this study, the runners had about 13 

years of running experience and demonstrated very high VO2max values for their sex and 

age group (Brooks et al., 2005). Experienced older runners can run marathons at higher 

percentages (80 to 85 %) of their maximum heart rate than inexperienced younger runners 

(65 to 75 %). This improved ability to utilize their aerobic capacity is owing to their years 

of training (Mahler and Loke, 1984). The fact that more than half of the runners were in 

their transition phase at the time of the initial assessment, might explain why their body fat 

percentage is about five percent above their normal range for their age, sex and activity 

levels. 

 

Furthermore, the physiological functions of experienced long distance runners have 

adapted optimally to years of training. In contrast, individuals with venous insufficiencies 

and vascular disorders have weak calf muscle-pump capacity and damaged blood vessel 

valves in the venous system. These individuals use compression garments to aid these 
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functions, which improves the venous return to the heart. However, it is questionable 

whether compression garments would improve the circulation of well-trained endurance 

athletes. These runners may have already reached their physiological limits. It is also 

difficult, to significantly improve the performances of trained, compared to untrained 

athletes (Rimaud et al., 2007).  

 

The magnitude of DOMS depends on the intensity and the duration of the exercise, as well 

as the physiological conditioning of the individual (Cleary et al., 2006). Individuals that 

are accustomed to eccentric exercise such as trained athletes have a protective effect to 

exercise–induced muscle soreness (Kraemer et al., 2001a). The two-hour treadmill run at 

70 % of VO2max together with the 30-minute eccentric downhill run was chosen to provide 

a potent stimulus to induce DOMS. This was a unique protocol, which have never before 

been attempted. The objective was to simulate the forces that act on the runner, during a 

race. No statistically significant differences were shown between the WCG and WOCG 

trials for distance, average heart rate or treadmill velocity, which shows that the exact same 

protocol was followed during both sessions. 

 

During the downhill run, the runners’ heart rates were lower than during the 90-minute 

variable gradient run. This is not uncommon during exercise involving predominantly 

eccentric muscle actions, which demonstrates less stress on the cardiovascular as well as 

on the local metabolic system. The eccentric muscle contraction is metabolically less 

demanding and recruits fewer motor units than concentric contractions. The evidence for 

this is that concentric exercise produces more lactate and a higher heart rate compared to 

eccentric exercise (Carrasco et al., 1999; Eston et al., 2000).  

 

2. Post-exercise recovery 

 

Much is known about the exercise responses and training adaptations of endurance 

athletes, yet very little information is available on the recovery after races and training. The 

ability to recover quickly after bouts of strenuous exercise is beneficial for the athlete.  
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2.1 Lower limb swelling  

 

Reduced swelling in lower extremities is the result of the mechanical compression exerted 

by the garment (Kraemer, et al., 2001a). Swelling is caused by a difference in the osmotic 

gradient and is typically associated with inflammation. The compression garment reduces 

the swelling in the lower extremities by exerting mechanical pressure onto the limb. The 

mechanical compression neutralizes the osmotic pressure imbalance by increasing the 

tissue hydrostatic pressure. Additionally, the compression garment also minimizes the 

available space for fluid accumulation (Brennan and Miller, 1998; Harris, et al., 2001; 

Kraemer, et al. 2001a).  Limb circumferences have been used in several studies to assess 

the efficiency of compression garments in the removal or prevention of oedema 

(Gniadecka et al., 1998; Kraemer et al., 2001b). Numerous studies have reported that 

compression garments lessen oedema in the extremities of healthy and venous 

insufficiency populations.  

In the current study, swelling in the lower extremity followed the classical pattern of 

exercise-induced muscle damage. Swelling in the ankle, calf, mid- and proximal thigh of 

both trials peaked 24 hours after the two-hour run. Only the calf muscle showed a 

significant reduction in swelling with the compression garments trials. This is noteworthy, 

since the calf muscle plays and important role during running activities and is prone to 

muscle damage (Bringard et al., 2006a). Hence, the reduction calf circumferences would 

indicate the possible onset of the inflammatory response (Miller et al., 2004; Kraemer et 

al., 2004). There was also a strong trend (P = 0.09) for the ankle circumferences of the 

runners with the compression garment to be lower. In addition, when the mean ankle 

circumferences between the treatment groups were compared it definitely showed a more 

reduced ankle circumference with the compression garment (P = 0.002).  

