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Abstract

One-dimensional fluid model with oscillating, exponentially decaying pair
interactions

Gcina Maziya

Department of Physics,
Stellenbosch University,

Private Bag X1, Matieland 7602, South Africa.

Thesis: MSc. (Theoretical Physics)

December 2015

For a one-dimensional fluid model where the pair interaction potential between the
molecules consists of a hard core and an exponential attraction, Kac has shown that the
partition function can be determined exactly in the thermodynamic limit (Kac, 1959).
Kac concluded (after the necessary calculations) that there is no phase transition for
such a system with the defined pair interaction potential. The aim of this study is to
investigate the phase transition with a modified potential. Therefore we repeated part
of the calculations of Kac up to the derivation of the so-called Kac integral equation (see,
Appendix A). This enabled us to generalise the potential function of Kac to obtain a one-
dimensional fluid model with oscillating, exponentially decaying pair interactions. We
then used the generalised potential to calculate the canonical partition function and ob-
tained a modified version of the Kac integral equation. Unfortunately, we were unable
to compute the eigenvalues of this modified integral equation with our chosen numer-
ical method. Since knowing the eigenvalues is the only means to decide whether such
a generalised model will show a phase transition, we were unable to investigate it. We
conclude the eigenvalues have to be calculated using a different numerical method.
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Uittreksel

Een-dimensionele vloeistof model met ossilerende, eksponensieel dalende
paar-interaksie

(“One-dimensional fluid model with oscillating, exponentially decaying pair interactions”)

Gcina Maziya

Departement Fisika,
Stellenbosch Universiteit ,

Privaatsak X1, Matieland 7602, Suid-Afrika.

Tesis: MSc. (Teoretiese Fisika)

Desember 2015

Kac (Kac, 1959) het gewys dat vir ’n een-dimensionele vloeistof model waar die paar-
interaksie tussen die molekules bestaan uit ’n harde kern asook ’n eksponesieel aantrek-
kende deel bestaan, die partisiefunksie eksak in die termodinamiese limiet bereken kan
word. Die gevolgtrekking van Kac se studie is dat daar nie ’n fase oorgang vir ’n sisteem
met die tipe potensiaal bestaan nie. In hierdie studie ondersoek ons die fase oorgang met
’n veralgemeende potensiaal. Dus het ons die berekeninge in Kac se artikel tot en met
die afleiding van die sogenaamde Kac integraal vergelyking herhaal (sien Byvoegsel A).
Dit stel ons in staat om die Kac se potensiaalfunksie te veralgemeen na ’n model vir
’n een-dimensionele vloeistof met ’n ossilerende, eksponensieel dalende paar-interaksie
tussen die molekules. Ons het toe die veralgemeende potensiaal gebruik om ’n gemo-
difiseerde weergawe van die Kac integraal vergelyking te bereken. Ongelukkig kon ons
nie die eiewaardes van die gemodifiseerde integraal vergelyking met ons gekose nume-
riese metode bereken nie. Omdat die eiewaardes die enigste manier is om te bepaal of
die fase oorgang sal plaasvind, al dan nie, kan ons ons nie daaroor uitspreek nie. Ons
kon tot die gevolgtrekking dat die eiewaardes met ’n ander numeriese metode bereken
sal moet word.
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Chapter 1

Introduction

1.1 Motivation

Phase transitions are ubiquitous in nature. They are usual events associated with an
enormous variety of physical systems (simple fluids and mixtures of fluids, magnetic
materials, metallic alloys, ferroelectric materials, superfluids and superconductors, liq-
uid crystals, etc) (Salinas, 2013). These phenomena are not only important in natural
processes, but also in industry. The simple act of transforming one state of matter or
phase into another, for instance by changing temperature, has always captivated the cu-
rious mind (Nishimori and Ortiz, 2010). In that way, one can convert an uninteresting
state of matter into a superconducting material with tremendous implications and ap-
plications. The Large Hadron Collider (LHC) relies on the use of superconducting mag-
nets. Those magnets not only consume less power but most importantly can achieve an
order of magnitude stronger fields than ordinary magnets, a fact that is crucial to reach
high energies (Nishimori and Ortiz, 2010).

Phase and phase diagram

A phase is characterised by a thermodynamic function, typically the free energy. It can
also be characterised by various physical quantities, especially important is the order pa-
rameter, which measures how microscopic elements constituting the macroscopic phase
are ordered or in a similar state (Nishimori and Ortiz, 2010). For example, in solids
atoms or molecules occupy periodic positions, in which case the spatial periodicity of
molecules/atoms is the order parameter. A thermodynamic function is a function of a
few macroscopic parameters such as the temperature and the pressure. The phase of a

1

Stellenbosch University  https://scholar.sun.ac.za



Chapter 1. Introduction 2

macroscopic substance is determined by the values of these parameters. A phase diagram
is a graph with those parameters as the axes, on which the phase is specified for each
point (Nishimori and Ortiz, 2010).

Example: water

We are all familiar with the different phases of water (vapour, liquid and ice), and the
change from one to the other. Figure 1.1 below is a phase diagram of water with param-
eters pressure, P and temperature, T,

Figure 1.1: P− T phase diagram for water (M. Blaber).

1.2 Introduction

The following discussion and definitions follow closely a discussion by (Kastner, 2010).
Phase transitions occur both in equilibrium and nonequilibrium. In this paper we focus
on a classical system at equilibrium. In the vicinity of a phase transition point, a small
change in some external control parameter (such as pressure or temperature) results in
a dramatic change of some physical properties (such as specific heat or electrical resis-
tance) of the system under consideration. Also, as shown in Figure 1.2, quantities such
as entropy S, the volume V, and specific heat C show some singularities as a discon-
tinuity (jump), a cusp or a divergence (Nishimori and Ortiz, 2010). An example is the
melting of ice, in which latent heat must be supplied to the system and consequently the
entropy jumps as illustrated in Figure 1.2(a) (Nishimori and Ortiz, 2010).

From a physics stand point the reason behind the occurrence of a phase transition is the
competition between the (internal) energy E and the entropy S of the system, which to-
gether determine its free energy F = E− TS. While the first term (E) favours order, the
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3 1.2. Introduction

(a) (b)

(c) (d)

Figure 1.2: Singularities in physical quantities at transition points. S is the entropy, V is the
volume and C is the specific heat. (a) and (b) are first-order transitions, and (c) and (d) are
second order (Nishimori and Ortiz, 2010).

second term (S) privileges disorder, and depending on the value of the external param-
eters ( such as T), one of the two terms dominates (Nishimori and Ortiz, 2010).

Thermodynamic description of phase transitions

In this theoretical description of phase transitions in the framework of thermodynam-
ics, the abrupt changes of physical properties motivate the following definition (Kastner,
2010).

To capture a phase transition of interest with the above definition, the free-energy den-
sity has to be considered as a function of the relevant control parameters, i.e., those
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Chapter 1. Introduction 4

which, upon variation, give rise to the phase transition. For the phase transition be-
tween the aggregate states of, say, water, the (Gibbs) free-energy density as a function of
temperature and pressure is a suitable choice. The example that we will use to illustrate
the application of the definition of a phase transition using the "transfer" matrix method
is a spin system where we have two relevant control parameters, the temperature T and
an external magnetic field h, and since we can replace β and h by other parameters, we
therefore prefer to use the language of spin systems. Therefore, we will consider the
free-energy density f̄ (β, h) as a function of the inverse temperature β = 1/(kBT) and
the magnetic field h, where kB is the Boltzmann’s constant and T is the absolute temper-
ature.

Quantities such as the specific heat or caloric curves which are typically measured in
an experiment are then given in terms of derivatives of the free-energy density. Non-
analyticities of f̄ may hence lead to discontinuities or divergences in these quantities,
which are experimental hallmarks of phase transitions.

Definition 1.2.1. An equilibrium phase transition is defined as a nonanalyticity of the free
energy density f̄ .

Statistical-physical description of phase transitions

What is the microscopic "origin" of a (macroscopic) phase transition? Statistical me-
chanics provides the microscopic foundations of thermodynamics. The starting point
of such a description is a Hamiltonian function (since we are dealing with a classical
system here), characterising the interactions between all elementary constituents of a
physical system. The Hamiltonian function is given by

H(p, q) = E(p; q)− hM(p; q) (1.2.1)

defined in phase space, where p = (p1, · · · , pN) is the vector of momenta and q =

(q1, · · · , qN) is the vector of position coordinates.

Contact with the thermodynamic description is made by defining the canonical free
energy of a system of N degrees of freedom as

Stellenbosch University  https://scholar.sun.ac.za



5 1.3. Example: Transfer Matrix in the Ising Model

Definition 1.2.2. The canonical free-energy density (in the thermodynamic limit, i.e., V, N →
∞ and ρ = V/N = constant) is

f̄ (β, h) = lim
N,V→∞

ρ=constant

− 1
Nβ

ln ZN(β, h), (1.2.2)

where

ZN(β, h) =
∫

dpdqe−βH(p,q), (1.2.3)

where the integration is done over phase space. So, our definition for an equilibrium
phase transition in this context is as follows

Definition 1.2.3. An equilibrium phase transition is defined as a nonanaliticity of the canonical
free-energy density f̄

1.3 Example: Transfer Matrix in the Ising Model

Here we discuss the transfer matrix method for two reasons: (1) it will serve as an exam-
ple for one of the methods of computing the partition function, and (2) it has a similar
feature as the method we are going to use in this paper, they both express the partition
function in terms of the largest eigenvalue of the transfer matrix or (integral operator
in our case). The Ising model will be our testing ground for the definition of a phase
transition.

