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ABSTRACT 

The use of roasted cereal grains in foods can improve organoleptic properties, enhance shelf life, 

ease incorporation into ready-to-eat products and increase antioxidant activity. Structural, 

physicochemical and functional changes will inevitably occur during roasting and this study aimed 

to investigate these properties. X-ray micro-computed tomography (μCT) was used as a non-

destructive technique for characterising and quantifying microstructural changes in individual 

cereal grains induced by conventional oven and forced convection continuous tumble (FCCT) 

roasting at 180°C for 140 s. X-ray μCT uses differences in X-ray attenuation arising from 

differences in density within a sample.  

X-ray tomograms of the raw and roasted wheat and maize kernels were obtained, using a 

General Electric Phoenix model V|Tome|X L240 X-ray μCT system with a source voltage of 60 kV 

and an electron current set at 240 μA. Analysis of the whole kernel and regions-of-interest (ROIs) 

was performed with VGStudio Max 2.2 three-dimensional (3D) software. Qualitative results were 

depicted as two-dimensional (2D) transmission images and 3D volumes. Internal structural 

changes were observed as a loss of endosperm integrity, detected as a decrease in attenuation. 

For both cereal grains oven roasting was associated with a larger increase in kernel volume 

(wheat=4.47%; maize=10.76%) than FCCT roasting (wheat=1.57%; maize=3.41%), as well as 

larger relative density decreases (wheat=2.76%; maize=6.33%) in comparison to FCCT roasting 

(wheat=0.55%; maize=1.92%). During FCCT roasting the material density (excluding air) remained 

unaffected.  

Structural changes can strongly influence physicochemical and functional properties. Kernel 

hardness and hectolitre mass (HLM) can be helpful to assess the milling yield, which was not 

affected (P>0.05) by either roasting methods. Scanning electron microscopy (SEM) illustrated the 

starch-protein morphology, where both roasting methods resulted in a partially disintegrated 

protein network and swollen and/or ruptured starch granules in the oven-roasted samples. 

Quantification of these structural differences included crystallinity determinations using X-ray 

diffraction (XRD), thermal properties using differential scanning calorimetry (DSC) and pasting 

properties employing a Rapid Visco Analyser (RVA). The reduction in crystallinity for both FCCT 

(wheat=0.12%; maize=0.45%) and oven (wheat=0.16%; maize=1.83%) roasting was consistent 

with the decrease in gelatinisation enthalpy (ΔH). Only partial gelatinisation occurred in both the 

oven (wheat=17.16%; maize=25.27%) and FCCT-roasted (wheat=10.14%; maize=16.23%) 

samples. 

Oven roasting caused more adverse changes in most of the measured properties, being a 

more destructive process. With FCCT roasting the samples are continuously moving, resulting in 

an even heat transfer in comparison to oven roasting where the samples are stationary. FCCT 

roasting maintained more of the favourable characteristics, i.e. microstructure, hardness and 

milling yield and will thus result in a more acceptable final product. 
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This study demonstrated the capability of X-ray μCT in combination with image analysis as a 

non-invasive technique to study microstructural changes in cereal grains, induced by roasting, both 

in a qualitative and quantitative manner and at a relatively high spatial resolution of 12 micron. The 

results integrate qualitative and quantitative information that could be useful for understanding 

structure-property relationships in terms of further processing and utilisation, e.g. the development 

of value-added products with improved digestibility and viscosity or delayed staling phenomenon.  
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UITTREKSEL 

  

Die gebruik van geroosterde grane in voedsel kan organoleptiese eienskappe verbeter, rakleeftyd 

verleng, byvoeging in gereed-vir-eet produkte en ontbytgrane vergemaklik en antioksidant aktiwiteit 

verhoog. Dit is onvermydelik dat strukturele, fisies-chemiese en funksionele veranderinge sal 

plaasvind tydens rooster en dus was die doel van die studie om hierdie eienskappe te ondersoek. 

X-straal mikro-berekende tomografie (μBT) was gebruik as ‘n nie-vernietigende tegniek vir die 

karakterisering en kwantifisering van mikrostrukturele veranderinge in individuele grane, 

geïnduseer deur konvensionele oond- en geforseerde konveksie aaneenlopende tuimel (GKAT) 

rooster by 180°C vir 140 s. X-straal μBT gebruik verskille in X-straal attenuasie, wat voortspruit uit 

verskille in digtheid in ‘n monster.  

X-straal tomogramme van die rou en geroosterde koring en mieliepitte is verkry met ‘n General 

Electric Phoenix model V|Tome|X L240 X-straal μBT sisteem met ‘n bronspanning van 60 kV en ‘n 

elektronstroom gestel op 240 μA. Analise van die heelpit en areas-van-belang (AVBs) is uitgevoer 

met VGStudio Max 2.2 drie-dimensionele (3D) sagteware. Kwalitatiewe resultate is uitgebeeld as 

twee-dimensionele (2D) transmissiebeelde en 3D volumes. Interne strukturele veranderinge is 

waargeneem as ‘n verlies van endosperm integriteit, bespeur as ‘n afname in attenuasie. Vir beide 

grane is oond rooster geassosieer met 'n groter toename in pitvolume (koring=4.47%; 

mielie=10.76%;) as vir GKAT rooster (koring=1.57%; mielie=3.41%), sowel as ‘n groter afname in 

relatiewe digtheid (koring=2.76%; mielie=6.33%) in vergelyking met GKAT rooster (koring=0.55%; 

mielie=1.92%). Gedurende GKAT rooster het die materiaal digtheid (lug uitgesluit) onveranderd 

gebly.  

Strukturele veranderinge kan fisies-chemiese en funksionele eienskappe beïnvloed. Pit 

hardheid en hektolitermassa (HLM) is nuttig om maalopbrengs te evalueer, wat nie geaffekteer is 

(P>0.05) deur beide rooster metodes. Skandeer-elektronmikroskopie (SEM) het die stysel-proteïen 

morfologie geïllustreer, waar beide rooster metodes tot ‘n gedeeltelike gedisintegreerde proteïen 

netwerk en geswelde en/of gebarste stysel granules in die oond geroosterde monsters gelei het. 

Kwantifisering van hierdie strukturele veranderinge het kristalliniteit-bepalings met X-straal 

diffraksie (XSD), termiese eienskappe met differensiële skandeer kalorimetrie (DSK) en plak 

eienskappe met behulp van ‘n Rapid Visco Analyser (RVA) ingesluit. Die afname in kristalliniteit vir 

beide GKAT (koring=0.12%; mielie=0.45%) en oond (koring=0.16%; mielie=1.83%) rooster was 

konsekwent met die afname in gelatinisasie entalpie (ΔH). Slegs gedeeltelike gelatinisasie het in 

beide die oond (koring=17.16%; mielie=25.27%) en GKAT geroosterde (koring=10.14%; 

mielie=16.23%) monsters plaasgevind.  

Oond rooster het meer ongunstige veranderinge in meeste van die gemete eienskappe 

veroorsaak, wat 'n meer vernietigende proses impliseer. Met GKAT rooster beweeg die monsters 

voortdurend, wat lei tot ‘n eweredige hitte-oordrag in vergelyking met oond rooster waar die 

monsters stilstaande is. Tydens GKAT rooster het meeste van die gunstige eienskappe, soos 
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mikrostruktuur, hardheid en maalopbrengs behoue gebly en dit sal aanleiding gee tot ‘n meer 

aanvaarbare eindproduk. 

Hierdie studie demonstreer die vermoë van X-straal μBT in kombinasie met beeld-analise as 

‘n nie-vernietigende tegniek om mikrostrukturele veranderinge in graan, veroorsaak deur rooster, in 

beide ‘n kwalitatiewe en kwantitatiewe wyse en teen 'n relatiewe hoë ruimtelike resolusie van 12 

mikron te bestudeer. Die resultate integreer kwalitatiewe en kwantitatiewe inligting wat nuttig is vir 

die begrip van struktuur-eienskap verhoudings in terme van verdere verwerking en gebruik, 

byvoorbeeld vir die ontwikkeling van toegevoegde waarde produkte met verbeterde 

verteerbaarheid en viskositeit of vertraagde verouderingsverskynsel.  
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CHAPTER 1 

Introduction   

 

The microstructure of food is an important feature that influences sensory aspects, i.e. appearance 

and texture and it conveys information on the processing and composition of the product 

(Chevallier et al., 2014). Conventional methods for microstructural investigation include light 

microscopy (LM), electron microscopy (EM) and confocal laser scanning microscopy (CLSM) 

(Suresh & Neethirajan, 2015). These techniques have several drawbacks since they are time-

consuming, destructive and sample preparation is necessary which may lead to the development 

of artefacts (Lim & Barigou, 2004). While these methods can be used to obtain high-resolution 

images, it is difficult to quantify shape, size and connectivity using these two-dimensional (2D) 

microscopic techniques (Ho et al., 2013). To this end, a three-dimensional (3D) imaging method is 

required to quantitatively characterise food microstructure.  

In recent years there has been renewed interest in the development of novel methods for 

microstructural investigations. X-ray micro-computed tomography (μCT) has especially gained 

interest due to the use of cutting-edge technology. X-ray μCT makes use of X-ray radiation which 

are capable of penetrating food material to visualise the internal structure (Ho et al., 2013). This 

technique utilises differences in X-ray attenuation, arising primarily from differences in the density 

within a sample (Frisullo et al., 2010a). X-rays are sent around and through the scanned sample, 

creating a 2D projection image. A series of 2D images are obtained by sample rotation and these 

images can be rendered into a 3D volume. Reconstruction is performed with special software 

which enables the investigation of cross-sections along any desired orientation of the plane of cut. 

High density materials attenuate the beam and areas of high attenuation appear light on the 2D 

slices obtained from angular projections.  

X-ray μCT in combination with image analysis is an accurate, non-destructive and non-

invasive imaging technique that can be used for high-resolution 3D visualisation and 

characterisation of the internal structure of a sample to obtain detailed qualitative and quantitative 

microstructural information (Maire et al., 2001; Zhu et al., 2012). It can be used to determine 

important processing parameters, influencing the quality of a product (Frisullo et al., 2012b). 

Furthermore, X-ray μCT also enables precise dimensional measurements of internal features, 

volumes of regions-of-interest (ROIs), and more advanced analyses such as pore (void) or particle 

size distributions. X-ray μCT, which was at first mainly used for medical applications, is a relatively 

new technique in food analysis (Van Dalen et al., 2003; Schoeman et al., 2016). It has more 

recently also been explored in other fields such as material science (Landis & Keane, 2010; Salvo 

et al., 2010), geology (Ketcham & Carlson, 2001; Cnudde & Boone, 2013), biology (Mizutani & 

Suzuki, 2012), industrial engineering (Du Plessis et al., 2014) and archaeology (Du Plessis et al., 

2013).  
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Since X-ray μCT enables high-resolution 3D visualisation and characterisation of a sample, it 

is not surprising that in recent years this imaging technique has also been extended to the field of 

agriculture and food quality evaluation (Frisullo et al., 2010a; Laverse et al., 2012). It is rapidly 

becoming a useful technique for the non-destructive inspection of the internal quality of agricultural 

products and also to investigate food microstructure (Frisullo et al., 2010a; Laverse et al., 2012). 

This technique is relatively new in the field of food engineering, but has been successful in the 

characterisation of very porous food materials (Babin et al., 2007).   

There is a need for quantitative methods to accurately characterise food microstructure to 

determine structure-properties relationships (Lim & Barigou, 2004). X-ray μCT has proven to be a 

useful technique for the visualisation and quantitative analysis of cellular food products, e.g. 

aerated chocolates, muffins and mousses (Lim & Barigou, 2004), dough (Bellido et al., 2006), 

extruded biopolymer foams (Trater et al., 2005), bread (Cafarelli et al., 2014), rice kernels (Van 

Dalen et al., 2003; Mohorič et al., 2009; Witek et al., 2010), corn flakes (Chaunier et al., 2007), 

porous cereal products (Van Dalen et al., 2007), French fries (Miri et al., 2006) and ice cream 

(Pinzer et al., 2012). Other applications include studying ice crystals within frozen foods (Mousavi 

et al., 2005), 3D pore space quantification in apple tissue (Mendoza et al., 2007; Mendoza et al., 

2010), the role of sugar and fat in sugar-snap cookies (Pareyt et al., 2009) and also investigation of 

the fat level and distribution in meat (Frisullo et al., 2009; Frisullo et al., 2010b).   

Processing of food, whether it is milling of grain, gelatinisation of starch or heat denaturation of 

proteins, will result in changes at microscopic level (Kaláb et al., 1995). Imaging techniques are 

capable of evaluating such composition and morphology modifications (Kaláb et al., 1995). 

However, few studies have attempted to study the effect of roasting on the microstructure of cereal 

grains in an objective manner. Researchers often only report a few cross-sectional 2D images in 

combination with a qualitative discussion of the microstructure, without investigating the 

quantitative measurement of key properties (Owusu-Ansah et al., 1984; Autio & Salmenkallio-

Marttila, 2001; Gropper et al., 2002). Due to the inadequacy of imaging techniques, like LM and 

EM, microstructure remained a grey area (Trater et al., 2005).   

To overcome the drawbacks of destructive 2D methods, non-invasive imaging techniques are 

increasingly explored for microstructural characterisation. X-ray μCT is a valuable imaging 

technique that can answer frequently asked questions such as: what does the internal structure of 

the sample look like, where are specific components situated and what are their actual 

measurements? X-ray μCT empowers researchers with both quantitative and qualitative 

information and permits the characterisation of images in 3D and at an improved spatial resolution.  

Since ancient times the importance of cereal grains have been recognised (Hernández et al., 

2014). Maize (Zea mays L.) and wheat (Triticum aestivum L.) are two of the most important staple 

food crops in the world and in conjunction with rice, they provide 30% of the food calories to 4.5 

billion people in 100 developing countries (Hellin et al., 2012). These cereal grains are important 

sources of protein, carbohydrates, vitamins, minerals and phytochemicals (Oboh et al., 2010). The 
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use of these grains for human consumption is very diverse and range from staple food in 

undeveloped countries to specialised foods in developing countries. White maize is usually 

preferred for human consumption and yellow maize for animal feed (Esteve Agelet et al., 2012).  

Nowadays, greater emphasis is placed on microstructure to obtain a better understanding of 

the physical and rheological behaviour of foods, as well as the textural, sensory and functional 

properties (Laverse et al., 2012). The identity and quality of food is greatly affected by 

microstructural elements such as starch granules, air (porosity), protein assemblies and food 

biopolymer matrices (Aguilera, 2005). This correlation could be advantageously used to improve 

the quality of a product and also to tailor parameters that affect consumer acceptability. As a result 

of microscopic complexity, unambiguous methods that relate quality to food microstructure do not 

exist at present (Rizzolo et al., 2014). Thus, there is a need to develop methods that directly 

measure the microstructural characteristics of food.  

It is important to understand the structure of industrially important cereal grains since it plays 

an important role in various aspects of cereal technology, e.g. wheat milling and maize processing 

(Delcour & Hoseney, 2010). Two concepts of prime importance is insight into the 3D structure of 

cereal grains and the compartmentalisation of the various components in cereal grains (Delcour & 

Hoseney, 2010). Knowledge on food microstructure, physicochemical properties and functionality 

can be used to identify important processing parameters that may affect quality and from a food 

engineering perspective this information is very valuable (Frisullo et al., 2012b).  

Roasting is an essential thermal process which leads to the improvement of colour, flavour, 

texture and appearance, and ultimately enhances the overall palatability of the product (Uysal et 

al., 2009). The main purpose of roasting is to improve and alter quality and safety. Cereals are 

traditionally roasted to improve nutritional and sensory properties, enhance shelf life and to 

improve the processing efficiency of a subsequent step (Kikugawa et al., 1983; Asep et al., 2008; 

Murthy et al., 2008; Cämmerer & Kroh, 2009). Roasting is a high-temperature-short-time (HTST) 

process which inactivates contaminating microorganisms, destructive enzymes and growth 

inhibitors, while it retains nutrients (Srivastav et al., 1990). Roasting will inevitably lead to a variety 

of changes and it is thus necessary to control the roasting time and temperature to obtain optimal 

characteristics, without burning the grains and compromising the flavour. Despite the availability of 

literature on the nutritional benefits of roasting cereal grains, little is known about the impact on the 

internal structure, physicochemical properties and functionality. The selection of appropriate 

roasting conditions is a major goal in roasting as it can be used to optimise these properties.  

Different roasting techniques exists, i.e. fluidised bed (Murthy et al., 2008), sand (Mridula et 

al., 2007; Gujral et al., 2011), microwave (Uysal et al., 2009; Omwamba & Hu, 2010), pan (Ayatse 

et al., 1983; Oboh et al., 2010; Carrera et al., 2015), oven (Krings et al., 2006; Mariotti et al., 2006) 

and flame (McNiven et al., 1994; Mrad et al., 2014) roasting. These methods, however, have 

various drawbacks as it may be unhygienic, tedious to operate or have low productivity (Murthy et 

al., 2008). It can also be dangerous to the health of the operator (e.g. flame roasting) and the 
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roasted products may have non-uniform characteristics (Murthy et al., 2008). Due to the negative 

aspects related to traditional and conventional roasting techniques there is a need for a reliable 

alternative. Forced convection continuous tumble (FCCT) roasting offers such an alternative 

(Anonymous, 2014). This roaster, based on forced convection roasting, uses superheated steam 

generated from the moisture inside the sample, in combination with the continuous tumbling 

movement of the screw conveyer inside the roasting drum, to create even heat transfer and a more 

uniformly roasted product.  

Dietary guidelines recommend an increase in the consumption of whole grain cereal products 

due to the health benefits, i.e. reduction in the risk of chronic diseases, diabetes and cancer, 

associated with the consumption of these products (Ragaee & Abdel-Aal, 2006). Thus, the 

development of whole grain based ingredients and snack foods is favoured for the production of 

health-enhancing or functional foods (Salmenkallio-Marttila et al., 2004). Currently, there is a 

growing interest in modification of cereal flours using innovative processing techniques, including 

high-pressure pulse-electric field, radio frequency, ohmic heating and microwave treatments 

(Ahmed et al., 2007). There is evidence that whole grain cereals can be beneficial in terms of their 

health promoting effects when consumed in its roasted form (Sandhu et al., 2015; Carrera et al., 

2015). The improved in vitro digestibility, antioxidant capacity and high dietary fibre content of 

roasted whole grains provides a fundamental basis for incorporating these grains into foods as 

health-enhancing ingredients (Carrera et al., 2015; Oboh et al., 2010). Modification of whole cereal 

grains, induced by roasting, may thus result in a higher quality end product.  

Physicochemical and functional properties of foods are, however, strongly influenced by 

structure-property relationships (Frisullo et al., 2012a). Thus, the usefulness of roasted whole grain 

and their flour will depend on their structural properties, as well as their functionality. Moreover, 

understanding the physicochemical properties, i.e. weight, bulk density, puffing index (PI), 

moisture, crude protein, hardness and milling characteristics is essential for further handling, 

processing and transportation, as well as for applications in food formulations. Scope thus exists to 

investigate the effect of roasting on the microstructural, physicochemical, functional and rheological 

characteristics of whole grains.  

Structural changes induced by roasting comprise changes in the starch and protein 

components. These changes in the starch-protein morphology can be investigated using scanning 

electron microscopy (SEM). X-ray diffraction (XRD) studies revealed that roasting decreases the 

crystallinity content of maize, while the hydrolysis rate and starch digestibility and availability 

improved (Carrera et al., 2015). Changes in the starch granule structure after roasting, in turn, 

affect the functional properties and rheological behaviour. Differential scanning calorimetry (DSC) 

can explain the effect of roasting on the thermal properties and gelatinisation characteristics 

(Carrera et al., 2015). 

Baked goods may benefit from a mixture of non-roasted and roasted flours when gelatinisation 

is needed but retrogradation must be limited for functionality and shelf-life purposes (Rothschild et 
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al., 2015). An increase in water absorption capacity (WAC) after roasting suggests that roasted 

flour can be used as means to control water migration in baked products (Mariotti et al., 2006). 

Moisture content and moisture transfer plays a role in staling, thus roasted flour has the potential to 

retain more moisture and retard the staling phenomenon, resulting in a product that stays softer for 

longer (Mariotti et al., 2006). A decrease in water solubility index (WSI) after roasting can be 

attributed to the formation of amylose lipid complexes, which reduces the water solubility (Gujral et 

al., 2011). An increase in flour dispersibility (FD) after roasting may be useful for the production of 

instant convenience foods (Singh et al., 2007).  

Rheological changes in dough from roasted wheat flour can be attributed to starch 

modifications resulting in altered starch-protein and starch-starch interactions and protein 

aggregation. It is important to monitor rheological changes after thermal processing, since it can 

induce changes in starch and protein structure and availability (Baiano et al., 2009). Flour quality is 

indicated by dough properties, which is one of the main intermediate steps in the transformation of 

flour to end products (Van Hung et al., 2006). The ability of wheat flour to produce dough with 

desirable gas-holding properties is due to gluten, since it imparts elasticity and extensibility 

characteristics. Roasted wheat flour cannot be used for breadmaking alone and should be used in 

combination with regular wheat flour to improve the texture and functionality of end products (Van 

Hung et al., 2006). 

Roasted whole wheat and maize has potential as functional ingredients in food applications 

and have been successfully incorporated into various foods, i.e. bread (Baiano et al., 2009), pasta 

(Baiano et al., 2008), beverages (Youn & Chung, 2012) and porridges (Vivas et al., 1987). A recent 

study on grain amaranth reported that roasting significantly increased the viscosity and would be 

preferred in the production of flour to be used as thickening agent (Muyonga et al., 2014). During 

roasting starch granules may disintegrate and become more susceptible to hydration which is 

related to a higher viscosity. From a food scientist’s perspective functionality, i.e. viscosity changes 

of raw materials are very important, since it can affect flow regimes, processing variables and end 

product quality. The Rapid Visco Analyser (RVA) is a viscometric tool that is widely used for 

studying starch pasting properties. 

To date X-ray μCT has not been considered as a technique to provide information on the 

microstructure of roasted cereal grains. This study addresses this shortcoming and evaluated X-

ray μCT for characterising the microstructure of roasted cereal grains. Due to the non-destructive 

capability of X-ray μCT, it enables investigation of the same grain in the raw and roasted state. 

When microscopy and images analysis are used in conjunction, they can become an even more 

powerful tool to examine microstructure (Barrera et al., 2013). Few investigations have reported on 

the structural, physicochemical and functional properties of roasted cereal grains (Murthy et al., 

2008; Altan, 2014; Ranganathan et al., 2014; Carrera et al., 2015). A proper understanding of the 

effect of roasting on the microstructure and structure-property relationship of whole maize and 
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wheat is required to produce products with desired characteristics in terms of physiochemical and 

functional properties.   

The aim of this study was thus to characterise and quantify the effect of two roasting methods, 

conventional oven roasting and innovative FCCT roasting, on the microstructural, physicochemical 

and functional properties of whole wheat and maize kernels using a series of destructive and non-

destructive techniques. Specific objectives were to:  

 provide a comprehensive literature review on X-ray μCT for food microstructure 

characterisation; 

 review cereal roasting techniques and applications; 

 investigate the feasibility of X-ray μCT as non-destructive technique for 2D and 3D 

visualisation of the structural changes induced by roasting in whole wheat and maize kernels;  

 demonstrate the capability of X-ray μCT and image analysis as a useful technique for the 

quantification of microstructural parameters of raw and roasted whole wheat and maize 

kernels as well as that of selected ROIs;  

 evaluate the influence of roasting on the grains’ physicochemical properties, i.e. weight loss, 

bulk density, PI, moisture content, crude protein, hardness and milling characteristics; 

 assess the impact of roasting on the wheat and maize starch-protein morphology and 

crystalline structure using SEM and XRD, respectively;  

 examine functional properties of the roasted grains, i.e. WAC, WSI and FD, as well as thermal 

and pasting properties using DSC and the RVA, respectively; and 

 determine the rheological properties of roasted whole wheat flour with a Mixograph and 

Alveograph. 

In our study, we departed from the hypothesis that roasting, using different roasting methods 

(with similar time-temperature conditions) will result in differences in the microstructural, 

physicochemical and functional properties of whole wheat and maize kernels. This study will 

provide baseline information, which would help determine potential applications for roasted whole 

grain products in food systems.    
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CHAPTER 2 

Literature review 1  

X-ray micro-computed tomography (μCT) for non-destructive 

characterisation of food microstructure* 

 

Abstract 

Food microstructure can be visualised by a wide range of microscopic techniques, however these 

methods are usually destructive and require sample preparation. X-ray micro-computed 

tomography (μCT) provides an alternative as it is non-invasive, non-destructive and requires no 

sample preparation. It characterises structures three-dimensionally, allowing evaluation of 

microstructural changes at resolutions as high as a few hundred nanometres. After the discovery of 

X-rays in 1895, X-ray computed tomography (CT) was developed and introduced into clinical 

practices in the 1970s. The first X-ray μCT food application, to detect the maturity of green 

tomatoes, followed in 1991. This review aims to provide an overview of the basic principles of X-

ray μCT, the different systems, image processing and analysis as well as image texture analysis. 

Food applications are highlighted and the review concludes with future trends of X-ray μCT. The 

controlled production and stability of microstructure is of great interest to the food industry. Both 

laboratory μCT and synchrotron systems are becoming more common and thus will lead to 

imaging in three dimensions at a micron scale playing a much bigger role in future food studies. 

Limitations include operator dependency, time and cost constraints and imaging artefacts. 

Technological and computational progress, however, encourages the growth of this technique in 

food science. 

Keywords: Food microstructure; X-ray micro-computed tomography; Non-destructive; Three-

dimensional; Food applications 
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X-ray micro-

computed tomography (μCT) for non-destructive characterisation of food microstructure. 
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Introduction 

Food microstructure influences the physical, sensory and textural properties of products. This 

requires better evaluation and understanding of the structural organisation of food in order to 

produce products with desired organoleptic and physical characteristics. Also, food science 

research often demands knowledge of the true three-dimensional (3D) microstructure. Food 

microstructure can be defined as the spatial organisation of structural components of food and their 

interactions (Herremans et al., 2013a). Current techniques used to obtain information on food 

microstructure are mostly invasive and entail sample preparation (e.g. light and electron 

microscopy) or are limited to specific applications (e.g. magnetic resonance imaging (MRI) and 

atomic force microscopy (AFM)) (Frisullo et al., 2012). X-ray micro-computed tomography (μCT) is 

an innovative radiographic imaging technique that enables non-destructive and non-invasive 3D 

imaging, at resolutions higher than 1 μm, and analysis aimed at the internal examination of the 

structural arrangement of products (Landis & Keane, 2010). The same sample can thus be 

scanned numerous times under different conditions. This is especially of value in food research 

where information on microstructural changes over time is required. X-ray μCT also enables 

scanning of the entire sample due to its large field-of-view without any sample preparation 

(Léonard et al., 2008). X-ray μCT enables samples to be studied in their natural state at 

atmospheric temperature and pressure. Besides being used in the millimeter to micron (X-ray μCT) 

resolution range, recently sub-micrometer or nanometer (X-ray nano-CT) pixel resolution has 

become possible (Herremans et al., 2011). X-ray CT thus enables 3D microstructural investigation 

of samples in a near-native state and at unprecedented resolution. 

X-ray CT has numerous applications and a number of reviews have been published to 

demonstrate the versatility of this technique in fields such as, geosciences (Cnudde & Boone, 

2013), material science  (Landis & Keane, 2010; Maire & Withers, 2014) and biology (Mizutani & 

Suzuki, 2012). The success of X-ray μCT in medical science and other sciences encourages its 

use in food science. There is a need for quantitative techniques that can accurately characterise 

food products with the aim of establishing an intrinsic relationship between microstructure and food 

quality (Lim & Barigou, 2004) and to comprehend and control structure-property interactions 

(Herremans et al., 2013a). The ability to measure and visualise food microstructure in 3D is 

important to understand these properties (e.g. sensorial perception) in association with processing 

conditions (Pinzer et al., 2012). Modification of structural features by processing can be used to 

design products with desired attributes. As a result of microscopic complexity, straightforward 

techniques, with the ability of relating quality to microstructure, are non-existent today and the only 

way of advancing is to develop techniques that can directly measure microstructural parameters 

(Herremans et al., 2013a). Although evidence exists of a good relationship between the 

microstructure and texture of foods, techniques are needed at-line and on-line to non-destructively 

measure the microstructural properties (Herremans et al., 2013a).  
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This review demonstrates the ability of X-ray μCT as a non-destructive and non-invasive 

technique to investigate the 3D microstructure of a range of food products. The first section will 

introduce the theory and basic principles, followed by an overview of image processing and 

analysis for both quantitative and qualitative analyses. X-ray μCT systems are briefly reviewed. 

The last section considers applications in food and agricultural related fields, limitations and future 

trends.  

 

Fundamental principles of X-ray CT  

Background 

X-ray radiation was first discovered in 1895 by Wilhelm Conrad Rӧntgen (Kotwaliwale et al., 2014) 

with X-ray computed tomography (CT) introduced into clinical practices in 1972 with a typical 

resolution of 300 μm (Kalender, 2011). Further development of instrumentation and improvement 

in computing power led to true 3D imaging of internal structures rapidly extending to other fields.  

X-ray CT originates from Computerised Axial Tomography (CAT or CT) scans (Landis & 

Keane, 2010). The South African born American physicist, Alan M. Cormack was awarded the 

Nobel Prize for Physiology or Medicine in 1979 for the development of CAT scanning (De Beer, 

2005). CT scanning is an extension of projection radiography capable of producing two-

dimensional (2D) images of a sample’s internal structure. The limitation of radiography is that 

features can only be studied within the 2D plane, resulting in a loss of information and 

consequently the misinterpretation of an image. X-ray CT or μCT overcomes this drawback by 

linking data from a sequence of 2D absorption images that is recorded by rotating a sample around 

an axis (Landis & Keane, 2010). Mathematical principles can then be used to reconstruct the 

series of 2D radiographs into 3D digital images. Cormack, in conjunction with Godfrey Houndsfield, 

first employed the mathematical transformation algorithms generated by John Radon in 1907 to 

create 3D reconstructed images for the medical examination of patients (De Beer, 2005). 

The basic principles of X-ray CT imaging are thus absorption physics (related to 2D projection 

images) and reconstruction mathematics (relevant to the generation of a 3D volume from a series 

of 2D images) (Landis & Keane, 2010). For greater depth and breadth on the principles and the 

technique, the reader is referred to more comprehensive work (Maire & Withers, 2014; Kalender, 

2011).  

 

Experimental setup and image acquisition 

X-ray CT evaluates the internal structure of a sample by means of a X-ray source and a detector in 

order to obtain information from a projected slice (Kotwaliwale et al., 2014). The principle is based 

on image contrast that is produced by variations in the X-ray attenuation that includes absorption 

and scattering (Lim & Barigou, 2004). When an X-ray beam passes through a sample it is 

attenuated. The differences in attenuation are attributable to density and compositional differences 
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within a sample. Thus the transmission level of the X-ray is determined by the mass as well as the 

absorption coefficient of a sample.  

During image acquisition an X-ray beam, which is collimated, is directed toward a sample, the 

detector measures the remnant attenuated radiation and the response is transferred to a computer. 

This radiation type has the ability to penetrate a sample in varying degrees (Cnudde & Boone, 

2013). Before scanning, instrumental conditions such as beam energy and current, sample-to-

detector distance and exposure time, must be optimised.  

During scanning a sample is rotated on a translation stage while illuminated with X-rays (Baker 

et al., 2012). The X-rays pass through the object in many different directions and along different 

pathways to create an image illustrating variation in density at numerous points in a 2D slice (Lim & 

Barigou, 2004). As the sample rotates, a series of 2D radiographs or projection images are 

acquired (Frisullo et al., 2009). The total angle of rotation depends on the geometry of the beam 

and the sample, but is typically 180° in the case of a parallel beam (e.g. synchrotron) or 360° when 

a cone-beam is used (e.g. laboratory system) (Baker et al., 2012). Figure 2.1 schematically 

demonstrates the acquisition principle. The detector records the object that is transversed by the 

conical X-ray beam. The ratio of distance from the tube to the detector and to the sample 

determines the magnification. Data from numerous X-ray radiographs are processed with a 

computer to reconstruct a 3D volume (Fig. 2.1).  

 

 

 

 

 

 

   

 

         

                

 

 

 

 

 

Figure 2.1. Schematic illustration of the measurement principle of X-ray CT. An object is exposed 

to collimated X-rays, generated by the X-ray tube and the detector converts the X-rays into digital 

radiographs.  
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Figure 2.2. Representation of (a) the reconstruction process where a 3D volume is created from 

the 2D projection images and the illustration of (b) the stacking of 2D slices to obtain (c) a 3D 

image and (d) a clipped image. 

 

Tomograms, which are the 3D representation of a sample’s internal structure and composition, 

can be extracted from these 3D volumes. This image is comprised of volume elements (voxels) 

that represent the X-ray absorption at a specific point (Landis & Keane, 2010) (Fig. 2.2 (a)). The 

images can be presented as virtual slices at various depths and in various directions or the sample 

can be viewed as a whole. Dedicated software packages enable manipulation and analysis of the 

data as well as reconstruction of cross-sections along any orientation. Image contrast is due to 

differences in X-ray absorption and is caused by density and compositional variation in the sample. 

It is the association between X-ray absorption and object density that enables the 3D internal 

structure to be visualised (Landis & Keane, 2010). Thus, the images obtained could be considered 

a map of the X-ray spatial distribution, where the brighter regions correspond with a higher density 

(Frisullo, et al., 2009).  