 

No significant attenuation of limb swelling was noted between the mid- and upper thigh. A 

possible explanation for no effect in the upper thigh is that the compression garment was 

only applied to the lower leg (ankle and calf). Similar to this study, Kraemer et al. (2000) 

found no significant lower upper thigh circumferences when the authors investigated 

standing fatigue in younger healthy women wearing three different types of low pressure 

compression socks. However, the compression garments did significantly reduce the ankle 

and calf (P < 0.05). Kraemer et al. (2000) speculated that the low pressure exerted by the 

garment was ineffective for the larger muscle mass limbs, or that long standing activities 
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do not result in oedema in the thighs. However, it is well known that downhill running 

induces muscle damage largely in the knee extensors. Thus, it seems that the compression 

garments did not have had an influence on the upper thigh circumference.  

 

Gniadecka et al. (1998) reported no significant difference in ankle circumferences between 

two types of compression garments compared to wearing no compression garment i.e. 

CLASS I (23.7 ± 2.1 vs. 23.3 ± 1.8cm) and CLASS II (23.7 ± 1.8 vs. 23.3 ± 1.6 cm). A 

higher compression at the ankle may have produced more significant results in the current 

study. 

 

2.2  Perceived muscle soreness and discomfort 

 

Both the WCG and WOCG trials demonstrated some of the common symptoms associated 

with DOMS in the Quadriceps muscles, such as pain and tenderness in the damaged 

muscle when the belly of the muscle was palpitated, contracted and stretched (Ball and 

Herrington, 1998; Zainuddin et al., 2005). Downhill running causes muscular damage 

primarily in the Quadriceps muscles. Furthermore long distance runners typically 

demonstrate muscle pain and discomfort in the Quadriceps and Gastrocnemius muscles 

(Lambert and Borresen, 2006). Therefore, visual analog scales were used to indicate the 

awareness of muscle soreness and discomfort in the Quadriceps at rest, while stretching, 

with functional knee-movements and when applying pressure.  

 

Even though the VAS questionnaires are subjective and not a quantitative approach, when 

compared in conjunction with the circumferences, the muscle soreness and discomfort 

experienced during rest, stretching and functional knee movements in the WOCG trials 

closely resembled the fluid dynamics of the swelling in the lower limb. Whereas with the 

WCG trials, the runners experienced the most muscular pain directly after the two hour run 

while stretching, applying pressure and performing functional knee movements and then 

demonstrated a gradual decline in muscle soreness during the following days. In addition, 

these signs and symptoms are associated with exercise-induced muscle soreness (Gleeson 

et al., 1998). Thus, a reduction in swelling together with a lower perception of pain would 

indicate a diminished inflammatory response (Miller et al., 2004; Kraemer et al., 2004). 

 

The results of the two-way ANOVA indicated that only during stretching and with 

functional knee movements did the perceived pain response significantly changed over 

http://scholar.sun.ac.za/



 150

time. The pain and discomfort associated with the functional knee movement was 

significantly less when runners wore the compression garment. There was furthermore, a 

significant intervention effect between the compression garment and perceived muscle 

soreness during functional knee movements. Similarly, when the runner’s damaged 

Quadriceps muscles were palpitated, the trials with the compression garment demonstrated 

significantly less pain compared without the garment at 24 and 48 hours after the run. This 

is an important feature since, as mentioned before, the downhill run cause the most muscle 

damage in the knee extensors. The lower perceived pain during knee flexion and extension 

shows that compression garments are beneficial in reducing exercise-induced muscle 

damage.  

 

These findings are in agreement with those of Ali et al. (2007) who observed that 

recreational runners wearing compression garments perceived less muscle soreness at 24-

hour after a 10 kilometer run. Other studies have also found less perceived muscle soreness 

with the compression garment trials, although the differences were not always significantly 

(Chatard et al., 2004; Trenell et al., 2006; Miller et al., 2004; Kraemer et al., 2001b). 