Spin- 1
2 Ising model

Spin- 1
2 particles can have only one of two projections along the z−axis, either up or

down (usually denoted si = ±1). This is one of the simplest models of an interact-
ing many-body system, which was first introduced as a model for phase transitions in
magnetic systems (Ising, 1925). Despite its simplicity, the Ising model is widely applica-
ble because it describes many interacting two state systems (Yeomans, 1992). A classical
spin variable si = ±1 is placed on each lattice site (one-, two-, three-dimensional lattice).
The spins interact according to the Hamiltonian

H = −J ∑
〈i,j〉

sjsj − h ∑
i

si. (1.3.1)
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Chapter 1. Introduction 6

where h is an external magnetic field, the coupling interaction J is the exchange energy:
positive J and negative J favours parallel and anti-parallel alignment of spins, respec-
tively. We have used 〈i, j〉 to indicate the restriction to nearest neighbours summation,
and it counts each interaction pair once. This is known as the nearest-neighbour Ising
model.

As already mentioned, we shall solve (i.e., explicilty calculate the partition function) the
1D spin- 1

2 nearest-neighbour Ising model. The one dimensional lattice of N sites is a
linear string of spins. A spin at site i interacts with the spin at sites i− 1 and i + 1, and
for convenience the lattice is made cyclic in that sN+1 = s1. The choice of the boundary
conditions becomes irrelevant in the thermodynamic limit N → ∞. Here, we have
adopted the discussion by (Müller-Nedebock, 2014). The partition function is

ZN = ∑
{si}

exp

[
βJ ∑

i
sisi+1 + βh ∑

i
si

]

= ∑
{si}

∏
i

exp[βJsisi+1 +
βh
2
(si + si+1)] (1.3.2)

We now define the following column and row vectors:

〈si| =

(1, 0) if si = +1

(0, 1) if si = −1
(1.3.3)

|si〉 = (〈si|)T. (1.3.4)

From (1.3.3) we get

∑
s=+1,−1

|s〉〈s| =
(

1 0
0 1

)
= I (1.3.5)

Now, we define the matrix T, called the transfer matrix, as follows:

T =

(
eβJ+βh e−βJ

e−βJ eβJ−βh

)
. (1.3.6)

From (1.3.3), (1.3.5) and (1.3.6) we get

exp
[

βJsisi+1 +
βh
2
(si + si+1)

]
= 〈si|T|si+1〉, (1.3.7)
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7 1.3. Example: Transfer Matrix in the Ising Model

which is the matrix element of the transfer matrix.
Using the above result (1.3.7), the partition function of the 1D Ising model (1.3.2) be-
comes

ZN = ∑
{si}
〈s1|T|s2〉〈s2|Ts3〉 · · · 〈sN |T|s1〉. (1.3.8)

There property sN+1 = s1 has been used in (1.3.8). Using (1.3.5) in (1.3.8) gives

ZN = ∑
s1=±1

〈s1|T|s1〉

= TrTN . (1.3.9)

Free energy

If λ+ > λ− are the two eigenvalues of T, we find

ZN(β, h) = λN
+ + λN

− (1.3.10)

so that

β f (β, h) = limN→∞
1
N

lnZN

= limN→∞
1
N

ln
[

λN
+

(
1 +

λN
−

λN
+

)]
= lnλ+. (1.3.11)

From (1.3.6) λ+ is found to be

λ+ = eβJcoshβh + (e2βh(sinβh)2 + e−2βJ)
1
2 (1.3.12)

This is clearly an analytic function of β and h for 0 < β < ∞ and−∞ < h < ∞, i.e., there
is no phase transition (as singularities of f (β, h)).
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Chapter 1. Introduction 8

1.4 Why this project?

Although we have learned from the literature about the difficulties involved in the com-
putation of the partition function, we were motivated to make the attempt after reading
a paper by Mark Kac (Kac, 1959). So, what is interesting about this Kac paper? Kac pro-
posed a one-dimensional fluid model, for which he carried out all calculations exactly1.
The model consists of N particles moving on a line of length L and interacting in pairs
through a potential V(x) which consists of a hard core of length δ and an exponential
attraction. For this model it was possible for Kac to give an exact discussion of the par-
tition function in the thermodynamic limit, that is, L → ∞, N → ∞, l = L/N finite. Kac
showed that in this limit the problem can be reduced to the discussion of a linear inte-
gral equation with a positive-definite Hilbert-Schmidt kernel, for which the maximum
eigenvalue determines the thermodynamic potential (Gibbs free energy) of the system
(Kac et al., 1963). The potential is given by

V(x) =

∞, 0 ≤ x < δ

−αe−γx, x ≥ δ
(1.4.1)

describing the particles interacting in pairs, consisting of a hard core of length δ and an
exponential attraction. The sad news about this model though, is that there is no phase
transition. But, anyway it’s a good take home message because one can not model the
particular system described above with such a potential function and hope to observe a
phase transition.

So, what did we do? We first started by reproducing the results by Kac, particularly the
computation of the partition function (see, Appendix A) and further computed (numer-
ically) the eigenvalues of a certain integral equation, something which he didn’t do in
his paper. But, as expected the results agreed with the analytical results found by Kac.
Part of the mentioned computations and results are in Appendix2 A.

1Kac has shown that the partition function can be determined exactly in the thermodynamic limit. But
his model didn’t show a phase transition. This model was further discussed by M. Kac, G.E. Uhlenbeck,
P.C. Hemmer, they have shown that in the so-called van der Waals limit when the range of the attractive
force goes to infinity while its strength becomes proportionally weaker a phase transition appears. In this
paper we take a different direction, which is generalising the potential function.

2This work was done in a project that I did at the African Institute for Mathematical Sciences (AIMS
http://archive.aims.ac.za/structured-masters-research-projects/2012-13). In the project we re-
covered the mentioned Kac results. But two things were not achieved, 1. the eigenvalues didn’t agree with
the results of Kac, more especially, when s → 0 Kac proved that the largest eigenvalue, λ0 → ∞, while all
the other eigenvalues approach finite values and 2. since the original fluid model of Kac doesn’t show a
phase transition we wanted to generalise it but didn’t have enough time. In this project we have achieved
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9 1.4. Why this project?

Remark: We have already mentioned that the partition function will be expressed in
terms of eigenvalues of a certain integral equation. It is important at this stage to men-
tion that it is these eigenvalues that are interesting since the partition function is finally
expressed in terms of them and further analysis are done on the eigenvalues as we shall
see is some discussion later, particularly the largest eigenvalue. We can also point out
that the completely new part of this project is the computation of eigenvalues, since cal-
culation of the partition function follows exactly the method of Kac.

We have extended and generalised the analysis of Kac by considering a more general
class of potentials,

V(x) =

∞, 0 ≤ x < δ

−αe−axsin(bx + c), x ≥ δ
(1.4.2)

with a, α, δ > 0 and b, c ∈ R. These are chosen such that similar techniques of analytic
calculation of the partition function can still be employed.

these two goals, with a different numerical routine from the one we used before (classified under extended
formulas) we have recovered the Kac results. Thereafter we generalised the model.

Stellenbosch University  https://scholar.sun.ac.za



Chapter 2

Fluid Model and Partition Function

2.1 A One-dimensional Fluid Model

The model we introduce is inspired and similar to the one proposed by Kac (Kac, 1959)
and further discussed by Kac, Uhlenbeck, and Hemmer (Kac et al., 1963).

Consider N classical particles of mass m > 0 on an interval of length L. The particles
interact via a pair potential of the form (see also, (1.4.2))

V(x) =

∞, 0 ≤ x < δ

−αe−axsin(bx + c), x ≥ δ
(2.1.1)

with a, α, δ > 0 and b, c ∈ R.

(a) (b)

Figure 2.1: (a): Graph of the original potential considered by Kac in (Kac, 1959). (b): Modified
pair potential (2.1.1)

10
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11 2.2. Canonical Partition Function

Like in Kac’s original model, V has a repulsive hard core, but in contrast to his model,
an oscillating sinusoidal term is superimposed on the exponentially decaying attractive
part of the pair potential (see Figure 2.1 for an illustration). The Hamiltonian function
of the N-particle fluid is given by

H(p, q) =
N

∑
i=1

p2
i

2m
+

N

∑
i,j=1
i 6=j

V(|qi − qj|) (2.1.2)

where p = (p1, · · · , pN) ∈ RN denotes the vector of momenta and q = (q1, · · · , qN) ∈
[0, L]N the vector of position coordinates.

2.2 Canonical Partition Function

As mentioned in Chapter 1 and demonstrated using the example of the Ising spin chain,
the problem or main goal is to compute the canonical partition function, and then the
free energy density f in the thermodynamic limit,

f̄N(β, h) = lim
N,V→∞

ρ=constant

− 1
Nβ

ln ZN(β, h), (2.2.1)

where

ZN(β, h) =
∫

dpdqe−βH(p,q), (2.2.2)

as a function of the inverse temperature β and the density ρ, where the canonical parti-
tion function is given by

ZN(β, L) =
1

ΛN N!

∫ L

0
· · ·

∫ L

0
dq1 · · ·dqN exp

(
−β ∑

k<j
V(|qk − ql |)

)
(2.2.3)

=
1

ΛN N!