Different types of reconstruction algorithms have been developed which can be divided into 

direct and iterative approaches (Landis & Keane, 2010). Direct methods are most often used and 

include filtered back projection (FBP) and direct Fourier inversion (DFI) (Landis & Keane, 2010). 

Due to the fact that reconstruction is such a computational intensive procedure and the high 
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commercial value of a rapid reconstruction algorithm, these algorithms are usually patented and 

not freely available (Landis & Keane, 2010).  

 

X-ray CT systems  

The earliest CT scanners made use of a linear array of photodetectors which resulted in image 

acquisition and reconstruction occurring slice-by-slice (fan beam configuration). Subsequent 

applications of 2D detectors enabled faster scan times through the acquisition of 2D projection 

images (cone beam configuration) (Fig. 2.1) (Landis & Keane, 2010). For these two beam 

configurations the spot size of the X-ray source influences the image quality, where a smaller spot 

size leads to less blurring and thus a more accurate image (Landis & Keane, 2010). The 

development of high resolution digital detectors and micro-focus sources, in recent years, enabled 

the construction of tomographic systems that have spatial resolutions down to 0.7 μm (Baker et al., 

2012).  

During image acquisition an X-ray beam, produced by the X-ray tube, transverses through the 

sample after which it is recorded by the detector; usually an X-ray CCD (charged-coupled-device) 

camera where an enlarged radiograph (projection) is produced (Lim & Barigou, 2004). The focus of 

the tube limits the spatial resolution while the actual resolution is dependent on the magnification 

and object size (Lim & Barigou, 2004). The spatial resolution can be varied by altering the distance 

of the sample between the source and the detector. This varies the resolution from a few 

millimetres down to one micron and the acquisition time usually ranges from 20-60 minutes. Time 

resolution thus remains a concern for most imaging methods; the higher the spatial resolution the 

longer the image acquisition time (Turbin-Orger et al., 2015). Optimum resolution also depends on 

sample size, e.g. a 100 mm sample will have a resolution of 100 μm whereas a 10 mm sample will 

have a resolution of 10 μm (i.e. samples size/spatial resolution ratio of 103). 

A noteworthy advance in CT imaging was the use of synchrotron radiation, which led to major 

enhancements (Landis & Keane, 2010). The high flux of the X-ray beam, high-speed detectors and 

the rapid reconstruction algorithms of this system, enable 3D images to be created at speeds that 

nearly approaches real-time (Landis & Keane, 2010). Modern synchrotron X-ray μCT systems are 

known for its improved image quality and reduction in data collection time, in contrast to traditional 

systems (Baker et al., 2012). This is because of the X-ray beam features: the monochromaticity, 

beam geometry and the high spatial coherence and high intensity (Baker et al., 2012). Due to the 

much higher resolution of synchrotron X-ray images, compared to those of conventional X-rays, it 

can more effectively be used to reveal fine details of also soft tissue. In addition, the fast 

acquisition times enables real-time analysis. 

Because of these different properties and imaging features, a synchrotron system is a good 

tool for investigating food applications. Such systems have been used for the study of bread (Babin 

et al., 2006), cereal products (Guessasma & Hedjazi, 2012) and pome fruits (Mebatsion et al., 
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2009). Modern laboratory setups, based on cone-beam geometry, also have the ability to generate 

high-resolution images and phase-contrast properties but are limited compared to synchrotron 

imaging (Baker et al., 2012). Synchrotron CT is usually restricted to very small samples, ranging 

from 5-10 mm (Landis & Keane, 2010).  

A newer, faster technique exists with great potential for fast in-line imaging (Donis-González et 

al., 2014b). The ultrafast Rossendorf fast electron beam X-ray tomograph (ROFEX) scanner relies 

on an electron beam gun to generate an electron beam, which is focussed onto an X-ray 

production target. An electromagnetic deflection system allows the X-ray beam to be swept across 

the target, consequently producing X-rays from the moving focal spot. In this way radiation moves 

through a sample and a detector captures the radiation intensity signals. Images can be captured 

at a rate of up to 7000 frames s-1. ROFEX CT technology can easily be applied in-line to 

automatically sort agricultural produces, due to its rapid scanning capabilities.  

Both modern and laboratory CT systems provide high quality images. Thus, there is no ideal 

setup for every sample type and therefore a compromise should be found to obtain maximum 

information (Baker et al., 2012). The convenience of conventional laboratory systems will lead to 

increased use, but there will always be a gap for the unique characteristics of synchrotron sources 

(Landis & Keane, 2010).  

 

Image processing and analysis 

Image processing and analysis is required to visualise CT data and to extract suitable information 

from the image. For microstructural analysis information from the sample volume, density, porosity, 

object surface to volume ratio, particle size and sample thickness can be obtained. X-ray CT and 

image analysis are non-destructive tools capable of scanning a whole sample to provide 

information on pore volume and size distributions and density variations (Léonard et al., 2008). A 

typical image processing and analysis procedure, when e.g. a maize kernel would be imaged and 

analysed, is schematically illustrated in Figure 2.3.  

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



21 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Schematic illustration of a typical image processing and analysis procedure used e.g. 

when analysing a maize kernel. Images with a resolution of 12 μm were obtained from a source 

voltage of 60 kV and an electron current set at 240 μA (General Electric Phoenix V|Tome|X L240 

μCT instrument). 
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filters (e.g. Gaussian or Median) to reduce random noise. This step is followed by segmentation 

where the volume is partitioned into voxel groups of each region-of-interest (ROI) in the sample 

(Baker et al., 2012). Thus the grey scale slices are transformed into a binary layout that consists 

only of solid (black) and void (white) pixels (Chawanji et al., 2012). The purpose of using ROIs is to 

separate a volume data set into individual parts, allowing analyses to be restricted to specific areas 

of a data set. In Figure 2.3, 3D reconstructed X-ray μCT images of a maize kernel and its selected 

ROIs, i.e. cavities, floury endosperm and germ are illustrated. 

Segmentation is usually done using thresholding techniques, i.e. (1) selecting a global 

threshold that is relevant to all the voxels; (2) locally adaptive thresholds; (3) region-growing 

techniques; and (4) clustering by iterative techniques (Baker et al., 2012). Voxels containing grey 

values lower or higher than this threshold value are regarded as background or sample material 

respectively. It is essential to eliminate errors and unwanted information before starting with 

analysis. Pre-processing is usually done before image analysis to reduce noise and to correct 

detector defects. Correction steps usually applied include filtering or smoothing and beam-

hardening corrections to suppress random noise and beam-hardening artefacts, respectively 

(Frisullo, et al., 2009). Filtering is also applied to eliminate artefacts, to increase the visibility of 

different phases and to enhance the edges of a sample (Baker et al., 2012). After segmentation, a 

cleaning step is typically applied to remove small quantities of pixels that are considered artefacts 

i.e. the partial volume effect (Baker et al., 2012). This effect is the result of one pixel containing 

numerous phases. The cleaning methods are either topological (based on sample connectivity) or 

morphological (erosion and dilation tools) (Baker et al., 2012). 

 

Image analysis  

Image analysis is used to qualitatively and quantitatively extract visual information and 

morphometric parameters to characterise the microstructure of a product (Herremans et al., 

2013b). The objective of image analysis is to describe an image on the basis of information that 

could be extracted from the images or image sequences. Analysing an image in its original form is 

very time-consuming because of the immense size, therefore it is often reduced to smaller selected 

ROIs (Jayas et al., 2000). When performing quantitative analysis, representativeness should be 

taken into consideration (Ramírez et al., 2010). It is thus important that a representative volume 

element (RVE) is obtained from the sample or ROI. A RVE is a heterogeneous material volume, 

which is large enough to be statistically representative of the entire sample or ROI. It must 

therefore include all microstructural variances (e.g. voids and inclusions) present in the sample. A 

sample (or ROI) with a wide data spread and large structural elements will have a larger RVE than 

a sample with a narrow distribution and smaller structural features (Ramírez et al., 2010). To 

ensure representativeness, each ROI should thus be a RVE.   
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The internal structure of various products can be studied and the distribution of regions varying 

in density can be visualised through virtual slicing of the 3D rendered volume (Baker et al., 2012). 

This is only possible if the X-ray attenuation of the ROIs is significantly different to provide 

adequate contrast. A benefit of X-ray μCT is that image analyses is not restricted to one individual 

slice at a time, but covers the volume in all three dimensions. Volume data contains an incessant 

set of voxels that are organised in a 3D grid structure. Voxels are volumetric pixels and thus the 3D 

equivalent of pixels. The x and y axis represents the vertical and horisontal pixel coordinates (2D), 

whereas the z axis characterises the 3D spatial dimension. Each voxel signifies a particular area of 

the sample where the grey value offers information on the density properties in this region. The 

information from several 2D slices can be merged to create a 3D image that allows volumetric 

observations and measurements of the 3D microstructure. In contrast to conventional microscopy 

techniques, X-ray μCT provides both 2D and 3D images of the whole sample and the internal ROIs 

(Lim & Barigou, 2004).  

 

3D and 2D interpretation and visualisation of X-ray CT images 

A 3D map of X-ray absorption can be obtained from the projection images (Landis & Keane, 2010). 

Different features can be identified from these images due to the variation in absorption of different 

materials (Landis & Keane, 2010). Three-dimensional CT maps can be viewed in various planes. 

Figure 2.4 illustrates this approach with a 2D tomogram of a maize kernel. The brightness in the 

images is correlated to the X-ray absorption, where the brighter regions correspond to a higher 

absorption (higher grey value) and the dark areas correlate to a lower absorption (lower grey 

value). From the grey value histogram the lower grey values corresponding to surrounding air and 

internal void space and higher values corresponding to solid material can be identified. This is 

valuable for phase analysis and is often used to segment an image into different ROIs. A grey 

value histogram for a maize kernel has separate peaks each corresponding to a different phase i.e. 

solid or air (Fig. 2.3). This tool enables segmentation to be done based on thresholding. A 

threshold is selected where all the pixels lower than the threshold are equal to zero (black) and 

those larger are equal to one (white) (Landis & Keane, 2010).  
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Figure 2.4. Illustration of the different X-ray image views (horisontal, frontal and sagittal) of a 

maize kernel. Two-dimensional views are shown on the left and the corresponding section in the 

3D view on the right. These images were produced using a General Electric Phoenix V|Tome|X 

L240 μCT instrument with settings of 60 kV and 240 μA and a voxel size (resolution) of 12 μm.  
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as the average attenuation in the corresponding section in the sample on a Hounsfield scale 
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material densities. The image intensity, expressed in HU, represents the attenuation capabilities of 

a sample (Donis-González et al., 2014b). Thus, differences in the physical density are observed as 

changes in the CT number. Low-density objects (e.g. air) have a low HU (-1000) and high-density 

samples (e.g. solid material) a high HU (up to 3000 HU) (Donis-González et al., 2014b). Water has 

an attenuation of 0 HU and air a value of -1000 HU. Changes in the HU-values between different 

ROIs are highly correlated with deviations in sample density, thus X-ray CT is sensitive enough to 

enable accurate quantification of internal density deviations.  

Much research in food science demands an understanding of the true 3D morphology to 

investigate the internal structure of a food product. A 3D approach enables essential and reliable 

information on microstructure and spatial distribution to be obtained, and it provides insight into the 

overall structure and morphology of a sample. A 3D model of a sample can be rendered from the 

reconstructed 2D images. The model can be sliced in any direction and at any depth to enable 

visualisation of the internal structure. This makes X-ray CT ideal for non-invasive imaging of the 

internal features of food, especially foods with a delicate structure, giving X-ray CT a leading edge 

over other methods (Lim & Barigou, 2004). 

Software packages enable analysis of images and 3D visualisation with the ability to rotate 

and cut the sample on a computer screen (Lim & Barigou, 2004). Numerous  parameters can be 

obtained from a 3D model such as air volume, surface-to-volume ratio, connectivity, cell wall 

thickness and degree of anisotropy (Lim & Barigou, 2004). The section on quantitative X-ray CT 

data analysis will further expand on this topic.  

In 2D analysis the information extracted is usually limited. Considering the 2D slice images in 

Figure 2.4, a multiphase composition can be observed as the maize kernels are made up of a 

germ, floury (soft) and vitreous (hard) endosperm and air space. These components can be 

distinguished owing to the difference in X-ray absorption. This difference manifests itself through 

the variation in the grey scale intensities and therefore it appears visually as distinct phases. From 

reconstructed 2D images density differences can be visualised and qualitative information can be 

obtained. Two-dimensional images is not always fully representative of the true 3D structures, for 

example where the shapes and sizes of vesicles or pores in a sample is reliant on the location of 

the 2D section (Baker et al., 2012).  

With 2D X-ray imaging only one image is acquired per sample, in contrast to CT where a 

transverse 2D image (slice) is reconstructed making use of information from more than one 2D 

projection image obtained at various angles. Thus, 2D X-ray μCT images are capable of 

demonstrating variation in the size and geometry of certain features such as pores or cavities. The 

geometry of individual components in a food structure can thus be quantified by size, shape, 

orientation and position. More information can be provided from a series of CT slices of the same 

sample than from modern microscopy procedures (e.g. SEM) (Lim & Barigou, 2004). With 3D 
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analysis ROIs can be selected, the sample can be viewed from any arbitrary angle and it can be 

cut and sliced to examine the 2D sections in any orientation. 

 

3D modelling 

As a result of increased computing power, μCT data can also be used to model the microstructure 

of materials, perform numerical simulations and to predict mechanical properties. The 

microstructure of food is a 3D description of the morphology, where the quantification of a sample’s 

microstructure begins with a geometric model. A 3D model of the microstructure of a product can 

be built and image analysis techniques can be used to attain quantitative data on a number of 

properties such e.g. cell wall-thickness, spatial size distribution, voidage, connectivity and degree 

of anisotropy (Lim & Barigou, 2004). The development of different finite element (FE) methods, 

which are numerical methods capable of predicting material properties form accurate structural 

knowledge in mechanical modelling, has been well demonstrated for composite materials (Maire et 

al., 2003). More recently it has been applied to food science for the mechanical modelling of cereal 

products in order to predict texture (Guessasma et al., 2011). FE modelling can be divided into four 

stages: definition of geometry and meshing; input of material properties; stress distribution of the 

REV; and lastly the REV being submitted to a virtual standard mechanical test (Guessasma, et al., 

2011).  

X-ray CT can simulate food samples and create models by combining object measurements 

with the 3D microstructure (Baker et al., 2012). As a result of the strong contrast between the 

matter within the sample and the voids, X-ray tomography is capable of providing 3D images of the 

structure of porous foods (Lim & Barigou, 2004). Even though the application of X-ray CT 3D 

simulations in food science is in its early stages, tomographic imaging as a foundation for 

modelling structures has become commonplace. In a novel method by Mebatsion et al. (2009) 3D 

microstructural modelling of pome fruit tissue was performed using synchrotron radiation. 

Herremans et al. (2014b) made use of multiscale modelling to understand the changes in gas 

concentrations, respiration and fermentation rates in apples during the development of a disorder.  

A review on multiscale modelling explains the underlying physical and computational concepts 

and provides an overview of the applications in food engineering (Ho et al., 2013). Modelling the 

microstructural evolution and fracture of brittle confectionery wafer has been studied in a recent 

publication which combined X-ray μCT and FE methods (Mohammed et al., 2014). This study 

demonstrated that an FE model can predict the product properties with a high level of accuracy in 

order to optimise industrial processes. The most accurate way of accounting for the structure when 

modelling cellular samples is to use the 3D information obtained by X-ray μCT to develop a FE 

model of the real microstructure (Maire et al., 2003). A drawback of using FE computations, 

obtained from X-ray μCT, is that these computations are both time- and memory-consuming 
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(Mohammed et al., 2014). It is always aimed to find a compromise between computing time and 

the accuracy of results. 

 

Information provided by X-ray μCT: Qualitative and quantitative  

A range of commercial and open source software is available for extracting qualitative and 

quantitative information from a data set (Landis & Keane, 2010). Furthermore, animations 

illustrating evolutionary processes add value to the investigations in a manner, not possible with 2D 

analyses. Initially, very few studies have attempted to study food microstructure in an objective 

manner, since researchers often just report a few cross-sectional images in combination with a 

qualitative discussion of the microstructure, without investigating the quantitative measurement of 

key properties. Studies have shown that X-ray μCT has been established as an accurate method 

for the visualisation of the microstructure of materials with pixel sizes close to, and below 1 μm 

(Van Dalen et al., 2007; Verboven et al., 2008). In favourable conditions, X-ray CT delivers 

unparalleled data with a great level of detail that is not easily matched by any other technique 

(Baker et al., 2012). Even though 2D slice images provides qualitative and some quantitative 

value, it is the digital nature and quantitative possibilities of 3D volumes that is the most compelling 

characteristic of tomographic data (Landis & Keane, 2010).  

 

Qualitative X-ray CT data analysis 

Qualitative analysis is essential to distinguish between diverse classes of a commodity or to detect 

anatomical and physiological changes. Furthermore, the cell structure of products can be observed 

giving an indication of the connectivity between cells. 3D rendered images enable the visualisation 

of the morphology and microstructure such as the pore shape, size and distribution.  

Qualitative data analysis offers a powerful tool for improving the understanding of sample 

structure relationships and the spatial distribution throughout the sample. Qualitative 3D modelling 

is possible as a result of the added spatial dimension. CT images illustrate similarity in samples 

through the grey values; similar grey values correspond to similar densities.   

 

Quantitative X-ray CT data analysis  

Besides 3D visualisation of the reconstructed volume through 3D rendering procedures, image 

processing also enables the quantitative analysis of data volumes (Baker et al., 2012). Various 

microstructural parameters, i.e. size distribution of void cells, wall thickness, volume fractions, 

porosity, dimensions, and connectivity along with density information can be obtained from data 

sets. In food science, the geometry and organisation of structural components i.e. ice crystals, 

pores, fractures and areas of internal disorders can be examined using X-ray μCT.  

Over the past decade software for morphological quantitative tomographic data sets has 

significantly advanced and commercially available software is the result of industry demand (e.g. 
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Avizo-VSG, VGStudio Max, ImageJ and MAVI-Fraunhofer ITWM) and several research groups 

have developed their own toolboxes for IDL® (Interactive Data Language) and Matlab® software 

(e.g. Blob3D, Pore3D, 3DMA and Quant3D) (Baker et al., 2012). 

Once a segmented volume, with the various ROIs, has been defined measurements can be 

performed. For example, the number of bubbles, the bubble volume and size can be determined in 

an aerated chocolate (Haedelt et al., 2007). The quantification of structural parameters enables the 

objective relationship between microstructure and other properties. The microstructure of a sample 

can be quantified by applying 2D and 3D algorithms that results in morphometric parameters and 

geometric 3D models of microstructures (Herremans et al., 2013b). X-ray μCT enables the 

visualisation and quantification of 3D microstructures at scales down to a sub-micron level (Baker 

et al., 2012). Herremans et al. (2013b) describes the 3D microstructural parameters that can be 

used for the quantification of microstructure.  

 

Image texture analysis 

Image texture analysis is regarded as an essential feature in the food industry for quality evaluation 

(Zheng et al., 2006). One should, however, not confuse the concept of texture in computer vision 

(image texture analysis) and texture of food products (Zheng et al., 2006). Food texture is 

described by properties such as hardness, elasticity, viscosity and chewiness in contrast to image 

texture that refers to coarseness, fineness, smoothness and graininess. Image texture is regarded 

as the spatial arrangement of the brightness values of pixels and is comprised of four different 

texture feature categories, i.e. statistical texture, structural texture, model-based texture and 

transform-based texture (Zheng et al., 2006). Statistical texture makes use of statistical methods 

obtained from higher-order pixel grey values. Structural texture is based on structural primitives 

conducted from the grey values of pixels. Model-based texture is achieved by computing 

coefficients from a model based on the association of the grey values between a pixel and its 

neighbouring pixels. Transform based texture is based on the use of statistical measurements from 

images which is transformed with specific techniques. Of the above mentioned the most frequently 

used technique in the food industry, for quality grading, is statistical texture because of its high 

accuracy and reduced computation time.  

 

Principles  

Images consist of basic components known as pixels. Each pixel includes two kinds of information, 

i.e. the brightness value as well as the locations in the coordinates that are allocated to the images 

(Zheng et al., 2006). Brightness is a colour feature, while the latter correlates to shape or size 

features. Another image feature is texture and it corresponds to both the above mentioned features 

(Zheng et al., 2006). One of the most widely used statistical texture analysis methods is grey level 

co-occurrence matrix (GLCM) and this method extracts textural features by statistical methods 
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from the co-occurrence matrix. Information on the distribution of grey level intensities in relation to 

the relative position of pixels with equal intensities is provided by a GLCM (Paliwal et al., 2003). 

 

Applications  

Texture is regarded as an important image feature that can be used for describing image 

properties and it has a wide range of applications, which includes food quality evaluation. From the 

texture in images, changes in the intensity values of the pixels can be observed, since a change in 

intensity might indicate a change in geometric structure (Zheng et al., 2006). In the food industry, 

texture can be an indicator of quality as it can reflect the cellular structure of food. For instance, 

texture can be used to reflect beef tenderness (Li et al., 1999). The food industry is regarded as 

one of the top ten manufacturers using computer vision for image texture analysis as its application 

includes a wide range of foodstuffs i.e. vegetables (Thybo et al., 2004), cereal grains (Paliwal et 

al., 2003) and fruits (Kondo et al., 2000).  

 

Food applications 

In recent years, X-ray μCT has become more commonplace in food science for evaluating quality 

and microstructure, enabling a better understanding of the physical structure of a sample. X-ray 

μCT has been investigated on an extensive range of commodities (fish, meat, fruit and vegetables, 

dairy, cereals, coffee beans, nuts, confectionary and baked products) and applications (internal 

disorders, microstructural characterisation and quantification, infestation detection, visualise pore 

structure and pore size distribution; estimate and evaluate a specific ingredient or component).  

Reliable microstructural information on foods undergoing chemical and physical processes has 

successfully been obtained using X-ray μCT (Léonard et al., 2008). This tool is however still 

relatively new in the field of food processing (Lim & Barigou, 2004). In the food industry 3D X-ray 

microstructural applications are gaining popularity in order to understand the functionality of food 

components and ingredients (Chawanji et al., 2012; Pareyt et al., 2009), and to determine internal 

quality, especially to detect internal defects in agricultural products (Kotwaliwale et al., 2014).  

X-ray μCT is particularly well suited to investigate the dynamics of structural changes in food, 

provided that it takes the time resolution constraints into account. Examples include the 3D 

characterisation of three-phase systems to track the microstructural evolution in ice cream (Pinzer 

et al., 2012) and to study bread dough aeration dynamics (Trinh et al., 2013). Challenges 

encountered in such applications are illustrated by Turbin-Orger et al. (2015) who examined the 

evolution of cellular structures in fermenting wheat flour dough, specifically looking at the growth 

and setting of gas bubbles. An overview of X-ray μCT applications related to the various 

commodities in the food industry is given in Table 2.1. 
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Table 2.1. An overview of X-ray μCT applications related to various food commodities and types 

Food commodity/ type Tube voltage and current  Spatial resolution  Application Reference  

Meat and fish     

Chicken nuggets  100 keV, 98 μA 14.06 μm Microstructural characterisation (Adedeji & Ngadi, 2011) 

Cured pork 130 keV 6.2 pixels/mm Quantification of salt concentrations  (Vestergaard et al., 2004) 

Dry cured ham 80, 120 and 140 kV, 250 mA 1.1 pixels/mm Prediction of salt and water content  (Fulladosa et al., 2010) 

Freshwater fish - - Fillet composition measurement (Romvári et al., 2002) 

Lamb  - - Carcass composition and meat 

quality traits  

(Karamichou et al., 2006) 

Pork 140 kV, 145 mA - Lean meat prediction using a density 

model 

(Picouet et al., 2010) 

Pork - - Fat deposition and distribution  (Kolstad, 2001) 

Pork  80, 110 and 130 kV, 106 mA 0.3, 0.5 and 0.6 

pixels/mm  

Sodium quantification (Håseth et al., 2008) 

Pork 140 kV, 145 mA  - Estimation of lean meat content  (Furnols et al., 2009) 

Processed meat  82 kVp, 125 μA 15 μm Intramuscular fat level and 

distribution  

(Frisullo et al., 2009) 

Salmon 80, 110 and 130 kV, 106 mA 2.56 pixels/mm Salt and fat distributional analysis  (Segtnan et al., 2009) 

Salmon 150 keV, 164 μA - Ice recrystallisation  (Syamaladevi et al., 2012) 

Sausages 100 kVp, 100 μA 17.3 μm Microstructural analysis and the 

relationship with hardness  

(Santos-Garcés et al., 2013) 

Dairy     

Cheese 120 kV, 150 mA 0.424 and 0.431 

pixels/mm 

Quantitative determination of eye 

formation  

(Schuetz et al., 2013) 

Cheese  120 kV, 150 mA 0.423-0.508 

pixels/mm 

Quantitative determination of eye 

formation  

(Guggisberg et al., 2013) 
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Cream cheese 100 kVp, 100 μA 2 μm Microstructural characterisation (Laverse et al., 2011b) 

Eggshell 85 kV, 70 μA 1.5 μm Quantification of microstructure (Riley et al., 2014) 

Ice cream 75 kV 6 μm Tracking microstructural evolution  (Pinzer et al., 2012) 

Mayonnaise  100 kVp, 100 μA 2 μm Microstructural characterisation (Laverse et al., 2012) 

Milk powder 45 keV, 177 μA 2 μm Microstructure of loose‐packed and 

compacted milk powders 

(Chawanji et al., 2012) 

Yogurt 100 kVp, 100 μA 2 μm Fat microstructure  (Laverse et al., 2011a) 

Fruit and vegetables     

Apples 40 keV 9.89 μm Microstructural visualisation of 

different cultivars 

(Ting et al., 2013) 

Apples  85 and 58 keV 82.6 and4.8 μm Quantitative microstructural 

engineering 

(Herremans et al., 2014b) 

Apples  80 keV, 100 μA and 49 keV, 

201 μA 

4.8 μm Comparison of X-ray CT and MRI to 

detect watercore disorder  

(Herremans et al., 2014a) 

Apples  63 kV, 156 μA 8.5 μm Investigation of the multifractal 

properties of pore-size distribution 

(Mendoza et al., 2010) 

Apples  58 keV  4.8 μm Characterisation of ‘Braeburn’ 

browning disorder 

(Herremans et al., 2013b)  

Bananas  60 kV, 167 μA 15 μm Effect of far-infrared radiation on the 

microstructure  

(Léonard et al., 2008) 

Cucumbers, pineapples, 

cherries and chestnuts 

120 keV, 170 and 240 mA 1.289 pixels/mm Internal characterisation of 

agricultural products  

(Donis-González et al., 2014b) 

Kiwi fruit 60 kV, 167 μA 4.87 μm Microstructural characterisation (Cantre et al., 2014) 

Mango 150 keV, 3mA - Linking X-ray absorption with 

physicochemical properties 

(Barcelon et al., 1999) 

Nectarines  80 kV, 40 mA - Woolly breakdown (Sonego et al., 1995) 

Pears  53 kV, 0.21 mA - Investigating core breakdown (Lammertyn et al., 2003) 
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Pomegranate 200 kV, 100 μA 71.4 μm Quantification and characterisation of 

internal structure  

(Magwaza & Opara, 2014) 

Tomatoes - - Determining maturity (Brecht et al., 1991) 

Cereals and cereal 

products 

    

Cereal powders 50 kV, 800 μA 6.46 μm Internal microstructural 

characterisation to study process 

structure relationships 

(Hafsa et al., 2014) 

Cornflakes - 15 μm Relationships between texture, 

mechanical properties and structure  

(Chaunier et al., 2007) 

Crackers, coated biscuit 

shells and wheat based 

soup 

50 kV, 100 μA 15 and 18 μm Imaging and analysis of porous 

cereal products  

(Van Dalen et al., 2007) 

Maize  40 kV - Analysis of maize kernel density and 

volume  

(Gustin et al., 2013) 

Maize 60 kV, 240 μA 13.4 μm Estimation of maize kernel 

hardness using a density calibration 

(Guelpa et al., 2015) 

Maize 150 kV, 70 μA 8 μm Investigating Fusarium infection  (Williams, 2013) 

Rice  46 kV, 75 μA 3.91 μm Study of high-amylose and wild-type 

rice kernel structure  

(Zhu et al., 2012) 

Rice 50 kV, 100 μA 9.1 μm Effect of kernel microstructure on 

cooking behaviour 

(Mohorič et al., 2009) 

Rice 50 kV, 100 μA 9.1 μm Structural and hydration properties of 

heat-treated rice  

(Witek et al., 2010) 

Wheat  140 kV, 96 mA 3.42 pixels/mm Imaging and automated detection of 

Sitophilus oryzae (Coleoptera: 

Curculionidae) pupae  

(Toews et al., 2006) 
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Wheat 13.5 kV, 185 μA and 26 kV, 

11 μA 

60 pixels/mm Dual energy X-ray imaging for 

classifying vitreousness  

(Neethirajan et al., 2007)  

Wheat, barley, flax 

seed, peas and mustard 

- 120 and 200 μm Analysis of the pore network  (Neethirajan & Jayas, 2008)   

Wheat, barley, flax 

seed, peas and mustard 

420 kV, 1.8 mA 120 μm Explanation of airflow resistance (Neethirajan et al., 2006)  

Cereal food foams 17.6 keV and 50 kV 6.5, 7.5, 16.2 and 

25.8 μm 

Determination of cellular structure  (Chevallier et al., 2014) 

Coffee beans and nuts     

Chestnut  120 kV, 170 mA 1.42 and 2.52 

pixels/mm 

Postharvest assessment of internal 

decay  

(Donis-González et al., 2014a) 

Coffee beans 29 kVp, 175 μA 2.8 μm Microstructural changes induced by  

roasting 

(Frisullo et al., 2012)  

Coffee beans 19 and 20 keV  9 μm Evaluation of microstructural 

properties 

(Pittia et al., 2011) 

Pecan nuts 120 kV, 33mA  - Insect behaviour  (Harrison et al., 1993) 

Pecan nuts 4-50 kVp, 1 mA - X-ray attenuation coefficients  

of pecan components 

(Kotwaliwale et al., 2006) 

Confectionary     

Chocolate  - - Characterisation of the structure of 

bubble-included chocolate  

(Haedelt et al., 2007) 

Chocolate 37 kV, 228 μA 13.3 μm Microstructural characterisation  (Frisullo et al., 2010b)  

Foams 100 kV,  96 μA 10-20 μm Microstructure of foams  (Lim & Barigou, 2004) 

Sugar gels 49 keV, 201 μA  4 μm Microstructure–texture relationships (Herremans et al., 2013a) 

Dough and baked 

products 

    

Biscuits 80 kV, 180 μA 22.5 μm Impact of flavour solvent on biscuit (Yang et al., 2012) 
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microstructure 

Bread  59 kV, 149 μA 16-20 μm Pore structure of bread crumbs (Wang et al., 2011) 

Bread 50 kV, 100 μA 6 μm Effect of crumb morphology on water 

migration and crispness retention  

(Hirte et al., 2012) 

Bread  49 keV, 200 μA 5.9 μm Microstructural properties of extruded 

crisp bread 

(Gondek et al., 2013) 

Bread 18 keV 15 μm Bubble growth and foam setting 

during breadmaking 

(Babin et al., 2006) 

Bread 12 keV 14 μm 3D quantitative analysis  (Falcone et al., 2005) 

Bread 75 kV, 220 μA 30 μm Characterisation of structural 

patterns 

(Van Dyck et al., 2014) 

Bread - 10 μm Granulometry of bread crumb grain (Lassoued et al., 2007) 

Bread (gluten-free) 45 kVp, 177 μA - Structural characterisation (Demirkesen et al., 2014) 

Bread and biscuits 59 kVp, 167 μA 15 μm Microstructural analysis (Frisullo et al., 2010a) 

Bread dough  50-65 keV, 200-285 μA 7.1-10.8 μm Aeration dynamics during pressure 

step-change mixing 

(Trinh et al., 2013) 

Bread 50 kV, 800 μA 22.1 μm Characterising cellular structure of 

bread crumb and crust 

(Besbes et al., 2013) 

Cake  40 kV, 250 μA 23.29 μm Structural parameters and starch 

crystallisation 

(Sozer et al., 2011) 

Sugar-snap cookies 68 kV, 0.51 mA 91 μm Effect of fat and sugar (Pareyt et al., 2009) 

Wheat flour dough 70 kV, 109 μA 10 μm Investigation of bubble size 

distribution  

(Bellido et al., 2006) 

Wheat flour dough 17.6 keV 5 and 15 μm Growth and setting of gas bubbles (Turbin-Orger et al., 2015) 
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Meat and fish 

Most X-ray μCT applications on meat considered the estimation of fat and its distribution. Fat 

contributes to palatability (juiciness, taste and texture) of meat products. Chemical extraction 

methods are time-consuming, expensive, and destructive and make use of flammable solvents 

harmful to the environment and health. Frisullo et al. (2009) investigated the fat distribution 

(qualitative) as well as the content (quantitative) in salamis by means of the percentage object 

volume (POV), structure thickness and object structure volume ratio (OSVR). Validation of the X-

ray μCT technique with chemical analysis showed no statistical differences. It was also possible to 

determine the microstructure of fat and protein simultaneously (quantitatively and qualitatively).  