Reduced pain may be an indication of reduced swelling in the lower extremities. This 

reduced swelling means that the compression garment attenuates the inflammatory 

response. If athletes indicate a weakened perception of muscle soreness, it may signify that 

the compression garment facilitated the inflammatory response.  

 

The athletes were not informed of the real objective of the study. Nevertheless, the placebo 

effect cannot be dismissed. It may therefore be argued that the reduced perception of 

muscle soreness were due to the participants expectations and not as a result of the 

garment. 

 

Thus, wearing compression garments during running and for three days after the prolonged 

two-hour treadmill run appears to reduce symptoms of delayed onset of muscle soreness in 

trained runners. This may be beneficial for all runners, since reduced muscle soreness after 

exercise will allow the athlete to return to training and races sooner.  

 

2.3 Blood lactate concentration  

 

The energy cost over time is an important determinant of exercise tolerance in both 

patients and athletes. When an athlete reduces his running cost, he is able to run for longer 
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and tolerate higher running demands and may also experience less fatigue. Some factors 

have been proposed as possible predictors of running cost, such as blood lactate 

concentration, cardiorespiratory work, the oxygen available to the muscle and motor-unit 

recruitment patterns (Bringard et al., 2006b). Therefore, a reduced blood lactate 

concentration might be related to a lower energy cost over time. According to Dawson et 

al. (2005), an accelerated lactate removal is considered as an indication that metabolic 

recovery has taken place.  

 

However, the rate of lactate clearance from the circulation is the function of both metabolic 

and circulatory dynamics (Rimaud et al., 2007). Chatard et al. (2004) and Rimaud et al. 

(2007) suggest that a lower blood lactate concentration may be beneficial for subsequent 

exercise, especially after strenuous activities. Participants with DOMS typically 

demonstrate elevated maximal and submaximal blood lactate concentrations. This is 

primarily owing to the more permeable membrane and the elevated metabolic stress placed 

on the undamaged muscle fibers. In addition, it may also be possible that more type II 

muscle fibers are recruited. This increases the rate of glycogenolysis, which in return also 

contributes to an elevated lactate concentration in the circulation (Gleeson et al., 1998; 

Semark et al., 1999).  The present study found that when runners were wearing 

compression garments blood lactate concentrations were significantly lower at 10 and 30 

minutes during the recovery period after the run. The trials with the compression garment 

had a tendency to cause lower blood lactate levels after the initial three minutes (P = 0.07), 

compared to the WOCG trials. No significant differences were observed at 24 to 72 hours 

after the run. There was an outlier at 24 hours after the run, however the training diary of 

the specific did not reveal any deviation to the protocol, nor when the measurement was 

retaken was there any difference found. 

 

Other studies have also found that the compression garments had an influence on lactate 

clearance during the acute recovery period. Berry and McMurray (1987) assessed young 

well-trained runners (part I) and cyclists (part II) for 60 minutes after a maximal test. The 

participants wearing the compression garments showed lower blood lactate levels in both 

parts of their study. Similar to this study, they found a significantly lower lactate 

concentration at 15-minutes post-exercise with compression garments in the runners. 

However, the second part of their investigation found significantly lower blood lactate 

concentrations when wearing graduated compression garments in the cyclist, across time 

(60 minutes).  
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Chatard et al. (2004) found that compression garments reduced blood lactate 

concentrations, as well as cleared lactate faster (by 20 %) in elderly cyclists wearing 

compression garments, during an 80-minute recovery period. Rimaud et al. (2007) found 

significantly lower blood lactate concentrations in well-trained low-level spinal cord 

injured participants, which wore compression garments at three minutes after the maximal 

exercise bout.  

 

As explained before, the compression garment exerts a force on the superficial veins and 

limits dilation of the peripheral venous system. By reducing the blood vessel’s diameter the 

blood is shunted from the periphery towards the deeper veins, thereby increasing the 

venous return. This leads to two possible theories of how compression reduces blood 

lactate concentrations, i.e. (i) either the compression accelerates venous blood flow, which 

aids lactate clearance from the muscle and increases oxidation of lactate, or (ii) the force 

reduces the diffusion medium available for lactate, inorganic phosphate and oxygen 

transport. Consequently, the compression garment retains the lactate in the muscle (Berry 

and McMurray, 1987; Chatard et al., 2004; Rimaud et al., 2007). Unfortunately, blood 

flow, muscle lactate concentrations, and oxygen consumption were not assessed during the 

current study. Therefore, one may only speculate which one of the processes were 

responsible for the reduced blood lactate concentrations. 