∫ L

0
· · ·

∫ L

0
dq1 · · ·dqN ∏

k<l
S(qk − ql)

× exp

(
αβ ∑

k<l
e−a|qk−ql |sin(b|qk − ql |+ c)

)
.

Here the Gaussian pk-integrals have already been performed, resulting in the prefactor
in terms of the thermal de Broglie wavelength Λ = h̄

√
2πβ/m. The step function

S(r) =

0 for |r| < δ

1 for |r| > δ
(2.2.4)
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Chapter 2. Fluid Model and Partition Function 12

in (2.2.3) takes into account the hard core repulsion of the pair potential (1.4.2). The
following steps of the analysis of ZN proceed very much along the line of the calculations
in (Kac, 1959) and (Kac et al., 1963) (also see, Appendix A. Since the hard core of the pair
potential (1.4.2) imposes a linear order of the particles, and noting that the integrand is
symmetric under permutations of q1, · · · , qN , we can write (2.2.3) in the form

ZN(β, L) =
1

ΛN

∫
· · ·

∫
0≤q1<···<qN≤L

dq1 · · ·dqN

N−1

∏
j=1

S(qj+1 − qj)

= exp

(
αβ

2

N

∑
k,l=1

e−a|qk−ql |sin(b|qk − ql |+ c)

)
. (2.2.5)

Using the exponential representation of the sine function, we obtain

ZN(β, L) =
1

ΛN

∫
· · ·

∫
0≤q1<···<qN≤L

dq1 · · ·dqN

N−1

∏
j=1

S(qj+1 − qj)

= exp

(
ν

2

N

∑
k,l=1

e−γ|qk−ql |
)(

ν∗

2

N

∑
k,l=1

e−γ∗|qk−ql |
)

(2.2.6)

where ν = −ie−icαβ/2 and γ = a− ib. Like in Kac the calculation we going to use the
identity

(
ν

2

N

∑
k,l=1

e−γ|qk−ql |
)

=
∫ ∞

−∞
· · ·

∫ ∞

−∞
dx1 · · ·dxNW(x1)exp

(
√

ν
N

∑
k=1

xk

)

×
N−1

∏
l=1

Pγ(xl |xl+1, ql+1 − ql) (2.2.7)

where

W(x) =
1√
2π

exp
(
− x2

2

)
(2.2.8)

and

Pγ(x|x̄, t) =
1√

2π(1− e−2γt)
exp

(
− (x̄− xe−γt)2

2(1− e−2γt)

)
(2.2.9)

Now, using (2.2.7) in (2.2.6) we get the canonical partition function in the form of a
product of nearest-neighbour pair functions in both q and x,
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13 2.2. Canonical Partition Function

ZN(β, L) =
1

ΛN

∫
· · ·

∫
0≤q1<···<qN≤L

dq1 · · ·dqN

N−1

∏
j=1

S(qj+1 − qj)

×
∫ ∞

−∞
· · ·

∫ ∞

−∞
dx1 · · ·dxNW(x1)

N

∏
k=1

exp(
√

νxk)

×
N−1

∏
l=1

Pγ(xl |xl+1, ql+1 − ql)

×
∫ ∞

−∞
· · ·

∫ ∞

−∞
dy1 · · ·dyNW(y1)

N

∏
k=1

exp(
√

ν∗yk)

×
N−1

∏
l=1

Pγ∗(yl |yl+1, ql+1 − ql) (2.2.10)

In the q variables, the integrand in (2.2.10) depends only on the difference ql+1 − ql of
pairs of nearest neighbours. This property allows us to perform the q integrations by
making a Laplace transform in L, and analogous to the calculation in Appendix A, we
obtain

Z(β, s) =
∫ ∞

0
dLe−sLZN(β, L)

=
1

ΛNs2

∫ ∞

−∞
· · ·

∫ ∞

−∞
dx1y1 · · ·dxNyNW(x1)W(y1)

× exp

(
N

∑
k=1

[√
νxk +

√
ν∗yk

]) N−1

∏
l=1

ps(xl , yl ; xl+1, yl+1) (2.2.11)

with

ps(x, y; x̄, ȳ) =
∫ ∞

δ
dτe−sτPγ(x|x̄, τ)Pγ∗(y|ȳ, τ), (2.2.12)

where δ is the diameter of the hard core of the pair potential (1.4.2). The ordering of the
xl , yl in successive pairs suggests the introduction of the kernel

Ks(x, y; x̄, ȳ) =
W(x)W(y)ps(x, y; x̄, ȳ)√

W(x)W(y)W(x̄)W(ȳ)
exp

[√
ν(x + x̄) +

√
ν∗(y + ȳ)

2

]
(2.2.13)

Ks is symmetric upon exchanging (x, y) with (x̄, ȳ), and one can show that, for δ > 0, it
is a Hilbert-Schmidt kernel,

∫ ∫ ∫ ∫ ∞

−∞
dx̄dȳ|Ks(x, y; x̄, ȳ)|2 < ∞ (2.2.14)
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Chapter 2. Fluid Model and Partition Function 14

The proof of (2.2.14) is shown in Appendix B. Property (2.2.14) implies that the integral
operator Ks defined by

(Ksψ)(x, y) =
∫ ∫ ∞

−∞
dx̄dȳKs(x, y; x̄, ȳ)ψ(x̄, ȳ) (2.2.15)

is a Hilbert-Schmidt operator in the space L2(R) of square-integrable functions on the
real plane. Therefore, Ks has a complete set of orthonormal eigenfunctions ψj(x, y; s)
with discrete eigenvalues λj(s) for j = 0, 1, 2, · · · , satisfying the integral equation

∫ ∫ ∞

−∞
dx̄dȳKs(x, y; x̄, ȳ)ψj(x̄, ȳ; s) = λj(s)ψj(x, y; s) (2.2.16)

Accordingly, the kernel Ks can be expanded in the convergent series

Ks(x, y; x̄, ȳ) =
∞

∑
j=0

λj(s)ψj(x, y; s)ψ∗j (x̄, ȳ; s) (2.2.17)

The Laplace transform of the partition function ZN in (2.2.11) can be expressed in terms
of Ks by writing

ZN(β, s) =
1

ΛNs2

∫ ∞

−∞
dx1dy1 · · ·dxNdyN

×
√

W(x1)W(y1)W(xN)W(yN)exp

[√
ν(x1 + xN) +

√
ν∗

2

]

×
N−1

∏
l=1

Ks(xl , yl ; xl+1, yl+1) (2.2.18)

The Hilbert-Schmidt property of the kernel Ks allows us to express ZN in terms of the
eigenvalues and eigenfunctions of the integral operator Ks. Inserting the series expan-
sion (2.2.17) into (2.2.18) and integrating over x2, y2, · · · , xN−1, yN−1 (calculation similar
to that of Equations (A.2.5) - (A.2.10) in Appendix A), we obtain

ZN(β, s) =
1

ΛNs2

∞

∑
j=0

λN−1
j (s)Aj Āj (2.2.19)

with

Aj =
∫ ∫ ∞

−∞
dxdyψj(x, y; s)

√
W(x)W(y)exp

[√
νx +

√
ν∗y

2

]
(2.2.20)

Āj =
∫ ∫ ∞

−∞
dxdyψ∗j (x, y; s)

√
W(x)W(y)exp

[√
νx +

√
ν∗y

2

]
(2.2.21)
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15 2.2. Canonical Partition Function

From (2.2.19) above we have that the calculation of Z , which the Laplace transform
of Z, has been reduced to the calculation of eigenvalues and eigenvectors of Ks (see
also (2.2.16) above). The computation of these eigenvalues and eigenvectors of Ks is
extremely difficult if not impossible. This implies we have to do the computation nu-
merically, which is almost always possible if K is well behaved. In the next Chapter we
develop the numerical method to do the mentioned task.
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Chapter 3

Discretization of Integral Equation

The fact that integrals of elementary functions could not, in general, be computed an-
alytically, gave birth to numerical integration, also called quadrature (Flannery et al.,
1992). Firstly, we want to discuss the quadrature method we have adopted to evaluate
the integral

I =
∫ b

a
f (x)dx. (3.0.1)

This quadrature method is based on the obvious strategy of adding up the value of the
integrand at a sequence of abscissas within the range of integration. The game is to
obtain the integral as accurately as possible with the smallest number of function eval-
uations of the integrand (Flannery et al., 1992). It is very important for us to describe
the quadrature method we have used to evaluate (3.0.1) because it is the method we are
going to use for the numerical integration in this paper. We are going to explain how.

The quadrature method we are going to use is classified under the so-called extended
formulas1 (for more details, see (Flannery et al., 1992)). It is given by

1In previous work done when at AIMS the Gauss-Hermite quadrature method was used. But this
method did not work, i.e., we couldn’t recover the eigenvalues as proved by Kac. This problem was solved
by using the above discretization method, where the eigenvalues converged and behaved as proved by
Kac.

16
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17 3.1. Example 1:

∫ b=xN

a=x1

dx f (x)

= ∆x
[

3
8

f1 +
7
6

f2 +
23
24

f3 + f4 + · · ·+ fN−3 +
23
24

fN−2 +
7
6

fN−1 +
3
8

fN

]
+ O

(
1

N4

)
, (3.0.2)

where x1, x2, · · · , xN−1, xN , is a sequence of abscissas which are spaced apart by a con-
stant step ∆x = b−a

N .

xi = x1 + i∆x , i = 1, 2, · · · , N.

A function f (x) has known values at the xi’s,

f (xi) ≡ fi.