Conventional chemical techniques only quantify chemical components one at a time. 

The intramuscular fat content and distribution in various beef meat joints and breeds could be 

accurately determined (r = 0.92-0.99, P<0.001) using the POV as determined with X-ray μCT and 

the soxhlet extraction as reference method (Frisullo et al., 2010c). Although this method is 

expensive, it provides more information regarding the fat distribution thus enabling a more accurate 

description of the meat quality.  

 

Dairy products  

The dairy industry has been using X-ray μCT for a number of analyses as detailed in Table 2.1. 

More recently, complex products such as cream cheese (Laverse et al., 2011b) and mayonnaise 

(Laverse et al., 2012) were evaluated for a variety of characteristics. Pinzer et al. (2012) used X-

ray μCT to track the microstructural evolution during temperature variation in ice cream by means 

of time-lapse studies.  

The microstructure of milk powders, both loose-packed and compacted as well as spray-dried 

skimmed and whole milk powders was examined by Chawanji et al. (2012). This allowed the 

quantification of the proportion of interstitial and occluded air voids. This is of importance as the 

packing density is portrayed by the air voids and directly impacts the transportation and storage 

costs. Furthermore, the microstructural details such as the shape and size of the particles and 

internal voids could be characterised. It was found that the disparity in the air voids of the loose-

packed and compacted samples were due to the powder particle shape, size and surface 

properties.  

 

Fruit and vegetables 

The fruit and vegetable industry suffers great losses, as approximately 25 to 30% of the production 

is discarded after harvest due to undetectable internal quality defects and safety problems. Fresh 

fruit and vegetable quality is measured in terms of external factors (i.e. colour, shape, size and 

surface mould) as well as internal disorders that is the result of physiological and anatomical 

changes (e.g. moisture loss, senescence, bruising, decay, insect injury, discolouration and 
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microorganism attack) (Donis-González et al., 2014b). One of the most important advantages of X-

ray imaging is that defects or internal disorders can be identified and visualised in μCT images, 

before they can be seen on the product itself. However, in spite of the extensive research effort, 

internal characterisation of fresh fruit and vegetables using X-ray imaging is still uncommon in the 

industry.  

Since the first application of X-ray μCT in the early 1990’s, the detection of maturity in green 

tomatoes (Brecht et al., 1991), numerous investigations have been performed on fruit and 

vegetables making it the most prominent field of application. X-ray μCT has mainly been used to 

determine factors that negatively impact quality such as anatomical and physiological deviations 

within the tissue of fruit and vegetables i.e. decay, insect infestations, internal disorders and cell 

breakdown. The earliest applications in horticulture focussed mostly on fruit such as mangoes and 

peaches, with little reported on vegetables.  

An X-ray imaging inspection method to detect an internal disorder, spongy tissue, in mangoes 

was developed in 1993 (Thomas et al., 1993). Differences between the healthy and affected fruit 

were indicated by variances in the grey values of the X-ray images. Spongy tissue appeared as 

darker regions, whereas the sound fruit were correlated to lighter areas. Density differences were 

also used to discriminate between sound mangoes (lighter regions) and fruit infested with weevils 

(dark areas) (Thomas et al., 1995).  

A few studies compared MRI and X-ray μCT. Herremans et al. (2014b) investigated the effect 

of watercore disorder on different apple cultivars. Despite the better contrast in the MRI images, 

89% of the fruit was correctly classified using X-ray μCT in comparison to the 79% classification 

accuracy with MRI. These techniques were also used to study the spatial distribution of core 

breakdown in ‘Conference’ pears (Lammertyn et al., 2003). Both were capable of differentiating 

between unaffected tissue, brown tissue and cavities. However, MRI appeared to produce a better 

contrast between unaffected and affected tissue.  

A more recent study by Donis-González et al. (2014b) investigated the internal attributes of 

fresh agricultural products: pickling cucumbers (internal defects), pineapples (translucency defects) 

and cherries (pit presence and infestation) using traditional and ultrafast X-ray μCT imaging. The 

authors found that changes in the internal tissue of agricultural commodities, caused by various 

factors (e.g. insect damage, disorders or void presence), leads to significant changes in the HU. 

This value either increased or declined with respect to healthy tissue.  

There is potential for non-destructive inline sorting of agricultural products using X-ray μCT. 

This will enable detection of internal quality characteristics (after validation under commercial 

conditions) at a relatively early stage and prevent fruit with short shelf life from entering the supply 

chain (Donis-González et al., 2014b). With the 3D advantage and the ability to visualise the 

internal structure, improved knowledge of products are obtained that could result in a better 

understanding of the environmental effects on the fruit and vegetable structure. Even though larger 
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samples sets should be used, it is restricted because of the high cost of performing X-ray CT 

analysis. Nevertheless, X-ray μCT can serve as a valuable technique for the development of future 

prediction models for internal quality.  

 

Cereals and cereal products 

Several papers have been published on the cellular structure of cereal grains and cereal products 

(Table 2.1). Neethirajan et al. (2006) investigated the airflow resistance of various grains in grain 

bulks. They observed that the ratio of total airspace to the total number of air paths is the best 

predictor for the difference in airflow resistance in grain bulks (Neethirajan et al. 2006).  

Maize plays a vital role in the diet of the African population. The development of fungal 

infection during storage in silos is a concern as the presence of fungus renders the entire stock 

unsuitable for use and this consequently has an impact on the economy (Williams, 2013). With 

visual assessment, the fungal damage is only detectable at an advanced stage of infection. With X-

ray CT it was possible to visualise infestation earlier, when the damage is still not present on the 

exterior of a product.   

With X-ray μCT both quantitative (e.g. volume, density) and qualitative (e.g. hardness 

classification) analyses of whole maize kernels could be performed (Gustin et al., 2013; Guelpa et 

al., 2015). Guelpa et al. (2015) constructed an X-ray μCT density calibration for whole maize 

kernels, using polymer discs of known densities as calibration standards (Fig. 2.5). Larger cavities 

were much more prominent in the floury endosperm of the soft hybrids, resulting in lower kernel 

densities. Floury endosperm density was also lower than that of the vitreous endosperm. 

  

    

            (a)                           (b)                                (c)                                  (d) 

Figure 2.5. Stack of seven polymer discs, used for the density calibration, along with eight maize 

kernels with (a) showing the floral oasis, used for mounting, and (b) with the mounting material 

removed. Two-dimensional X-ray μCT slice images of a (c) hard and (d) soft maize kernel 

illustrating distinct, large cavities (marked with white circles) present in mostly the floury 

endosperm. Cavities are shown as black in X-ray images.  
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Coffee beans and nuts  

During coffee processing, roasting forms one of the most important steps as this affects the 

sensorial and textural characteristics of the roasted beans. A few studies focussed on the 

microstructural and morphological alterations of coffee beans induced by roasting (Table 2.1). 

Roasting had a significant impact on the microstructure as it led to the development of a porous 

bean structure (Pittia et al., 2011). Pore shapes, sizes and distributions are relatively easy to 

measure with X-ray μCT. Because of the rupture of the bonds in the internal structure during 

roasting, the total pore volume and porosity increased and density decreased with an increase in 

the roasting time (Frisullo et al., 2012). X-ray μCT could help to achieve a better understanding of 

the impact of roasting on the microstructural evolution of coffee beans, which may influence 

stability along with grinding and brewing performances. Three-dimensional volumes can be used to 

visualise and quantify the increase in porosity (cavities and pores) as illustrated in Figure 2.6 for a 

maize kernel before and after roasting.  

Donis-González et al. (2014b) investigated the internal decay and internal characteristics of 

chestnuts using the ultrafast ROFEX-scanner. In a similar study postharvest non-invasive 

assessment of internal decay in fresh chestnuts was performed using a medical CT scanner 

(Donis-González et al., 2014a).  

 

   

                                (a)                                                                       (b) 

Figure 2.6. Three-dimensional visualisation of the volume size distribution (indicated by the colour 

scale bar) of the porosity (cavities and pores) in a maize kernel (a) before and (b) after roasting. In 

the raw kernel separate cavities and pores are illustrated by different colours. In the roasted kernel 

the cavities and pores are interconnected, respectively, thus representing the cavity (yellow) and 

pore (blue) networks.  
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Confectionary  

Applications where the microstructure of products is highly correlated to the physical and sensory 

attributes, to either evaluate consumers’ acceptance (Haedelt et al., 2007) or to develop food 

products with desired properties (e.g. mechanical and organoleptic) (Lim & Barigou, 2004), have 

also been assessed using X-ray μCT. Table 2.1 details X-ray μCT applied to confectionary. Many 

confectionary products exhibit a cellular foam structure (e.g. mousse, muffins, chocolate and 

biscuits) that needs to be characterised so that the relationship between structure and mechanical 

properties can be determined. X-ray CT applied in confectionary applications enables real-time, 

non-destructive analysis of complex aerated products. In a novel approach by Haedelt et al. 

(2007), X-ray CT was used to characterise the structure of bubble-included chocolate produced 

using different gasses. This enabled the visualisation and interpretation of the bubble distribution, 

bubble size and number of bubbles in the chocolate and was related to sensory responses.  

 

Dough and baked products  

Good quality bread is influenced by the quality of the dough and the processing parameters. X-ray 

CT is ideal for the characterisation of the internal structure of porous products (Table 2.1). It can be 

applied to analyse the dough and the finished product. Knowledge on food microstructure can be 

used to identify key processing parameters that may influence quality. Functional, technological 

and physicochemical properties is influenced by structure-property relationships e.g. in solid foams 

like bread, cakes and biscuits the consumer acceptance is strongly associated with the texture. 

Several results have been published on the cellular structure of dough, bread and other baked 

products using either laboratory X-ray CT devices (Agbisit et al., 2007; Hirte et al., 2012; Wang et 

al., 2011) or synchrotron sources (Lassoued et al., 2007). 

Most of the studies addressing bread microstructure focused on the visualisation of the porous 

structure where quantitative analysis entailed cell shape, cell wall thickness, void fraction, fineness, 

crumb porosity, anisotropy, pore size distribution and the geometry and orientation of pore 

networks. These investigations emphasised the important role the pore networks play and has 

improved the understanding thereof. A novel X-ray μCT study investigated the bubble size 

distribution in wheat flour dough (Bellido et al., 2006), opening the possibility of gaining more 

knowledge on the aeration phenomenon in wheat flour dough.  

This technique enables examination at microscopic level, which is useful to the food industry, 

as the accurate calculation of the number, dimension and distribution of pores could lead to the 

improvement of sensorial attributes. As is often the case with making use of novel technology, 

most are only feasibility studies, performed on laboratory scale and not in a commercial 

environment. Thus, there is room for future investigations and developments in the technique.  
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Limitations 

Even though some of the limitations of X-ray μCT are intrinsic to the technique, others are currently 

being addressed and are likely to have a reduced influence in future.  

 

Time and financial constraints  

The use of this technique in industry is still limited due to time and financial constraints 

(Kotwaliwale et al., 2014). Even though modifications in the hardware has considerably reduced 

the time that is needed for a scan, it remains a concern (Kotwaliwale et al., 2014). Guelpa et al. 

(2015) reported that it took up to 30 minutes to scan single maize kernels at a resolution of 13.4 

μm, whereas a two hour scan time was needed to obtain a 6 μm resolution. Several studies which 

compare the performance of X-ray μCT against other imaging techniques, i.e. MRI, has revealed 

that X-ray is less costly and more convenient (Lammertyn et al., 2003). Most X-ray μCT 

investigations on food, to date, have been feasibility studies performed on a limited number of 

samples because of the costs involved. Large data volumes (gigabytes) call for considerable 

computer resources, with considerable storage capacity, for visualisation and analysis. In addition 

to image acquisition being time-consuming, image analysis is also a very lengthy procedure and is 

therefore a real limitation in the use of this technique. Segmentation of one image could take up to 

three hours, whereas further quantitative measurements to derive the main characteristics could 

take another hour. The time taken to analyse images is, however, dependent on the complexity of 

the sample, the number of ROIs created and the type of quantitative measurements required.  

 

Imaging artefacts 

Images may contain errors which could be as a result of the sample shape, leading to shading 

effects or optical errors. Three major artefacts can occur during image acquisition: beam 

hardening, the cone-beam effect and phase-contrast artefacts (Cnudde & Boone, 2013). 

Fortunately, beam hardening artefacts can be compensated for by making use of filters or 

correction tools. However, many procedures for the compensation of beam hardening artefacts or 

the removal of other artefacts may influence the image quality by reducing the spatial resolution 

(Baker et al., 2012).  

Besides the three main artefacts, others may also occur i.e. ring artefacts, streak artefacts and 

artefacts caused by movement of the sample during acquisition (Cnudde & Boone, 2013). Angle 

artefacts occur because of the loss of resolution in a 2D CT image due to the limited number of 

available projection images. Thus, imaging artefacts complicate data acquisition and interpretation. 

(Cnudde & Boone, 2013).  
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Operator dependency  

There is no fixed or generally accepted protocols for X-ray μCT, because of the variety in sample 

sizes, shape as well as composition (Cnudde & Boone, 2013). Certain parameters such as the 

tube voltage, current and exposure time can thus be chosen arbitrarily and this ultimately affects 

the result. Furthermore, different X-ray μCT setups will produce different results in terms of image 

quality. Besides image acquisition, image analysis is also reliant on the operator’s judgement 

especially in the segmentation step of a volume (Cnudde & Boone, 2013). Because of the partial 

volume effect and image noise, this step is very dependent on the operator. However, when 

volumes of similar samples are analysed, the error is constant and thus comparison of these 

samples are possible (Cnudde & Boone, 2013). The quantitative results obtained from 3D analysis 

should rather be considered as relative than absolute results (Cnudde & Boone, 2013).  

 

Conclusion 

X-ray μCT is an essential development in imaging technology, which has eliminated some of the 

shortcomings of traditional imaging by enabling the non-invasive, 3D and quantitative 

characterisation of food microstructure. Consequently, it has become an increasingly popular 

device to investigate food microstructure. X-ray μCT now offers characterisation of food properties 

non-destructively on a micro-scale on which bases decisions in the processing environment can be 

made. X-ray μCT is likely to be increasingly used to develop classification algorithms to sort food, 

especially fresh agricultural commodities, on the basis of their internal characteristics. Ideally, a 

commercial sorting system using μCT could be developed. However, this will remain a challenge 

as high throughput requirements will have to be met. With improvements in instruments and 

computational power, it is expected that X-ray imaging and μCT would become more applicable. It 

is foreseen that the interest of X-ray μCT will continue to increase and that this technique will 

become indispensable for food quality evaluation and product development. High-resolution X-ray 

μCT can be used for many food science applications and its potential is only starting to be 

explored. It is hoped that this overview is an inspiration for new investigations that will benefit from 

further use of this breakthrough technology.  
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CHAPTER 3 

Literature review 2  

 Cereal grain roasting methods and applications: a review 

 

Abstract  

Roasting is usually performed to improve colour, flavour, texture and appearance of cereal grains, 

while it ultimately enhances the overall palatability of the end product. It also contributes to 

improving the processing efficiency of a following step and extending the shelf life of a product. In 

addition, it has the potential to increase the antioxidant activity and in vitro digestibility of cereal 

grains. Various roasting methods exist, i.e. sand, fluidised bed, flame, microwave, continuous and 

oven roasting. Some of these methods, however, have various drawbacks as it may be unhygienic, 

tedious to operate or result in low productivity. Uneven heat transfer during roasting may result in 

products with non-uniform characteristics. Some roasting methods can be dangerous to the 

operators’ health and pose serious environmental hazards. This review presents a brief overview 

of traditional and current roasting methods, while some of the limitations and advantages are 

discussed. In addition, it evaluates the effect of roasting on nutritional, sensory and most 

importantly the microstructural properties of cereal grains. Some general roasting applications are 

considered as well as applications specific to cereal grains.  

 

Keywords: Cereal grains; Roasting methods; Heat transfer; Roasting applications  

 

Introduction 

Worldwide, cereal grains form the staple diet of the majority of the population and it is also an 

important source of protein for human nutrition (Moore et al., 1995; Shewry, 2007). In recent years, 

cereals and their constituents have been used in functional foods and nutraceuticals due to the fact 

that they are, apart from protein, also a good source of substances required for human health, i.e. 

dietary fibre, energy, vitamins and minerals (Charalampopoulos et al., 2002).  

Cereal-based products are derived from grains that have a well-organised microstructure 

(Autio & Salmenkallio-Marttila, 2001). The starch granule structure, cell wall thickness and size of 

the cells vary between different cereal grains and also between varieties. Processing causes 

changes in the microstructure of the grains which will affect the taste, texture, stability and 

appearance of the end product (Autio & Salmenkallio-Marttila, 2001). It is thus essential to 

understand the structure of commercially important cereal grains (Delcour & Hoseney, 2010) as 

well as subsequent changes in their physicochemical, rheological and functional properties after 

processing. 

Two concepts of prime importance are the compartmentalisation of the different components 

in cereal grains and insight into the three-dimensional (3D) structure (Delcour & Hoseney, 2010). 
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The structural properties of these tissues and cells are vital in investigating the physiological and 

structural interaction in grains, that may have an effect on the quality and performance during 

processing (Autio & Salmenkallio-Marttila, 2001).   

Different thermal processes, e.g. baking, extrusion, frying or roasting can be used to improve 

the flavour and texture of cereal grains (Salmenkallio-Marttila et al., 2004). Roasting leads to the 

improvement of colour, flavour, texture and appearance of food and it ultimately enhances the 

nutritional value and overall palatability of the end product (Uysal et al., 2009). In addition, roasting 

is capable of extending the shelf life and improving the processing efficiency of a subsequent step 

(Kikugawa et al., 1983; Asep et al., 2008; Murthy et al., 2008; Cämmerer & Kroh, 2009). The 

beneficial effect of roasting and the characteristic quality changes are due to various reactions and 

alterations that develop during the roasting process (Mendes et al., 2001). Physicochemical 

changes can be used to monitor the degree of roasting and to control the process to deliver a 

better quality roasted product.  

Despite the availability of literature on the roasting of cereal grains, little is known about the 

effect on the structural and functional properties. A typical characteristic of roasted products is a 

more brittle and crumbly texture (Kahyaoglu & Kaya, 2006). Furthermore, roasting is also capable 

of reducing anti-nutritional components and aflatoxins (Huffman & Martin, 1994; Méndez-Albores et 

al., 2004; Kabak, 2009) and increasing the antioxidant activity (Krings et al., 2000; Gelmez et al., 

2009; Omwamba & Hu, 2010) and phenolic compounds (Chung et al., 2011). Together with the 

desirable changes, undesirable modifications may also occur, such as the loss of certain nutrients 

(Ayatse et al., 1983). In the food industry, thermal processing should take place at the minimum 

heating time, particularly when temperatures exceeding 100°C are used to reduce decomposition 

of vitamins and proteins (Andrejko et al., 2011).  

Various roasting methods exists, i.e. fluidised bed (Murthy et al., 2008), sand (Sharma & 

Gujral, 2011), pan (Jain & Srivastav, 1993), microwave (Omwamba & Hu, 2010), flame (McNiven 

et al., 1994) and oven (Caprez et al., 1986; Zzaman & Yang, 2013) roasting. Some of these 

methods, however, have various drawbacks as it may be unhygienic, tedious to operate or result in 

low productivity (Murthy et al., 2008). It can also be dangerous to the operators’ health and the 

roasted products may have non-uniform characteristics (Murthy et al., 2008).  

Few studies have attempted to evaluate the influence of roasting on the microstructure of 

cereal grains in an objective manner. Researchers often only report a few cross-sectional images 

in combination with a qualitative discussion of the microstructure, without investigating the 

quantitative measurements of basic properties (Autio & Salmenkallio-Marttila, 2001; Gropper et al., 

2002; Owusu-Ansah et al., 1984). In order to overcome the shortcomings of traditional imaging 

methods, non-invasive 3D imaging techniques is increasingly explored for microstructural 

characterisation. Schoeman et al. (2016) provided a comprehensive overview of X-ray micro-

computed tomography (μCT) for non-destructive characterisation of food microstructure.    
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This review will firstly introduce maize and wheat as important cereal grains, after which some 

of the traditional and current roasting methods and their effect on nutritional, sensory and 

microstructural properties will be considered. Limitations of conventional roasting methods will be 

discussed with reference to more recently developed, less destructive roasting methods. Some 

general roasting applications will be addressed, followed by specific applications of cereal grain 

roasting.  

 

Maize 

Background 

Maize (Zea mays L.), also known as corn, is considered a staple food and the cultivation, 

consumption and uses thereof are worldwide (Dowsell et al., 1996). Maize is ranked first in the 

world with a production yield of over one billion ton in 2013, followed by rice and wheat (FAOSTAT, 

2015). More than half of the annual maize production is used as feed for livestock and industrial 

materials, while the rest is used as food for human consumption. Besides from providing nutrients 

for humans and animals, maize also serves as a basic raw material for the production of starch, oil, 

protein, alcoholic beverages, food sweeteners and fuel (Wu & Guclu, 2013). Maize, as animal feed, 

also plays a vital role in the production of milk, meat and eggs (Watson, 1987). Maize is important 

in international trade and the top five exporting countries include United States, Argentina, France, 

China and Brazil (Wu & Guclu, 2013). In South Africa maize meal is mainly used for making 

porridge. 

 

Morphology 

Maize, with an average kernel weight of 350 mg, is by far the largest of the common cereal grains 

(Delcour & Hoseney, 2010). The kernel consists of four main parts (Fig. 3.1): the bran (pericarp 

and seed coat) or hull, germ, endosperm and the tip cap. The tip cap forms the attachment part of 

the cob. Maize kernels may be solid or variegated and vary in colour. They can be yellow, white, 

blue, red, purple or dark brown (Delcour & Hoseney, 2010) with yellow being the most common 

colour, followed by white. The pericarp makes up 5 to 6% of the kernel and is coated with a wax 

layer (Delcour & Hoseney, 2010). Up to 14% of the kernel is made up by the germ and the 

remaining part (usually 80-85%) composes the endosperm (Watson, 1987). While the endosperm 

consists mostly of starch and protein, the germ comprises oil, protein, soluble solids, hormones 

and ash (Serna-Saldivar, 2010). Maize differs from wheat in that it contains both hard (vitreous) 

and soft (floury) endosperm in a single kernel in a certain ratio. Vitreous (translucent) endosperm is 

found near the sides or aleurone layer of a kernel, while the floury (opaque) endosperm is situated 

towards the centre of the kernel (Delcour & Hoseney, 2010; Watson, 1987). Few or no airspaces 

are found in the vitreous endosperm which is tightly compacted (Manley et al., 2009). A protein 
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matrix holds the polygonal shaped starch granules together (Delcour & Hoseney, 2010). In the 

floury endosperm, the many air spaces present lead to opacity. 

 

Figure 3.1. Structure of a maize kernel displaying the location of the basic constituents 

(Anonymous., 1996a). 

 

Wheat 

Background 

Wheat is grown on more land than any other crop, mainly because of its adaptability, since the 

wheat plant is tough and can grow in a variety of environmental conditions, and secondly because 

of the popularity of wheat-based products (Delcour & Hoseney, 2010). 

 

Morphology  

Wheat grain consists of separate tissues, each with a special function. Wheat germ is an unique 

source of highly concentrated nutrients as it comprises about 25% protein, 18% sugar, 48% oil and 

5% ash (Delcour & Hoseney, 2010). In the wheat kernel, the germ makes up 2.5 to 3.5% and 

consists of the embryonic axis as well as the scutellum, a storage organ (Delcour & Hoseney, 

2010). Due to the high nutritional value of the germ, it is a good enrichment element in many 

products like breads, cakes, biscuits and baby foods (Pomeranz et al., 1970; İbanoǧlu, 2002). 

Figure 3.2 illustrates the longitudinal view of a wheat kernel. On the dorsal side (side of the germ) 

the wheat kernel is rounded and it has a longitudinal crease over the ventral side (opposite germ) 

(Delcour & Hoseney, 2010). The entire seed is surrounded by a pericarp which consists of various 

layers. The pericarp makes up 5% of the entire kernel and it contains 20% cellulose, 6% protein, 

2% ash and 0.5% fat. The remaining part consists of non-starch polysaccharides. The seed coat is 

joined to the outer side of the tube cells and to the inner side of the nucellar tissue and varies 
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between 5 to 8 μm in thickness. The nucellar tissue is bound tightly to the seed coat and the 

aleurone layer. 

The endosperm comprises the aleurone layer and the starchy endosperm. The aleurone layer 

surrounds the entire kernel and covers the starchy endosperm and germ. The aleurone layer, 

nucellar tissue, seed coat and pericarp is removed during milling to form the bran (Delcour & 

Hoseney, 2010). Aleurone cells, that covers the endosperm, has thick walls, is cuboidal and free of 

starch at maturity. This layer is high in enzymatic activity, protein, lipids and vitamins. The starchy 

endosperm is made up of three types of cells: peripheral, prismatic and central cells (Delcour & 

Hoseney, 2010). The first type, located in the first row inside the aleurone layer, is very small cells 

and equal in diameter. The prismatic cells are elongated, while the central cells are more irregular 

in shape and size. Wheat endosperm cell walls consist of arabinoxylans, which contains small 

levels of β-glucans and other hemicelluloses. The cell walls vary in thickness with regard to 

location and it is thicker near the aleurone. Endosperm cells, which are filled with starch granules, 

are embedded in a protein matrix. Starch granules can be as large as 40 μm across the flattened 

side and lenticular in shape, or it can be as small as 2 to 8 μm in diameter and spherical in shape. 

 

 

Figure 3.2. Illustration of the internal structure of a wheat kernel (Anonymous., 1996b). 

 

Traditional and current roasting methods 

In the food industry roasting is generally performed to both improve and alter the quality of a 

product and to increase the processing efficiency of a following step (Youn & Chung, 2012). The 

extent of these beneficial features is influenced by the roasting conditions such as time and 

temperature as well as the roasting method. Roasting and popping of grain plays an essential role 

in the manufacturing of ready-to-eat products and foods with an extended shelf life (Jha, 2005). 

Roasting can be defined as a high-temperature-short-time (HTST) thermal process during which 

both heat and mass transfer takes place (Murthy et al., 2008). Popping of grain occurs because of 
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the development of a high internal pressure that results in a change in volume and moisture 

content during roasting. Different roasting methods will have different effects on product quality.  

 

Sand roasting 

Sand roasting is a traditional method used in India, that involves roasting grain in a hot sand bed 

where conduction aids as the medium of heat transfer (Murthy et al., 2008; Gujral et al., 2011; 

Hoke et al., 2005). The sand is heated by husk or wood chips and this poses a serious 

environmental hazard (Hoke et al., 2005). Sand roasting results in low productivity as it is tedious 

to operate. In addition the roasting units are not very hygienic (Murthy et al., 2008) and it is 

dangerous because the operators work directly in the presence of flame and smoke. Furthermore, 

sand roasting delivers products with non-uniform characteristics and the adherence of sand to the 

product leads to a high silica content. Gujral et al. (2011) reported that sand roasting (280°C; 15 s) 

of oats significantly lowered the bulk density resulting in decreases of 31-44%. This was attributed 

to the improved puffing effect or volumetric expansion. Another shortcoming is the lack of 

temperature control (Sharma & Gujral, 2010). Sand roasting is usually performed in a steel pan 

that is heated by liquefied petroleum gas (LPG) (Murthy et al., 2008). Roasting temperatures vary 

between 250°C and 350°C and it is generally used to produce ready-to-eat products (Gujral et al., 

2011). Barley is widely consumed in India in its roasted form (Sharma & Gujral, 2011). The barley 

is sand roasted (250-300°C) for a short time, which will cause the grain to puff and expand and 

consequently split the husk. The husk is then removed and the grain is ground to flour, after which 

water and sugar is added to make a popular drink, known as sattu. An earlier study revealed large 

variation in the physical and functional characteristics, i.e. water absorption capacity and pasting 

and thermal properties of sand roasted barley cultivars (Sharma et al., 2011). The barley puffed 

upon roasting and the hardness and colour difference were significantly lowered.  

 

Fluidised bed roasting (FBR) 

The Central Food Technological Research Institute in India developed the fluidised bed roaster, 

which makes use of flue gas (Murthy et al., 2008). It is primarily used for roasting cereals, oil 

seeds, spices and ingredients for ready-to-eat products. The structure of the grain can effectively 

be modified making use of this technique (fluidisation). Applications in the food industry that uses 

gas-solid fluidised beds include cooking, sterilisation and roasting. During fluidisation the solid 

particles are converted into a fluid phase and this is achieved by means of contact with a liquid or a 

gas (Shelton & Niranjan, 1993). The type of fluidising medium and the material properties will 

determine the form of fluidisation to be used (Murthy et al., 2008).  

Figure 3.3 illustrates a continuous fluidised bed roaster which consists of three decks: 

roasting, resting and cooling (Murthy et al., 2008). The material is fed, at a constant rate, through a 

vibrating feeder. In the combustion chamber hot air is generated by burning LPG. The flue gas is 
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blended with fresh air and this mixture moves through a roasting deck at a controlled rate. An 

electric motor controls the amplitude and vibration rate of the roasting deck. To facilitate heat and 

mass exchange between the fluid and the solid, a quick and vigorous mixing step is required. 

Fluidisation has the following advantages: the equipment is simple to use, there is close gas-

particle contact, uniform particle exposure and maintenance involves low costs (Heywood, 1978). 

The behaviour of a fluidised bed is not only related to air but it is also affected by the density and 

kernel size of the grain (Murthy et al., 2008). According to Murthy et al. (2008) who performed a 

study on wheat roasting, FBR (280-350°C; 45-50s) is superior to traditional sand roasting (300 

±10°C; 25-30s) with regard to overall colour, since this method leads to more uniform heat transfer. 

Furthermore, FBR resulted in good expansion, a more uniform texture and it required less energy 

for size reduction. In another study FBR had a better puffing efficiency because the sample is more 

uniformly exposed to the heating medium in comparison to sand roasting (Chandrasekhar & 

Chattopadhyay, 1990). However, the fuel efficiency is limited during FBR (Hoke et al., 2005). 

 

 

Figure 3.3. A schematic diagram of a fluidised bed roaster (Murthy et al., 2008).   

  

Flame roasting 

Flame roasting is especially used where some foods are heat processed to destroy trypsin 

inhibitors, to increase the availability of nutrients or to eliminate mycotoxins (Hamilton & 

Thompson, 1992). Grain processing by means of roasting can influence digestibility in terms of the 

digestion rate (Campling, 1991). Flame roasting of cereal grains can lead to improved feed 

conversion and animal productivity by permitting optimal starch delivery for ruminal fermentation 

and it also allow more starch to escape fermentation to be digested in the small intestine (McNiven 

et al., 1994). The effect of flame roasting on the nutritional quality of maize, barley, wheat and oats 
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was investigated earlier (McNiven et al., 1994). For ruminant (e.g. cattle, sheep and goats) diets, 

roasting of grains may be favourable as it results in a slower release of nutrients, thus allowing 

more crude protein to escape degradation in the rumen. Flame roasting, besides the beneficial 

aspects of reduction in moisture and mycotoxin levels, seemed to be only moderately beneficial for 

maize and barley and not beneficial for oats and wheat (McNiven et al., 1994). Due to the lack of 

accurate temperature control, care must be taken not to exceed the optimal roasting level as at too 

high temperature nutrients will rapidly become unavailable. 

 Firik (or frekeh) is a traditional food produced from immature, early wheat at the milky phase 

(Maskan, 2002). This product is usually homemade but is also commercially manufactured by 

small-scale producers. It is made by flame roasting the immature spikes in order to burn off the 

leafy material, after which the spikes are sundried (Özkaya et al., 1999; Maskan, 2002). After sun 

drying, the spikes are threshed and the kernels are separated from the hulls and cracked (Maskan, 

2002). Firik has a characteristic smoked taste which is achieved by roasting. This product is 

generally used as a substitute for rice. Firik pilav, e.g. consists of firik, meat, tomatoes and butter 

and is a traditional dish in Middle Eastern countries (Özkaya et al., 1999).  

 

Microwave roasting   

Microwave roasting has gained increasing popularity in recent years as an alternative drying or 

roasting method for a range of agricultural and food products (Vadivambal & Jayas, 2007). There is 

an increasing trend towards using microwave energy for food processing since it improves the 

quality of products and leads to considerable energy savings due to the shorter processing times 

compared to other treatments (Joshi et al., 2014). Rakesh & Datta (2011) developed a model to 

understand and optimise microwave roasting. To generate the amount of pressure necessary to 

puff materials, very high temperatures were required. Furthermore, in order for roasting to be 

successful, an intensive heating source such as microwaves is needed. Other advantages of 

microwave heating include accurate process control and faster start-up and shut-down times 

(Uysal et al., 2009). All these factors make microwave treatment an ideal option for puffing or 

roasting grains (Joshi et al., 2014).  

Microwave roasting of barley led to a lower reduction in the bulk density and less puffing in 

comparison to sand roasting (Sharma & Gujral, 2011). It is a promising alternative to traditional 

methods due to the high internal heating rates (Altan, 2014). Several studies on the application of 

microwave roasting has been performed and included peanuts (Megahed, 2001), sunflower seeds 

(Anjum et al., 2006), coffee (Nebesny & Budryn, 2003) and pumpkin seeds (Yoshida et al., 2006). 

Microwave roasting did not have any adverse effects on the oil or seed quality of pumpkin seeds 

and short-term microwave roasting showed to delay deterioration. The antioxidant properties of 

coffee beans were better protected by microwave roasting (Nebesny & Budryn, 2003). 