 

The lack of a significant interaction effect for the changes in blood lactate concentration 

may be related to the trained athlete’s well-developed physiological systems. For instance, 

in patients with blood vessel disorders the calf muscle-pump function (CMPF) and venous 

valves may be compromised. By wearing the compression garments the pressure exerted 

functions in a similar fashion as the CMPF, thus improving venous return (Bringard et al., 

2006a and 2006b). With experienced long distance runners their CMPF is well developed, 

which could indicate that the compression garment did not add any additional benefits to 

their all ready well-developed circulation.  

 

2.4 Muscle damage markers 

 

Plasma creatine kinase is the most sensitive marker of muscle damage and is typically 

increased after exercise and peaks between 24 and 48 hours after exercise. The 

significantly elevated plasma creatine concentrations above baseline over the 72-hour 
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recovery period in this study (P < 0.01), demonstrates that muscle damage occurred in both 

groups due to the two-hour treadmill protocol. The initial two-hour treadmill run did not 

have a protective effect on the muscle during the second two-hour run (repeated bout). 

McHugh (2003) suggests that the muscle action’s intensity must be close to maximum 

during the initial eccentric bout to result in a protective mechanism for the following 

eccentric bouts. The runners had to run at a moderate pace and not at maximum (70 % of 

their own maximum aerobic capacity). 

 

Achieving statistical significance when measuring CK concentration is difficult, because of 

the high inter-subject variability in CK response. This might be due to (i) the variability in 

exercise-induced muscle damage and/or (ii) membrane permeability (Stupka et al., 2000). 

Stupka et al. (2000) and Laursen et al. (2007) found large variations between subjects’ 

creatine kinase concentrations. Laursen proposed that individuals could be divided into 

CKp responders and non-responders, and that this is a possible reason for inter-subject 

variability in creatine kinase concentrations.  

 

Even though the CKp responses were less pronounced in the trials with the compression 

garment compared to the without compression garments, it was only significantly lower at 

24 hours after the two-hour run. This is consistent with the results of the visual analog 

scales, which also demonstrated maximum muscle soreness in the Quadriceps and a 

significantly lower perception of muscle soreness in the trial with compression garments at 

24 hours. 

 

There are three suggested mechanisms by with compression garments attenuate muscle 

damage. By either (i) releasing fewer muscle damage markers (creatine kinase or LDH) 

from the damaged muscle’s ultrastructure, (ii) accelerating the clearance of the muscle 

damage markers like creatine kinase from the injured area or (iii) the mechanical support 

of the compression garment reduces muscle oscillation. This results in a reduced muscle 

fiber tearing and damage (Doan et al., 2003; Bringard et al., 2006b). 

 

Previous studies have reported that creatine kinase concentrations may be 20-fold higher, 

compared to resting levels, after a marathon race (Mahler and Loke, 1984). However, the 

creatine kinase concentrations in the present study were not as high as in other studies. 

This is possibly because the runners were trained long distance runners and might have 
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been partially accustomed to, or have adapted to, downhill running. This is consistent with 

the findings of Takahashi et al. (2006).  

 

Kraemer et al. (2001b) also showed an elevated creatine kinase concentration in the 

circulation in untrained men WCG and WOCG, but it was more pronounced at 72 hours 

after the eccentric exercise WOCG. By 72 hours, in the current study, CKp was already 

reduced to resting levels in both trials. This indicates that trained runners demonstrate a 

reduced CKp response compared to untrained individuals. Duffield and Portus (2007) only 

found a significant reduction in plasma creatine kinase with the compression garment after 

24 hours in trained cricket players. This reduction in creatine kinase concentration was 

consistent with the lower perceived muscle soreness at 24 hours, experienced by the cricket 

players. Semark et al. (1999) also maintained that creatine kinase and pain responses in 

trained athletes were not as pronounced as in untrained individuals during DOMS.  