3.1 Example 1:

Now, we are ready to apply our quadrature (3.0.2). The problem to which we apply
our quadrature is an eigenvalue problem, which has (1) an exact solution: which shows
how accurate the quadrature is and (2) it serves as a first step to the solution of our
problem: since we are also going to solve an eigenvalues problem. So, this example is
very important for those two reasons. It is the homogeneous Fredholm equation of the
second kind (for details on Fredholm equations, see (Masujima, 2005)), which is Exercise
4.9 on page 102 of the book (Masujima, 2005) and is given by

λ
∫ ∞

−∞
dyK(x, y)φ(y) = φ(x), −∞ < x < ∞, (3.1.1)

which can be rewritten (with λ→ 1
λ , since λ is just a constant) as

∫ ∞

−∞
dyK(x, y)φ(y) = λφ(x), −∞ < x < ∞, (3.1.2)

where

K(x, y) =
1√

1− t2
exp

[
x2 + y2

2

]
exp

[
− x2 + y2 − 2xyt

1− t2

]
(3.1.3)

with t fixed and 0 < t < 1.
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Chapter 3. Discretization of Integral Equation 18

3.1.1 Analytical Results

The integral equation (3.1.3) has eigenvalues

λn =
√

πtn, n = 0, 1, 2, · · · . (3.1.4)

Below is a table for the first five eigenvalues, that is, λn for n = 0, 1, 2, · · · , 4.

n λn t=0.2 t=0.4 t=0.6 t=0.8
0 λ0 1.77245000 1.7724500 1.772450 1.772457
1 λ1 0.35449100 0.7089820 1.063470 1.417960
2 λ2 0.07089820 0.2835930 0.638083 1.134370
3 λ3 0.01417960 0.1134370 0.382850 0.907496
4 λ4 0.00283593 0.0453748 0.229710 0.725997

Table 3.1: First five eigenvalues, λn, for n = 0, 1, 2, · · · , 4, which were computed from (3.1.4).
This eigenvalues will be compared to the numerically ones computed using (3.0.2)

3.1.2 Numerical results

Now, we want to use our quadrature method to compute the eigenvalues of the integral
equation (3.1.2) and compare the results with that in Table 3.1 above. Equation (3.1.2)
has limits −∞ to ∞, which means it is an improper integral (Masujima, 2005). In order
to apply (3.0.2) we need (3.1.2) to have finite limits. This can be done by noting that,
outside a certain range the value of K(x, y) is essentially zero (see, Fig.3.1) . below).
The integral equation (3.1.2) becomes

∆y
N

∑
i=1

K(x, yi)φ(yi) = λφ(x). (3.1.5)

We choose discrete x values in such a way that xi = yi, so that (3.1.5) written as a system
of linear equations becomes

∆y


w1K(x1, y1) · · · wNK(x1, yN)

w1K(x2, y1) · · · wNK(x2, yN)
...

...
w1K(xN , y1) · · · wNK(xN , yN)




φ(y1)

φ(y2)
...

φ()

 = λ


φ(x1)

φ(x2)
...

φ(xN)

 (3.1.6)

which is the standard eigenvalue problem and Mathematica has been used to compute
the eigenvalues for N = 15, N = 20 and N = 25 to obtain the first five eigenvalues
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19 3.1. Example 1:

Figure 3.1: The plot of the kernel K(x, y), Equation(3.1.3) for t = 0.5. We can see that for (x, y) =
(−10,−10) or (x, y) = (10, 10), for example, the kernel is almost zero. So, we can choose our
bounds to be −10 < x, y < 10, and it can be shown that increasing this bounds to −15 < x, y <
15, for instance, would not affect the results.

which are tabulated below. This was done for the cases t = 0.2 and t = 0.8. N = 15,
N = 20 and N = 25 was done to check convergence of the eigenvalues, and we can
clearly see that the eigenvalues indeed converge,

λn t=0.2(N=20) t=0.2(N=30) t=0.2(N=40) t=0.8(N=20) t=0.8(N=30) t=0.8(N=40)
λ0 1.7719800 1.77245000 1.77245000 1.876730 1.7733400 1.772450
λ1 0.3512500 0.35449100 0.35449100 1.615700 1.4201400 1.417970
λ2 0.0685784 0.07089800 0.07089820 1.314660 1.1385400 1.134380
λ3 0.0162239 0.01417990 0.01417960 1.285860 0.9145620 0.907520
λ4 0.0018360 0.00283548 0.00283593 0.802914 0.7367960 0.726042

Table 3.2: First five eigenvalues, λn, for n = 0, 1, 2, · · · , 4

As we can see from both tables above, the numerically computed eigenvalues are in
good agreement with the exact ones. We also observe that, for N = 30 and N = 40 the
eigenvalues have converged.

3.1.3 Error Analysis

Let us consider the case of t = 0.2 and N = 50, and compare the exact results to the
numerical one, to get a quantitative idea of how close the numerical results are to the
exact ones.
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Chapter 3. Discretization of Integral Equation 20

n λn Exact Numerical % Error
0 λ0 1.77245000 1.77245000 0.000
1 λ1 0.35449100 0.35449100 0.000
2 λ2 0.07089820 0.07089820 0.000
3 λ3 0.01417960 0.01417960 0.000
4 λ4 0.00283593 0.00283593 0.000

Table 3.3: Comparing the numerical eigenvalues to the exact eigenvalues by computing the %
error. For N = 50 discretization points, the eigenvalues have already converged to the exact
ones. This shows that our discretization method is accurate, at least for the problem at hand.

3.2 Example 2:

Firstly, we have to mention that this example is very important, because it shows how
the numerical integration method described above, which is for the one-dimensional
case, is generalised to the two-dimensional case and then applied to a simple case with
known results to check that it reproduces the same results. Now, we write the above
integral equation in a generalized form, which is simply a product of the integrand, and
then integrated in the plane, which becomes

∫ ∞

−∞

∫ ∞

−∞
dydȳK(x, y; t)K(x̄, ȳ; t)ψ(y)ψ(ȳ) = λλ̄ψ(x)ψ(x̄). (3.2.1)

Analytically, the solution is given by

λn =
√

πtn

and
λ̄n =

√
πtn = λn

for n = 0, 1, 2, 3, · · · . This readily gives the eigenvalues solution to (3.2.1) as

λλ̄ = λ0λ0, λ0λ1, λ1, λ0, λ0λ2, · · · . (3.2.2)

Numerically, if we apply our quadrature rule (3.0.2), we get the following system of
equations
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21 3.2. Example 2:

∆y∆ȳ



w0w0K(x0, y0)K(x̄0, ȳ0) . . . wnwnK(x0, yn)K(x̄0, ȳn)

w0w0K(x1, y0)K(x̄0, ȳ0) . . . wnwnK(x1, y0)K(x̄n, ȳn)

...
. . .

...

w0w0K(xn, yn)K(x̄0, ȳ0) . . . wnwnK(xn, yn)K(x̄n, ȳn)





ψ(x0)ψ(x̄0)

ψ(x1)ψ(x̄0)

...

ψ(xn)ψ(x̄n)



= λ



ψ(x0)ψ(x̄0)

ψ(x1)ψ(x̄0)

...

ψ(xn)ψ(x̄n)


. (3.2.3)

It has been checked that the above generalised analytical result for the eigenvalues, λλ̄,
agrees with the numerically computed eigenvalues using (3.2.3), but the results are not
shown here.

3.2.1 Example 3: Eigenvalues for the Kac model (1D integration)

Here, we are interested in computing the eigenvalues of the following so-called Kac
integral equation using (3.2.3)

∫ ∞

−∞
Ks(x, y)ψ(y) dy = λψ(x), (3.2.4)

Ks(x, y) =
W(x)ps(x|y)
[W(x)W(y)]

1
2

exp

[
ν

1
2

2
(x + y)

]
, (3.2.5)

ps(x|y) =
∫ ∞

δ
exp(−st)P(x|y; t)dt; (3.2.6)

P(x|y, t) =
exp

{
− (y−xe−γt)2

2(1−e−2γt)

}
[2π(1− e−2γtt)]

1
2

, (3.2.7)
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Chapter 3. Discretization of Integral Equation 22

with W(x) = 1√
2π

exp(− 1
2 x2).

The plot of the above kernel, Ks(x, y), is given in Figure 3.2 below

Figure 3.2: The plot of the kernel K(x, y), Equation (3.2.5) for (δ, ν, γ, s) = (0.1, 0.1, 1.0, 0.2) . It is
clear that we can choose our bounds to be −10 < x, y < 15.

Now, let’s use (3.1.6) to compute the eigenvalues of (3.2.4). Mathematica was used to
compute the eigenvalues and the first five eigenvalues are

n λn N = 30 N = 40 N = 80
1 λ1 5.247460 5.247460 5.247460
2 λ2 0.932509 0.932490 0.932491
3 λ3 0.522289 0.522252 0.522253
4 λ4 0.358080 0.358022 0.358023
5 λ5 0.266312 0.266225 0.266227

Table 3.4: First five numerically computed eigenvalues of the Kac integral equation. This was
done for different numbers of discretisation points, N = 30, N = 40 and N = 80. We can see
that all eigenvalues converge to the first five decimal places.