Warchalewski et al. (1998) evaluated wheat samples for odour and colour changes during 

microwave irradiation and observed a burnt odour after an exposure time of 180 s.  
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Gun and oven puffing 

Puffed cereal grains are usually used as ready-to-eat breakfast cereals or as ingredient in snack 

foods (Mariotti et al., 2006). Ready-to-eat cereals, processed from maize, wheat, oats or rice, are 

suitable for consumption without the need for any further cooking. Puffed cereals are commonly 

used because of their lightness, crispness and cellular structure (Peleg, 1997), as well as their 

degree of expansion (Owusu-Ansah et al., 1984).  

During HTST heating processes sudden expansion of moisture inside the openings between 

starch granules leads to the puffing of grains (Chandrasekhar & Chattopadhyay, 1989). Puffing is 

generally described as a pressure drop process or an atmospheric pressure process with a sudden 

heat application (Pardeshi & Chattopadhyay, 2014). Examples of atmospheric pressure processes 

include sand, air or oven, oil and roller puffing, whereas gun puffing makes use of a pressure drop 

process (Chandrasekhar & Chattopadhyay, 1990). Oven and gun puffing are the two methods 

mostly used (Mariotti et al., 2006). Gun puffing entails the sudden transfer of grain, containing 

superheated steam, from a high pressure to a low pressure. This allows rapid vaporisation of water 

and causes expansion. The preferred cereals for gun puffing are whole grain rice and wheat. 

Maize and oats are sometimes also used. Puffing usually takes place in an expansion chamber, 

where the grains come into contact with steam that is injected under pressure. After a certain time 

the chamber is opened and the sudden reduction in pressure leads to immediate evaporation of 

moisture in the grains. Figure 3.4 provides an illustration of raw and gun puffed grains.  

Oven puffing entails sudden heat application at atmospheric pressure. This leads to moisture 

evaporation and product expansion. Maize and rice are normally used for oven puffing, since they 

inherently puff in the presence of heat if the moisture content is correctly adjusted. Numerous 

parameters influence the degree of expansion and these are correlated to the grain composition 

(Chen & Yeh, 2001; Jones et al., 2000) and the processing conditions (Owusu-Ansah et al., 1984; 

Chandrasekhar & Chattopadhyay, 1990).  

 

Continuous roasting 

Unevenly roasted flakes are the result of roasting in a static position, therefore the advantage of 

rotary ovens is that the product is suspended in heated air and all the surfaces are exposed 

uniformly (Murthy et al., 2008). Free flow of the product is ensured by the improved heating system 

and also product discharge. In the breakfast industry standard ovens with rotary units, that make 

use of hot air, are normally used for roasting various types of flakes (Fast et al., 1990). The rotating 

units are made up of an inner rotating cylinder (consisting of carbon steel) and an outer casing 

(consisting of stainless steel) that is insulated (Murthy et al., 2008). For larger flakes, such as 

maize, perforated inner shells are used. In these units the conveyor moves through the oven 

chamber. The oven chambers can be fired indirectly or directly. The direct-fired method is not 

widely used as the product is directly exposed to the flame temperature. A jet zone unit is very 
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effective in hot air roasters since the hot air is forced through nozzles, directing it into the product 

at a high speed (Murthy et al., 2008). Subsequently, uniform roasting and shorter times is the result 

of this roasting method.   

 

 

Figure 3.4. Raw and  puffed cereal grains with the expanded structure clearly visible from the 

puffed kernels (Mariotti et al., 2006). 

 

Forced convection continuous tumble (FCCT) roasting  

The FCCT roaster is based on a simple working principle in combination with high performance 

heat transfer (Flinn, 2012). The uniqueness relates to the ease of application and the low 

production costs (Anonymous, 2014). The working principle entails that hot air is forced right 

through the product, while the product is continuously mixed and moved through the roaster. 

According to Flinn (2012) heat transfer to the roasted product is the highest on the market and the 

product is evenly roasted, not easily matched by other technologies. Other advantages of this 

roaster include continuous operation, multiple product applications, accurate temperature control 

and it is based on a simple working principle making it easy to understand and operate. The FCCT 

roaster requires minimum maintenance and it is easily movable. Superheated steam from the 

moisture in the product enhances even roasting. Energy is used efficiently as there is continuous 

recirculation of superheated steam inside the roaster. A further advantage is that electrical 

interruptions will not cause a serious problem since the roaster automatically shuts off in the case 

of a power failure and continues roasting when the power supply has been corrected (Anonymous, 
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2014). The roaster can run 24 hours a day without intensive supervision in comparison to 

traditional roasting methods.  It has been reported that superheated steam processing heats food, 

while retaining vitamins and other essential nutrients (Pronyk et al., 2004). 

The FCCT roaster was initially developed to roast whole soy beans and grains to create feed 

mixes (Flinn, 2012). It was found that the roaster destroys the trypsin inhibitor in soy beans, without 

losing any proteins and vital fibre and it increases the digestibility and feed conversion by animals.  

Figure 3.5 illustrates the four main components of the roaster, namely the control system, feed 

hopper, drum (perforated cylinder and screw conveyor) and holding unit. From the feed hopper the 

sample is transferred to the drum by gravity, where it is heated with hot air or superheated steam 

blown by a fan. The air is heated by an electric element and controlled by an adjustable electronic 

thermostat. The product is conveyed through the roaster by a perforated cylinder with a screw 

conveyor inside (Fig. 3.5) (Flinn, 2012). In the drum, the rotating perforated cylinder mixes the 

sample and the screw conveyer (which also mixes the sample) propels the sample forward at a set 

speed. Thus, continuous uniform heat distribution is ensured and this leads to more effective 

roasting than in a stationary roaster. An inherent problem associated with conventional methods is 

the non-uniformity in roasting caused by an uneven distribution of heat. This problem is overcome 

with the FCCT roaster. 

The control system is used to select the optimal roasting time and temperature combination. 

The speed at which the material move through the roaster can be manipulated with the variable 

speed drive to allow different roasting speeds. The speed of the screw conveyer determines the 

holding time of the product at the set temperature. After speed and temperature conditions are set, 

roasting conditions will be stable, leading to continuous and precise roasting (Flinn, 2012). The 

total surface area of each of the particles in the process is used for heat transfer, resulting in an 

evenly roasted product. 

The temperature of the hot air is accurately controlled, so particles will not be exposed to 

extreme hot surfaces (Flinn, 2012). Moisture from the product replaces the hot air inside the 

roaster. Thermal insulation leads to less heat loss and effective energy usage. The running cost of 

this roaster is 20% less than that of conventional gas fired drum-type roasters operating at the 

same capacity.  

In previous studies the FCCT roaster has been used to determine the effect of roasting on the 

sensory and nutritional quality of marama-sorghum composite flours and porridges (Kayitesi et al., 

2010) and to determine the effect on the physicochemical, nutritional and functional characteristics 

of defatted marama bean flour (Maruatona et al., 2010). Roasting inactivated the trypsin inhibitors 

in marama beans. Furthermore, it was applied to access its effectiveness as a pre-treatment in 

controlling the hard-to-cook (HTC) phenomenon in cowpeas (Ndungu et al., 2012). It was, 

however, found that micronisation was more effective than FCCT roasting in controlling the HTC 

defect. This was attributable to a higher degree of phytase inactivation during micronisation. 
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FCCT roasting technology has already replaced extruders and micronising equipment and it is 

successfully used commercially for roasting soybeans, maize, coriander, groundnuts, macadamia 

nuts, rolled oats and for caramelising dehydrated onions (Flinn, 2012). With this roaster no oil is 

needed for nut roasting and a very evenly roasted product is produced with many health benefits. 

 

 

 

(a) 

 

                                                                        (b) 
 

Figure 3.5. Illustration of (a) the main components and (b) internal set-up of the forced convection 

continuous tumble (FCCT) roaster. 

 

Effect of roasting on cereal grains 

Roasted grains, in various forms, are not only consumed in South Asian countries and the Indian 

subcontinent, but throughout the world (Srivastav et al., 1990). The roasting method will depend on 

various factors, i.e. locality, availability and type of grains, convenience and food habits. Roasting 

is classified as a HTST processing technique that makes use of hot air for short time periods to 
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improve grain characteristics (Sharma & Gujral, 2010; Sharma et al., 2011). It inactivates 

contaminating microorganisms and growth inhibitors while retaining nutrients (Srivastav et al., 

1990). Roasting modifies the nature of starches and proteins by altering the physical, nutritional, 

functional and chemical properties. Quality changes that takes place during thermal treatment 

involves optical (appearance and colour), sensory (flavour, odour and taste), structural (density, 

porosity and volume), texture, rehydration (rate and capacity), functional (thermal and pasting 

properties) and nutritional (vitamins and proteins) properties (Vadivambal & Jayas, 2007). Figure 

3.6 illustrates a general scheme of the unit operations in cereal processing and other factors that 

affect cereal product quality.  

 

 

 

 

 

 

 

 

 

 

Figure 3.6. Key factors influencing cereal product quality. The figure shows the variables involved 

and the systematic approaches to obtain an optimal procedure that integrates raw materials and 

processing to obtain an acceptable end product (adapted from Poutanen et al. 2014). 

 

Nutrition 

Roasting of cereal grains may be beneficial to ruminant diets as it leads to a slower release of 

nutrients (McNiven et al., 1994). Feed roasting aims to alter the physical and chemical properties 

of the raw cereal starch structure in such a way that it results in greater feed availability. Thus 

roasted feed is more efficient due to the increased digestibility, resulting in increased weight gain 

and reduced total grain intake (Anonymous, 2014). 

 In the raw state many protein sources (e.g. soya and linseed) contain toxic enzymes and 

other anti-nutritional elements that hinder digestion (Anonymous, 2014). Roasting is considered as 
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one of the most effective and economical answers to consistent eradication of toxic enzymes 

(Anonymous, 2014). Even though most mycotoxins are moderately heat-stable, variable degrees 

of destruction can be obtained with high-temperature processing (Kabak, 2009). Data indicate that 

roasting leads to a decrease in mycotoxin levels in a variety of foods (Kabak, 2009). The reduction 

levels are dependent on the roasting conditions, i.e. time and temperature and also the type and 

concentration of the mycotoxin. A previous study reported that roasting maize meal samples 

(218°C; 15 min) that were either artificially of naturally contaminated caused almost a complete 

loss of fumonisins (Castelo et al., 1998). Pan roasting at 285°C for 7 min resulted in aflatoxin 

reductions of up to 81% and was proven to be more effective than boiling (Méndez-Albores et al., 

2004). In a study by Gujral et al. (2011) oats were subjected to high temperature sand roasting to 

produce a characteristic flavour by Maillard browning and also to terminate the activity of lipolytic 

enzymes. The roasted flour had an increased antioxidant activity and β-glucan extractability. 

Omwamba & Hu (2010) used hot air roasting to optimise the antioxidant capacity in barley. 

Flame roasting is especially used to destroy trypsin inhibitors in soybeans (Kunitz, 1947) or to 

eliminate mycotoxins and moulds in maize (Hamilton & Thompson, 1992). Roasting of maize has a 

beneficial nutritional aspect as it improves the availability of minerals (Khan et al., 1991). A variety 

of ethnic groups in Africa, Northern Mexico and Southwest USA consumes the flour from roasted 

maize as an energy source (Carrera et al., 2015). Roasting leads to a more rapid starch digestion 

rate. High digestibility is directly linked to the rate of glucose (energy) released resulting in better 

starch, protein and amino acid digestibility (Anonymous, 2014). Furthermore, studies on starch 

have revealed that digestibility increased in barley (32 to 98%), wheat (28 to 90%) and maize (43 

to 90%) after roasting (Anonymous, 2014). Roasting may either increase or decrease the 

nutritional and health promoting value, depending on the method and conditions used (Ayatse et 

al., 1983).  

 

Sensory 

A number of physicochemical alterations, heat exchange and chemical reactions takes place 

during roasting (Saklar et al., 2001). It is essential to control these changes to optimise the colour, 

texture and flavour of the roasted product (Cammarn et al., 1990). These changes may lead to an 

increase in the desirability of a product due to flavour development, hardness reductions and 

gelatinisation of starch which renders better palatability (Srivastav et al., 1990). Roasting 

transforms starches to sugars that greatly enhance the grain palatability and flavour (Anonymous, 

2014). With roasting, the stringency associated with some cereal grains are replaced with a very 

agreeable toasted nutty flavour, while preserving the beneficial high energy level with excellent 

shelf life (Anonymous, 2014). 

 It is necessary to control the roasting time and temperature to obtain optimal characteristics, 

without burning the grains and compromising the flavour. In India, cereal grains are traditionally 
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roasted to improve organoleptic properties and digestibility, to enhance the shelf life, to ease the 

incorporation into ready-to-eat foods and breakfast cereals and to reduce anti-nutrient elements 

(Murthy et al., 2008; Gahalawat & Sehagal, 1992). Roasting of grains have shown to deliver an 

improved texture and crispness and enhanced volume (Hoke et al., 2007). Flours from roasted 

cereals could, besides from being used as an ingredient in snack formulations, also be used to 

control moisture migration in baked goods. Staling in bread occurs, among other factors, due to 

moisture transfer between the bread components (Gray & Bemiller, 2003). The use of small 

quantities of roasted flour in dough can delay staling and consequently lead to a product that stays 

softer for longer.  

 

Microstructure  

Cereal grains, which have a well-organised microstructure, determines the structure of 

manufactured foods (Autio & Salmenkallio-Marttila, 2001). The quality of end products is affected 

by the microstructural modifications that take place during processing. Starch gelatinisation, protein 

denaturation and fragmentation of the cell walls are some of the structural changes that occur at 

microscopic level during cereal roasting (Autio & Salmenkallio-Marttila, 2001). Porosity, which is 

the extent of starch gelatinisation, contributes to the texture and appearance of cereal products. 

Roasted cereal grains have an increased porosity, which will affect the density and hardness of 

end products (Murthy et al., 2008). A recent study focussed on the optimisation of chemical and 

textural properties of roasted expanded purple maize using response surface methodology (Mrad 

et al., 2014). It was reported that a process called, Intensification of Vaporisation by 

Decompression to the Vacuum (IVDV), is an interesting texturizing process that can be used as 

pre-treatment for roasting purple maize and probably other cereal grains, since it preserves 

antioxidant properties. In a study on the puffing of cereal grains the results demonstrated 

substantial changes in the starch structure and water holding capacity (Mariotti et al., 2006). Raigar 

et al. (2016) reported that with roasting of wheat puffing took place which diminished the 

interactions between glutenin and gliadin protein molecules and disrupted the network formation.  

 

Roasting applications 

General 

During roasting the availability of nutrients can be improved, destruction of undesirable 

microorganisms and food contaminants takes place and physical attributes can be favourably 

changed (Ayatse et al., 1983). Roasting improves and adjust the quality and safety of products 

such as hazelnuts (Saklar et al., 2001; Özdemir & Devres, 2000; Uysal et al., 2009), soybeans 

(Kato et al., 1981), Cassia occidentalis seeds (Medoua & Mbofung, 2007), pistachio nuts 

(Yazdanpanah et al., 2005), coffee beans (Pittia et al., 2001; Mendes et al., 2001), sesame seeds 

(Kahyaoglu & Kaya, 2006), wheat (Gahlawat & Sehgal, 1993) and coconuts (Jayalekshmy & 
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Mathew, 1990). It is considered to be the most important step in the processing of coffee beans 

and nuts as roasting leads to essential changes regarding physical, chemical, structural and 

sensorial properties (Kahyaoglu & Kaya, 2006; Pittia et al., 2001). Roasting also forms the basis for 

the production of sesame products (Kahyaoglu & Kaya, 2006). Here it promotes the flavour, 

provide the desired colour and lead to textural changes that improves the overall palatability 

(Kahyaoglu & Kaya, 2006). The optimum roasting conditions for sesame paste production is 90 to 

100°C for a few minutes in an electrically heated tunnel (Sawaya et al., 1985). The impact of 

vacuum, steam, hot plate and hot air roasting on the nutritional characteristics of sesame pastes 

were investigated in another study, which recommended hot air roasting at 130°C for 1 h (El‐

Adawy & Mansour, 2000). Roasting of peanuts at lower temperatures and longer time periods 

delivers a more evenly roasted product with an enhanced flavour (Moss & Otten, 1989). It was also 

found that at these conditions more even temperature distribution inactivated enzymes and a 

longer shelf life was exhibited. 

Roasting of coffee beans is accompanied by several physical changes such as volume, 

density, colour and texture (Frisullo et al., 2012). With regards to texture, it is known that the beans 

will lose their strength and become fragile and brittle (Pittia et al., 2007). The cell structure is 

dramatically altered by complex chemical and physical reactions during the roasting process such 

as non-enzymatic browning and dehydration (Frisullo et al., 2012). The modification in structure is 

mainly caused by released gasses, which create a high internal pressure. Macropore studies on 

roasted coffee beans have been performed with a combination of electron microscopy and mercury 

porosimetry (Schenker et al., 2000), whereas micropores have been investigated with light 

microscopy (LM), transmission and scanning electron microscopy (TEM and SEM) and image 

analysis (Massini et al., 1990). Roasting conditions have a major influence on the microstructure of 

coffee beans, since the development of flavour and colour compounds is accompanied by an 

increase in volume and microstructural changes (Schenker et al., 2000). Using X-ray μCT it was 

shown that that roasting of coffee beans led to the development of a porous structure with pores 

varying in shape and size (Pittia et al., 2011). High temperature roasting led to greater pores and 

bean volumes and larger micropores in the cell walls in comparison to low temperature roasting. 

The characteristics of the pores depended on the area of the bean as cracks occur predominantly 

in the external regions.  

 

Cereal grains 

Maize kernels are usually treated by boiling, steaming, grilling, milling, fermentation, roasting or 

puffing and is then consumed directly or as secondary processing products, e.g. cornmeal (Chung 

et al., 2011; Oboh et al., 2010). In developed countries maize is consumed as popcorn, sweet 

corn, corn snacks or corn bread (Watson, 1987). Maize roasting has been a traditional preparation 

method for several centuries (Oboh et al., 2010) and is a popular method to create products like 
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popcorn, ‘elekute’, ‘guguru’, ‘aandun’ and ‘dankuwa’ (Ayatse et al., 1983). Roasted maize is widely 

eaten by Nigerians across high- and low-income groups (Ayatse et al., 1983). The quality and 

utilisation of roasted maize is reliant on the roasting conditions. 

Carrera et al. (2015) investigated the in vitro digestibility, crystallinity, rheological, thermal, 

particle size and morphological characteristics of pinole, a traditional energy food that is obtained 

from roasted ground maize. Roasting increased the hydrolysis rate and digestibility and can thus 

be used to manufacture food where fast digestibility is desired. Thin porridges, called atoles, 

produced from roasted maize flour are commonly consumed in Africa and Mexico (Vivas et al., 

1987), while mumu, a traditional food product made from roasted maize, is consumed in Nigeria 

(Ingbian & Adegoke, 2007). For the consumption of mumu, roasted maize is reconstituted in cold 

water with sugar or honey and consumed as a snack, breakfast porridge or convenience food item. 

It also has the potential of being utilised as the basis for cooked pastes, in soups and as thickening 

agent (Ingbian & Adegoke, 2007). Roasting as processing method for pinole or atoles preparation 

is highly recommended since it has definite nutritional advantages (Méndez-Albores et al., 2004). A 

traditional maize porridge, known as ‘Tom Brown’, made from roasted maize flour is commonly 

consumed in African countries, i.e. Ghana and Nigeria as weaning food (Plahar et al., 2003; Pelto 

& Armar‐Klemesu, 2011; Nagai et al., 2012; Keshinro et al., 1993). 

Roasting of white and yellow maize led to a significant increase in the crude fat, magnesium 

(Mg), sodium (Na), calcium (Ca), zinc (Zn) and carbohydrate content (Oboh et al., 2010). 

Contradictory, Ayatse et al. (1983) reported a 41% loss of Ca and no effect on the Na and Zn 

content. A significant decrease in crude protein, crude fibre, iron (Fe), potassium (K) and phytate 

content were also detected (Oboh et al., 2010). On the contrary, Ayatse et al. (1983) reported that 

roasting led to no significant difference between raw and roasted maize in terms of the crude fibre, 

crude protein, ash and carbohydrate content. Nonetheless, there was a significant difference in the 

moisture content (Ayatse et al., 1983). Roasting also significantly reduced the extractable flavonoid 

and phenol content in maize, while a substantial increase in the ferric reducing antioxidant power 

occurred (Oboh et al., 2010). Even though roasting decreased the protein content in maize, a 

higher energy value were obtained and an increased antioxidant capacity. The increased 

antioxidant capacity was correlated with the high reducing power. 

In Korea, maize is traditionally roasted and extracted with hot water to prepare extracts that 

are consumed as a coffee-like beverage. A recent study optimised the roasting conditions (207°C; 

24 min) for the preparation of this beverage (Youn & Chung, 2012). The method of processing 

affects the nutritional value of maize, therefore the health promoting value may either increase or 

decrease depending on the processing method (Ayatse et al., 1983). Dry heat treatment has mixed 

effects on the nutritional value of foods. Heat may increase the availability of certain nutrients and it 

is capable of destroying undesirable enzymes and microorganisms. In maize, roasting has shown 

to liberate niacin from niacytin. Together with the desirable changes, undesirable modifications 
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also occur, such as the loss of certain nutrients (Ayatse et al., 1983). Roasting resulted in 

significant reductions in phytic acid content in maize (Khan et al., 1991) and wheat (Khan et al., 

1986; Khan et al., 1988) products. Phytic acid reduces the bioavailability of several metals by 

chelating it and therefore it has anti-nutritional properties. 

In India, roasted whole grains, called sattu, are widely consumed as health food in the form of 

a refreshing drink or ready-to-eat snack (Sharma & Gujral, 2011). Roasted whole wheat, prepared 

by pan roasting, called “kavurga”, is consumed as snack food in Turkey where it is milled and 

mixed with syrup before consumption (Işikli et al., 2014). A range of alternate forms of toasted 

cereal grains exist, e.g. breakfast cereals, pasta and baked products. Roasted wheat grits can be 

incorporated with dried milk, in formulation or with other nutritious cereal complements and the 

roasted flour may be used as basis for beverage products or instant sauces (Mossman et al., 

1973).  

Table 3.1 lists a few applications of roasted wheat. Optimum roasting conditions for wheat 

using sand roasting are 300 ±10°C for 25 to 30 s and 280 to 350°C for 45 to 50 s using FBR 

(Murthy et al., 2008). FBR was reported to be superior to traditional sand roasting as the sample 

required less energy for size reduction and it also led to more evenly roasted wheat. The roasting 

conditions can differ depending on the type of roaster used, the degree of roasting required, the 

moisture content, variety and age of the sample (Mendes et al., 2001). The degree of roasting can 

be monitored by the colour, weight loss and chemical modifications of certain components 

(Mendes et al., 2001). Colour is an effective control parameter as there is an increase in brown 

pigments as the Maillard reaction progresses during roasting (Nicoli et al., 1997). These Maillard 

reaction products play a role in the oxidative stability of processed food. As the moisture content 

decreases during roasting the product will begin to darken more rapidly (Moss & Otten, 1989).  

Roasting was found to have little effect on the chemical composition of wheat bran (Caprez et 

al., 1986). Furthermore, the starch content and total dietary fibre of the wheat bran remained 

unaffected. A slight increase in the protein content was noted and that might have been due to the 

formation of protein aggregates that is protease-resistant (Caprez et al., 1986). Roasting wheat 

bran reduced the moistening ability and consequently delayed water uptake. In the Canary Islands, 

“gofio”, a combination of roasted maize or wheat flour are acknowledged for its high energy content 

and excellent digestibility (Hernández et al., 2014).  

Apart from enhancing antioxidant activity, roasting prevents oxidation of unsaturated fatty 

acids and thereby improves the stability of wheat germ (Krings et al., 2000; Krings & Berger, 2001) 

and generates DNA-protective properties (Krings et al., 2006). The improved antioxidant activity of 

roasted wheat germ at elevated temperatures (160-200°C) in comparison to raw wheat germ is 

due to Maillard-type antioxidants that are formed (Krings et al., 2000). Before being added to food 

products, wheat germ is usually heat processed to develop colour and flavour (Moran Jr et al., 

1968). A more intense colour and flavour is observed with severe heat treatments. Furthermore, 
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heat processing improves the shelf life by means of deactivating enzymes found in the germ (Kent, 

1983). Murthy et al. (2008) evaluated the microstructure of raw and two types of roasted wheat 

using SEM. In Figure 3.7 the SEM micrographs indicate the microstructure of raw wheat with a 

closed structure and roasted wheat with more a porous microstructure. It can be perceived that 

sand roasted wheat has a denser microstructure in comparison to the hot air roasted samples. 

Table 3.2 provides a summary of the literature available on cereal roasting and the roasting 

method and conditions used.  

 

Table 3.1. Applications of roasted wheat (Lazar et al., 1974)  

Applications  Form in which used 

Batters for fish, poultry, meat and vegetables Flour  

Fried specialities, snacks Flour, extrusions 

Bakes specialities, snacks Flour 

Gels  Flour 

Thickener (sauces, soups, gravies) Flour 

Gruel  Flour, grits, flakes 

 

 

Figure 3.7. Scanning electron micrographs of raw (R), sand under roasted (S1), hot air under 

roasted (H1), sand optimum roasted (S2), hot air optimum roasted (H2), sand over roasted (S3) 

and hot air over roasted (H3) wheat (Murthy et al., 2008). 
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Table 3.2. Summary of the literature available on the roasting methods, conditions and the purpose of roasting cereal grains  

Product Roasting method Roasting conditions Purpose  References  

Barley  Automatic 

roasting machine 

1st roasting: 434, 446, 458 and 

465°C for 48 s  

2nd roasting: 327, 332, 335 and 

341°C for 60 s 

Effect on antioxidant activity (Duh et al., 2001) 

Barley  Microwave  300-600 Watt; 7-9 min Optimisation of antioxidant activity  (Omwamba & Hu, 2010) 

Barley Sand  280±5°C; 20 s Effect on antioxidant activity (Sharma & Gujral, 2011) 

Barley  Sand  280±5°C; 20 s Effect on β-glucan, thermal, textural 

and pasting properties 

(Sharma et al., 2011) 

Barley, 

maize, oats 

and wheat 

Flame roasted using a 

propane-fired roaster 

Barley and oats: 77, 121 and 

168°C, 1 min 

Maize: 74, 119 and 163°C, 1 min 

Wheat: 93, 149 and 193°C; 1min 

Effect on nutritional quality (McNiven et al., 1994) 

Buckwheat  Laboratory 

temperature-controlled 

cabinet 

160°C; 30 min Effect on structure, functionality and 

enzyme in vitro susceptibility 

(Christa et al., 2009) 

Buckwheat  - 160°C; 30 min Influence on protein quality and 

antioxidant properties 

(Zielinski et al., 2009) 

Maize Aluminium frying pan 60-130°C; 14-17min  Effect on nutritive value  (Ayatse et al., 1983) 

Maize Laboratory model 

rotary grain roaster 

150±2°C; 9 min Effect on hydration kinetics (Bhattacharya, 1995) 

Maize  Pan 270±2°C; 7 min Effect on digestibility, crystallinity, 

rheological, thermal, particle size 

(Carrera et al., 2015) 
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and morphological characteristics 

Maize  Electric rotary roaster  160-240°C; 0-50 min Effect on bulk density, soluble solids, 

browning index and phenolic 

compounds 

(Chung et al., 2011) 

Maize  Liquid petroleum gas-

fired roaster 

80, 100, 120, 140 and 160°C; 30-

35 s 

Effect on nutritive value (Costa et al., 1976) 

Maize  Liquid propane-fired 

roaster (flame roasting) 

110-140°C; 4-5 min Effect on chemical and nutrient 

content 

(Hamilton & Thompson, 

1992) 

Maize  Aluminium frying pan 60-130°C; 17min Effect on nutritional and antioxidant 

properties 

(Oboh et al., 2010) 

Maize  Electric rotary roaster 160-240°C; 10-50 min Optimisation of roasting conditions  (Youn & Chung, 2012) 

Maize, 

Bengalgram 

and 

soybean 

Open aluminium pan 180, 215 and 250°C; 1.5, 2 and 2.5 

min 

Effect on in vitro protein digestibility (Srivastav et al., 1990) 

Maize 

(cornflakes) 

Household oven  215°C, three heating stages of 90 s 

each 

Relationship between texture, 

mechanical properties and structure 

(Chaunier et al., 2007) 

Maize 

(cornflakes)  

Batch pilot plant air 

toasting unit 

200-300°C; 5-75 s Effect on product characteristics (Sumithra & Bhattacharya, 

2008) 

Maize meal Oven  150±5°C; 60 min Effect on proximate compositions, 

pasting and rheological properties 

(Ingbian & Adegoke, 2007) 

Maize 

(pinole) 

Pan  285±2°C; 7 min Effect on β-aflatoxins 

during pinole preparation 

(Méndez-Albores et al., 

2004) 

Oats Convection oven 104°C; 120 min Influence on viscosity  (Doehlert et al., 1997) 
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Oats  Sand  280 ±5°C; 15 s Effect on beta glucan extractability, 

physicochemical and antioxidant 

properties 

(Gujral et al., 2011) 

Oats Oven  115 ±2°C; 3 h Effect on physical, functional and 

antioxidant properties 

(Sandhu et al., 2015) 

Oats  Oven  105°C; 120 min Effect on rheological properties (Zhang et al., 1998) 

Rice  Convective–microwave 

oven 

180, 200, and 220°C; 10-100s  Inspection of puffing characteristics (Joshi et al., 2014) 

Rice  Sand  270-280°C Effect on starch characteristics and 

morphology 

(Mahadevamma & 

Tharanathan, 2007) 

Sorghum  Fluidised bed air 

roasting unit 

140-180°C; 5-15 min Effect on rheological and functional 

properties 

(Ranganathan et al., 2014) 

Wheat  Microwave and jet-

sploder type roaster  

Microwave: 1000 Watt; 300 s 

Jet-sploder roaster: 350°C; 15 s 

Influence on strength characteristics (Grochowicz & Zawislak, 

2002) 

Wheat  Modified direct gas-

fired pilot plant toaster 

300-500°F; 0-60 s Effect on functional properties for food 

applications  

(Lazar et al., 1974) 

Wheat  Continuous, gas fired, 

hot air toaster 

620°F; 11-40 s Effect on organoleptic, physical and 

nutritional quality 

(Mossman et al., 1973) 

Wheat  Sand and fluidised bed  Sand: 300±10°C; 15-18, 25-30 and 

80-100 s 

Fluidised bed: 280–350°C; 30-35, 

45-50 and 100-120 s 

Effect on moisture content, bulk 

density, colour, microstructure, texture 

and acid insoluble ash 

(Murthy et al., 2008) 

Wheat  Sand roasting 202°C; 1.80 min Effect on grinding characteristics, 

granular morphology and yield 

(Raigar et al., 2016).  
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Wheat, 

barley and 

green gram  

Oven  70°C; 2 h Influence of roasting and malting on 

total and extractable mineral contents 

of human weaning mixtures 

(Gahlawat & Sehgal, 1993) 

Wheat bran Oven  230°C; 7.5 min  Effect on chemical composition and 

physical properties 

(Caprez et al., 1986) 

Wheat bran  Drum roaster  150°C; 9 min Effect on rheology, microstructure and 

quality characteristics of biscuits 

(Nandeesh et al., 2011) 

Wheat 

(durum) 

- - Production of traditional Italian pasta: 

chemical, mechanical, 

sensory and image analyses 

(Baiano et al., 2008) 

Wheat 

(durum) 

Tin pans placed on a 

wood-fire 

250°C; 35–45 s Effect on the physical and mechanical 

properties of bread loaves  

(Baiano et al., 2009) 

Wheat 

(durum) 

Direct contact with a 

wood-fire 

120 s Protein characterisation  (Lamacchia et al., 2010) 

Wheat germ  Conventional hot air 

spouted bed dryer 

Inlet: 216 °C; Outlet: 150°C for 

7min 

Optimisation of supercritical carbon 

dioxide extraction of antioxidants 

(Gelmez et al., 2009) 

Wheat germ Oven  140, 160, 180 and 200°C; 20 min Effect on antioxidant activity (Krings et al., 2000) 

Wheat germ Oven  160°C; 20 min Effect on in vitro DNA-protective 

activity 

(Krings et al., 2006) 

Wheat, oat, 

corn, rice 

and 

soybean 

Oven  180°C; 3, 6 and 10 min - including 

an additional 2 min pre-heating 

step 

Effect of the Maillard reaction during 

the toasting process of common flours 

(Rufián-Henares et al., 

2009) 
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Conclusion 

Understanding the effect of roasting on cereal grains is the basis for the development of industrial 

processes and value-added products. During processing and product development, information is 

required on the interactions between the product and the effect of processing conditions. The 

structure-function relationships of raw materials are valuable in order to produce a high quality end 

product.  