 

Additionally, subjects were allowed to consume water voluntary during the treadmill run 

and it has been suggested that additional plasma CK may be attenuated by consuming 

fluids (Sanchez et al., 2006). Another possible reason given is that athletes were requested 

to reduce their training volume and intensity (below 70 % of maximum heart rate) seven 

days prior to the two-hour treadmill run. As mentioned before, plasma creatine kinase 

levels are reduced when endurance athletes taper seven days prior to a half marathon event 

(15% less than their normal training volume) (Myburgh, 2003). However, even though the 

creatine kinase were not as elevated as seen in previous studies, all of the CKp 

measurements were elevated above the normal range and did indicate muscle soreness. 

 

Lactate dehydrogenase (LDH) was also significantly elevated above baseline values. 

However, no differences were found between those WCG and those WOCG. Lactate 

dehydrogenase is not as sensitive muscle damage marker as plasma creatine kinase. This is 

consistent with findings of Kraemer et al. (2001a) who also observed an elevated plasma 

creatine kinase activity with no significant change in LDH after an eccentric exercise 

protocol in the upper arm. The different responses in CKp and LDH might be partly related 

to the structurally different areas in the muscle sarcomere from where it is released. Both 

enzyme markers depend on the site of primary mechanical muscle damage (Kraemer et al., 

2001a). 
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2.5 Functional ability 

 

Contrary to what was expected, neither of the two trials resulted in a change over time or 

differences between WCG and WOCG in any of the functional tests. Compression 

garments and the protocol had no influence on muscle endurance and flexibility throughout 

the experiment. Unlike Kraemer et al. (2001b) that found a significant reduction in elbow 

ROM in both groups after exercise (men), the current study found no significant reduction 

in ROM. In Kraemer et al. (2001b), the compression garment group gradually regained 

their ROM within 24 and significantly by 72 hours. The TTE and modified sit-and-reach 

test were chosen for their practically and mobility. However, the inter-subject variability in 

these tests, including the vertical jump test, is a clear indication that the tests were not 

sensitive measures for changes in lower body endurance or flexibility.  

 

In addition, muscular power and strength assessed by the vertical jump test also did not 

show significant differences with or without the compression garment. Kraemer et al. 

(2001b) found no reduction in force production after an eccentric protocol in a WCG group 

of untrained men. Performance, however, decreased over the 48 en 72 hours during 

recovery in the control group. The current study did not assess muscle power and strength 

during the three-day recovery period. 

 

Possible reasons for the findings of this study are (i) that the tests that were chosen were 

not effective measures of functional ability, (ii) the endurance athletes have adapted to 

prolonged exercise and did not experience muscular fatigue or reduced range of motion, or 

(iii) the runners pushed through the pain-barrier.  

 

Although the downhill protocol resulted in muscular damage, this does not mean that the 

runner’s functional ability was diminished. Depleted glycogen stores, among other factors, 

could have caused fatigue. The rate of glycogen depletion is proportionally related to the 

intensity of the exercise, the initial glycogen content, and the type of predominant muscle 

fibers. For instance, type I fibers are depleted first when running at 70 % of one’s VO2max 

and only at a faster pace the type II fibers are depleted. Additionally, athletes running at 70 

to 80 % of their VO2max will only deplete their glycogen stores at 32 to 40 kilometers (km) 

(Mahler and Loke, 1984). The runners in this study ran at 70 % of their VO2max, however 

they only ran about 19 km in both trials. The runner’s well-developed calf muscle-pump 

may also have aided the recovery of force production. 
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To complete long distance races endurance athletes have to be highly motivated and 

determined individuals. It has been documented that experienced runners show a better 

capacity to deal with pain (Mahler and Loke, 1984). During the TTE step test a 

psychological aspect might also have contributed to the runner’s ability to push through 

their perceived pain and to continue with the exercise.  