3.2.2 Example 4: Eigenvalues K′ 2D integration)

Now, lets consider K′s(x, y; x̄, ȳ) = Ks(x, y)K(x̄, ȳ), for N = 40 discretization points.
From the Table 3.4 above, the first five eigenvalues are
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n λn N = 40
1 λ1 27.5358
2 λ2 4.89320
3 λ3 4.89320
4 λ4 2.74050
5 λ5 2.74050

Table 3.5: First five eigenvalues computed from the eigenvalues of the generalised integral equa-
tion using the values for N = 40 discretization points in Table 3.4 above

Now, we have used (3.2.3) to compute the same eigenvalues. The results that we ob-
tained are as follows

n λn N = 40
1 λ1 27.5358
2 λ2 4.89341
3 λ3 4.89341
4 λ4 2.73963
5 λ5 2.73963

Table 3.6: First five eigenvalues computed from the eigenvalues of the generalised integral equa-
tion using 3.2.3. When compared to the Table 3.5 above the first three agree to three decimal
places.

This is all good news. Now, we are ready to compute the eigenvalues of the integral
Equation 2.2.16, which is a crucial part of this paper because it is the eigenvalues of this
integral equation that will tell us whether the is a phase transition or not for our system.
The examples have shown that our discretization method enables us to compute the
eigenvalues to a very good approximation, at least for the two different kernels we have
considered. So, we managed at least to show two important things in the computation
of the eigenvalues, (1) convergence of eigenvalues, (2) agreement between eigenvalues
found using the two dimensional version of the numerical integration method and the
ones found by using the already computed eigenvalues of the one-dimensional integra-
tion method, at least in the two examples where we created a two dimensional version
of the integral equation by simply multiplying the one-dimensional integral equation
by itself.
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Chapter 4

Numerical Results and Analysis

4.1 Numerical integration in two-dimensions

In general, our numerical integration in two-dimensions is

∫ b

a

∫ b

a
dx̄dȳK(x, y; x̄i, ȳj; s)ψ(x̄, ȳ) ≈ ∆x̄∆ȳ

N

∑
i,j=1

wiwjK(x, y|x̄i, ȳj; s)ψ(x̄i, ȳj), (4.1.1)

which gives

∆x̄∆ȳ



w0w0K(x0, y0|x̄0, ȳ0; s) . . . wnwnK(x0, y0|x̄n, ȳn; s)

w0w0K(x1, y0|x̄0, ȳ0; s) . . . wnwnK(x1, y0|x̄n, ȳn; s)

...
. . .

...

w0w0K(xn, yn|x̄0, ȳ0; s) . . . wnwnK(xn, yn|x̄n, ȳn; s)





ψ(x̄0, ȳ0)

ψ(x̄1, ȳ0)

...

ψ(x̄n, ȳn)



= λ



ψ(x0, y0)

ψ(x1, y0)

...

ψ(xn, yn)


, (4.1.2)

24
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25 4.2. Computation of eigenvalues

where we set xi = x̄i and yj = ȳj so that Equation (4.1.2) becomes an eigenvalue problem
as we have already mentioned before. In fact, the method we have used to compute the
eigenvalues in the last examples in the Chapter 3 is indeed the one given by Equation
(4.1.2)

4.2 Computation of eigenvalues

Now, we are ready to compute the eigenvalues of Equation (4.1.2) where the kernel1

(which was derived in Chapter 2) is given by

Ks(x, y; x̄, ȳ) =
W(x)W(y)ps(x, y; x̄, ȳ)√

W(x)W(y)W(x̄)W(ȳ)
exp

[√
ν(x + x̄) +

√
ν∗(y + ȳ)

2

]
(4.2.1)

where

ps(x, y; x̄ȳ) =
∫ ∞

δ
dτe−sτPγ(x|x̄, τ)Pγ∗(y|ȳ, τ), (4.2.2)

where δ is the diameter of the hard core of the pair potential and

Pγ(x|x̄, t) =
1√

2π(1− e−2γt)
exp

(
− (x̄− xe−γt)2

2(1− e−2γt)

)
(4.2.3)

where

W(x) =
1√
2π

exp
(
− x2

2

)
. (4.2.4)

This is done by the methods outlined in Chapter 3.

4.3 Comment on the matrix size

The matrix on the left hand side of Equation (4.1.2) above has size n2 × n2, where n2

is the number of discretisation points in the plane. To apply the method of Chapter
3 to this problem we need to make a few modifications or improvements. One thing

1Unlike in the original Kac potential where we had two parameters, (a, α), in the general case we have
four control parameter (a, b, c, α). Some of these parameters have an impact in the calculation of the kernel.
a and α are the same as in the Kac case and does not affect the computation of K. c is not interesting,
setting it to be zero can just as well do. The main suspect is b, which is the periodicity of the sine function.
Computation of K have indicated that for large values of b, larger than one, Mathematica fails to compute K
because the is integration involved in this computation and integrating a highly oscillatory function can be
problematic.
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that you should have suspected already is, for what n does the eigenvalues of Equation
(4.1.2) converge since, for example, when n = 20 the size of the matrix is 400× 400? It
turns out that this very question is the stumbling block to the success of the computation
of the eigenvalues.

What we did at first was to simply use the method developed in Chapter 3 to compute
the eigenvalues. Although the computation was very slow for a small number of dis-
cretization points such as n = 20, we did get some eigenvalues. We have already asked
the question, did the eigenvalues converge for n = 20, for instance?, and if they didn’t,
then how long is it going to take Mathematica to compute the eigenvalues for n = 30?
Yes, it is slow, but what we found out is that we can go up to n = 70 and get the eigen-
values within a day. For n = 80, for which the matrix size is 6400× 6400, Mathematica
couldn’t store the elements of the matrix. This was a huge blow because the eigenvalues
have not converged yet.

So, how do we get out of this situation? We realised that our kernel has the same features
as the kernel in Figure 3.1, it is mostly non-zero along the diagonal of the domain and
effectively zero as you go away from the diagonal. So, we can cleverly2 chose a number
η ∈ R, such that

K′(x, y; x̄, ȳ) =

K(x, y; x̄, ȳ) if |x− x̄| > η or |y− ȳ| > η,

0 otherwise .
(4.3.1)

This is, in fact, all we needed because instead of computing K for the matrix elements, we
are going to compute K′ which will increase the speed of the computation of the matrix
elements since for K′ = 0 no computation is going to be done and Mathematica will
only store in its memory the non-zero elements of the matrix and everything else will be
taken care of by using the Sparse matrix method in Mathematica. We have checked for
n = 20 that Mathematica gives the same results when using K′ as illustrated in Table 4.1
This is going to allow us to increase the number of discretisation points and hope that
the eigenvalues will converge. We will call the method of computing the eigenvalues
using K′ the Sparse Matrix Method.

2What we mean by this, is that for a given set of parameters, we compute enough values of K on a grid
in R4 and then it is after we have computed these values of K that we are in a better position to chose in
which regions of the domain R4 to set K = 0. The choice of the integration domain, i.e., setting the limits
of integration, pops up in a similar manner.
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λn Kernel: is K Kernel: is K′

λ1 37176.7 + 6.66076× 10−12i 37176.7 + 6.66076× 10−12i
λ2 15265.7 - 31449.2i 15265.7 - 31449.2i
λ3 15265.7 + 31449.2i 15265.7 + 31449.2i
λ4 33415.5 + 2.18279×10−11i 33415.5 + 2.18279×10−11i
λ5 15673.8 + 29234.2i 15673.8 + 29234.2i

Table 4.1: First five eigenvalues, λn, for n = 1, 2, · · · , 5. This is for the original kernel K and the
modified kernel K′. We can see from the table the the eigenvalues are the same. So, our modified
kernel indeed gives the same results as the original kernel, but the former has the advantage that
it can be fast and can be computed for large number of discretisation points as compared to the
latter.

The following section will give the results of this method, from which we will conclude
whether the eigenvalues converge or not. As we have mentioned before, the rest of the
analysis, including the discussion of the physics of the model, in particular, whether
such a model will have a phase transition or not, all depend on the convergence of the
eigenvalues at this point.

4.4 Sparse Matrix Method and Results

The first thing to do is to check for convergence. We have chosen the number of dis-
cretization points to start from n = 40 up to n = 100, and in the computation of the
eigenvalues we couldn’t go beyond n = 110. So, we have a bound due to the limitation
of computational resources, which is the size of a matrix Mathematica can handle in this
case. The Figure 4.1 shows how the eigenvalues change with the increasing number, n,
of discretisation points,

Unfortunately, the eigenvalues do not converge within the range of the number of dis-
cretisation points Mathematica can tolerate3.

3This failure of the eigenvalues to converge might be due to the computation of K. We have already
mentioned that the parameter b can make the computation of K using Mathematica to be impossible. This
suggest that setting b > 0 to be less than one would be a solution. It doesn’t seem to be the case though, as
different parameters have been tried, but only for the above set of parameters we reported the results. We
must also report that we failed to come up with a way to pin down, where exactly in this computation of K
things might be going wrong. A different discretization method might be a solution here, but unfortunately
we don’t know better how to choose such a different because in our case it seems like passing the test of
solving exactly solvable integral equations is not enough for a numerical routine to be the right choice.
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Figure 4.1: The plot of the logarithm of the absolute value of the largest eigenvalue, Log|λ0|
versus the inverse of the number of discretisation points, 1/n, for n = 40 to n = 100. We see
that Log|λ0| does not converge, at least for as large a number of discretisation points as n = 100,
since we can not go beyond n = 110.
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Chapter 5

Conclusion

We had set out to generalise the Kac model’s exponentially decaying potential (1.4.1) by
superimposing an oscillating sinusoidal term on it (see (1.4.2)), and compute its canon-
ical partition function (see Chapter 2). By methods similar to those used by Kac (see
Appendix A), we were able to express the partition function of this generalised model
in terms of the eigenvalues and eigenfunctions of the integral equation (2.2.16).