Hardness is an important characteristic in the cereal industry as it influences yield, storage and 

milling properties. Roasting will affect the microstructure of cereal grains and has been linked to an 

increase in volume and porosity and a decrease in density and thus hardness. It is therefore 

important to characterise and quantify roasted cereal grains to establish the impact of roasting on 

the microstructure. Conventionally SEM has been used to investigate microstructure, but the fact 

that X-ray μCT is non-destructive and allows 3D characterisation makes it a promising alternative 

to improve the visualisation and quantification of the structural changes induced by roasting. These 

structural changes will depend on the roasting method and conditions used and can be related to 

changes in physicochemical, rheological and functional properties.  
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CHAPTER 4  

Non-destructive characterisation and quantification of the effect of conventional 

oven and forced convection continuous tumble (FCCT) roasting on the three-

dimensional microstructure of whole wheat kernels using X-ray micro-computed 

tomography (μCT)* 

 

Abstract  

Food microstructure influences the characteristics of end products. X-ray micro-computed 

tomography (μCT) enables investigating internal structure of food products non-destructively. High-

resolution X-ray μCT, in combination with image analysis, was used to visualise and quantify the 

impact of conventional oven and forced convection continuous tumble (FCCT) roasting (180°C for 

140 s) on the microstructure of whole wheat kernels. After image acquisition, two-dimensional (2D) 

cross-sectional images were reconstructed into three-dimensional (3D) volumes. Quantitative 

parameters, i.e. volume, porosity, expansion ratio (ER) and relative density, were calculated. Oven 

roasting was associated with a significantly (P≤0.05) larger increase in kernel volume (4.47%) than 

FCCT roasting (1.57%). Porosity was higher in the oven-roasted samples (10.33±4.63%), 

indicating a more destructive impact on the internal structure (FCCT = 8.29±2.29%). Roasting 

introduced cavities and cracks within the wheat kernels, resulting in a decrease in whole kernel 

density (oven = 2.76%; FCCT = 0.55%), however the material density remained unaffected during 

FCCT roasting.  

  

Keywords: Microstructure; X-ray micro-computed tomography; Image analysis; Roasting; Porosity 
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Introduction  

Worldwide, wheat (Triticum aestivum L.) is an important crop, with total annual yields exceeding 

700 million tonnes in 2013 (FAOSTAT, 2015). The success of wheat as a raw material can be 

attributed to its processing properties and its ability to develop cohesive doughs that can be formed 

into noodles and pasta or baked into bread (Lamacchia et al., 2010). Wheat is a staple food and is 

used for human consumption in a variety of products, i.e. breads, pastas, noodles, couscous, 

cakes, biscuits, pastries, breakfast cereals and flour.  

Cereal roasting is traditionally practiced in India with the objective of increasing shelf life, 

enhancing organoleptic properties and to ease integration into breakfast cereals and other ready-

to-eat products (Murthy et al., 2008). Most roasters used in India are batch type heated pans, 

where sand is used as heat transfer medium. This roasting method has various negative aspects 

since it is unhygienic, tedious to operate, leads to a low productivity, there is a lack of temperature 

control and the product has non-uniform characteristics (Murthy et al., 2008).  

Few investigations focused on the effect of heat treatment on the microstructure of cereal 

grains; the effect of roasting specifically has been even less investigated. Gun puffing (105-115°C) 

strongly influenced the kernel morphology and it led to an increased water holding capacity of the 

flour  (Mariotti et al., 2006). Roasted wheat can be roller milled to obtain flour yields as high as 70 

to 75% when the moisture content is below 10% (Lazar et al., 1974). Flour from roasted wheat can 

be included in breads, pastas, baked and fried speciality products, gels, batters, instant sauces, 

snacks, gruels and it can be used as basis for beverage products (Mossman et al., 1973; Lazar et 

al., 1974; Baiano et al., 2008).  

A few studies reported on the use of a forced convection continuous tumble (FCCT) roaster for 

agricultural products such as marama beans and cowpeas (Kayitesi et al., 2010; Ndungu et al., 

2012; Nyembwe et al., 2015). The FCCT roaster is an energy efficient roasting technique that can 

be used to modify the microstructure of cereal grains. This roaster employs the moisture inside the 

sample to generate superheated steam, leading to faster and even heat transfer. The rotating 

cylinder enables the sample to be suspended in the heated air, thus all the surfaces are exposed 

evenly to the heat. Thermal insulation results in less heat loss and efficient energy usage (Flinn, 

2012).  

In food science, it is common to relate physical behaviour to microstructure in order to gain 

more comprehensive insights into the product or production process. Food microstructure plays an 

important role in determining the characteristics (physical, textural and sensory) of the final product 

(Aguilera, 2005). Structural probing of also cereal grains are of great importance to the food 

industry, since microstructure effects processing, storage, functionality and the end use of products 

(Dogan, 2007). For example, the microstructure of wheat for bread making significantly influences 

its quality and baking properties. Traditionally, microstructural investigations involved light 

microscopy (LM), scanning electron microscopy (SEM) and confocal laser scanning microscopy 

(CLSM). These destructive methods however have various drawbacks. It requires sectioning which 
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are likely to disrupt the structure, cause imaging artefacts and is limited to two-dimensional (2D) 

images (Salvo et al., 2010).  

The limitations of 2D, destructive methods have led to the increasing use of a powerful non-

destructive and non-invasive high-resolution imaging technique, X-ray micro-computed 

tomography (μCT), which enables characterisation of three-dimensional (3D) volumes for better 

understanding of food microstructure (Salvo et al., 2010; Zhu et al., 2012). X-ray μCT makes use 

of the differences in X-ray attenuation that arises mainly from differences in density within a 

sample. High density materials will attenuate the beam and areas of high attenuation will appear 

brighter on the 2D slice images. X-rays are sent around and through the scanned sample, creating 

projection X-ray images. Consecutive images are accumulated to create 3D volumes that can be 

manipulated digitally to perform a number of quantitative and qualitative measurements (Ketcham 

& Carlson, 2001).  

Traditional computed tomography (CT) and μCT has been applied in various agricultural 

commodities e.g. traditional medical CT has been used to evaluate undesirable fibrous tissue in 

carrots (Donis-González et al., 2015) and to assess internal decay in fresh chestnuts (Donis-

González et al., 2014), while μCT has been applied for 3D pore space quantification of apple 

tissue (Mendoza et al., 2007). Synchrotron X-ray CT was used to characterise the 3D gas 

exchange pathways in pome fruit (Verboven et al., 2008). Lammertyn et al. (2003) performed a 

comparative study using two non-destructive imaging techniques, X-ray CT and magnetic 

resonance imaging (MRI), to investigate the spatial distribution of core breakdown in pears.  

 X-ray μCT (40 kV; 250 μA) was recently investigated for real-time 3D visualisation and 

quantification of the internal structure of single wheat kernels damaged by sprouting and insect 

infestation (Suresh & Neethirajan, 2015). Other X-ray μCT cereal grain investigations include the 

characterisation of rice strains by differences in pore shapes (Zhu et al., 2012) and the effect of 

heat treatment on rice kernel structure (Mohorič et al., 2009; Witek et al., 2010).  

It is not possible to examine expanded starch based products by conventional 2D imaging or 

scanning methods without destroying the structure. Cutting them also leads to disruption of the 

pores and breakage due to their brittle texture. To avoid these constraints non-destructive X-ray 

μCT were applied in a few studies for the characterisation of porous cereal products (Van Dalen et 

al., 2007), extruded products (Agbisit et al., 2007; Horvat et al., 2014), wheat flour dough (Bellido 

et al., 2006), bread (Wang et al., 2011; Besbes et al., 2013; Demirkesen et al., 2014; Van Dyck et 

al., 2014), and to explain airflow resistance in wheat (Neethirajan et al., 2006). Furthermore, X-ray 

μCT has been used widely to analyse porosity in food products, e.g. banana chips (Léonard et al., 

2008) and meringues (Licciardello et al., 2012). Kelkar et al. (2015) recently described a method to 

determine the density of foods using X-ray μCT. 

Andrejko et al. (2011) made use of X-ray radiographic examination to illustrate structural 

changes in wheat after infrared treatment (exceeding 150°C and 90 s). High temperature roasting 

of coffee beans led to an increased volume and porosity and a decreased density with increase in 
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roasting time (Frisullo et al., 2012). The ability to accurately analyse pores makes X-ray μCT an 

effective technique to study the microstructure of roasted products. 

Quality changes occurring during thermal processing include sensory (flavour, odour and 

taste), optical (colour and appearance), structural (density, volume and porosity), textural, 

nutritional (proteins and vitamins) and rehydration properties (Vadivambal & Jayas, 2007). 

Roasting is a time-temperature dependant process that leads to chemical reactions, moisture loss 

and major changes in volume, shape and density (Hernández et al., 2008). 

Wheat endosperm texture influences the energy requirement for milling. Porosity and density 

are closely related properties (Dobraszczyk et al., 2002) affecting endosperm texture and thus 

milling yield (Chang, 1988). More dense endosperm ground to larger particles which flows more 

easily and are easy to handle, whereas more porous endosperm mill to flours that are very fine and 

results in the blocking of mill sieves (Dobraszczyk et al., 2002). Ideally heat processing or roasting 

of wheat should have minimum effect on endosperm texture in terms of microstructural changes 

(porosity, volume and density). Decrease in material density would thus be undesirable. A roasting 

method resulting in adverse structural changes, i.e. larger cracks, large increase in porosity and 

loss in material density would be considered destructive.  

Wheat kernel microstructural changes occurring during roasting have not been thoroughly 

studied in the pursuit of understanding the roasting phenomenon. The gap in understanding the 

mechanism that governs the behaviour of roasted grain microstructure is attributed to the lack of 

techniques capable of visualising the microstructure non-destructively. The need for 3D 

characterisation and quantification of microstructure, is now addressed with X-ray μCT which 

provides datasets that can be analysed for various structural parameters (Chevallier et al., 2014).  

This study hypothesises that X-ray μCT is a feasible technique to determine the impact of 

roasting on wheat kernels. As verification this study presents the application of X-ray μCT in 

combination with image analysis to non-destructively investigate the impact of conventional oven 

and FCCT roasting on the microstructure of whole wheat kernels. Qualitatively the internal 

microstructure and porosity distribution were analysed using X-ray μCT 2D slice images and 3D 

volume renderings. Quantitative measurements, obtained from 3D volumes, included volume, 

porosity, expansion ratio (ER) and relative density.  

 

Material and methods  

Wheat samples 

Eighteen whole wheat kernels were randomly selected from a wheat sample, kindly provided by 

PANNAR Seeds (Greytown, South Africa). The same kernels were imaged with X-ray μCT before 

(control) and after roasting to have a direct comparison. Nine kernels were subjected to oven 

roasting and nine to FCCT roasting. The kernels were weighed before and after roasting to 

determine the percentage weight loss. The samples were kept in sealed jars at ambient 

temperature until used.  
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Roasting  

Wheat samples were roasted at 180°C for 140 s using two roasting methods: conventional 

convection oven roasting (831 Electric Multifunction Thermofan Solid Plate Oven, Defy Appliances, 

Durban, South Africa) and FCCT roasting (Roastech, Bloemfontein, South Africa). For the FCCT 

roaster roasting time is determined by means of speed settings. A speed setting of 80 Hz is 

equivalent to 140 s and was used for FCCT roasting. This speed setting refers to the rotation 

speed of the screw conveyer inside the roasting chamber. 

For both roasting methods the individual kernels were numbered for direct comparison of the X-

ray images before and after roasting. The raw FCCT-roasted wheat kernels were in addition 

coloured with a heat-stable green dye to easily find the sample in each roasted batch. Each kernel 

was roasted, mixed in a 200 g rice sample. The nine kernels were roasted individually for each 

roasting method, thus nine replicates per roasting treatment. 

 The FCCT roaster had a capacity of 100 kg/h and the roasting chamber a volume of 0.199 

m3. A temperature of 180°C was chosen since it falls within the thermal processing temperature 

range commonly used for cereal grains (Andrejko et al., 2011). A 15 min start-up time was allowed 

for the FCCT roaster to obtain steady-state conditions prior to roasting. The conventional 

convection oven was pre-heated to 180°C before placing the numbered kernel in the oven together 

with 200 g of rice. The samples were placed centrally in the oven on a stainless steel baking tray. 

After roasting the samples were immediately cooled to ambient temperature by spreading it out on 

a cold flat surface to stop exothermic reactions and prevent excessive roast and further moisture 

loss. The samples were stored in airtight containers at ambient temperature until X-ray μCT image 

acquisition. 

The main difference between the two roasting methods is that during oven roasting the sample 

is stationary, whereas during FCCT roasting the sample is continuously moving inside the roasting 

chamber. During FCCT roasting superheated steam is generated, since the moisture removed 

from the sample becomes part of the roasting medium (hot air) (Moreira, 2001). In the oven only 

dry, hot air is used as the moist air is replaced by fresh air that is heated to the desired 

temperature (Moreira, 2001). Superheated steam has been reported to be cleaner, cause less 

oxidation and colour deterioration and lead to a higher evaporation rate, thus mitigating the loss of 

nutritional values in comparison to hot air (Moreira, 2001). 

 

X-ray micro-computed tomography (μCT) image acquisition  

The wheat kernels were imaged under identical conditions (Table 4.1). Real-time X-ray μCT scans 

of the raw and roasted wheat kernels were obtained using a General Electric Phoenix V|Tome|X 

L240 (General Electric Sensing & Inspection Technologies GmbH, Phoenix, Wunstorff, Germany) 

high-resolution X-ray computed tomography system with a tungsten target X-ray tube. Due to X-ray 

μCT being non-destructive, the 3D internal structure of the same kernel could be studied before 

and after roasting.  
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Two wheat kernels, e.g. two raw, or one FCCT and one oven-roasted, were scanned together. 

Thus, for each of the nine oven and nine FCCT-roasted kernels, two scans were performed, firstly 

raw and then after being roasted. This was done in order to make direct comparisons between the 

kernels in the raw and roasted state. Various system settings were tested to optimise the scan 

quality. Instrumental conditions that needed to be considered included beam energy and current, 

sample-to-detector-distance and exposure time. Parameters were optimised to obtain the shortest 

possible scanning time while ensuring adequate image contrast. X-ray radiation was thus 

generated from a source voltage (energy) of 60 kV and an electron current set at 240 μA, resulting 

in CT scans with a voxel size (resolution) of 12 μm.  

The scanning procedures described required no sample preparation, besides mounting of the 

sample. Each wheat kernel was mounted horisontally (crease facing down) on a piece of oasis 

(floral foam) and on a polymeric disc (10 mm thickness and 25 mm diameter), obtained from 

Maizey Plastics (Cape Town, South Africa), and glued to the translation stage (see sample setup in 

Fig. 4.1). The low density of the oasis made it an appropriate mounting material because it could 

easily be distinguished from the subject of interest. The density (2.15 g/cm3) of the polymeric disc 

was used as a reference standard for relative density determinations; therefore the plastic was 

scanned in the field-of-view (FOV).  

 

Table 4.1. Summary of the scanning parameters used for image acquisition 

Units  Parameter  

Voltage (kV) 60 

Current (μA) 240 

Magnification  16.67 

Pixel size in the X- and Y axes (mm) 0.200 

Field-of-view (FOV) (mm) 700 

Number of pixels in the X- and Y axes 2024 

Resolution/ voxel size (μm) 12 

Spot size (μm) 5  

Scan time (s)  1500 

Original image greyscale intensity resolution  16-bit  

Grey levels  216 = 65536 

Number of 2D images  1500 

Image acquisition time (ms)  500 

Rotation sector (°) 360 

 

Image processing and analysis 

The 2D image slices, covering the entire sample were attained using a fully automated data 

acquisition system and saved onto a processing workstation, operated by system-supplied Datos 

reconstruction software (Datos|x® 2.1, General Electric Sensing & Inspection Technologies GmbH, 

Phoenix, Wunstorff, Germany). Angular projections generated 2D X-ray images which were 

reconstructed to create 3D volumes of the external and internal geometries of the sample (see 
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Appendix A). Reconstruction involved filtered back-projection algorithms. The final product from 

reconstruction is a raw 3D volume file which was imported directly into the image visualisation and 

analysis software, Volume Graphics VGStudio Max 2.2 software (Volume Graphics, Heidelberg, 

Germany).  

 

Segmentation and defining regions-of-interest (ROIs)  

Wheat kernel images were segmented into different ROIs: whole kernel, kernel material (which 

constitutes the solid phase) and air voids (which forms part of the gaseous phase). ROIs were 

subjected to the Volume analyser function (VGStudio Max 2.2) to calculate microstructural 

parameters. A representative slice from the kernels was selected from the dataset to obtain an 

average grey value for the solid and air components in the kernel. Once a segmented volume has 

been defined, quantitative measurements were performed.  

 

Quantitative measurements 

Quantitative measurements included volumes-of-interest (VOIs), porosity, expansion ratio (ER) 

and relative density. In addition, kernel dimensions (length, width and depth) were measured, also 

using VGStudio Max 2.2 software.  

 

i. Volumes-of-interest (VOIs) 

VOIs were measured using the Volume analyser tool which automatically calculates the 

specific volume of the selected ROIs. By creating different VOIs, volume measurements of 

specific areas (e.g. air) in the sample or the sample as a whole can be determined.    

 

ii. Porosity (percentage air volume)  

It is the ratio of the intergranular air space to the total space occupied by the kernel 

(Kheiralipour et al., 2008). Porosity analysis was performed by thresholding the voids and 

creating and extracting this ROI and calculating the total air volume against the total sample 

volume (Du Plessis et al., 2014) . It should be noted that for this study the porosity were 

considered as the total air in the sample, thus the entirety of cavities and pores.   

𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 (%) =  
𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑎𝑖𝑟 (𝑚𝑚3)

𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒  (𝑚𝑚3)
 × 100%          (1) 

 

iii. Expansion ratio (ER) 

𝐸𝑅 =  
𝑉𝑜𝑙𝑢𝑚𝑒 𝑎𝑓𝑡𝑒𝑟 𝑟𝑜𝑎𝑠𝑡𝑖𝑛𝑔 (𝑚𝑚3)

𝑉𝑜𝑙𝑢𝑚𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑟𝑜𝑎𝑠𝑡𝑖𝑛𝑔(𝑚𝑚3)
        (2) 

 

iv. Relative density  

In this study relative densities were determined using mean grey values (arbitrary units) 

which correlate to the X-ray attenuation. Each voxel has a grey value which relies on the 
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material density. Higher grey values, corresponds with higher attenuation coefficients and 

thus higher densities (Landis et al., 2003). The grey value histogram provides a diagram of 

the number and intensity of voxels in the whole image or specific ROI, illustrating the 

density distribution based on grey values (Landis & Keane, 2010). The y-axis display the 

number of voxels associated with each grey value, whereas the x-axis indicates the grey 

values and thus the intensity of the voxels in an image. Relative density was measured in 

terms of the mean grey value of the ROI in relation to the mean grey value of the reference 

standard. It was then multiplied with the known density of the reference standard (2.15 

g/cm3). For each ROI the mean grey value was measured using the Volume analyser tool. 

The mean grey value of the polymeric disc was attained by selecting a representative area 

using the Adaptive rectangle tool. The mean grey value of the homogenous polymer disc is 

thus a measure of its density.   

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑔/𝑐𝑚3 ) =  
𝑚𝑒𝑎𝑛 𝑔𝑟𝑒𝑦𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑅𝑂𝐼

𝑚𝑒𝑎𝑛 𝑔𝑟𝑒𝑦𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
 ×  2.15 𝑔/𝑐𝑚3 (3) 

 

Experimental design 

Figure 4.1 details the experimental design for determining the effect of roasting on the 

microstructure of whole wheat kernels in a non-destructive manner by means of a flow diagram.  

 

Statistical analysis 

One-way analysis of variance (ANOVA) was performed to compare averages for the respective 

quantitative measurements with respect to the two roasting methods. Data was reported as the 

mean (n=9) ± standard deviation. Data analyses were performed using STATISTICA version 13 

(StatSoft, Inc., Tulsa, USA). The level of confidence required for significance was selected at 

P≤0.05. 
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Figure 4.1. Flow diagram of experimental design for determining the effect of oven and FCCT 

roasting on the microstructure of whole wheat kernels using X-ray μCT and image analysis.  

 

Results and discussion   

Visual assessment   

The wheat kernels partially retained a brown/yellowish pigmentation due to the carotenoid content, 

despite the roasting method (Fig. 4.2). Roasting led to swollen grains with a widened crease, 

especially during oven roasting. Wheat with a more open crease require less force during milling 

than those with a closed crease (Evers & Millar, 2002). Furthermore, a more bulged appearance 
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was observed in the oven-roasted samples, whereas the FCCT-roasted kernels remained more 

uniform in shape. The bran outer layer, which surrounds the germ and endosperm, remained 

intact.  

 

      

 
 

    

Figure 4.2. Digital (Canon SX40 digital camera, Canon, Ohtaku, Tokyo, Japan) images of the 

same wheat kernels before and after roasting with (a) and (b) raw, (c) and (d) FCCT-roasted, (e) 

and (f) raw, and (g) and (h) oven-roasted. The cross-sectional digital images of (i) raw, (j) FCCT-

roasted and (k) oven-roasted kernels reveals the internal structure.  

 

 The digital images in Fig. 4.2 depict the cross-sectional views of raw, FCCT and oven-roasted 

wheat kernels. Since similar results were obtained, images of only one of the kernels for each 

(a) (c) (e) 

(h) 

 

(b) (d) (f) 

(g) 

(i) (j)  (k) 
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roasting method are shown. The raw kernel had no visible internal cracks, whereas the FCCT-

roasted kernel revealed thin cracks. In the oven-roasted kernel a large irregular internal void 

developed in the dorsal (non-crease) region. The appearance of the oven-roasted sample was 

similar to the internal structure obtained after roasting with a direct gas-fired pilot plant toaster 

(Lazar et al., 1974). The development of large internal voids resulted in a reduced toasted quality. 

The large cavity scatters the light reflected from the endosperm (Dobraszczyk et al., 2002) causing 

the oven-roasted wheat kernel to have a mealy and opaque appearance. Opaqueness is usually 

correlated with softness in wheat kernels since the air spaces leads to a decreased density 

(Almeida-Dominguez et al., 1997). The raw kernel appeared more translucent and the oven-

roasted kernel was more opaque, whist the FCCT-roasted sample maintained a degree of 

translucency. The endosperm of the raw sample appeared white, while those of the FCCT and 

oven-roasted samples were greyish brown and yellowish white, respectively. Oven roasting 

resulted in a much darker, yellow-brown, external colour, while the FCCT-roasted sample retained 

a light brownish colour. This indicated the more intense degree of roasting using the oven roasting 

method, under similar conditions.  

 

Qualitative image analysis 

Qualitative analysis (also see Appendix B) enables visualisation of the internal structure of the raw, 

FCCT and oven-roasted wheat kernels. A representation of the grey level 2D cross-sectional 

images, virtually cut in the middle for the three orthogonal views, i.e. frontal, horisontal and sagittal, 

is presented for the kernels before and after roasting in Fig. 4.3. Images of only one of the kernels 

for each roasting method are shown, since similar qualitative results were obtained.  

 

Porosity, internal cracks and cavities (2D analysis) 

The qualitative results illustrated considerable structural changes during roasting, especially in the 

oven-roasted kernels (Fig. 4.3). The raw samples were compact (dense) with few thin cracks and 

small cavities detectable. FCCT-roasted kernels contained slightly more and wider cracks, 

whereas the oven-roasted kernels had large cavities in the endosperm tissue especially near the 

centre of the kernel. These adverse changes resulted in the endosperm becoming completely 

unstructured. The endosperm is especially a crack sensitive region (Dobraszczyk et al., 2002). 

Small voids in the raw kernels are planes of weakness, which leads to the concentration of 

stresses, in this case internal pressure, and acts as sites where cracks or cavities initiate 

(Dobraszczyk et al., 2002). In the crease region, the wheat endosperm adheres peripherally to 

adjacent tissue, where a void (known as the endosperm cavity) exists (Evers & Millar, 2002). This 

endosperm cavity in the raw kernel can clearly be observed in the frontal views.  

For both roasting methods, the bran remained intact, in spite of internal cracks (FCCT-roasted) 

and cavities (oven-roasted) formed in the endosperm. From the images, the aleurone layer 

appeared to be the densest constituent being the brightest region. 
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The germ remained intact as the cracks did not propagate into this region. From the sagittal 

orientation (Fig. 4.3), fissures can be observed as vertical lines in the oven-roasted endosperm. 

From this view, expansion of the roasted kernels is clear with oven roasting revealing much greater 

expansion compared to FCCT roasting. FCCT roasting had a less invasive impact on the internal 

structure in comparison to oven roasting which led to larger fissures.   

During roasting air is incorporated into the structure due to physical and chemical changes 

taking place (Köksel et al., 1998). Internal moisture is transformed into the vapour state and the 

dense structure of the wheat kernel leads to an increase in vapour pressure resulting in the 

generation of steam and consequently expansion in structure. In the oven-roasted kernels 

sufficient pressure was generated to create large cavities in the cellular matrix. An inherent 

problem associated with oven roasting is non-uniform heating due to the uneven distribution of 

heat, in comparison to FCCT roasting where more uniform roasting is achieved.  

The different modes of heat transfer in the roasting methods could be considered as the main 

factor responsible for the structural differences between the samples, since the roasting conditions 

(time and temperature) were similar. Continuous movement of the kernels in the rotating cylinder of 

the roasting drum of the FCCT roaster resulted in more uniform heat transfer. In contrast, during 

oven roasting the kernels were stationary and only the dry air was moving. FCCT roasting can be 

controlled by means of the rotating speed of the cylinder; a higher speed results in a faster roasting 

time. The internal steam generated inside the roaster together with the rotating movement of the 

cylinder lead to a more homogenous roasting process, where the superheated steam generated 

forms part of the heat transfer medium and is more evenly dispersed around the sample.  

 Figure 4.4 illustrates the three orthogonal views of the porosity in raw and roasted samples 

with the voids as ROI. Porosity describes the overall open structure of a desiccated material, 

where it comprises the fraction of empty volume. Raw wheat kernels displayed a dense internal 

structure with low porosity and more homogeneous distribution of the grey values (Fig. 4.4). The 

few small pores or cracks could be attributed to the drying process after harvesting. In the oven-

roasted kernels fissures extended to close to the bran, however the outer layer remained intact, 

supporting the pores and large cavities. The large irregular distributed and partially interconnected 

cavities and cracks form a porous structure. The internal structure of the FCCT-roasted wheat 

kernels were characterised by multiple thin cracks. 

Oven roasting had a more detrimental effect on porosity being the more severe roasting 

method due to more direct heat penetration. This is in agreement with a wheat study where SEM 

images indicated that hot air roasted wheat has a greater porosity resulting in a reduced energy 

requirement for grinding (Murthy et al., 2008).  
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Sample Frontal view Horisontal view Sagittal view 3D view 

Raw 

    

FCCT  

    

Raw 

  
  

Oven 

    

Figure 4.3. Grey scale 2D tomographic images of the different views (frontal, horisontal and 

sagittal) of whole wheat kernels before and after FCCT and oven roasting (average dimensions: 

length=6.02±0.38 mm; width=3.32±0.27 mm; depth=3.22±0.32 mm). 

  

Cavities are like excavated cells, which are structured in a skeleton made by partial thermally 

degraded structures and the complete loss of the cell walls in some points. During roasting it can 

be assumed that smaller pores and cracks (FCCT-roasted) were formed due to the internal 

pressure created, and then ultimately the coalescence of these pores led to the development of 

larger asymmetric voids that resembles interconnected cavities (oven-roasted) (Pittia et al., 2011). 

These cavities are generated by a flash of superheated steam, which partially damages the 

structure (Sumithra & Bhattacharya, 2008). Cracks propogated from the centre outwards, with the 

Cracks 

Cavities 
Pores 
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largest areas of porosity towards the centre of the kernel, especially in the oven-roasted samples. 

This confirms that the thermal centre is localised in the centre of the wheat kernel (Andrejko et al., 

2011).  

 

Sample Frontal view Horisontal view Sagittal view 

Raw 

   

FCCT  

   

Raw 

   

Oven 

 
 

 

Figure 4.4. 2D slice images (centre slice) of the spatial distribution of the porous network in wheat 

kernels before and after roasting, with the voids (total air) selected as ROI. The air filled pores and 

cavities are displayed in yellow and outlined with blue, while the kernel matrix is grey (average 

dimensions: length=6.02±0.38 mm; width=3.32±0.27 mm; depth=3.22±0.32 mm).  
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Porosity, internal cracks and cavities (3D analysis) 

Determining defects such as voids and cracks in a sample would typically require destructive 

testing. Volume rendering in 3D is required to understand the overall structure of samples and to 

visualise the internal microstructure (Suresh & Neethirajan, 2015). X-ray μCT scanning enables the 

detection of internal features and flaws by displaying this information in 3D without destroying the 

sample. In Fig. 4.5 the 2D images (a-c) and a 3D volume rendering (d), illustrates the internal 

porosity in a raw wheat kernel. The degree of porosity can be incorrectly interpreted from the 2D 

images as disconnected cavities. In the 3D volume rendering the path of the fissures or cracks are 

illustrated as tortuous and it contains multiple branching which creates an interconnected porous 

network throughout the kernel.  

 

Figure 4.5. 2D images (a-c) [(a) horisontal, (b) sagittal and (c) frontal views] and 3D volume 

rendering (d) of the porosity in a raw wheat kernel. In the 3D volume the visualisation of the 

porosity volume size distribution is characterised in yellow and the kernel structure (material) is 

represented as transparent (kernel dimensions: length=5.46 mm; width=2.59 mm; depth=2.70 

mm). 

 

Quantitative analysis  

Quantitative information on the internal structure can be obtained as volume, porosity and relative 

density whereas the geometry can be quantified in terms of size, shape, orientation and position. 

For quantitative density and volume measurements it is assumed that wheat kernels are a two-

phase system with a solid phase (kernel structure) and a gas phase (voids).  

 

(a) (b) 

(c) 
(d) 
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Volumes-of-interest (VOIs)  

Whole kernel and air volumes increased during roasting (Table 4.2). The increase in whole kernel 

volume (1.57%) was not significant (P>0.05) during FCCT roasting in comparison to a significant 

(P≤0.05) increase of 4.47% during oven roasting. Both roasting methods resulted in a significant 

(P≤0.05) increase in air volume. The larger increase in whole kernel volume was due to the larger 

increase in air volume during oven roasting (103.38%). The increase in air volume was much lower 

for the FCCT-roasted samples (38.86%). The increase in whole kernel volume for both methods 

were lower than in a previous study where wheat roasted in a steel pan led to a 8.30% increase in 

kernel volume (Işikli et al., 2014). The increase in volume is due to the release of water, CO2 and 

volatile organic compounds from the kernel to the gas phase (Dutra et al., 2001).  

Thermal treatment of whole wheat kernels is typically associated with an increase in volume 

and a negative change in density (Bayram et al., 2004), with the large fissures contributing 

significantly to the increased volume of the expanded kernel (Pardeshi & Chattopadhyay, 2010). 

Figure 4.6 displays the wheat kernel ROIs (whole kernel and air) to obtain the whole kernel and air 

volumes, respectively in a raw and oven-roasted sample. 

 

Table 4.2. Mean and percentage increase/decrease in microstructural parameters of wheat kernels 

before and after roasting  

Parameter FCCT   Oven  

Raw (n=9) Roasted 

(n=9) 

% 

Increase/ 

Decrease 

 Raw (n=9) Roasted 

(n=9) 

% 

Increase/ 

Decrease 

Whole kernel VOI 

(mm³) 

29.24±3.04
ab 

29.70±3.12
ab 

 1.57  28.40±6.03
b 

29.67±5.66
a  

4.47 

Air VOI (mm³) 1.75±0.41
b 

2.43±0.58
a
 38.86  1.48±0.55

b
 3.01±1.27

a 
103.38 

Porosity (%) 6.04±1.54
cb 

8.29±2.29
ab 

2.25  5.28±1.57
c 

10.33±4.63
a 

5.05 

Expansion ratio 

(ER) 

1.02±0.01
a
 - 

 
1.05±0.06

b 
- 

Whole kernel 

relative density 

(g/cm
3
) 

1.81±0.03
a 

1.80±0.03
ab 

-0.55  1.81±0.04
a
 1.76±0.07

b 
-2.76 

Material relative 

density (g/cm
3
)   

1.84±0.03
a 

1.84±0.04
a 

0  1.84±0.04
a 

1.79±0.06
b 

-2.72 

Weight loss (%) 3.50±3.68
a
 -  6.04±4.42

a
 - 

Values are means ± standard deviation, of nine replicates. Different letters in the same row indicate significant 

differences (P≤0.05). 
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Figure 4.6. Illustration of the use of the Volume analyser tool on a (a) raw sample where the whole 

kernel was selected as VOI (28.12 mm3) and (b) oven-roasted sample where the air (yellow) was 

selected as VOI (5.44 mm3) (kernel dimensions: length=6.24 mm; width=3.56 mm; depth=3.27 

mm).    

 

Porosity analysis  

Voids are inherent to wheat kernels and other cereal grains because of the porous nature of the 

endosperm (Chang, 1988). Thus, an increase in the existing porosity and development of 

additional voids were expected due to roasting. Understanding the contribution of air to the total 

wheat kernel is relevant because it affects the yield, which is a highly desirable property for the 

milling industry. 

Porosity did not change significantly (P>0.05) during FCCT roasting, however increased 

significantly (P≤0.05) during oven roasting. The porosity in the FCCT-roasted samples was 

6.04±1.54% and 8.29±2.29% for the raw and roasted kernels respectively, resulting in a much 

lower increase (2.25%) than in the oven-roasted (5.05%) samples which ranged from 5.28±1.57% 

to 10.33±4.63%. FCCT roasting will result in a better quality roasted product in terms of endosperm 

texture (too soft kernels are undesirable). The increased porosity during oven roasting can be 

ascribed to a bigger puffing effect occurring due to the higher internal vapour pressure generated. 