 

Even though the current study did not set out to investigate whether compression garments 

could contribute to muscular fatigue, the results suggest that the higher pressures exerted 

by the garment used in our study did not result in muscular fatigue. Previous studies have 

suggested that too high a pressure (30 to 50 mmHg) exerted by the compression garment 

will result in muscular fatigue, due to ischemia in the muscle. Maton et al. (2006) 

investigated muscular fatigability during sustained muscle contraction and whether 

compression garments improve recovery after fatigue. They used compression garments 

that exerted lower pressures (23.6 to 6.8 mmHg) than the current study (32 to 23 mmHg). 

Maton et al. (2006) found no statistically significant difference in the individuals’ ability to 

generate force, between the WCG and WOCG. Their conclusion was that compression 

garments did not cause muscular fatigue, possibly because the added pressure of the 

compression garment is negligible in comparison to the pressures exerted by the 

contracting muscle.  

 

The compression garments in this study may not have resulted in fatigue for the similar 

reasons. Maton et al. (2006) studied healthy subjects, while the trained endurance athletes 

in this study have well-developed muscle-pump functions. Thus, the higher pressure of the 

garment may not have been enough to restrict blood flow to the muscles, compared to the 

forceful contractions of the calf muscle.  

 
C. STUDY LIMITATIONS AND FUTURE STUDIES  

 
The current study was limited by the small sample size, which may be the reason why 

some results did not reach statistical significance. Future studies of small sample sizes 

should include a retrospective power analysis. Furthermore, data was collected from 

personal reports (VAS and training history) and are therefore potentially less reliable than 

the laboratory-measured data. However, there was no reason to doubt the training data or 

subjective opinions reported by any of the runners.  
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This study would be strengthened by the inclusion of additional recovery determinants 

such as haematocrit, C-reactive protein, and plasma volume, muscle lactate concentrations, 

heart rate, and post-exercise oxygen consumption. The plasma volume should be 

incorporated to correct creatine kinase concentrations, for the shifts in plasma volume. C-

reactive protein is an inflammatory marker, which will allow scientist to more accurately 

determine if compression garments aided the inflammatory response. Assessing muscle 

lactate concentrations will allow the sport scientist to identify the mechanism by which 

compression garments lower blood lactate concentrations. In addition, the psychological 

influence of the compression garments needs further investigation.  

 

Previous studies have indicated that the amount of pressure exerted by the compression 

garment will have a different influence on the various physiological functions. Maton et al. 

(2006) observed that there is a large mean pressure difference between subjects, which 

demonstrated that the effectiveness of the garment strongly depend on the subject’s 

morphology. Other studies mainly used compression garments with lower pressures of 

about 23 to 16 mmHg. This study used a higher compression garment and indicated very 

little negative effects on endurance-trained athletes. One possible question for future 

research is to investigate what pressure would exert effective or optimal compression for 

trained athletes in various types of sporting activities. Optimal pressure would result in 

improved athletic performance and aid recovery post-exercise, without side effects.  

 

Compression garments have become increasingly popular among athletes and have been 

extensively marketed by the media. Therefore, the placebo-effect can not be ignored. As 

there was no placebo condition in the current study, it could be argued that some of the 

findings were as a result of the participants’ intuition of expected findings. However, this 

was a randomized trial and participants were never informed of the exact objectives of this 

study, merely that more research is needed on the recovery process of long distance 

runners. Future studies might have to include a garment that exerts no compression as a 

placebo. 

 

Eccentric activities to induce DOMS may differ from dramatic or sudden acute injuries, 

such as strains and sprains. In addition, treadmill running reduces the maximum impact 

force experienced by runners, compared to over ground running on hard surfaces such as 

tarmac (Ali et al., 2007). Most studies on runners and compression garments, except 

Bringard et al. (2006b), were performed in laboratories. Future studies that investigate the 
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benefits of compression garments while the athlete wears the garment during the actual 

event need more attention. No study thus far has been performed on long distance runners 

while wearing compression garment during events. Furthermore, Bennett (2006) 

commented that post-match muscle damage in rugby is more pronounced than post–

training, and that no study has been performed on post-training recovery.  