Unlike in the Kac paper, in which the integral equation is one dimensional, in our case
the integral equation is two-dimensional. The integral equation is not exactly solvable ,
and this led to the second part of the project, the discretization of the integral equation
in two dimensions and then computing the eigenvalues. Before we got to the point of
computing the eigenvalues in this general case, we followed a series of steps, in which,
starting from one-dimensional case we tested the discretization scheme using an exactly
solvable integral equation. The eigenvalues were reproduced exactly (see Table 3.3). The
one dimensional case was done because we wanted to adopt it to the two dimensional
case.

We then applied the discretisation scheme to the one dimensional Kac integral equation
(A.1.22), and we obtained the results in Table 3.4. We then generalised the Kac integral
equation to a two dimensional case, where Ks(x, y; x̄, ȳ) = Ks(x, y)K(x̄, ȳ). From Table
3.4 we calculated the eigenvalues, for N = 40 discretisation points the eigenvalues are
as shown in Table 3.5.

Now, in contrast to using the results in Table ?? to compute the eigenvalues of the two
dimensional Kac integral equation, we have used the numerical method (3.2.3) to com-

29
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pute the eigenvalues. The results that we obtained are shown in Table 3.6.The eigenval-
ues converged when increasing the number of dicsretisation points, exact results agreed
with numerical results, and even when generalised to two dimensions we got the ex-
pected results with convergence (see Table 3.4, Table 3.5 and Table 3.6 above) . This test
verified that in principle the numerical method is working well.

Despite the careful construction and testing of the method, the numerical scheme failed
to converge when applying it to the integral equation (2.2.16) of the generalised Kac
model. This failure can be attributed to the possibility that the kernel which we derived
from the generalised potential function behaves so badly that the numerically computed
eigenvalues do not converge as we have already seen in Figure 4.1. By badly behaving
kernel we mean that our numerical method which worked well for the Kac integral
equation (eigenvalues converged for as low as N = 40 discretisation points) doesn’t
work when applied to the generalised integral equation (eigenvalues do not converge,
even for as large a number of discretisation points as N = 100 together with an im-
proved method, Sparse Matrix Method).

Finally, although the eigenvalues have converged for the Kac integral equation and
failed to converge for the generalised integral equation, we attribute the failure of the
latter to the numerical method we have used. So, we hope that with some other and
better method it might be possible to decide whether the system undergoes a phase
transition or not.
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Appendix A

Kac Integral Equation

A.1 Derivation of the Kac Integral Equation

In this section we show the derivations of Equations (9),(10),(12), and (13) of (Kac et al.,
1963). The partition function for the one-dimensional gas is given by (Kac et al., 1963),

Z(L, T, N) =
1

ΛN
1

N!

∫ L

0
· · ·

∫ L

0
dt1 · · · dtN × exp

[
− 1

kT ∑
i<j

V(|ti − tj|)
]

(A.1.1)

where Λ2 = h2/2πmkT.
Using equation (1.4.1), equation (A.1.1) becomes

Z(L, T, N) =
1

ΛN
1

N!

∫ L

0
· · ·

∫ L

0
dt1 · · · dtN

× exp

[
ν ∑

i<j
e−γ|ti−tj|

]
∏
i<j

S(|ti − tj|) (A.1.2)

where the step function S(x) is defined by

S(x) =

{
0 for |x| < δ.
1 for |x| > δ.

(A.1.3)

Now, let us consider

31
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N

∑
i,j=1

e−γ|ti−tj| =
N

∑
i=1

e−γ|ti−t1| +
N

∑
i=1

e−γ|ti−t2| + · · ·+
N

∑
i=1

e−γ|ti−tN |

= e−γ|t1−t1| + e−γ|t2−t1| + · · ·+ e−γ|tN−t1|

+ e−γ|t1−t2| + e−γ|t2−t2| + · · ·+ e−γ|tN−t2|

...

+ e−γ|tN−t1| + e−γ|tN−t2| + · · ·+ e−γ|tN−tN |.

(A.1.4)

Because |ti − tj| = |tj − ti| and e−γ|ti−ti | = 1 for i = j, equation (A.1.4) becomes

N

∑
i,j=1

e−γ|ti−tj| = N + 2 ∑
1≤i<j≤N

e−γ|ti−tj|. (A.1.5)

Since the integrand in equation (A.1.2) is symmetric in the variables t1, · · · , tn we are
going to consider the integration over the domain,

[0, L]× [t1, L]× [t2, L]× · · · × [tN , L]

instead of
[0, L]× [0, L]× [0, L]× · · · × [0, L].

In that case the solution to (A.1.2) will be N! times the result obtained in the case of the
new domain of integration.Therefore equation (A.1.2) becomes

Z(L, T, N) =
e−

1
2 Nν

ΛN

∫
· · ·

∫
0<t1<t2<···<tN<L

dt1 · · · dtN

× exp

[
ν

2

N

∑
i,j=1

e−γ|ti−tj|
]

N−1

∏
j=1

S(|tj+1 − tj|). (A.1.6)

since for t1 < t2 < · · · , tN we have that

∏
i<j

S(|ti − tj|) =
N−1

∏
j=1

S(|tj+1 − tj|). (A.1.7)
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The attractive part of the integrand of equation (A.1.6) can be rewritten by using the
identity

exp

[
ν

2

N

∑
i,j=1

exp(−γ|ti − tj|)
]
=
∫ ∞

−∞
· · ·

∫ ∞

−∞
dx1 · · · dxN

× exp[ν2(x1 + x2 + · · ·+ xN)]

×W(x1)
N−1

∏
j=1

P(xj|xj+1, tj+1 − tj), (A.1.8)

where W(x) = 1√
2π

exp(− 1
2 x2) and

P(x|y, t) =
exp

{
− (y−xe−γt)2

2(1−e−2γt)

}
[2π(1− e−2γtt)]

1
2

. (A.1.9)

Now, let

F1(t2 − t1) =
e−

ν
2

Λ

∫ ∞

−∞
dx1W(x1)eν

1
2 x1 S(|t2 − t1|), (A.1.10)

Fk(tk+1 − tk) =
e−

ν
2

Λ

∫ ∞

−∞
dxkeν

1
2 xk P(xk|xk+1; tk+1 − tk)

× S(|tk+1 − tk|), (A.1.11)

for k = 2, 3, · · · , N − 2, and

FN−1(tN − tN−1) =
e−

ν
2

Λ

∫ ∞

−∞
dxN−1eν

1
2 xN−1

e−
ν
2

Λ

∫ ∞

−∞
dxNeν

1
2 xN

× P(xN−1|xN ; tN − tN−1)

× S(|tN − tN−1|). (A.1.12)

Substituting equation (A.1.8) into equation (A.1.7) and making a Laplace transformation
in L, we obtain

Z(s, T, N) =
∫ ∞

0
e−sLZ(L, T, N)dL

=
∫ ∞

0
dLe−sL

∫ L

0
dt1

∫ L

t1

dt2

∫ L

t2

dt3 · · ·
∫ L

tN−1

dtN

N−1

∏
j=1

Fj(tj+1 − tj)

=
∫ ∞

0
dt1

∫ ∞

t1

dt2 · · ·
∫ ∞

tN−1

dtN

∫ ∞

tN

dLe−sL
N−1

∏
j=1

Fj(tj+1 − tj) (A.1.13)
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Now, we make change of variables,

t1 = τ1,

t2 = τ1 + τ2,

· · ·
tN = τ1 + τ2 + · · ·+ τN ,

L = τ1 + τ2 + · · ·+ τN + τN+1.

We have to find the Jacobian so that we can write the integral in terms of the new vari-
ables τi. First we note that Fj(tj+1 − tj) = Fj(τj+1). The Jacobian is

∂(t1, t2, · · · , tN+1)

∂(τ1, τ2, · · · , τN+1)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂t1
∂τ1

∂t1
∂τ2

· · · ∂t1
∂τN+1

∂t2
∂τ1

∂t2
∂τ2

· · · ∂t2
∂τN+1

...
...

. . .
...

∂tN
∂τ1

∂tN
∂τ2

· · · ∂tN
∂τN+1

∂L
∂τ1

∂L
∂τ2

· · · ∂L
∂τN+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣
1 0 · · · 0
1 1 · · · 0
...

...
. . .

...
1 1 · · · 1

∣∣∣∣∣∣∣∣∣∣
= 1. (A.1.14)

Also, to find the new limits of integration we use t1 ≤ t2 ≤ · · · ≤ tN ≤ tN+1. The
first inequality and the limits of integration of t1 tells us that when t1 = 0, we have that
τ1 = 0 and t1 = ∞, τ1 = ∞, and using the inequalities we have that t1 ≤ t2, which
implies τ1 ≤ τ1 + τ2 or 0 ≤ τ2. Proceeding in this manner all the inequalities gives us
0 ≤ τi for i = 1, 2, · · · , N, N + 1.
Now, using the change of variables and the Jacobian in equation (A.1.14) the integral
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equation (A.1.13) becomes

Z(s, T, N) =
∫ ∞

0
dτ1

∫ ∞

0
dτ2 · · ·

∫ ∞

0
dτN

∫ ∞

0
dτN+1

× e−s(τ1+τ2+···+τN+τN+1)
N−1

∏
j=1

Fj(τj+1)

=
∫ ∞

0
dτ1e−sτ1

∫ ∞

0
dτ2 · · ·

∫ ∞

0
dτN

∫ ∞

0
dτN+1e−sτN+1

× e−s(τ2+···+τN)
N−1

∏
j=1

Fj(τj+1)

=
∫ ∞

0
dτ1e−sτ1

∫ ∞

0
dτ2e−sτ2 F1(τ2)

∫ ∞

0
dτ3e−sτ3 F2(τ3)

· · ·
∫ ∞

0
dτNe−sτN FN−1(τN)

∫ ∞

0
dτN+1e−sτN+1 (A.1.15)

and ∫ ∞

0
dτ1e−sτ1 =

∫ ∞

0
dτN+1e−sτN+1 =

1
s

.