The greater porosity was consistent with the larger distributed internal network of cavities observed 

during qualitative analysis.  

 

Expansion ratio (ER)    

The ER is also known as the puffing index (PI) (Lazar et al., 1974). Larger ERs implies a larger 

difference in kernel volume before and after roasting. Greater air volumes correspond to greater 

ERs in cereal products (Jones et al., 2000; Sumithra & Bhattacharya, 2008). The oven-roasted 

kernels had the highest ER (1.05±0.06) and porosity (10.33±4.63%), compared to the FCCT-

roasted samples (ER = 1.02±0.01; porosity = 8.29±2.29%) under similar roasting conditions (Table 

4.2).  

In infrared treated wheat (100-180 °C; 30-150 s) a negative relationship occurred between ER 

and density (Andrejko et al., 2011). This trend was also observed during oven roasting, where 

Volume: 28.12 mm
3
 Air volume: 5.44 mm

3
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higher expansion was correlated to a higher relative density decrease (2.76%), while the FCCT-

roasted kernels had a lower ER and a lower density decrease (0.55%).  

A PI (using a gas fired hot air toaster) of 1.3 was obtained for wheat kernels (15% moisture 

content) roasted at 204°C for 17 s, whereas 40 s resulted in a PI of 1.5 (Lazar et al., 1974). The 

differences in ER values obtained can be attributed to the different roasting methods and 

conditions, and also to the moisture content. In the present study lower ERs were obtained due to 

the lower moisture content since no tempering was performed before roasting. Although roasting 

was conducted at a low moisture content, the combination of high temperature for a short duration 

will rapidly release steam resulting in an expanded structure (Sumithra & Bhattacharya, 2008). 

When the moisture content is too low, insufficient superheated vapour is generated, resulting in 

even lower ERs (Lee et al., 2000). This is, however, also dependent on the roasting method and 

conditions. The pericarp may also limit the degree of expansion (Mariotti et al., 2006).  

 

Density analysis    

Density determinations usually performed in industry include hectolitre mass, which provides 

limited information since only the average apparent density of the bulk is measured and it is 

influenced by the degree of packing and the shape and size of the crease (Dobraszczyk et al., 

2002). Wheat density can also be measured using a pycnometer (Chang, 1988; Ohm et al., 1998; 

Nelson, 2015). Chang (1988) documented the mean true density of wheat to be 1.47 g/cm3 and the 

mean apparent (inclusion of air) density as 1.39 g/cm3. As some intercellular spaces are 

inaccessible to the gas or mercury, the volume determined using a pycnometer may include these 

air spaces and thus the density determined might not be the true density (Chang, 1988). Kelkar et 

al. (2015) developed a method, using both X-ray digital radiography and computed tomography 

(CT) to directly determine the apparent density of foods. X-ray CT gave results comparable with 

conventional methods.  

Figure 4.7 demonstrates the grey value histograms for FCCT and oven-roasted wheat kernels. 

Two histograms are displayed for each roasting method (Fig 4.7): whole kernel and the air as ROI. 

A histogram with a wide distribution (Fig. 4.7a) indicates more contrast in the image, whereas a 

narrow distribution (Fig. 4.7c) correlates with less contrast (Umbaugh, 2011). If grey values are 

concentrated at the lower end of the graph (Fig. 4.7d), the image appears darker and vice versa. 

The whole kernel grey value histogram illustrate different peaks (corresponding to different 

phases), recognising that lower grey values correspond to internal air and higher values 

correspond to the kernel structure.  

The mean grey values for the FCCT and oven-roasted samples were 22971.72 and 21184.67 

respectively (Fig. 4.7a and b). The mean grey value intensity is a measure of brightness and 

density, where roasting resulted in lower mean grey values relating to lower densities of the 

roasted kernels. In the histograms the grey value range was smaller for the oven-roasted (9488-

43361) sample than for the FCCT-roasted (8432-64049). The histogram of the oven-roasted kernel 
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had more distinct peaks, indicating the increase in porosity due to the increase in the lower grey 

value peak (Fig. 4.7b). This large distribution of low grey values was also observed in the 

histogram where the air was selected as ROI (Fig. 4.7d) and is associated with more voids. 

Changes in the grey values associate with changes in the microstructure as observed during 

qualitative analysis.  

 

   

Figure 4.7. Histograms illustrating the grey value distribution in images of whole (a) FCCT-roasted 

and (b) oven-roasted kernels and the air selected as ROI in (c) FCCT-roasted and (d) oven-

roasted kernels. The top three values in the tables indicate the minimum, maximum and mean grey 

values, respectively.  

 

Whole kernel density is the density of the kernel including air voids and thus it is a function of 

the air volume proportion (Vadivambal & Jayas, 2007), whereas the material density reports the 

density of the kernel material per se, excluding all the air, and is thus more representative of the 

true density. Whole kernel density decreased with 0.55% (P>0.05) and 2.76% (P≤0.05) during 

FCCT and oven roasting, respectively (Table 4.2). In contrast, the material density remained 

unaffected during FCCT roasting while a significant (P≤0.05) decrease of 2.72% occurred during 

oven roasting. The significantly larger decrease in whole kernel density during oven roasting was 

due to the higher porosity that developed using this method. These results were in agreement with 

previous studies that suggested lower densities were due to higher porosities, expansion (volume 

increase) and as a result of moisture loss (Fang & Campbell, 2000; Jha, 2005; Al-Mahasneh & 

Rababah, 2007). Whole kernel densities were lower than material densities because it included the 

contribution of air which lowered the density. The weight loss for the oven-roasted samples was 

(a) 

(b) 

(c) 

(d) 
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much higher with an average of 6.04±4.42%, whereas FCCT roasting contributed to a loss of 

3.50±3.68% (Table 4.2). 

Murthy et al. (2008) investigated the impact of fluidised bed roasting (FBR) (280-350°C for 30-

120 s), using hot flue gas as fluidising medium and traditional pan roasting (300°C for 15-100 s), 

using sand as heat transfer method on the quality of wheat kernels. Roasting was correlated with a 

decrease in wheat density. FBR demonstrated to be a superior roasting method in terms of product 

quality, since these samples indicated a better heat transfer and more uniform texture than sand 

roasted kernels. A previous study on grain roasting (both sand and microwave) indicated that 

decreased bulk densities were due to a loss in structural integrity between starch-protein and 

starch-starch matrices and this was attributed to the formation of air spaces in the endosperm 

(Sharma & Gujral, 2011). The higher puffing effect that occurred during oven roasting resulted in 

larger air volumes (porosity) and lower relative densities in comparison to FCCT roasting. 

Decreased densities was an indication of pore formation due to volumetric expansion (Kahyaoglu 

et al., 2010). This study confirmed the negative relationship between porosity and density. 

 

Conclusion 

It was possible to successfully illustrate distinct changes and differences in the microstructure of 

wheat kernels induced by the two roasting methods from the 2D projection images, which could be 

rendered into 3D volumes to perform quantitative analysis. The degree of cracking and cavities in 

the wheat kernels provided an indication of the complexity and interconnectedness of the porous 

network. Cavities were much larger in the oven-roasted samples resulting in more open porous 

and expanded structure in relation to FCCT roasting, which had a less destructive impact. The 

qualitative results observed in the 2D images were confirmed with quantitative measurements. 

Roasting resulted in an increase in volume, porosity and ER and a decrease in relative density. 

These measurements were higher during oven roasting. Oven roasting, in a static position, 

resulted in unevenly roasted kernels, thus the advantage of FCCT roasting is that the product 

continuously rotating in the superheated steam and the kernel surface is exposed uniformly. 

Therefore FCCT roasting is preferable in terms of minimal structural alteration caused during 

roasting, resulting in a more acceptable internal structure. The material density also remained 

constant during FCCT roasting which will lead to less affected milling yields.  

X-ray μCT is increasingly being used as a research tool to study the microstructure of 

agricultural produce since it enables non-destructive capturing of high-resolution images, 

permitting fine details to be studied. This technique has been demonstrated to be a powerful tool to 

investigate and characterise the microstructure of roasted wheat. 
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CHAPTER 5   

Oven and forced convection continuous tumble (FCCT) roasting: effect on 

physicochemical, structural and functional properties of wheat 

 

Abstract 

Wheat roasting is generally performed to enhance flavour and improve organoleptic properties. 

This study investigated the physicochemical, structural and functional properties of whole wheat 

kernels after being roasted at 180°C for 140 s using a conventional oven and a more 

homogeneous and energy efficient roasting method, referred to as a forced convection continuous 

tumble (FCCT) roaster. Wheat kernels tend to puff upon roasting and the weight, bulk density, 

moisture content, flour yield, protein content and hardness decreased significantly (P≤0.05) for 

both roasting methods compared to the unroasted control. The A-type crystalline structure of the 

wheat starch was only slightly affected after roasting with no significant (P>0.05) change in 

crystallinity content. Scanning electron microscopy (SEM) micrographs of the starch granules 

explains the minor influence of roasting on the structure and functionality. Roasting introduced 

pores and cavities within the intact cell walls of the endosperm, together with a disintegrated 

protein matrix, with these changes being more profound for the oven-roasted samples. Both 

roasting methods resulted in an increase in functional properties, i.e. water absorbance capacity 

(WAC) and pasting properties, whereas the water solubility index (WSI) and flour dispersibility (FD) 

remained unaffected (P>0.05).  Limited gelatinisation occurred during roasting, due to limited water 

available in the samples. This was also confirmed in the SEM micrographs. The two roasting 

treatments caused different changes in structure and these changes had diverse impacts, although 

not significantly different (P>0.05), on the degree of gelatinisation (FCCT=10.14%; oven=17.16%). 

Differential scanning calorimetry (DSC) demonstrated an increase (P≤0.05) in the thermal 

transition temperatures of both roasted samples, while the gelatinisation enthalpy (ΔH) decreased 

(P≤0.05) after roasting. Rheological characteristics, measured with the Alveograph, were not 

affected (P>0.05) by either roasting methods, whereas the peak time, measured with the 

Mixograph, increased significantly (P≤0.05). The roasting conditions used will have no detrimental 

effect on the baking quality of bread and may even delay staling. Thus, the results of this study 

may assist in potential future applications and the development of value-added products.   

  

Introduction  

Wheat is the most important cereal crop in the world with regard to cultivation areas and total 

production. The cultivation, consumption and uses thereof are worldwide and it constitutes one of 

the staple food commodities. Wheat plays a vital role in human diets, due to its agronomical 

adaptability and its sustained nutritional qualities during storage (Raigar et al., 2016). It is 

extensively used as prime energy source and is utilised for the production of a wide range of food 

products, i.e. bread, pasta, fortified cereals and confectionary products. At present, dietary 
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guidelines recommend an increase in the consumption of whole grain cereal products, since they 

are commonly associated with a better quality diet and play an important role in reducing the risk of 

cardiovascular diseases, hypertension, certain cancers, type-2 diabetes and obesity (Işikli et al., 

2014). Commercial wheat flour are not pre-gelatinised and do not contain bran and germ. Removal 

of the bran and germ deprives consumers of the nutritional value thereof since these components 

are sources of dietary fibre, vitamins and minerals, phytochemicals, essential amino acids and 

unsaturated fatty acids (Bolade, 2009). To maintain these vital substances in end-products, whole 

grain flours are recommended for the production of functional foods (Ragaee & Abdel-Aal, 2006).  

Technologies used to process whole grains into intermediate and end products commonly 

involve heat (Bolade, 2009). Different thermal processing treatments, e.g. parboiling, flaking, 

puffing, pressure cooking, extrusion and roasting can be used to prepare wheat products. Roasting 

is a high-temperature-short-time (HTST) thermal processing method which entails numerous 

physical, nutritional and chemical changes which can either be desirable or undesirable (Oboh et 

al., 2010). Some desirable alterations reported for cereal grains include enhancing antioxidant 

activity and nutrient availability, which supports their potential as a natural functional food (Chung 

et al., 2011; Muyonga et al., 2014). Roasting can extend the shelf life and safety of products by 

lowering the water activity which reduces the rate of microbial growth (Ranganathan et al., 2014). 

Roasting of cereal grains plays a vital role in improving sensory properties by increasing the overall 

palatability, enhancing flavour, colour, texture and appearance and makes it easier to integrate into 

ready-to-eat products (Murthy et al., 2008). Wheat roasting can serve as a pre-processing step to 

enable the use of less energy for milling and to produce value-added products. It is considered one 

of the most effective methods to inactivate destructive enzymes and reduce mycotoxin levels 

(Kabak, 2009; Griffith & Castell-Perez, 1998). Moreover, roasting leads to starch gelatinisation and 

protein denaturation, hence improving digestibility (Sharma et al., 2011). This has contributed to 

the renewed interested in using roasted cereal grains as ingredient for formulating value-added 

food products. In contrast, undesirable changes include decreases in nutritive values and loss in 

vitamins and minerals (Ayatse et al., 1983). A significant reduction in crude protein, dietary fibre, 

phenolic and flavonoid content of maize was reported by Oboh et al. (2010) after roasting.  

Roasting whole wheat followed by milling are an economically viable approach to prepare 

products, i.e. instant rolled wheat for breakfast cereals, puffed snacks, pasta, grits or pre-

gelatinised flour for baked goods, flour blends or soup mixes (Mossman et al., 1973). In Central 

and Eastern Europe and Asia the consumption of roasted buckwheat as breakfast cereal or as 

processed flour, are of increasing popularity (Zielinski et al., 2009). Roasted wheat flour is 

commonly incorporated into pasta (Baiano et al., 2008) and bread (Baiano et al., 2009) in Italy. The 

addition of roasted flour into bread resulted in a decreased bread volume and detrimental effects 

on mechanical properties due thermal denaturation of gluten-forming proteins (Baiano et al., 2009).  

The effect of roasting on end product properties will, however, depend on the roasting method 

and conditions under which processing is performed. Traditional roasting technologies, i.e. sand 
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roasting should be improved by looking at the following factors: economics (increase capacity, 

reduce equipment size and energy consumption and increase ease of control), environmental 

considerations (reduce emissions and increase operators’ safety) and improve product quality 

(uniform roasting and minimal physical, chemical and nutritional degradation) (Pronyk et al., 2004). 

Modern superheated steam processing uses a clear, colourless gas attained by the application of 

heating ordinary steam under normal pressure to a higher temperature (Head et al., 2010). The 

reuse of latent heat of evaporation during superheated steam roasting makes it a more energy 

efficient process compared to conventional hot air (Zzaman & Yang, 2013). In contrast to hot air, 

superheated steam creates an oxygen free environment which means no oxidative or combustion 

reactions occur and this results in improved product quality (no scorching) (Pronyk et al., 2004). 

Furthermore, superheated steam roasting results in the preservation of more desirable food 

characteristics in terms of colour and microstructure in comparison to oven roasting, under similar 

time and temperature roasting conditions (Idrus & Yang, 2012).  

A recent study by Schoeman et al. (2016b) used X-ray micro-computed tomography (μCT) to 

characterise and quantify the effect of conventional oven and innovative forced convection 

continuous tumble (FCCT) roasting on the microstructure of whole wheat kernels. Using the same 

roasting parameters, oven roasting resulted in more substantial microstructural (e.g. volume, 

porosity and relative density) changes when compared to FCCT roasting. Besides microstructural 

changes, it is likely that roasting will also affect other properties which will have a great influence in 

determining the use thereof for food purposes. This has spurred the need for this study since 

physicochemical, structural (starch-protein morphology and crystallinity) and functional information 

is required by food scientists to obtain a better understanding of food properties.  

Physicochemical and functional properties of food are strongly influenced by structure-property 

relationships (Frisullo et al., 2012). Changes in physicochemical and functional properties induced 

by roasting have been reported for cereals, i.e. oats (Sandhu et al., 2015), quinoa (Rothschild et 

al., 2015) and barley (Sharma et al., 2011). Physical properties of roasted wheat, like those of 

other grains, are important for the design of equipment for processing, packing and transportation 

(Işikli et al., 2014). Thermal changes induced by roasting affect the internal matrix of wheat 

(Schoeman et al., 2016a) and this may be reflected in the hardness, milling and flour yield and end 

product quality (Raigar et al., 2016). Milling yield is an essential wheat quality trait that defines the 

profits for milling industries (Kong & Baik, 2016). Thus, the milling industry prefers harder wheat 

due to the greater yield and higher quality flour produced, resulting in higher economic value. 

Hectolitre mass (HLM) is an important indicator of wheat quality and is often correlated with milling 

yield and hardness. 

Particle size index (PSI) provides an indication of hardness, where softer kernels yielding finer 

flours has a higher PSI. Murthy et al. (2008) reported that fluidised bed roasted wheat was softer 

than sand roasted wheat, indicating lower energy requirements for further processing such as 

grinding. PSI influence the dry flour flow characteristics and sensory and baking quality, since 
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softer damaged starch granules can absorb more water and are also more susceptible to amylase 

action than intact starch granules (Griffith & Castell-Perez, 1998). Bread baked from fine particle 

size flour generally results in lower loaf volume than breads baked from coarse PSI flours. This is 

attributed to the reduced gas retention in the dough as a result of the large amount of fine particles 

present in the flour (Zhang et al., 1998). Bulk density is an index of the extent of puffing during 

roasting, thus expressed as the puffing index (PI) (Lazar et al., 1974). According to Hoke et al. 

(2007) roasted grains display enhanced crispiness and volume and improved texture because of 

puffing. 

 Ranganathan et al. (2014) attributed swelling and deformation of roasted sorghum starch 

granules to partial gelatinisation. Thus, it is important to investigate the starch-protein morphology 

of the roasted sample using scanning electron microscopy (SEM). A study on maize found that the 

crystallinity content, determined using X-ray diffraction (XRD), decreased (P≤0.05) after roasting 

resulting in positive effects on starch availability and digestibility (Carrera et al., 2015). 

Water absorption capacity (WAC) provides an indication of the ability of starch to absorb water 

(swelling behaviour) and is an indirect measure of starch gelatinisation (Zhu et al., 2010). A 

previous study reported that FCCT roasting (150°C for 20 min) increased the WAC and in vitro 

protein digestibility of marama bean flour which was then used in combination with sorghum to 

produce a value-added composite porridge (Maruatona et al., 2010). An increase in WAC can be 

attributed to an increase in starch gelatinisation (Zhu et al., 2010). Roasted flours with an 

increased the WAC is useful for the preparation of instant mixes and porridges (Ranganathan et 

al., 2014). Water solubility index (WSI) is an indicator of the degradation of molecular components, 

since it is a measure of the quantity of soluble components released from starch (Ding et al., 

2006). Flour dispersibility (FD) refers to the ability to reconstitute in water (Edema et al., 2005).   

In certain food preparations, i.e. bread making, an optimum level of damaged starch is 

desirable as it improves the hydration rate and enhances the fermentation capability 

(Mahadevamma & Tharanathan, 2007). Nonetheless, excessive starch damage is detrimental as it 

will result in unwanted functional and rheological properties (Mahadevamma & Tharanathan, 

2007). Raigar et al. (2016) found that roasting influences the final characteristics and end product 

quality in terms of protein and starch digestibility, which is related to the extent of gelatinisation. 

During roasting starch can be modified to different extents and this can contribute to important 

effects on the functionality, especially the thermal properties, of products. Thermal properties and 

gelatinisation characteristics can be examined using differential scanning calorimetry (DSC). The 

level of gelatinisation, partial or complete, will depend on the processing method and conditions, as 

well as the moisture available (Holm et al., 1988). Andrejko et al. (2011) observed starch 

gelatinisation in wheat when infrared heating was performed at temperatures above 150°C for 

more than 90 s.  

Viscosity is one of the most important functional properties since a Rapid Visco Analyser 

(RVA) profile provides information on the starting temperature of gelatinisation, peak viscosity and 
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retrogradation. Since wheat contains almost 60% starch, it is likely that starch modification will 

have a major influence on the consistency of roasted products (Mossman et al., 1973).  

Good gluten quality produces bread with a high volume and good crumb texture. Strong wheat 

flours with a desirable gluten quality result in good dough properties, i.e. a high water absorption 

and stability time during mixing, as well as high resistance and extensibility (Van Hung et al., 

2006). In contrast, dough from soft wheat flours result in inferior gluten quality which exhibits low 

water absorption and less stability during mixing and less extensibility. Roasted whole wheat can 

be beneficial in terms of its functional and rheological effects, as it can be used to generate 

products with specific rheological and functional properties to meet the needs of specific 

applications. Zhang et al. (1998) reported that a combination of roasting and steaming (105°C, 20 

min) of oats improved the bread baking potential of oat flours. 

Roasting as a form of wheat processing is scarcely studied. The effects of roasting on the 

antioxidant activity (Gelmez et al., 2009; Hernández-Borges et al., 2005), extractable mineral and 

phytic acid content (Gahlawat & Sehgal, 1993; Khan et al., 1986), hydration kinetics (Maskan, 

2002), chemical composition and physical, organoleptic and nutritional properties (Caprez et al., 

1986; Mossman et al., 1973) of wheat were investigated earlier. Some food applications of air-

fluidised roasted wheat were investigated by Lazar et al. (1974). Applications that showed promise 

were the use of roasted wheat as breaders for fish and meat or as thickeners in soups, sauces or 

gravies. Raigar et al. (2016) examined the effect of different thermal treatments on the grinding 

characteristics, granular morphology and yield of ready-to-eat wheat grits. Roasting was found to 

be desirable in terms of protein digestibility, granular morphology and hardness.   

Currently there is increasing interest in the use of roasted grains in food products due to 

numerous health benefits and improved product quality (Carrera et al., 2015). To date no studies 

have been undertaken to investigate the physicochemical, structural and functional properties of 

wheat after conventional oven and novel FCCT roasting. Keeping in view the aforesaid discussion, 

the aim of this study was to examine the effect of these two roasting methods, using similar 

roasting conditions, with regards to changes in physicochemical, structural and functional 

properties of whole wheat. This will provide baseline information, which would identify potential 

applications for roasted whole wheat and its flour as functional ingredient in food systems. 

 

Materials and methods 

Wheat samples 

A commercial wheat cultivar (30 kg) was procured from Pioneer Foods (Paarl, South Africa). 

Impurities and broken kernels were removed from the wheat sample using a Carter Day Dockage 

Tester (Carter Day International, Minneapolis, MN). The sample was then thoroughly mixed by 

pouring it three times through a Boerner Divider (Seedburo Equipment Co., Chicago, USA) after 

which it was divided it into nine batches of 2.2 kg each. Three of the batches remained unroasted 

and served as the control, whereas the other six batches were roasted using oven or FCCT 
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roasting, respectively. Each sample was stored in an airtight plastic container at ambient 

temperature until further evaluation. The three replicates of the control and two roasting methods 

were analysed in either triplicate, duplicate or as single measurements as indicated in each 

method. 

 

Tempering of test run for FCCT roasting  

 For the FCCT roasting method, a test run sample (400 g) was tempered with pure deionised water 

(dH2O) to a final moisture content of between 18 and 20%. This was done to generate some initial 

moisture and superheated steam in the roasting chamber which replaced the dry, hot air prior to 

roasting, ensuring a more homogenous roasting process. The amount of water added was 

calculated according to the AACC Method 26-95.01 (AACC, 1999c). This method takes the original 

moisture content and the mass of the sample into consideration (Eq.1). The tempered sample was 

kept in an airtight container for 24 h at room temperature with regular shaking intervals to ensure 

even moisture absorption. 

Weight of water to add (g) = (
100−original moisture (%)

100−deisred moisture (%)
− 1) × sample weight (g)     (1) 

  

Roasting   

Roasting involved exposure of the wheat samples to either dry, hot air in the conventional 

convection oven (831 Electric Multifunction Thermofan Solid Plate Oven, Defy Appliances, Durban, 

South Africa) or superheated steam in the FCCT roaster (Roastech, Bloemfontein, South Africa) at 

180°C for 140 s. A temperature of 180°C is commonly used for roasting cereal grains (Chung et 

al., 2011). The retention time of the wheat in the roasting chamber is determined by the rotary 

velocity of the screw conveyer inside the roasting chamber. A screw speed setting of 80 Hz 

resulted in a roasting time of 140 s. The actual samples were not tempered as tempering is not 

typically applied in the production of roasted wheat (Işikli et al., 2014). For each roasting method 

three batches of 2.2 kg were roasted according to the procedure described by Schoeman et al. 

(2016). After roasting the samples were immediately spread on a cold flat surface to stop further 

exothermic reactions. The cooled samples were stored in airtight containers at ambient 

temperature until being milled. 

 

Grinding of wheat samples  

To obtain whole wheat flour, the control and roasted samples (300 g each) were pulverised 

separately in a hammer-type cyclone Laboratory Mill 3100 (Perten, Hägersten, Sweden) fitted with 

a 1 mm sieve. The whole wheat flour samples were stored in airtight containers (at ambient 

temperature) from which required quantities was removed for further analyses. 
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Experimental design 

A schematic diagram of the experimental setup and analyses procedures is illustrated in Figure 

5.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. A simplified flow diagram of the roasting and analyses procedures used. HLM= 

hectolitre mass; PSI= particle size index; SEM= scanning electron microscopy; XRD= X-ray 

diffraction; WAC= water absorption capacity; WSI= water solubility index; FD= flour dispersibility; 

DSC= differential scanning calorimetry; RVA= Rapid Visco Analyser.  

 

 

 

25 kg wheat sample  

Roast (180°C; 140s)   Control  

FCCT: 2.2 kg x 3 

repetitions 

Oven: 2.2 kg x 3 

repetitions 

Analyses 

Raw/unroasted: 2.2 kg x 3  

Physicochemical 
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 Puffing index 
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 Milling and 
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Functional 

 

 WAC 

 WSI 
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 Mixograph 
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Structural 

 

 SEM 

 XRD 

Clean (Carter Day Dockage Tester)  

Mix and divide (Boerner divider)  
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Physicochemical analyses 

Weight loss  

The percentage weight loss of each sample was recorded in triplicate by measuring the initial 

(before roasting) and final (after roasting) weights. 

 

Bulk density and puffing index (PI) 

Bulk density was determined in triplicate according to the method of Sandhu et al. (2015).  The 

wheat samples were filled in a 100 mL graduated cylinder (previously tared). The bottom of the 

cylinder was gently tapped until there was no further diminution of the sample after filling it to the 

100 mL mark. The bulk density of the control and roasted wheat samples was calculated as the 

weight of the sample per unit volume (g/cm3) using Equation 2. The PI was calculated by dividing 

the bulk density of the control with the bulk density of the roasted sample (Sandhu et al., 2015).  

Bulk density (g/cm3) =  
Weight of sample (g) 

Volume occupied (cm3) 
        (2) 

  

Moisture content 

Moisture content of the control and roasted flours was determined in triplicate using the air-oven 

drying Method 44-19.01 (AACC, 1999d) immediately after grinding was performed. Wheat flour (2 

g ± 1 mg) was heated in aluminium moisture dishes for 2 h at 135°C in an oven, model EM10 

(CHOPIN Technologies, Cedex, France). Moisture loss was used to calculate the percentage 

moisture (Eq.3).  

Moisture (%) =
Moisture loss (g)

 Sample weight (g)  
× 100        (3) 

 

Milling and flour yield  

Experimental milling was performed at the research and development facility of Sasko (Essential 

Foods, Division of Pioneer Foods (Pty) Ltd., Paarl, South Africa) using the Brabender Quadrumat 

Jr. (Quadruplex) mill (C.W. Brabender Instruments Inc., South Hackensack, NJ) according to the 

AACC method 26-50.01 (AACC, 1999b). The aspirator was adjusted to give maximum airflow 

without excessive loss of fine flour. The wheat (1 kg of each sample) was tempered to a moisture 

content of 15-16% for 24 h using the AACC Method 26-95.01 (AACC, 1999c). Before milling, the 

mill was run empty for half an hour after which a test sample was run in order to bring the mill to 

operating temperature. Then 1 kg sample was poured into the feed hopper. The feed rate was 75 

g/min. The continuous reel sifter automatically separates the ground product into flour and by-

product (bran and large endosperm particles). Milling yield was calculated on the basis of total 

recovered products (comprising bran and flour) after milling the tempered whole wheat sample. 

Flour yield is the weight of the flour extracted, expressed as a percentage of the total tempered 

grain weight milled (Kong & Baik, 2016). The bran was discarded and the flour was stored in 

airtight containers for further use. 
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Hectolitre mass (HLM) 

 HLM (kg hL-1) determinations were performed in duplicate at the research and development facility 

of Sasko using the German Kern 220/222 Grain Sampler (KERN & SOHN GmbH, Balingen-

Frommern, Germany). This test was performed according to the method described by Guelpa et al. 

(2015).  

 

Crude protein 

Crude protein content of the control and roasted wheat flour was assayed in duplicate using the 

Dumas combustion AACC Approved Method 46-30.01 (AACC, 1999e). A LECO TruMac N (LECO 

Corporation, Saint Joseph, Michigan, USA) nitrogen analyser was used. Combustion at high 

temperature in pure oxygen sets nitrogen free, which is measured by thermal conductivity 

detection. The crude protein content was determined at 12% moisture base (mb) and a conversion 

factor of 5.7 was used to determine the crude protein (%) from the nitrogen.   

 

Particle size index (PSI) 

PSI was determined in duplicate according to the AACC Approved Method 55-30.01 (AACC, 

1999h) to give an indication of relative wheat kernel hardness. The PSI of 10 g ground flour was 

obtained by sieving using a Retsch AS 200 Tap Sieve Shaker (Retsch, Haan, Germany). 

Approximately 50 g of whole wheat kernels were also placed on the sieve. Each sample was 

shaken for 10 min with the Sieve Shaker which was operated electrically and provided with a timer 

to control sieving time. Two sets of pans and sieves were stacked on top of each other and sieved 

simultaneously. The fine particles of wheat flour passing through the 75 μm size were collected in 

the receiving pan. The fine material adhering to the bottom of the sieve was brushed into the 

receiving pan and weighed to obtain the weight of the throughs (W). Equation 4 was used to 

determine the PSI. The PSI (%) obtained was converted to relative hardness using Table 5.1. Hard 

wheat results in lower PSI values and vice versa. 

PSI (%) =  
W (g)

Sample weight (g)
× 100           (4) 

 

Table 5.1. Relative wheat hardness scale 

Category PSI (%) 

Extra hard Up to 7 

Very hard 8-12 

Hard 13-16 

Medium hard 17-20 

Medium soft 21-25 

Soft 26-30 

Very soft 31-35 

Extra soft Over 35 
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Structural analyses 

Scanning electron microscopy (SEM) 

The microstructure of the control and roasted wheat were analysed at an accelerating voltage of 7 

kV and current of 11μA using a LEO 1430VP scanning electron microscope (Zeiss, Germany). A 

spot size of 150 was used. Two control, two FCCT-roasted and two oven-roasted wheat kernels 

were sectioned into halve along the transverse axis with a Solingen blade. The sectioned kernels 

were mounted on aluminium specimen stubs with double-sided carbon tape and coated with a thin 

layer of gold palladium employing a 5150A sputter-coater (HHV, Crawley, United Kingdom). The 

granular morphology and surface structure of the samples were identified with secondary electron 

images. Representative micrographs of the kernels were obtained using variable magnifications to 

observe the endosperm packing density and starch granule morphology. At least four micrographs 

were obtained for each sample.  

 

X-ray diffraction (XRD) 

X-ray diffractometry was performed at room temperature on the control and roasted flour samples 

using a D8 Advance Bruker X-ray powder diffractometer (BRUKER AXS, Germany) as described 

by Carrera et al. (2015), with slight modifications. The instrument was equipped with a water-

cooled rotating copper anode that produces Cu-Kα radiation (λ= 1.5406). The X-ray tube operated 

at a current of 10 mA and an accelerating voltage of 30 kV. The scanning region of the diffraction 

angle (2ϴ) was 5–40° with an exposure time of 1285 s, step size of 0.016° and measuring time of 

0.5 s per point. One diffractogram was collected for each sample and the average of the three 

replicates was reported. Crystalline and amorphous areas were quantified using EVA software 

(BRUKER AXS, Germany). Crystallinity (%) was determined as the integrated area of the upper 

region of the curve (crystalline peaks) divided by the total integrated area under the curve and 

above the straight baseline (amorphous + crystalline peaks), multiplied by 100 (Yoo & Jane, 2002). 

 

Functional analyses   

Water absorption capacity (WAC), water solubility index (WSI) and flour dispersibility (FD) 

WAC of the flour samples was determined in triplicate according to the AACC method 56-20.01 

(AACC, 1999i). Two grams of flour was weighed into a pre-weighed 50 mL centrifuge tube. To this 

40 mL dH2O was added and it was mixed thoroughly. The suspension was left to stand for 10 min 

and mixed by inverting at the end of 5 and 10 min periods. The samples were centrifuged (TJ-25 

Centrifuge, Beckman Coulter, South Kraemer Boulevard, US) for 15 min at 1000x gravity at 20°C. 

After pouring the supernatant liquid into tared evaporating dishes the centrifuge tubes with 

remaining residue (sediment) were weighed (Mwangwela et al., 2007). WAC (g water/g flour) was 

calculated as the weight of sediment obtained after removal of supernatant per unit weight of the 

original dry solids (Eq. 5).  

WAC (𝑔/𝑔) =  
(𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡𝑢𝑏𝑒 + 𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡) − 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡𝑢𝑏𝑒

𝑠𝑎𝑚𝑝𝑙𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑑𝑟𝑦 𝑏𝑎𝑠𝑖𝑠)
                        (5) 
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The supernatant liquid from the WAC procedure was oven-dried for 24 h at 100°C (Hafsa et 

al., 2015). WSI, defined as the water-soluble fraction in the sample, was determined from the 

weight of dried solids recovered by evaporating the supernatant and was expressed as percent dry 

solids or WSI (%) (Eq. 6).  