 

Reasons for the possible inconsistency in findings among the various studies are the 

different eccentric models that were used, which resulted in different magnitudes of 

damage to different muscles. Individuals also showed a wide variation in response to the 

same exercise protocol. Additionally, different modalities may differ from each other, i.e. 

cycling versus running. This large variability in responses among individuals to the effects 

of eccentric exercise and various modalities has made comparison with control conditions 

and other studies difficult.  More research on compression garments as a possible recovery 

strategy is needed. 

 

D. CONCLUSION 

 

Very little research has been performed on compression garments as a recovery aid and 

even less on experienced older trained athletes. To date the effects of compression 

garments on athletic performance have been mainly investigated during power sports and 

after supramaximal exercises. Very little research has been done on compression garments 

and its effect on submaximal running exercise. This study was unique, in that it addressed 

a population that has been overlooked by previous studies. Middle-aged runners are 

currently the most popular age group in long distance events. These runners would benefit 

immensely from a practical recovery modality, such as compression garments. 

 

The results of this study showed that long distance runners experienced muscle damage 

after a two-hour treadmill run and that the compression garments reduced muscle soreness 

at 24 hours after the run, compared to the runners not wearing compression garments. The 

evidence for this is the reduced swelling, creatine kinase concentration and perceived 

muscle soreness. Blood lactate concentration was also lower with the compression garment 

during the acute recovery phase after the run. In addition, the higher pressure of the 

garments did not lead to muscular fatigue. However, further research which could more 

specifically identify whether compression garments aid lactate clearance or suppressed 

muscle lactate is warranted.  
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It seems, therefore, that compression garments have the potential to enhance recovery after 

strenuous exercise and may thus provide athletes with an easy, inexpensive recovery 

option after training sessions or competitions.  
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APPENDIX A 

 

THE CONSENT FORM 

 

INFORMED CONSENT 

 

Title of the research project: “Investigating long distance runners’ recovery rate.” 

 

Reference number:_____________________________________________________00000__ 

 

STATEMENT BY THE RUNNER: 

 

I, the undersigned,_________________________[ID_________________________________],  

of (address)___________________________________________________________________ 

_____________________________________________________________________________ 

_____________________________________________________________________________ 

 

Confirm that: 

 

1. I was invited to participate in the above mentioned research project that is undertaken by 

the Sport Science Department at Stellenbosch University.  

 

2. It was explained to me that: 

 

2.1 the aim of the study is to collect data on long distance runner’s recovery rate. 

 

2.2 from the project I will receive interesting information on my general fitness level that can 

be beneficial to improving my sport performance.  

 

2.3 I will receive a voucher for a maximal aerobic capacity test with lactate threshold 

measurement and a 30–minute sports massage, only if I complete the study. The voucher 

is valid until 30 November 2007. 
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2.4 If I receive additional equipment or gear form the Sport Physiology laboratory, during the 

study, I will return it to the University of Stellenbosch at the termination of the study. 

 

2.5 I will participate in a baseline test, followed by a 7 to 10 days recovery period, in-between 

the second and baseline assessment. The sixth follow up test, must be completed within 7 

to 28 days, after the fifth testing session. 

 

2.6 The second assessment, consist out of a two-hour simulated mountainous run on a 

treadmill, inside a laboratory, followed by three consecutive days of collecting blood and 

lactate samples, with follow up tests (same as baseline tests). 

 

2.7 The sixth assessment session is the follow up tests of the second assessment. This is a 

repeat of the test preformed in the second evaluation session, along with three consecutive 

days of collecting blood and lactate samples, with follow-up tests (same as baseline tests). 

 

2.8 During the seven days prior to the second and third assessment sessions, I will record a 

logbook of my daily activities and hand it in to the researcher at the next testing date.   

 

2.9 I will not take any medication two days prior to or during the tests. 

 

2.10 I will visit the Sport Physiology Laboratory possible on three to nine different occasions. 

During these visits, the following tests will be done: 

 

2.10.1 during the first visit I will complete a questionnaire regarding my health status and 

activity level, as well as, muscle soreness and fatigue questionnaire. I will undertake the 

first baseline test: body impedance with the Body stat (fat percentage and hydration 

levels), vertical jump - (muscle strength), TTE step test (time to exhaustion endurance 

test), flexibility tests, maximum aerobic capacity tests (oxygen consumption). My height, 

weight, calf-, mid-thigh, proximal thigh and ankle circumferences, and diameter as well 

as leg length will be measured. 