Therefore, we have

Z(s, T, N) =
1
s2

N−1

∏
j=1

∫ ∞

0
dτe−sτj+1 Fj(τj+1). (A.1.16)

Putting the appropriate Fk(τk+1) into equation (A.1.16) we get

Z(s, T, N) =
e−Nν/2

ΛNs2

∫ ∞

−∞
· · ·

∫ ∞

−∞
dx1 · · · dxN

× exp
[
ν

1
2 (x1 + · · ·+ xN)

]
W(x1)

N−1

∏
i=1

ps(xi|xi+1), (A.1.17)

where

ps(x|y) =
∫ ∞

0
exp(−st)P(x|y; t)S(t) dt

=
∫ ∞

δ
exp(−st)P(x|y; t)dt. (A.1.18)
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From equation (A.1.17) we have

exp
[
ν

1
2 (x1 + · · ·+ xN)

] N−1

∏
i=1

ps(xi|xi+1)

= exp

(
ν

1
2

2
x1

)
ps(x1|x2)exp

[
ν

1
2

2
(x1 + x2)

]

× ps(x2|x3)exp

[
ν

1
2

2
(x2 + x3)

]

× ps(x3|x4)exp

[
ν

1
2

2
(x3 + x4)

]
...

× ps(xN−1|xN)exp

[
ν

1
2

2
(xN−1 + xN−1)

]
exp

(
ν

1
2

2
xN

)

= exp

[
ν

1
2

2
(x1 + xN)

]
N−1

∏
j=1

ps(xj|xj+1)exp

[
ν

1
2

2
(xj + xj+1)

]

= exp

[
ν

1
2

2
(x1 + xN)

]
W(x1)

W(x1)
1
2 W(x2)

1
2

× ps(x1|x2)exp

[
ν

1
2

2
(x1 + x2)

]

× W(x2)

W(x2)
1
2 W(x3)

1
2

ps(x2|x3)exp

[
ν

1
2

2
(x2 + x3)

]

× W(x3)

W(x3)
1
2 W(x4)

1
2

ps(x3|x4)exp

[
ν

1
2

2
(x2 + x3)

]
...

× W(xN−1)

W(xN−1)
1
2 W(xN)

1
2

ps(xN−1|xN)exp

[
ν

1
2

2
(xN−1 + xN)

]
W(xN)

1
2

= exp

[
ν

1
2

2
(x1 + xN)

]
W(x1)

1
2 W(xN)

1
2

N−1

∏
j=1

Ks(xj, xj+1) (A.1.19)

with

Ks(xi, xi+1) =
W(xi)ps(xi|xi+1)

[W(xi)W(xi+1)]
1
2

exp

[
ν

1
2

2
(xi + xi+1)

]
. (A.1.20)
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Therefore equation (A.1.17) becomes

Z(s, T, N) =
e−Nν/2

ΛNs2

∫ ∞

−∞
· · ·

∫ ∞

−∞
dx1 · · · dxN

× exp

[
ν

1
2

2
(x1 + xN)

]
W(x1)

1
2 W(xN)

1
2

N−1

∏
j=1

Ks(xj, xj+1) (A.1.21)

From now, we consider the function Ks as the kernel of the so-called Kac integral equa-
tion ∫ ∞

−∞
Ks(x, y)ψ(y) dy = λψ(x). (A.1.22)

A.2 Properties of the Kernel

This section serves to show some properties of the kernel. Firstly, we have that the
kernel Ks(x, y) is symmetric, that is Ks(x, y) = Ks(y, x). According to equation (4.8) of
(Kac, 1959), the kernel Ks in (A.1.20) can be written in the form

Ks(x, y) = exp

[
ν

1
2 (x + y)

2

]

×
∞

∑
k=0

exp(−x2/2)Hk(x)exp(−y2/2)Hk(y)
2πk!

exp(−kγt)

×
∫ ∞

δ
exp(−st)exp(−kγt)dt. (A.2.1)

From equation (A.2.1) we see that Ks(x, y) is symmetric.
We also have that the following two conditions for the kernel are true:

(a) Ks(x, y) is positive definite, which means that∫ ∫
Ks(x, y)ψ(x)ψ(y)dxdy (A.2.2)

is always positive, whenever ψ(x) is not identically 0 (for a proof see (Kac, 1959));

(b) Ks(x, y) is a Hilbert-Schimidt kernel, which means that∫ ∫
K2

s (x, y)dxdy < ∞. (A.2.3)

From these facts, using the Hilbert-Schmidt theory, one can conclude that equation
(A.1.22) has a discrete set of positive eigenvalues λi(s) starting from a maximum eigen-
value λ0(s) and converging to zero as i → ∞, that the corresponding eigenfunctions
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ψi(x, s) form a complete orthonormal set, and that the kernel Ks(x, y) can be expanded
in the series

Ks(x, y) =
∞

∑
i=0

λi(s)ψi(x, s)ψi(y, s). (A.2.4)

Inserting equation (A.2.4) into equation (A.1.21) we get

Z(s, T, N) =
e−Nν/2

ΛNs2

∫ ∞

−∞
· · ·

∫ ∞

−∞
dx1 · · · dxN

× exp

[
ν

1
2

2
(x1 + xN)

]
W(x1)

1
2 W(xN)

1
2

×
N−1

∏
j=1

[
∞

∑
j=0

λj(s)ψj(x, s)ψj(y, s)

]
(A.2.5)

Now, suppressing s, we are going to integrate equation (A.2.5) over x2 · · · xN−1. Let us
consider

∫ ∞

−∞
· · ·

∫ ∞

−∞
dx1 · · · dxNexp

[
ν

1
2

2
(x1 + xN)

]
W(x1)

1
2 W(xN)

1
2

N−1

∏
j=1

[
∞

∑
j=0

λjψj(x)ψj(y)

]

=
∫ ∞

−∞
dx1W(x1)

1
2 exp

(
x1ν

1
2

2

)

×
∫ ∞

−∞
· · ·

∫ ∞

−∞

(
∞

∑
j1=0

λj1 ψj1(x1)ψj1(x2)

)

×
(

∞

∑
j2=0

λj2 ψj2(x2)ψj2(x3)

)

×
(

∞

∑
j3=0

λj3 ψj3(x3)ψj3(x4)

)
...

×
(

∞

∑
jN−1=0

λjN−1 ψjN−1(xN−1)ψjN−1(xN)

)

×W(xN)
1
2 exp

(
xNν

1
2

2

)
×dx2 · · · dxN−1dxN . (A.2.6)
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The right hand side of equation (A.2.6) without∫ ∞

−∞
dx1W(x1)

1
2 ψj1exp

(
x1ν

1
2

2

)
(A.2.7)

and

∫ ∞

−∞
dxNW(xN)

1
2 ψjN exp

(
xNν

1
2

2

)
(A.2.8)

becomes

∑
j1,j2,j3···jN−1

λj1 λj2 · · · λjN−1

∫ ∞

−∞
dx2ψj1(x2)ψj2(x2)

×
∫ ∞

−∞
dx3ψj2(x3)ψj3(x3)

∫ ∞

−∞
dx4ψj3(x4)ψj4(x4)

×
∫ ∞

−∞
dx5ψj4(x5)ψj5(x5)

∫ ∞

−∞
dx6ψj5(x6)ψj6(x6)

...

×
∫ ∞

−∞
dxN−1ψjN−2(xN−1)ψjN−1(xN−1)

= ∑
j1,j2,j3···jN−1

λj1 λj2 λj3 · · · λjN−1 δj1,j2 δj2,j3 δj3,j4 · · · δjN−2,jN−1

= ∑
j1,j3···jN−1

λ2
j1 λj3 · · · λjN−1 δj1,j3 δj3,j4 · · · δjN−2,jN−1

= ∑
j1,j4···jN−1

λ3
j1 λj4 · · · λjN−1 δj1,j4 · · · δjN−2,jN−1

...