WSI (%) =  
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑑𝑟𝑦 𝑠𝑜𝑙𝑖𝑑𝑠 𝑖𝑛 𝑠𝑢𝑝𝑒𝑟𝑛𝑎𝑡𝑎𝑛𝑡

𝑠𝑎𝑚𝑝𝑙𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑑𝑟𝑦 𝑏𝑎𝑠𝑖𝑠) 
 × 100                 (6) 

FD determinations were performed in triplicate according to the method of Edema et al. 

(2005). A flour sample (10 g) was weighed into a 100 mL measuring cylinder and filled to the 100 

mL mark with dH2O. The sample was vigorously stirred and then allowed to settle for 3 h. The 

volume of the settled particles was recorded and subtracted from 100 to obtain the percentage FD.  

 

Differential scanning calorimetry (DSC) 

Thermal characteristics of the whole wheat flours (control and roasted) were analysed using a 

differential scanning calorimeter (DSC Q20, TA Instruments, New Castle, USA), equipped with a 

thermal analysis data station. Thermal data were obtained by carefully weighing the flour sample (5 

mg, dry basis) into an 40 µL aluminium pan and dH2O (15 μL) was added with a micropipette. The 

pan was hermetically sealed before heating. The instrument was calibrated using indium and an 

empty aluminium pan was used as reference. The reference pan and sample pan were each 

placed on a separate heater and heated in the DSC cell from 20 to 140°C at a heating rate of 

10°C/min. The calorimeter was equipped with a controlled cooling accessory, using liquid nitrogen 

with a flow rate of 50 mL/min as cooling agent. DSC analysis generated a profile of 

injected/extracted heat flow from the analysed sample as a function of temperature (Carrera et al., 

2015). Any transitions, i.e. starch gelatinisation and protein denaturation were recorded, finding in 

the thermograms the onset (To), peak (Tp) and endset (Te) temperatures of the endotherm 

(Guzmán et al., 2009). The gelatinisation enthalpy (ΔH) of the transitions was estimated from the 

area of the endotherm using Matlab™ 2014b software (Mathworks, Natick, MA, USA) (Ahmed et 

al., 2007). The gelatinisation temperature range (ΔT) was calculated as Te -To. The average values 

of three replicates were reported. The degree of gelatinisation (%) was determined as reported by 

Sharma et al. (2011) (Eq. 7): 

Degree of gelatinisation (%) =  [1 − ( 
ΔH of roasted sample

Δ H of control sample
)] x 100                                         (7) 

 

Pasting properties and α-amylase activity  

Pasting properties of the whole wheat flours were determined using a Rapid Visco Analyser (RVA) 

model 4500 (Perten Instruments, Eden, Australia) according to the AACC method 76-21.01 

(AACC, 1999j). Triplicate runs were conducted for each sample. The RVA instrument contained its 

own microprocessor, which carried out internal control and monitoring functions. Milled flour (3.5 g 

± 0.01 g on a 14% mb) was placed in the aluminium test canister together with 25 mL dH2O 

(corrected to compensate for 14% mb). The suspension was thoroughly mixed with a plastic 
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paddle to prevent lump formation. Standard profile 1 was used to capture rheological information. 

The measurement cycle of the pre-programmed profile was initiated by depressing the motor tower 

of the instrument. The test was then allowed to proceed and terminate automatically after 13 min. 

The procedure involved an initial holding stage at 50°C for 1 min, a heating step from 50 to 95°C 

for 3min and 42 s, a holding phase at 95°C for 2 min and 30 s, a cooling step from 95°C to 50°C 

for 3 min and 48 s and a final holding stage at 50°C for 2 min. The suspension was stirred at 960 

rpm for 10 s, followed by a constant rotating speed of 160 rpm throughout the analysis. The peak 

(Vp), breakdown (Vb), final (Vf), setback (Vs) and through (Vt) viscosity, as well as the peak time 

and pasting temperature (Ptemp) were reported by Thermocline for WindowsTM (Version 3) software. 

For each RVA measurement the viscosity (measured in centipoise; cP), temperature (°C) and 

speed (rpm) were recorded every four seconds.  

In a separate experiment, the stirring number (SN, viscosity at 3 min) was measured in 

triplicate with the RVA according to the AACC method 22-08.01 (AACC, 1999a) using the SN 

profile. This method is based on the ability of α-amylase to liquefy a starch gel and is an indication 

of amylase activity. Flour (3.5 g corrected to 14% mb) and water (25 mL corrected to 14% mb) was 

measured into a test canister. The stirring paddle was placed in the canister and vigorously jogged 

up and down ten times to remove any lumps. The canister with the paddle was placed into the 

RVA and the measurement cycle was initiated by depressing the motor tower of the instrument. 

The SN (recorded in cP) was displayed as the final viscosity after termination of the test. Higher 

SN values is an indication of less α-amylase activity (Ragaee & Abdel-Aal, 2006).  

 

Rheology: Mixograph and Alveograph  

Rheological analyses were conducted as single measurements for each of the three replicates 

using the flour obtained from the Brabender Quadrumat Jr. (Quadruplex) mill (C.W. Brabender 

Instruments Inc., South Hackensack, NJ). The resistance of the dough to mixing was measured 

using a Mixograph (National Mfg Co., Lincoln, Nebraska, USA) according to the AACC method 54-

40.02 (AACC, 1999g). The Mixograph comprises two pairs of relatively thin pins rotating in a 

planetary motion and three fixed pins in the mixing bowl to oppose the action of the moving pins. A 

flour sample of 35 g (14% mb) was weight and placed in a Mixograph bowl. Water was dispensed 

to the flour from a burette after which the bowl was inserted into the Mixograph. The flour and 

water was mixed for 7 min to form dough. As the dough is mixed the Mixograph automatically 

recorded a graph on the computer. The graph was used to determine the optimum development 

time (min) and to estimate the water absorption (amount of water required for dough to reach a 

defined consistency).   

The resistance of dough to extension was determined following the AACC method 54-30.02 

(AACC, 1999f), using an Alveograph MA 82 (Chopin, Tripette ed Renaud, France) where dough 

with a definite thickness was prepared under specific conditions and expanded by air pressure until 

it ruptures. The internal pressure in the bubble is graphically recorded. Alveographic indices 
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recorded included: resistance to extension (tenacity) or stability measured as the height of the 

curve (P, mm); dough extensibility measured as the length of the curve (L, mm); deformation 

energy (W, x10-4J), strength (S= W/6.54, cm2) and the curve configuration ratio (P/L).  

 

Statistical analysis 

Statistical analysis was carried out using STATISTICA version 13 (StatSoft, Inc., Tulsa, USA). The 

data was analysed using one-way analysis of variance (ANOVA) to test for differences between 

the control and the two roasting methods. Mean differences were evaluated at the 5% significance 

level (P≤0.0.5) using the least significant difference test. Data was reported as mean ± standard 

deviation for roasting experiments performed in triplicate.  

 

Results and discussion   

Physicochemical properties 

The physicochemical properties of the control and roasted whole wheat samples are summarised 

in Table 5.2.  

 

Weight loss   

Roasting evoked significant (P≤0.05) changes in weight loss with oven roasting resulting in almost 

double (1.02%) the loss compared to FCCT roasting (0.53%) (Table 5.2). Weight loss is mainly 

attributed to moisture loss (due to dehydration), but also in a lesser extend to thermal degradation 

of organic compounds (sugars, polysaccharides and proteins) and non-enzymatic and pyrolytic 

reactions (Alessandrini et al., 2008). In conventional oven roasting the sample is stationary, 

whereas in the FCCT roaster the rotary motion of the roasting drum agitates the sample which 

ensures that the kernels are continuously stirred and all the surfaces are exposed evenly while 

propelling the sample through the roasting chamber. The internal superheated steam generated by 

the moisture from the sample inside the FCCT roaster, together with the rotating movement of the 

cylinder, results in uniform heat transfer and thus more homogenous roasting.  
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Table 5.2. Effects of roasting on the physicochemical characteristics of whole wheat  

Sample Weight loss 

(%)  

Bulk 

density 

(g/cm3) 

PIb Moisture 

(%) 

Milling 

yield (%)* 

Flour yield 

(%)* 

HLM  

(kg hL-1)c** 

Crude 

protein 

(%)a** 

PSI (%)d** 

Control 0c  0.83±0.003 a 0c 10.72±0.10a 98.74±0.12a 55.17±3.26a 82.23±0.15a 11.77±0.06a 23.10±1.67c 

FCCT 0.53±0.11b  0.81±0.003b 1.03±0.004b 10.12±0.25b 98.70±0.21a 49.58±0.37b 82.13±0.21a 11.60±0 b 36.86±0.75b 

Oven 1.02±0.07a  0.77±0.001c 1.08±0.005a 9.92±0.19b 98.61±0.35a 46.65±1.33b 81.90±0.26a 11.58±0.03b 41.37±0.49a 

Values are presented as mean ± standard deviation of three replicates (n=3). Values followed by different superscripts in a column differ significantly (P≤0.05). 
a
Crude protein are 

expressed as N x 5.7 on a 12% mb; 
b
Puffing index; 

c
Hectolitre mass; 

d
Particle size index; *Mean values of single measurements from three replicates **Mean values of duplicate 

measurements from three replicates. 
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Bulk density and puffing index (PI)  

A significant (P≤0.05) difference was observed between the bulk density of the FCCT (0.81 g/cm3) 

and oven-roasted (0.77 g/cm3) sample (Table 5.2.). The decrease in bulk density after roasting is 

due to two factors: weight (moisture) loss and volume increase (expansion) giving rise to the 

typical porous structure of a roasted product (Alessandrini et al., 2008). Low bulk densities after 

roasting is an indication of internal pore or cavity formation in the endosperm and this in 

concurrence with the results reported by Schoeman et al. (2016a), where oven roasting resulted in 

a higher wheat kernel porosity and lower relative density compared to FCCT roasting. The 

decrease in bulk density can also be due to changes in cellular structure attributed to a loss of 

structural integrity between the starch–starch and starch–protein matrix (Chandrasekhar & 

Chattopadhyay, 1990). Murthy et al. (2008) reported that the bulk density decreased from 833 

kg/m3 (0.83 g/cm3) for raw wheat to 526 kg/m3 (0.53 g/cm3) and 555 kg/m3 (0.56 g/cm3) for sand 

and fluidised bed roasted wheat, respectively. The raw bulk density of the wheat was the same as 

the control (0.83 g/cm3) reported in the current study (Table 5.2), however the much lower roasted 

values reported by Murthy et al. (2008) can be due to the different roasting methods used as well 

as the higher roasting temperatures.  

Roasting resulted in a PI of 1.03 and 1.08 for FCCT and oven roasting, respectively. These 

values were lower than the PI of 1.5 reported by Mossman et al. (1973) using hot air roasting. A 

decrease in bulk density during roasting results in an increase in PI due to volumetric expansion. 

The driving force for puffing has been hypothesised to be the vaporisation of water present in the 

interstices of the starch granules during HTST heating (Boischot et al., 2003). During roasting, 

internal moisture, entrapped in the kernels, is converted from a liquid to vapour state. The 

condensed structure of the raw kernels and rapid evaporation of the moisture generates vapour, 

which exerts internal pressure resulting in a porous, puffed kernel with a lower density (Altan, 

2014). These results are in concurrence with previous studies that reported a decrease in bulk 

density and increase in PI after roasting oats (Sandhu et al., 2015) and barley (Sharma & Gujral, 

2011).  

 

Moisture content  

Moisture content is one of the most critical indices for the keeping quality of cereal grains and its 

products. The roasted wheat was characterised by a significantly (P≤0.05) lower moisture content. 

The lower moisture content helps to prevent, or reduce microbial and enzymatic reactions which 

ensure that the product will have a good keeping quality. The moisture content of all the samples 

(Table 5.2) falls within and below the recommended safe moisture level of 10–12% for grains and 

flour products (Ingbian & Adegoke, 2007). Although not of significance (P>0.05), oven roasting 

resulted in a lower moisture content compared to FCCT roasting. A previous study also observed 

that convection oven roasting results in a higher moisture loss in cocoa beans compared to 

superheated steam roasting when using the same temperature and time combination (Zzaman & 
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Yang, 2013). Khan et al. (1986) reported a decrease from 10.6% to 9.6% after sand roasting whole 

wheat kernels, while the moisture content decreased from 10% to 3% for sand as well as fluidised 

bed roasted wheat (Murthy et al., 2008). Thus, different roasting conditions and methods, relying 

on different modes and rates of heat transfer, will have diverse effects on moisture content.  

 

Milling and flour yield  

Roasting had no significant (P>0.05) effect on the milling yield, however, reduced the flour yield 

significantly (P≤0.05) to 49.58% (FCCT roasting) and 46.65% (oven roasting) compared to the 

control (Table 5.2). Schoeman et al. (2016a) illustrated that the porosity of the oven-roasted 

samples was much higher than for the FCCT-roasted samples. This is attributed to the softer 

kernels with a lower flour yield. Wheat characteristics, i.e. hardness, density, kernel size and test 

weight are known to affect  flour yield (Kong & Baik, 2016). Van Hung et al. (2006) reported that 

wheat flour, recovered around 60% yield by weight of whole wheat grain after removal of germ and 

bran fractions using modern milling techniques. 

Kong & Baik (2016) found a significantly positive correlation between wheat hardness and 

flour yield, as hard wheat tend to give clean separation of bran during milling, resulting in increased 

flour yield. During roasting the internal structure of wheat is weakened because of internal moisture 

diffusion, resulting in increased levels of porosity (Schoeman et al., 2016a) and reduction in 

mechanical strength. This will in turn influence the breaking line which cause more endosperm to 

remain on the bran and thus decrease the flour yield (Kahyaoglu et al., 2010). Due to the reduction 

in mechanical strength of the roasted samples they are easily converted into powdery form and will 

result in less energy consumption during milling (Raigar et al., 2016). Roasting leads to finer 

particles during milling which can result in more milling loss (Raigar et al., 2016). Lazar et al. 

(1974) reported that flour yields as high as 70-75% can be obtained from roasted whole wheat if 

the moisture content is below 10%.  

 

Hectolitre mass (HLM)  

HLM provides a measure of the bulk density of grain and is also a useful indication of soundness 

and potential milling extraction (SAGL, 2016). Roasting had no (P>0.05) effect on HLM and 

resulted in a HLM of 82.13 kg hL-1 and 81.90 kg hL-1 for the FCCT and over-roasted samples, 

respectively (Table 5.2). It can thus be assumed that the PI determined from the HLM will also not 

be affected. The bulk density reported earlier (Table 5.2) decreased significantly (P≤0.05) after 

roasting, resulting in the higher (P≤0.05) PI. The difference between these two bulk density 

methods can be attributed to the sample size used, as well as the accuracy of the procedure. In 

industry HLM is the preferred method for determining bulk density, since it is more precise and 

uses a larger sample size resulting in a more representative representation of the sample. The 

HLM of the control and roasted samples was similar to the average HLM of 81.1 kg hL-1 reported 

Stellenbosch University  https://scholar.sun.ac.za



127 
 

by the South African Grain Laboratory (SAGL) for the 2015/2016 season, also measured using the 

Kern 222 instrument (SAGL, 2016).  

 

Crude protein  

Roasting resulted in decrease (P≤0.05) in protein content with no significant (P>0.05) difference 

between the two roasting methods (Table 5.2). The results fall within the range of  8.6-15.5% 

(mean of 11.1%) reported by Ohm et al. (1998) and compared favourably with the 11.8% reported 

by the SAGL for the 2015/2016 season (SAGL, 2016). Previously roasting also decreased 

(P≤0.05) the protein content of oats (Sandhu et al., 2015) and buckwheat (Zielinski et al., 2009). 

Similarly, Oboh et al. (2010) reported that roasting caused a decrease (P≤0.05) in the protein 

content of maize, suggesting protein quality depletion due to thermal degradation and formation of 

insoluble brown polymers (melanoidins). The reduction in protein content after roasting can thus be 

ascribed to denaturation and loss of protein due to the involvement of amino acids in the Maillard 

reaction (Oboh et al., 2010).  

  

Particle size index (PSI) 

The control sample had a PSI of 23.10% (Table 5.2) falling into the medium soft category 

according to the relative hardness scale (Table 5.1). The two roasted samples differed significantly 

(P≤0.05) from the control and from each other (Table 5.2). Both roasted samples were classified as 

extra soft according to Table 5.1. A decrease in hardness upon roasting can be attributed to grain 

expansion, starch gelatinisation and the development of fissures (Sharma et al., 2011). Hardness 

reductions in the roasted kernels is indicative of the extent of structural changes, i.e. porosity that 

occur during roasting, which was illustrated earlier using X-ray μCT (Schoeman et al., 2016a) and 

also confirmed in the subsequent section by the modified endosperm texture and packing density 

in the SEM micrographs.  

Softer kernels (high PSI), with a high degree of porosity will reduce milling efficiency and yield 

due to a finer flour being produced. However, the milling yield reported in Table 5.2 showed that 

roasting had no significant (P>0.05) effect on this property. An increase in porosity weakens the 

endosperm structure and consequently voids in the porous endosperm concentrate stresses and 

results in a decrease in mechanical strength (Dobraszczyk et al., 2002). Oven roasting brought 

about a greater decrease in hardness compared to FCCT roasting, which corresponds with the 

greater decrease in bulk density and weight loss, as well as the lower flour yield of this sample. An 

earlier comparative study between the effect of superheated steam and oven roasting on the 

physical properties of cocoa beans found that hardness was also more affected by oven roasting 

(Zzaman & Yang, 2013). Griffith & Castell-Perez (1998) reported that roasting increased the PSI of 

cereal grains. Finer flours milled from roasted wheat can be beneficial for infant feeding, since 

infants require smoother, softer foods due to their poorly developed oral motor skills (Griffith & 

Castell-Perez, 1998).  

Stellenbosch University  https://scholar.sun.ac.za



128 
 

Structural properties 

Scanning electron microscopy (SEM)  

From the whole kernel cross-sectional micrographs, taken at a low magnification, the endosperm 

of the control (Fig. 5.2a1) is tightly packed (dense) with no air spaces. In the FCCT-roasted sample 

(Fig. 5.2b1) a few thin cracks are detectable, whereas in the oven-roasted kernel (Fig. 5.2ac1) a 

large cavity appeared. According to Lazar et al. (1974), the formation of large irregular voids and 

internal fissures reduces the roasting quality. Similarly, Murthy et al. (2008) reported SEM 

micrographs of raw wheat to have closed structure and roasted wheat to be more porous.  

There was no clear difference among the endosperm of the control (Fig. 5.2a2) and FCCT-

roasted (Fig. 5.2b2) wheat. In the higher magnification micrographs more voids and larger air 

spaces are clearly noticeable in the endosperm of the oven-roasted kernel (Fig.5.2c2). This is in 

concurrence with the X-ray μCT results reported earlier (Schoeman et al., 2016a), where a higher 

degree of porosity was observed for the oven-roasted samples. In the oven-roasted sample the 

presence and expansion of cavities in the endosperm appear more adverse than for the FCCT-

roasted sample. These observations are in agreement with the physicochemical results (Table 

5.2), where oven roasting resulted in a reduced (P≤0.05) bulk density and kernel hardness in 

comparison to FCCT roasting. FCCT roasting had a less invasive impact on the starch-protein 

morphology due to the method of heat transfer. In this method the sample is continuously moving 

in the roasting chamber, resulting in a more uniform heat transfer in comparison to oven roasting 

where the sample is static and the heat penetration is more intense.  

The aleurone layer plays an important role during milling, since this is where separation of the 

endosperm and bran takes place (Kong & Baik, 2016). The aleurone layer of the control and 

FCCT-roasted samples (Figs. 5.2a3 and b3) is mainly intact and unmodified. In the oven-roasted 

kernel (Figs. 5.2c3) the loss in subcellular organisation resulted in some degree of detachment 

from the aleurone layer.    

Under the higher magnification micrographs (Figs. 5.2a2, b2 and c2) of the endosperm region 

two starch granule size distributions can be observed: large, lenticular A-type (18-33 μm) and 

small, spherical B-type (2-5 μm) starch granules which are embedded in a protein matrix (Yoo & 

Jane, 2002). In contrast to the control and FCCT-roasted samples (with a dense endosperm) the 

starch granules of the oven-roasted sample became swollen, loosely packed and deformed, but 

still distinguishable. Damaged starch granules typically exhibit granular distortion, irregularity and 

less uniformity (Barrera et al., 2013). During oven roasting the internal vapour generated enough 

pressure to cause large voids in the cellular matrix of the endosperm. In Fig 5.2c2 some starch 

granules appear molten and connected with each other (partially fused), illustrating some degree of 

gelatinisation. Most of the starch granules from the oven-roasted sample have been separated 

from the protein matrix. This separation of the starch granules are caused by dehydration during 

roasting (Kong & Baik, 2016). In Fig. 5.2a2 the protein matrix appear intact, whereas in Figs. 5.2b2 

and c2 partial disappearance (breakdown and disintegration) of the protein matrix is observed as 

Stellenbosch University  https://scholar.sun.ac.za



129 
 

Whole kernel Endosperm

 

a2 

 

Aleurone layer 

a1 a2 a3 

b1 

c1 

b2 b3 

c2 c3 

B 

B 

A 

A 

F 

P 

P 

thin, fragmented strands which can be an indication of protein denaturation. Again this was more 

evident in the oven-roasted sample where thin glue-like filaments were detected. Similar results 

were obtained for wheat in an earlier study after 90 s of microwave roasting (Błaszczak et al., 

2002).  

Although the roasting temperature (180°C) used exceeds the gelatinisation temperature range 

(51-60°C) of wheat starch, the starch granules did not gelatinise completely (Delcour & Hoseney, 

2010). The limited amount of moisture in the wheat samples and short roasting time was probably 

the reason complete gelatinisation did not occur (Raigar et al., 2016). To support this hypothesis, 

further investigation using DSC was employed in a subsequent section to determine the degree of 

gelatinisation. 

      

   

Figure 5.2. Scanning electron micrographs of a cross section of (a) control, (b) FCCT-roasted and 

(c) oven-roasted wheat kernels, illustrating the (1) whole kernel at a lower magnification (scale bar 

= 200 µm) and (2) endosperm and (3) aleurone layer at a higher magnification (scale bar = 10 µm). 

Large A-type and small B-type starch granules are identified with arrows in the endosperm region. 

P=protein matrix; F= fragmented protein strands. 
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X-ray diffraction (XRD) 

The control and roasted samples exhibited the characteristic A-type crystalline pattern of cereal 

starches (Fig. 5.3). Distinct peaks were positioned at around 2ϴ = 15°, 16.9°, 17.6° and 22.7°, 

which are representative of a A-type crystalline structure (Dries et al., 2014). Both roasting 

methods applied elicited only slight changes in crystallinity, with very little variation from the 

control, which was ascertained based on the XRD patterns (Fig. 5.3). Within the XRD trace of the 

oven-roasted sample a minor peak V-type peak at around 20° became slightly more apparent, 

which may reflect the presence of a amylose-lipid complex (Yoo & Jane, 2002). The intensity of the 

diffractions are dependent on the extent of starch gelatinisation and moisture content 

(Mahadevamma & Tharanathan, 2007). 

 Roasting had no significant (P>0.05) effect on the crystallinity content. The crystallinity of the 

control, FCCT and oven-roasted sample was 10.50±0.41%, 10.38±0.33% and 10.34±0.48%, 

respectively. The crystallinity content results are in agreement with the XRD pattern obtained, 

illustrating that crystallinity was preserved after roasting. This little disruption in crystallinity can be 

due to a combination of low initial moisture content of the wheat samples and the short roasting 

time. Likewise, Christa et al. (2009) also reported that roasting did not modify (P>0.05) the 

crystalline structure of buckwheat starch. This observation was rather astonishing, due to the fact 

that thermal treatment typically results in a decrease in crystallinity. Thermal damage to starch 

granules cause a progressive loss of order and therefore a decrease in crystallinity is usually 

observed.  

 

Figure 5.3. XRD traces of the control, FCCT and oven-roasted wheat flour samples. The 

prominent peaks for A-type crystallinity are indicated with dashed vertical lines.  
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Functional properties  

Water absorption capacity (WAC), water solubility index (WSI) and flour dispersibility (FD) 

Both roasting methods resulted in an increase in WAC, this increase being significant (P≤0.05) 

only for the oven-roasted sample (Table 5.3). The lower WAC of the FCCT-sample, compared to 

the oven-roasted sample, can be attributed to a more compact structure (SEM) due to less starch 

damage and fragmentation, leading to the inaccessibility of water (Lee et al., 2006). Mossman et 

al. (1973) reported a WAC of 2.1 g/g for raw wheat, whereas hot air roasting increased the WAC to 

a range of 2.8-4.5 g/g. Damaged or disrupted starch has the ability to absorb more water than 

native granules due to partial gelatinisation of the starch (Barrera et al., 2013).  

The increase in WAC can also be explained by the structure of the endosperm. SEM 

micrographs of the oven-roasted kernel (Fig. 5.2c) illustrated more and larger voids in the 

endosperm which increase the water contact area and thus facilitate water absorption. WAC also 

depends on the availability of hydrophilic groups which can bind water molecules. It can be 

postulated that roasting increased the accessibility of polar amino acids of the denatured proteins. 

During roasting the proteins unfold, thereby exposing previously concealed hydration sites; making 

them more available to interact with water, following increased WAC (Maruatona et al., 2010). An 

increase in WAC after roasting of cereals and legumes has been reported in previous studies 

(Gujral et al., 2011; Griffith & Castell-Perez, 1998; Sandhu et al., 2015; Mariotti et al., 2006). 

Caprez et al. (1986) found that roasting had no (P≤0.05) effect on the WAC of wheat. 

Roasting resulted in a decrease, although not significant (P>0.05), in WSI (Table 5.3). This is 

in agreement with previous studies who also reported a decrease in WSI after roasting buckwheat 

(Christa et al., 2009) and oats (Gujral et al., 2011). Structural changes within the endosperm and 

starch granules after roasting may be accountable for the reduction in WSI (Olayinka et al., 2008). 

Gujral et al. (2011) ascribed a reduction in WSI to the formation of amylose–lipid complexes within 

the starch granules during roasting. A decreased WSI may also be due to a loss of low molecular 

weight glucosaccharides, i.e. maltose (Holm et al., 1988). The WSI values obtained in Table 5.3 

were in agreement with the range of 7 to 10% reported for hot air roasted wheat (Mossman et al., 

1973). The inverse trend of increasing WAC and decreasing WSI after thermal treatment was also 

observed by Zhu et al. (2010). FD increased marginally after roasting (P>0.05). Based on earlier 

work better FD indices (Onilude et al., 1999) were expected. 

 

Table 5.3. WAC, WSI and FD of the control and roasted whole wheat flours 

Sample    WAC (g/g) WSI (%) FD (%) 

Control 2.48±0.03b 7.45±0.044a 72.50±0.29a 

FCCT 2.50±0.02ab 7.09±0.16a 72.56±0.10a 

Oven 2.53±0.01a 7.31±0.06a 72.67±0.17a 

Results are mean values ± standard deviation of triplicate determinations (n=3) from three replicates. Mean values 
followed by different superscripts in each column are significantly different at P≤0.05. WAC= water absorbance capacity; 
WSI = water solubility index; FD= flour dispersibility.  
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Differential scanning calorimetry (DSC) 

The DSC thermograms exhibited one distinct endotherm which corresponded to the gelatinisation 

of the crystalline structure of the control sample and residual structure of the roasted sample 

(Maache-Rezzoug et al., 2008). The control displayed an endotherm at a To= 55.10°C, Tp= 59, 

93°C and Te= 66.60°C, which was comparable to the FCCT and oven-roasted sample, indicating 

that starch was only partially gelatinised during roasting (Table 5.4). The endothermic peak at 

59.93°C in the control corresponded to the gelatinisation temperature range of 51 to 60°C for 

wheat (Delcour & Hoseney, 2010). The thermal characteristics of the control sample (Table 5.4) 

were in agreement with the results for native wheat reported earlier (Holm et al., 1988; Yoo & Jane, 

2002).   

Khan & Yu (2013) studied the thermal degradation behaviour of heat-induced cereal grains 

when autoclaved (moist heating) and dry-heated (roasted) at 121 °C for 80 min. The endothermic 

peak of dry-heated cereals shifted towards a higher temperature than for the control and moist-

heated sample, indicating the high thermal stability of dry-heated cereals. Similarly, in this study 

dry hot air oven roasting (Tp=64.73°C) shifted the endothermic peak towards a higher (P≤0.05) 

temperature than for the control (Tp=59.93°C). FCCT roasting, showed a lower (P≤0.05) 

endothermic peak position of Tp=62.77°C. The endotherm transition peak is dependent on 

moisture content, since moisture causes the endothermic peak to shift to a lower position (Khan & 

Yu, 2013). Because FCCT roasting uses superheated steam, a lower Tp was obtained than for 

oven roasting.  

Moisture plays an important role in the overall thermal characteristics, since water exerts a 

plasticising effect, resulting in a decrease in gelatinisation temperature and increase in ΔH values 

(Mahadevamma & Tharanathan, 2007). The opposite is, however, true for limited moisture 

situations. With roasting ΔH decreased, ΔT increased and the gelatinisation endotherm shifted 

towards higher temperatures than for native starch (Table 5.4). Similar results were reported in the 

literature for thermally treated maize (Dries et al., 2014) and wheat (Holm et al., 1988). In 

agreement with the results in Table 5.4, Hoover & Manuel (1996) noted a broadening of the ΔT of 

about 4 to 6°C after thermal treatment of maize. The lower (P≤0.05) ΔH of the roasted samples 

indicates partial starch gelatinisation or pre-gelatinisation (Holm et al., 1988), which was confirmed 

by the degree of gelatinisation (%) results.   

Gelatinisation enthalpy (ΔH) is the energy required to gelatinise starch and is also an 

indication of the loss of molecular order within starch granules (Dharmaraj et al., 2015). The control 

sample required more energy for gelatinisation, due to its more crystalline structure. Roasted 

wheat is partially gelatinised and thus required less energy, which agrees with the observed 

decrease in ΔH. A decrease in ΔH also indicate partial loss of protein structure (Ahmed et al., 

2007) and are in agreement with the decrease (P≤0.05) in protein (Table 5.1) reported for the 

roasted samples. Thus, the decrease in ΔH cannot solely be ascribed to starch gelatinisation or 

protein denaturation, but rather a combination thereof (Ahmed et al., 2007). According to 
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Bhattacharya & Choudhury (1994) an increase in gelatinisation results in an increase in PI and 

decrease in bulk density. A similar trend was observed in this study. 

The degree of gelatinisation was 10.14% and 17.16% for the FCCT and oven-roasted 

samples, respectively. The FCCT roasting transition temperatures were more comparable to that of 

the control, suggesting less starch are gelatinised during FCCT roasting (Table 5.4). Oven roasting 

resulted in more starch damage, resulting in a higher degree of gelatinisation. This confirmed the 

SEM observations. Gelatinisation predominates at a moisture content above 20%, with maximum 

gelatinisation occurring at 28-29% moisture (Case et al., 1992). The low moisture content of the 

wheat may thus be the contributing factor to the limited degree of gelatinisation (Pronyk et al., 

2006), together with the short roasting time. Holm et al. (1988) reported only partial gelatinisation in 

both steam-flaked (22.4%) and dry-autoclaved (48.6%) wheat.  

 

Table 5.4. DSC thermal characteristics of the control and roasted whole wheat flours 

Sample To (°C) Tp (°C) Te (°C) ΔH (J/g) ΔT (°C) % Gelatinisation 

Control  55.10±0.70
b
 59.93±1.25

c
 66.60±0.92

c
 11.83±0.35

a
 11.50±0.26

b
 0

b
 

FCCT  58.53±1.01
a
 62.77±0.70

b
 70.73±0.55

b
 10.63±0.38

b
 12.20±1.55

b
 10.14±4.34

a
 

Oven 59. ±0.98
a
 64.73±0.21

a
 74.17±0.42

a
 9.80±0.30

c
 15.17±1.36

a
 17.16±4.98

a
 

Values are means ± standard deviation of three replicates (n=3). Different letters in the same column indicate significant 

differences (P≤0.05). To, Tp, and Te indicate onset, peak and endset temperatures, respectively; ΔH = enthalpy of 

gelatinisation; ΔT (Te – To) = gelatinisation temperature range. 

 

Pasting properties and α-amylase activity  

The RVA profiles for a representative control, FCCT and oven-roasted sample are shown in Figure 

5.4. Both roasting methods increased, although non-significantly (P>0.05), the Ptemp, peak time, Vf, 

and Vt (Table 5.5). The Vs and SN decreased (P>0.05) after roasting. A low Vs, as observed for the 

roasted samples, indicate a low rate of starch retrogradation and syneresis  (Ragaee & Abdel-Aal, 

2006). Vp and Vb increased (P≤0.05) after oven-roasting and only Vb increased (P≤0.05) after 

FCCT roasting. Pasting properties, especially Vp, influences the texture, quality and acceptability of 

the end product (Ragaee & Abdel-Aal, 2006). Viscosity depends to a large extent on the degree of 

gelatinisation, where a higher Vp  reflect more degradation and starch gelatinisation (Gupta et al., 

2008). The higher Vp of the oven-roasted sample can be attributed to the higher WAC and degree 

of gelatinisation reported. Vb provides an indication of the degree of starch disintegration or paste 

stability during heating (Bolade, 2009).  