 

2.10.2 during the second and sixth visit, I will be retested. Blood samples will be taken for 

lactate and enzyme markers (this involves finger pricks and drawing blood samples by a 
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qualified phlebotomist). Some of the baseline tests will be repeated along with a 90-

minute mountainous run and a 30-minute downhill run, in a laboratory on a treadmill. 

 

2.10.3 24, 48 and 72 hours after the second and sixth assessment, more blood samples will be 

collected, along with certain of the baseline tests. 

 

2.10.4 I will try my best to come to the Sport physiology Laboratory at 24, 48 and 72 hours after 

the second and sixth assessment sessions to give blood samples. However, if I cannot 

make it to the laboratory for some unforeseen reason, I will be available for a sport 

physiologist to come to me. 

 

2.11 I will only perform low to moderate intensity exercises, by maintaining my heart rate 

below 70 % of my maximum or long slow distance training (LSD’s), in–between my 

baseline and second assessment, as well as the seven days prior to the second and sixth 

assessments. I will run no hilly or mountainous trails and/or perform lower body weight 

training, during this period. I will not participate in any high intensity training the seven 

days prior to the second and sixth assessment dates. 

 

2.12 I will not participate in any events or races the 72 hours after the second and sixth testing 

days, as well as the seven days prior to the evaluation sessions. I will tell the assessor if I 

have any muscle fatigue or soreness prior to the tests. 

 

3.     The first and second visit will be separated by at least seven days, but not more than 10 

days and the fifth and sixth assessment will be separated by at least 7 days, but no more 

than 28 days. 

 

4. I do not have any problem wearing a heart rate monitor or compression socks during the 

study. 

 

5. I understand that the researcher/test observers and/or Stellenbosch University may not be 

held responsible for any injuries that might occur during any of the tests included in the 

project. 
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6.  I was warned that there is a possibility that I may experience one or more symptoms 

during the aerobic capacity tests. These symptoms include light-headedness, dizziness, 

fainting, chest, jaw, neck or back pain or pressure, severe shortness of breath, wheezing, 

coughing or difficulty breathing, nausea, cramps or severe pain or muscle ache and severe 

prolonged fatigue or exhaustion, since this is a maximal test to exhaustion. I understand 

that I may stop the tests at any time when I experience any of these symptoms. 

 

7. I was informed that the information, which will be obtained through this project, would 

be handled confidentially, but that the results will be published in research journals.   

 

8. The above information was explained to me in English by Karen Bindemann. I was given 

the opportunity to ask questions and all the questions were satisfactorily answered. 

 

9. It was explained to me that my participation in this project is voluntary and that I may 

withdraw from the study at any time.  I also understand that the researcher or medical 

doctor may withdraw me from the study if deemed necessary for medical purposes.  

 

10. I was informed that there are no costs involved for my participation in this project. 

 

I voluntarily agree to participate in the abovementioned project. 

 

I take the responsibility to endeavor to complete all (three visits to the laboratory for fitness 

tests and the 2 times 3 consecutive days for sample collection) tests. 

 

I take the responsibility to be and stay highly motivated during the testing programme and to 

complete my daily logbook (the seven days prior to the second and sixth assessments) and hand 

it in to the researcher on at the next assessment.     

 

Signed at _________________________ on ____________________________. 

 

________________________    _____________________ 

  Subject       Witness 
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STATEMENT BY RESEARCHER 

 

I, Karen Estelle Bindemann, declare that I: 

 

1. Explained the information in this document to __________________________; 

2. Requested him to ask questions if anything was unclear; 

3. That this conversation took place in English/Afrikaans. 

 

Signed at  Stellenbosch on ____________________________________________ 

_____________________________   ______________________ 

  Researcher      Witness 

 

Research will be conducted according to the Declaration of Helsinki, MRC guidelines 

and GCP.
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APPENDIX B 

 
 

ILLUSTRATIONS OF THE TWO-HOUR TREADMILL RUN 
 
 

  
 

Illustrations of the two-hour treadmill run to induce DOMS, with compression garments. 
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