=∑
j1

λN−1
j1

. (A.2.9)

Using (A.2.7), (A.2.8) and (A.2.9) equation (A.2.5) becomes

Z(s, T, N) =
e−

Nν
2

ΛNs2

∞

∑
j=1

λN−1
j

[∫ ∞

−∞
dx1W(x1)

1
2 ψj(x1)exp

(
x1ν

1
2

2

)]

×
[∫ ∞

−∞
dxNW(xN)

1
2 ψj(xN)exp

(
xNν

1
2

2

)]

=
e−

Nν
2

ΛNs2

∞

∑
j=1

λN−1
j (s)A2

j (A.2.10)
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with

Aj =
∫ ∞

−∞
dxW(x)

1
2 ψj(x)exp

(
xν

1
2

2

)
. (A.2.11)

Equation (A.2.10) is the Laplace transform of the partition function in terms of the eigen-
values of the Kac integral operator, which is the main result we have set out to find as
we have already mentioned in the introduction. Again, this is similar in spirit to what is
done in the transfer matrix approach mentioned before.
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Appendix B

Hilbert-Schmidt Property of kernel

We now prove that

Ks(x, y; x̄, ȳ) =
W(x)W(y)ps(x, y; x̄, ȳ)

[W(x)W(y)W(x̄)W(ȳ)]1/2

× exp
{[

ν1/2(x + x̄) + (ν∗)1/2(y + ȳ)
]}

(B.0.1)

which is symmetric upon exchanging (x, y) with (x̄, ȳ), is a Hilbert-Schmidt kernel, that
is,

∫ ∫ ∫ ∫ ∞

−∞
dxdydx̄dȳ |Ks(x, y; x̄, ȳ)|2 < ∞ (B.0.2)

PROOF:

We have

41

Stellenbosch University  https://scholar.sun.ac.za



42

∫ ∫ ∫ ∫ ∞

−∞
dxdydx̄dȳ |Ks(x, y; x̄, ȳ)|2

=
∫ ∫ ∫ ∫ ∞

−∞
dxdydx̄dȳ Ks(x, y; x̄, ȳ)K∗s (x̄, ȳ; x, y)

=
∫ ∫ ∫ ∫ ∞

−∞
dxdydx̄dȳ ps(x, y; x̄, ȳ)p∗s (x̄, ȳ; x, y)

×exp
{[

ν1/2(x + x̄) + (ν∗)1/2(y + ȳ)
]

/2
}

×exp
{[

(ν1/2)∗(x̄ + x) + ((ν∗)1/2)∗(ȳ + y)
]

/2
}

=
∫ ∫ ∞

δ
dτ1dτ2e−s(τ1+τ2)

∫ ∫ ∞

−∞
dxdx̄ Pγ(x|x̄, τ1)P∗γ(x̄|x, τ2)

×exp
{[

[ν1/2 + (ν1/2)∗](x + x̄)
]

/2
}

∫ ∫ ∞

−∞
dydȳ Pγ∗(ȳ|y, τ1)P∗γ∗(ȳ|y, τ2)

×exp
{[

[(ν∗)1/2 + ((ν∗)1/2)∗](y + ȳ)
]

/2
}

(B.0.3)

From (B.0.3) we see that we simply have to show that

∫ ∫ ∞

−∞
dydȳ Pγ∗(ȳ|y, τ1)P∗γ∗(ȳ|y, τ2)× exp

{[
[(ν∗)1/2 + ((ν∗)1/2)∗](y + ȳ)

]
/2
}

is finite, to conclude that the kernel satisfies (B.0.2).

By Cauchy-Schwartz,

∫ ∫ ∞

−∞
dxdx̄ Pγ(x|x̄, τ1)P∗γ(x̄|x, τ2)exp

{[
[ν1/2 + (ν1/2)∗](x + x̄)

]
/2
}

≤
(∫ ∫ ∞

−∞
dxdx̄

W(x)
W(x̄)

∣∣∣Pγ(x|x̄, τ1)exp
{
[ν1/2 + (ν1/2)∗](x + x̄)

}∣∣∣2)1/2

×
(∫ ∫ ∞

−∞
dxdx̄

W(x̄)
W(x)

∣∣∣P∗γ(x̄|x, τ2)exp
{
[ν1/2 + (ν1/2)∗](x + x̄)

}∣∣∣2)1/2

(B.0.4)

which reduces the problem to only showing that∫ ∫ ∞

−∞
dxdx̄

W(x̄)
W(x)

∣∣∣P∗γ(x̄|x, τ2)exp
{
[ν1/2 + (ν1/2)∗](x + x̄)

}∣∣∣2
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Appendix A

is finite. The latter exppression can be written more explicitly as follows

∫ ∫ ∞

−∞
dxdx̄

W(x)
W(x̄)

∣∣∣Pγ(x|x̄, τ)exp
{
[ν1/2 + (ν1/2)∗](x + x̄)

}∣∣∣2
=
∫ ∫ ∞

−∞
dxdx̄

W(x)
W(x̄)

|Pγ(x|x̄, τ)|2 exp
{

2[ν1/2 + (ν1/2)∗](x + x̄)
}

=
∫ ∫ ∞

−∞
dxdx̄

W(x)
W(x̄)

Pγ(x|x̄, τ)P∗γ(x|x̄, τ)exp
{

2[ν1/2 + (ν1/2)∗](x + x̄)
}

(B.0.5)

Now,

Pγ(x|x̄, τ)P∗γ(x|x̄, τ)

=
1√

2π(1− e−2γτ)
exp

{
− (x̄− xe−γτ)2

2(1− e−2γτ)

}[
1√

2π(1− e−2γτ)

]∗
exp

{
− (x̄− xe−γ∗τ)2

2(1− e−2γ∗τ)

}

=
1√

2π(1− e−2γτ)

[
1√

2π(1− e−2γτ)

]∗
exp

{
− (x̄− xe−γ∗τ)2

2(1− e−2γ∗τ)
− (x̄− xe−γτ)2

2(1− e−2γτ)

}
(B.0.6)

Simplifying the latter exppression,

exp
{
− (x̄− xe−γτ)2

2(1− e−2γτ)
− (x̄− xe−γ∗τ)2

2(1− e−2γ∗τ)

}
= exp

(
2(1− e−2γ∗τ)[−x̄2 + 2x̄xe−γτ + x2e−2γτ]

2(1− e−2γτ)× 2(1− e−2γ∗τ)

)
×exp

(
2(1− e−2γτ)[−x̄2 + 2x̄xe−γ∗τ + x2e−2γ∗τ]

2(1− e−2γτ)× 2(1− e−2γ∗τ)

)
= exp

(
−2(1− e−2γ∗τ) + 2(1− e−2γτ)

2(1− e−2γτ)× 2(1− e−2γ∗τ)
x̄2
)

×exp
(

2(1− e−2γ∗τ)e−γτ + 2(1− e−2γτ)e−γ∗τ

2(1− e−2γτ)× 2(1− e−2γ∗τ)
(2x̄x)

)
×exp

(
−2(1− e−2γ∗τ)e−2γτ + 2(1− e−2γτ)e−2γ∗τ

2(1− e−2γτ)× 2(1− e−2γ∗τ)
x2
)

= exp(−px̄2 + 2qx̄x− rx2) (B.0.7)

where

p =
2(1− e−2γ∗τ) + 2(1− e−2γτ)

2(1− e−2γτ)× 2(1− e−2γ∗τ)
, (B.0.8)

Stellenbosch University  https://scholar.sun.ac.za



44

q =
2(1− e−2γ∗τ)e−γτ + 2(1− e−2γτ)e−γ∗τ

2(1− e−2γτ)× 2(1− e−2γ∗τ)
, and (B.0.9)

r =
2(1− e−2γ∗τ)e−2γτ + 2(1− e−2γτ)e−2γ∗τ

2(1− e−2γτ)× 2(1− e−2γ∗τ)
(B.0.10)

Now, the RHS of (B.0.5) becomes

∫ ∫ ∞

−∞
dxdx̄

W(x)
W(x̄)

Pγ(x|x̄, τ)P∗γ(x|x̄, τ)exp
{

2[ν1/2 + (ν1/2)∗](x + x̄)
}

=
1√

2π(1− e−2γτ)

[
1√

2π(1− e−2γτ)

]∗
×
∫ ∫ ∞

−∞
dxdx̄ exp

(
−x2 + x̄2

2

)
exp(−px̄2 + 2qx̄x− rx2)exp (ξ(x + x̄))

=
1√

2π(1− e−2γτ)

[
1√

2π(1− e−2γτ)

]∗ ∫ ∞

−∞
dx exp

(
− x2

2
− rx2 + ξx

)
×
∫ ∞

−∞
dx̄ exp

(
x̄2

2
− px̄2 + (2qx + ξ)x̄

)
=

1√
2π(1− e−2γτ)

[
1√

2π(1− e−2γτ)

]∗√
π( 1

2 − p
)

×
∫ ∞

−∞
dx exp(−

(
1
2
+ r
)

x2 + ξx)exp

{
(2qx + ξ)2

4
(

p− 1
2

) }

=
1√

2π(1− e−2γτ)

[
1√

2π(1− e−2γτ)

]∗√
π(

p− 1
2

)exp

(
ξ2

4
(

p− 1
2

))

×
∫ ∞

−∞
dx exp

{
−
((

1
2
+ r
)
− q2(

p− 1
2

)) x2 + ξ

(
1 +

q(
p− 1

2

)) x

}

=
1√

2π(1− e−2γτ)

[
1√

2π(1− e−2γτ)

]∗√
π(

p− 1
2

)exp

(
ξ2

4
(

p− 1
2

))

×
√√√√ π( 1

2 + r
)
− q2

(p− 1
2 )

exp


ξ2
(

1 + q
(p− 1

2 )

)2

4
(( 1

2 + r
)
− q2

(p− 1
2 )

)


(B.0.11)
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where

ξ = 2[ν1/2 + (ν1/2)∗] (B.0.12)

Since RHS of (B.0.11) is finite for 0 < τ < ∞. It therefore follows from the integration
of this product of RHS of (B.0.11) and e−st that the kernel is indeed a Hilbert-Schmidt
kernel.
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