A high Vp are related to a high Vb, which are in turn associated with the degree of swelling 

during heating (Ragaee & Abdel-Aal, 2006). This was the case for the roasted samples, which had 

higher Vp and Vb values, in contrast to the control. This trend is explained by the fact that all these 

properties are reliant on the speed and level of starch granule disintegration, where the control is 

more resistant and contain less disintegrated starch granules (Muyonga et al., 2014). Damaged 

starch granules can absorb more water, swell and leach out amylose, resulting in an increased 

Stellenbosch University  https://scholar.sun.ac.za



134 
 

viscosity (Barrera et al., 2013). Griffith & Castell-Perez (1998) also reported that roasting increased 

the viscosity of cereals grains. The reduced moisture content in the roasted flours allows a larger 

concentration of solids by weight, leading to an increased viscosity. The Vp and Vf results reported 

in Table 5.5 falls within the appropriate semiliquid consistency for infant weaning foods which is 

1000–3000 cP (Griffith & Castell-Perez, 1998).  

In agreement with the results in Table 5.5 and Fig. 5.4, Mossman et al. (1973) and Lazar et al. 

(1974) reported that roasting increased the viscosity of wheat flour. This was attributed to partial 

gelatinisation which enables starch to absorb more water, than in the unprocessed sample. Both 

FCCT and oven-roasted flours contain partially gelatinised starch (as reported in the DSC section), 

which hydrates rapidly and contributes to increased viscosities.  

Wheat kernel hardness influences gelatinisation and hydration rates and will thus also play a 

role in viscosity. The harder control sample, which mill to coarse particles, will lead to less water 

diffusion and limited starch swelling. In contrast the softer, roasted samples, which mill to smaller 

and finer particles with a larger surface area, will lead to more rapid hydration and thus a higher 

viscosity (Almeida-Dominguez et al., 1997). Ragaee & Abdel-Aal (2006) reported soft whole wheat 

flour to have higher Vp, Vt and Vf values, compared to harder wheat. 

The level of α-amylase activity in wheat starch has an effect on the pasting properties of their 

flours (Ragaee & Abdel-Aal, 2006). Sharma et al. (2011) reported that starch become more 

susceptible to enzymatic breakdown after roasting. This was also observed from the results in 

Table 5.5 where the SN (indicative of the α-amylase activity) decreased after roasting, indicating 

more amylase activity. An increase in amylase activity, which promoted gel-like properties of the 

starch granules, was also reported in a previous study for thermally treated wheat (Błaszczak et 

al., 2002). Damaged (roasted) starch granules are more susceptible to amylase activity than intact 

(control) starch granules. 

 

Figure 5.4. RVA pasting profiles of a representative (a) control, (b) FCCT-roasted and (c) oven-

roasted whole wheat flour. The RVA viscograms reports the viscosity as a function of time together 

with the temperature ramp.  
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Table 5.5. RVA pasting properties of the control and roasted whole wheat flours 

Sample    Ptemp (°C) Peak time 

(min) 

Vp (cP) Vb (cP) Vf (cP) Vt (cP) Vs (cP) SN (cP) 

Control 86.27±0.42a 5.70±0.01a 1272.56±9.67b 262.12±12.89b 2011.78±21.72a 1010.44±6.19a 1001.34±14.99a 1101.89±68.29a 

FCCT 86.26±0.63a 5.79±0.09a 1321.33±47.95ab 293.33±37.63a 2011.89±27.22a 1028.00±27.30a 983.89±6.17a 1074.00±22.52a 

Oven 86.59±0.64a 5.78±0.06a 1356.44±15.33a 323.22±20.98a 2019.78±19.46a 1033.22±11.21a 986.56±9.10a 1059.00±16.52a 

Results are mean values ± standard deviation of triplicate determinations (n=3). Mean values followed by different superscripts in each column are significantly different at P≤0.05. 

Ptemp= pasting temperature; Vp= peak viscosity; Vb = breakdown viscosity; Vf= final viscosity; Vt= trough viscosity; Vs= setback viscosity and SN= stirring number. 

 
 
 
Table 5.6. Mixographic and Alveographic indices of the control and roasted whole wheat flours  

 Mixographic indices Alveographic indices 

Dough Peak time (min) Water absorption (%) P (mm) L (mm) P/L W (10-4J) S (cm2) 

Control 3.19±0.04b 61.82±0.08a 88.67±3.21a 131.67±3.21a 0.67±0.04a 310.33±11.55a 47.45±5.32a 

FCCT-roasted   3.81±0.27a 61.69±0.07b 99.67±8.08a 107±14a 0.95±0.19a 322.67±14.19a 49.34±3.98a 

Oven-roasted  3.50±0.43a 61.73±0 ab 89.33±8.50a 123.33±22.85a 0.75±0.23a 311±7.94a 47.55±4.75a 

Results are mean values ± standard deviation of triplicate determinations (n=3). Mean values followed by different superscripts in each column are significantly different at P≤0.05. P= 
resistance to extension or tenacity; L= extensibility; P/L= curve configuration ratio, W= deformation energy, S= strength. 

Stellenbosch University  https://scholar.sun.ac.za

Stellenbosch University  https://scholar.sun.ac.za



136 
 

Rheology: Mixograph and Alveograph 

Table 5.6 reports the Mixographic and Alveographic indices of dough prepared from the control 

and roasted flours. During mixing the resistance of dough increases, reaches a maximum and then 

finally decreases, which can be monitored using a Mixograph. The peak time, indicating the 

optimum mixing time, increased (P≤0.05) for the roasted samples. This increase was unexpected 

since weak gluten flour has a shorter peak time than strong gluten flour. Thus, flour with good 

breadmaking properties usually have a longer mixing time. It seems as if roasting increased the 

gluten strength. Longer mixing times can be explained by the significantly (P≤0.05) lower protein 

content of the roasted samples, since mixing time increases as protein content decrease (SAGL, 

2016). Flour behaviour during mixing is thus a function of protein quality. Caprez et al. (1986) also 

reported that roasting of wheat prolonged the dough mixing time.  

The amount of water absorption influences the position of the curve, where less water 

increases the dough consistency and results in an upward shift of the curve. There was no 

significant (P>0.05) difference between the water absorption of the FCCT and oven-roasted 

samples (Table 5.6). The control and roasted flours fall within the acceptable water absorption 

range of 60.0–64.0% for white bread flour (SAGL, 2016). The water absorption also compares 

favourably with the 60.8% reported by the SAGL for the 2015/2016 season (SAGL, 2016). Flour 

with higher water absorption is preferred by bakers since it increases dough yields. Water 

absorption is influenced by protein content and quality, where a higher protein content results in 

higher water absorption.  

A previous study reported that the addition of roasted/steamed oat flour to wheat flour 

increased water absorption and resulted in longer mixing times and greater mixing stabilities 

(Zhang et al., 1998). This improved phenomenon was explained by the ability of roasting to 

inactivate endogenous enzymes, resulting in less residual endogenous enzymes or other bioactive 

reducing agents, which can be involved in the dough-weakening effect. 

There was no significant (P>0.05) difference between any of the samples in terms of the 

Alveographic indices (Table 5.6). Acceptable ranges for the Alveographic indices are a P (stability) 

of 65 – 120 mm, L (extensibility) 80 – 120 mm and P/L of 0.70 – 1.50 (SAGL, 2016). All the 

measurements were within the requirements except the control and oven-roasted L values and the 

P/L of the control. Both roasting methods resulted in an increase (P>0.05) in P, P/L, W and S and 

a decrease (P>0.05) in L. L decrease and P increase with higher levels of damaged starch, which 

was observed for the roasted samples.  

P relates to resistance to deformation. Stronger dough requires more force to break the 

bubble, resulting in a higher P value and vice versa. A high L value indicates a higher extensibility, 

which is an indication of the ability to stretch before breaking. A low P and W and high L value is 

indicative of weak gluten flour and is usually preferred for confectionary products, whereas strong 

gluten flours, preferred for bread, have a high P and W value. A too low L value, indicated by a 

high P/L, can result in a lower loaf volume. A too high L value are indicative of soft doughs with 
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excess stretching properties and can also result in low loaf volumes due to poor gas retention 

(SAGL, 2016). The shorter L of the roasted dough and the slightly higher P value resulted in the 

observed increase in P/L, indicating that the roasted samples were more resistant to extension.  

The FCCT-roasted sample had a P/L very close to one, indicating a good balance between 

extensibility and elasticity (Table 5.6). A decrease in L after wheat roasting was also observed by 

Baiano et al. (2008) and was attributed to aggregation of wheat proteins and starch induced by 

roasting. The W and S increased (P>0.05) after roasting, representing an increase in dough 

strength and thus baking strength (SAGL, 2016). W is a measure of the energy required to inflate 

the bubble until it ruptures. All the samples had a W value of more than 300; which is 

representative of a very strong flour and better baking quality (Table 5.6). 

Baiano et al. (2008) reported that roasted whole wheat results in a low W value and a weak 

gluten network due to protein denaturation and the presence of bran and germ components that 

interfere with dough development. In contrast, the results reported in Table 5.6 illustrates that 

roasting resulted in favourable changes and will thus not have a detrimental effect on the 

rheological properties and might even improve the baking quality.  

                                

Conclusion   

The physicochemical, structural and functional properties of whole wheat kernels were examined 

as a basis for evaluating the effect of FCCT and oven roasting. In terms of the  physicochemical 

properties both roasting methods resulted in a decrease (P≤0.05) in weight, bulk density, moisture 

content, flour yield, crude protein and hardness, with these changes being more profound for the 

oven roasting method. Milling yield and HLM (commercially used for measuring bulk density) was 

not significantly (P>0.05) affected by roasting. The results were in concurrence with Chapter 4 

which reported oven roasting to result in more adverse microstructural changes.  

SEM illustrated that the starch-protein morphology differed depending on the roasting 

treatment. Less structural interference were observed in the FCCT-roasted kernel, since there 

were smaller and less cracks and voids and the granular integrity was maintained, whereas oven 

roasting resulted in large intergranular voids and disruption of the orderly structure of the 

endosperm. XRD reported no significant (P>0.05) differences in the crystallinity after roasting and 

this was also illustrated by the similar A-type XRD patterns for the control and roasted samples.  

WAC increased (P≤0.05) after oven roasting, while WSI and FD was not significantly (P>0.05) 

influenced by either roasting methods. DSC provided evidence of changes associated with starch 

gelatinisation, where the degree of starch gelatinisation was higher during oven roasting. Thermal 

transition temperatures increased (P≤0.05), while ΔH decreased (P≤0.05) for both roasted 

samples. The occurrence of partial gelatinisation was attested by the decrease in gelatinisation 

enthalpy. DSC results confirmed the SEM observations. Viscosity depends to a large extent on the 

degree of starch gelatinisation. Pasting behaviour was only moderately affected by roasting, since 

Vp and Vb were the only properties that increased (P≤0.05). Roasted wheat with increased 
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viscosities can be used as thickening or gelling agent. The increase (P≤0.05) in dough 

development time of the roasted flours can be attributed to protein denaturation as observed by the 

decrease (P≤0.05) in protein content. Both roasting methods did not alter (P>0.05) the 

Alveographic indices, thus the roasted flours will not have detrimental effects on the baking quality.  

From all the results it is clear that under similar roasting conditions, oven roasting had more 

adverse effects. The biggest challenge encountered in oven roasting is uneven heat distribution 

within the product. This was overcome with the FCCT roaster, as the roasting drum containing the 

sample was continuously rotating resulting in even heat transfer and thus uniformly roasted wheat 

which will result in a more acceptable final product. The improved functional properties of the 

roasted samples, i.e. the higher WAC can be used to delay the staling phenomenon, resulting in 

softer bread with an extended shelf life. Morphological changes observed could potentially have 

positive effects on starch availability and digestibility. Roasted flour samples displayed a decrease 

in gluten extensibility (L), which can improve the baking quality of bread and cakes in terms of the 

texture, height and volume. Although not significant in all cases, the physicochemical properties 

were less affected after FCCT roasting, thus FCCT roasting has proven to be the superior roasting 

method for the production of roasted whole wheat kernels and flour. Further research is, however, 

required on the development of roasted wheat products and their storage stability as well as the 

nutritional and sensory characteristics. 
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CHAPTER 6 

Effect of oven and forced convection continuous tumble (FCCT) roasting on the 

microstructure and dry milling properties of white maize* 

 

Abstract  

The effect of oven and forced convection continuous tumble (FCCT) roasting on the microstructure 

of whole maize kernels was characterised and quantified using X-ray micro-computed tomography 

(μCT). The three-dimensional (3D) volumes, reconstructed from the two-dimensional (2D) images, 

were segmented into regions-of-interest (ROIs), i.e. air, germ, floury and vitreous endosperm, and 

each region quantified. Oven roasting was associated with a larger increase in total kernel volume 

(10.76%) than FCCT roasting (3.41%) as well as a significant (P≤0.05) decrease in whole kernel 

relative density (oven = 6.33%; FCCT = 1.92%). FCCT roasting had almost no effect on material 

density, in contrast to a significant (P≤0.05) decrease of 4.97% during oven roasting. The less 

destructive nature of FCCT roasting was probably due to the continuous rotation of the grains, 

resulting in even heat transfer and more homogenous roasting. Subsequent validation of the dry 

milling properties, i.e. percentage hominy chop, milling yield and hectolitre mass (HLM), indicated 

no significantly (P>0.05) detrimental effect by either roasting methods. 

 

Industrial relevance: Roasting of maize can improve sensory, shelf life, nutritional and antioxidant 

properties with subsequent use in ready-to-eat foods and breakfast cereals. Roasting will inevitably 

affect the structure of maize which in turn will impact end product quality. This prompted the 

demand for non-destructive techniques that directly measures microstructural properties of food in 

order to link structure with quality. X-ray μCT in combination with image analysis uniquely 

illustrated the microstructural changes occurring during conventional oven and innovative FCCT 

roasting, respectively. Furthermore, dry milling properties are important indicators of quality 

characteristics for the dry milling industry. The method described in this paper can be applied to 

any food material to investigate structural properties.  

 

Keywords: Maize kernels; Roasting; Microstructure; Dry milling properties; X-ray micro-computed 

tomography; Image analysis 

  

 

 

*Submitted for publication as: Schoeman, L., Du Plessis, A., Verboven, P., Nicolaï, B., Cantre, D. & Manley, 

M. (2016). Effect of oven and forced convection continuous tumble (FCCT) roasting on the microstructure 

and dry milling properties of white maize. Innovative Food Science & Emerging Technologies.  
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Introduction  

Maize (Zea mays L.) is one of the largest and most important crops produced worldwide 

contributing to an annual yield of over 1 milliard ton in 2013 (FAOSTAT, 2015). A maize kernel 

consists of four main parts, i.e. endosperm (80-85%), germ (10-14%), pericarp (5-6%) and 

aleurone layer (2-3%) (Delcour & Hoseney, 2010). Typical processed foods produced from maize 

include breads, breakfast cereals, tortillas, corn chips and snack bars. Depending on the locality 

and ethnic group, maize can also be prepared and consumed in a variety of other ways, i.e. 

sundried, fermented, cooked, pounded or roasted (Oboh et al., 2010). Lately there is an increasing 

demand for crunchy snack products and competition for improved products is developing in the 

industrial sector (Mrad et al., 2014). Roasting is a dry thermal treatment, traditionally and still being 

used today for the preparation of healthy, crunchy maize snacks (Mrad et al., 2014). Flour obtained 

from roasted ground maize is also consumed by diverse ethnic groups in Northern Mexico and 

Southern USA (Carrera et al., 2015). Roasted cereal grains, with improved organoleptic, shelf life, 

nutritional as well as antioxidant properties, can easily be incorporated into ready-to-eat foods and 

breakfast cereals (Oboh et al., 2010; Murthy et al., 2008; Chung et al., 2011; Gujral et al., 2013). 

On the other hand, severe roasting conditions could cause damage to chemical components (i.e. 

polyphenols and anthocyanin) thereby decreasing their anti-oxidative activity (Mrad et al., 2014).  

In Southern Africa dry milling is used to produce products such as samp, maize grits and meal 

for human consumption. Roasting could potentially serve as a pre-processing step to enable the 

use of less energy for milling, to produce value-added products, or to extent the shelf life of 

products. Roasting of sorghum grains increased the water absorbing capacity for the preparation of 

instant mixes and porridges (Ranganathan et al., 2014). In a recent study, pinole, a traditional 

energy food obtained from toasted ground maize, was shown to result in a significant increase in 

total available starches and in vitro hydrolysis rate (Carrera et al., 2015), making it a suitable 

ingredient for specialised energy cereal bar products. 

Roasting influences cereal grains by making kernels softer due to the loss of endosperm 

structure and increased porosity (Murthy et al., 2008), which could be beneficial depending on the 

processing method and desired final product. There has been an increasing interest in the use of 

roasted grains in food products due to potential health benefits such as improved digestibility 

(Krings & Berger, 2001) and bioavailability of minerals because of the greater loss in phytic acid 

during roasting (Khan et al., 1991). Roasting is considered one of the most effective methods of 

reducing aflatoxin levels (Kabak, 2009). It does, however, affect the quality and structure of grains, 

as their functional, technological, physiochemical and nutritional properties are strongly affected by 

structure-property relationships (Frisullo et al., 2012). This has spurred the need for non-

destructive techniques to characterise and quantify microstructural changes. 

Microscopic techniques such as scanning electron microscopy (SEM) and transmission 

electron microscopy (TEM) are usually used to examine the internal structure of products (Suresh 

& Neethirajan, 2015). These methods are, however, invasive and destructive as they require 
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sample preparation, which may in addition lead to the formation of artefacts. Three-dimensional 

(3D) microstructural information of foods is more suited to a better understanding of food properties 

to, from an engineering perspective, correctly determine processing parameters. X-ray micro-

computed tomography (μCT) is a non-destructive and non-invasive imaging technique that can be 

used for high-resolution 3D visualisation and characterisation of the internal morphology of a wheat 

sample (Suresh & Neethirajan, 2015). X-ray μCT is less costly and more convenient than MRI 

(Lammertyn et al., 2003; Herremans et al., 2014). Although both methods do not require sample 

preparation or chemical fixation, X-ray μCT, in addition, enables analysing and visualising the 

structural design of cellular materials down to a few micrometres (Maire & Withers, 2014) and now 

also into the submicron range (nano-tomography) (Withers, 2007). Furthermore, X-ray μCT 

measures density whereas MRI provides information on the water content and mobility (Herremans 

et al., 2014).  

Lately, X-ray μCT has been the subject of numerous research articles on non-invasive 

quantitative and qualitative analysis of the internal quality of agricultural products (Herremans et 

al., 2013). It has also been used to study the structure of porous cereal products (Van Dalen et al., 

2007), rice (Zhu et al., 2012; Witek et al., 2010), foams (Lim & Barigou, 2004), extruded products 

(Zhu et al., 2010), bread (Lassoued et al., 2007), wheat flour dough (Bellido et al., 2006), fruit 

tissue (Mendoza et al., 2007; Verboven et al., 2008; Cantre et al., 2014a; Cantre et al., 2014b; 

Herremans et al., 2015), chocolate (Haedelt et al., 2007) and processed meat (Frisullo et al., 

2010). Individual maize kernel volume and density could be accurately measured using this 

technique (Gustin et al., 2013; Guelpa et al., 2015b). An earlier study comprehensively reviewed 

the use of X-ray μCT for characterisation of food microstructure (Schoeman et al., 2016b).  

A recent study demonstrated the effectiveness of X-ray μCT to non-destructively evaluate the 

effect of forced convection continuous tumble (FCCT) and oven roasting on the microstructure of 

wheat (Schoeman et al., 2016a). Oven roasting resulted in more adverse microstructural changes 

(increased porosity and decreased relative density) observed in the endosperm, when whole wheat 

grains were roasted at the same time and temperature combination. In contrast to wheat, maize 

endosperm comprises two types, i.e. vitreous and floury. Hard maize kernels with a larger 

proportion of the denser vitreous endosperm are favoured by the dry milling industry as it produces 

greater milling yield and higher quality meals and grits than softer maize. Large intact grits, which 

are essentially the vitreous endosperm removed from the kernel, are required for cornflake 

production. In the case of maize it is thus important to evaluate the effect of roasting on the two 

respective endosperm matrices separately.   

Dry milling quality is determined by percentage hominy chop, milling yield and hectolitre mass 

(HLM). The percentage hominy chop is considered to be one of the most appropriate methods to 

determine milling quality (Guelpa et al., 2015a). Good milling characteristics are indicated by a 

small percentage hominy chop. Hominy chop (containing pericarp, tip cap, germ and some 

endosperm) is of lesser value than maize meal and grits and it is mainly used as animal feed. A 
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large hominy chop (above 30%) is delivered by maize that mill poorly (typically soft maize kernels) 

since floury endosperm breaks down easily and is also included into the chop. A good milling 

quality maize would have a hominy chop below 22%.  

Milling yield or extraction is the percentage of meal obtained after dry milling and is one of the 

most important factors for millers. A higher value indicates a higher extraction of high-grade and 

most profitable products e.g. samp and grits (de-germed products) that are manufactured from the 

vitreous part of the endosperm (SAGL, 2016). Kernel hardness affects the quality and quantity of 

the milled products. Roasted cereal grains may influence milling yield since they are generally 

characterised by decreased kernel hardness due to the increased internal porosity of the 

endosperm (Raigar et al., 2016). HLM gives a good indication of potential milling quality as there is 

a positive correlation between HLM, milling yield and kernel hardness (Guelpa et al., 2015a).  

The aim of this study was to quantify and visualise the effect of oven and FCCT roasting on 

the microstructure of whole maize kernels in terms of volume, porosity and relative density of 

whole maize kernels, the vitreous and floury endosperm and other selected regions-of-interest 

(ROIs). Analytical validation of the effect of roasting on dry milling properties was illustrated by 

means of HLM, hominy chop and milling yield.   

 

Materials and methods  

Maize samples 

Twenty whole maize kernels were randomly selected from a white maize sample, kindly provided 

by PANNAR Seeds (Greytown, South Africa). To allow direct comparison, the same kernels were 

imaged with X-ray μCT before (control) and after roasting. Ten kernels were subjected to oven 

roasting and ten to FCCT roasting. The kernels were weighed before and after roasting to 

determine the percentage weight loss and stored in airtight containers at ambient temperature.   

  

Roasting  

Maize samples were roasted at 180°C for 140 s (see Appendix C) using two roasting techniques: 

conventional convection oven roasting (831 Electric Multifunction Thermofan Solid Plate Oven, 

Defy Appliances, Durban, South Africa) and patented FCCT roasting (Roastech, Bloemfontein, 

South Africa). A temperature of 180°C is commonly used for roasting cereal grains (Chung et al., 

2011).  

During FCCT roasting the roasting time can be controlled by means of the rotating speed of 

the screw conveyer inside the roasting chamber. A speed setting of 80 Hz is equivalent to 140 s. 

The individual kernels were numbered for direct comparison of the X-ray images before and after 

roasting for both methods. Each white maize kernel was roasted, mixed in a 200 g yellow maize 

sample. The ten kernels were roasted individually for each roasting method, thus ten replicates per 

roasting treatment. High thermal efficiency is achieved during FCCT roasting since the steam is 

circulated and re-used during the roasting operation. 
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For the FCCT roaster a 15 min start-up time was permitted to obtain steady-state conditions 

before roasting. The conventional convection oven was pre-heated to 180°C before placing the 

numbered kernel together with 200 g of yellow maize on a stainless steel baking tray and into the 

oven. The fan of the convection oven circulated the heat throughout the interior of the oven and a 

portable thermometer was placed inside the oven to measure the air temperature. After roasting 

the samples were immediately cooled to ambient temperature by spreading it on a cold surface to 

stop exothermic reactions and further moisture loss. The samples were stored in airtight containers 

(at ambient temperature) until X-ray μCT image acquisition. 

 

X-ray micro-computed tomography (μCT) image acquisition  

All maize kernels were individually imaged under identical conditions. X-ray μCT scans of the raw 

and roasted whole maize kernels were obtained using a General Electric Phoenix V|Tome|X L240 

(General Electric Sensing & Inspection Technologies GmbH, Phoenix, Wunstorff, Germany) high-

resolution X-ray computed tomography (CT) system (see Appendix D). CT scans (tomograms) with 

a voxel size (resolution) of 12 μm were obtained using the scanning parameters described by 

Schoeman et al. (2016a). See Appendix E for optimisation of X-ray μCT scanning parameters. 

These settings were used since it resulted in high quality images while considering both resolution 

and scanning time. Images were captured using a 16-bit flat-panel X-ray detector (2048 x 2048 

pixels). A series of 2D radiographic X-ray images were acquired during rotation, with 500 

milliseconds (ms) exposure time per image, recording 1500 images in one rotation. Detector shift 

was activated to minimise ring artefacts. Background calibration was performed and the scan time 

was approximately 25 min per scan.  

Figure 6.1 details the experimental design for determining the effect of roasting on the 

microstructure of whole maize kernels. Each maize kernel was mounted vertically on a piece of 

oasis (floral foam) and a polytetrafluoroethylene (PTFE) polymer disc (10 mm thickness and 25 

mm diameter), obtained from Maizey Plastics (Cape Town, South Africa), on the translation stage 

(see sample setup in Fig. 6.1). The polymeric disc (density of 2.15 g/cm3) was used as reference 

standard for relative density determinations and was thus scanned in the field-of-view (FOV).  

 

Image processing and analyses 

Image processing and analyses were performed as described by Schoeman et al. (2016a). 

Reconstruction was done using system-supplied Datos reconstruction software (Datos|x® 2.1, 

General Electric Sensing & Inspection Technologies GmbH, Phoenix, Wunstorff, Germany). This 

software reconstructs the 2D X-ray projection images into a 3D volume (Fig. 6.1), which consisted 

of individual voxels (3D pixels) that was mapped to a 16-bit grey value scale (see Appendix F).  
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Figure 6.1. Flow diagram of experimental design for determining the effect of oven and FCCT 

roasting on the microstructure of whole maize kernels using X-ray μCT and image analysis.  

 

Low density materials attenuate X-rays less than high density components which correspond 

to low and high grey scale values, respectively (also see Appendix G). In this case the grey values 

depended on the densest object in the scan volume, which is the polymer disc. Gauss filtering and 

beam-hardening correction steps were applied to suppress random noise and beam hardening 

artefacts, respectively. Image analysis was performed with Volume Graphics VGStudio Max 2.2 

software (Volume Graphics, Heidelberg, Germany). Before quantification of microstructural 

parameters, the following image analysis steps were performed: creation of axial images (cross-

2D 
Image reconstruction 

20 Whole maize kernels 

X-ray μCT scan: 
 10 raw kernels (control) 

FCCT roaster: 10 kernels   Oven: 10 kernels 

X-ray μCT scan: 
20 roasted kernels 

Image analysis  

Qualitative: 
2D & 3D 

  

Quantitative: 
Volume, porosity, ER & relative density 

Image processing and segmentation 

Raw scan 

Roasted scan 

With germ 

Kernel  

Oasis 

Polymeric disc 

Sample setup for 

X-ray scanning 

Roasting 
(180°C; 140 s) 

Without germ 

3D 

Stellenbosch University  https://scholar.sun.ac.za



153 
 

sectional slices); segmentation of grey level images; defining and extraction of ROIs; and lastly 3D 

analysis to calculate structural properties and morphological descriptors.  

Additional high resolution scans were performed on the interface section between the two 

endosperm matrices of three respective raw, FCCT and oven-roasted maize kernels using a 

Phoenix Nanotom S system (General Electric Sensing and Inspection Technologies / Phoenix X-

ray, Wunstorff, Germany). An accelerating voltage of 60 kV and current of 200 μA was required to 

obtain a resolution of 2 µm. The resulting scan time was 1 h. Skeletonization was performed on 

these images using Avizo 9.0 software (VSG, Bordeaux, France). The skeletonization algorithm 

was applied to a binary smoothed version of the segmented image to generate a 3D spatial 

distribution which indicates the topology, geometry and connectivity of the porous network in the 

extracted skeleton. The software computes (model) the skeleton by generating points (nodes) at 

every porous region and then interconnects these nodes by lines, referred to as segments. This 

algorithm find, label and track the medial axis of the porous network and is therefore a simplified 

representation of the centre lines of the air paths. The segments were colour coded based on their 

thickness.   

 

Segmentation and defining ROIs  

The Simple registration tool was used to align cross-sectional slice images in VGStudio Max 2.2 

software. A cleaning step, using an Adaptive gauss filter was applied to remove pixels not of 

interest (noise). Grey value based segmentation, including removal of background, was performed 

using the Region growing and Adaptive rectangle tools. Once the background was removed, ROIs 

(air, germ, vitreous and floury endosperm) were virtually segmented from the original reconstructed 

volumes using the Region growing tool (see Appendix H). The germ and vitreous endosperm 

densities were very similar and prevented accurate segmentation of the endosperm; therefore the 

germ was virtually removed (Fig. 6.1) using the Drawing tool.  

 

Quantitative measurements 

Quantitative measurements (also see Appendix I) were performed using VGStudio Max 2.2 

software. These included volume-of-interest (VOI; mm3), percentage object volume (POV; %); 

porosity (%); expansion ratio (ER); vitreous-to-floury endosperm ratio (V:F); and relative density 

(g/cm3) determinations. The unit for all volume measurements were mm3. 

 

i. Volumes-of-interest (VOIs) 

VOIs were measured using the Volume analyser tool which automatically calculates the 

volume of the selected ROI. By creating different VOIs, volume measurements of specific 

kernels constituents (e.g. germ or floury endosperm) or the whole sample can be 

determined.    
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ii. Percentage object volume  

POV =  
VOI 

Total volume 
 × 100%         (1) 

 

iii. Porosity (total air volume fraction) 

Porosity =  
Air volume  

Total volume  
 × 100%             (2) 

Porosity refers to the total air volume and was subdivided into larger cavities and smaller 

pores. Cavities referred to large air spaces (due to fusion of pores) and pores were regarded as 

small intergranular air pockets with air pore volumes smaller than 0.100 mm3 and comprising more 

than 8 adjacent dark voxels (12 μm), that is not always visible with the eye and are created by 

dehydration during drying. The Defect detection tool was used to perform a Custom defect mask to 

colour code cavities according to size and to illustrate their arrangement. To determine the volume 

of pores, Defect detection tool (VGStudio Max 2.2) was applied after the exclusion of the cavities 

(Guelpa et al., 2015b). For each maize kernel the volumes of cavities (percentage cavities) and 

pores (percentage pores) were calculated as a percentage of the total kernel volume.  

 

iv. Expansion ratio (ER) 

ER =  
Volume after roasting

Volume before roasting
          (3) 

 

v. Vitreous-to-floury endosperm ratio (V:F)  

V: F =  
Volume of vitreous endosperm 

Volume of floury endosperm 
         (4) 

 

vi. Relative density  

Relative density =  
Mean greyvalue of ROI

Mean greyvalue of reference standard
 ×  2.15     (5) 

where 2.15 is the density (g/cm3) of the polymer disc 

 

Dry milling properties  

A 25 kg commercial white maize variety provided by Sasko (Essential Foods, Division of Pioneer 

Foods (Pty.) Ltd., Paarl, South Africa) was used to determine the effect of roasting on dry milling 

properties. The measurements were performed at the research and development facility of Sasko. 

The sample was cleaned using a Carter Day Dockage Tester and then mixed and divided into nine 

batches with a Boerner Divider (Seedburo Equipment Co., Chicago, USA). Three of the batches 

were treated as control samples and remained unroasted, while FCCT and oven roasting were 

respectively performed, as described above, in triplicate on the remaining six batches. The non-

destructive HLM analysis was performed in duplicate, whereas milling yield and hominy chop were 
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determined as single measurements due to the large sample size required for these destructive 

measurements.  

The HLM (in kg hL-1) of the samples was determined using a German Kern 220/222 Grain 

Sampler (KERN & SOHN GmbH, Balingen-Frommern, Germany). This test was performed 

according to the method described by Guelpa et al. (2015a).  

Maize was de-germed using a pilot plant scale de-germer and subjected to the milling process.  

Hominy chop (blend of pericarp, tip cap, germ and to a lesser extent floury endosperm) was 

calculated as a percentage of the total sample mass (Guelpa et al., 2015a).  

 For milling yield determinations, de-germed maize was subjected to dry milling using the 

Buhler MLU 202 Laboratory Mill (Buhler, Switzerland). The maize (900 g of each sample) was 

tempered to 15-16% moisture for 24 h before milling. Milling yield was assessed as the percentage 

of total weight accounted for by the combination of the following milling fractions: semolina, special 

and super. 

  

Statistical analysis 

One-way analysis of variance (ANOVA) was performed to compare averages for the respective 

quantitative measurements with respect to the two roasting methods. Data was reported as the 

mean (n=10) ± standard deviation for X-ray μCT results and mean (n=3) ± standard deviation for 

milling property analyses. Data analyses were performed using STATISTICA version 13 (StatSoft, 

Inc., Tulsa, USA). The level of confidence required for significance was selected at P≤0.05.  

 

Results and discussion   

Visual assessment 

All roasted maize kernels partially retained the light yellowish pigmentation due to the carotenoid 

content, despite the roasting method (Fig. 6.2), as was also observed by Carrera et al. (2015). 

Oven roasting, however, led to a much darker, yellow-brown, external colour compared to FCCT 

roasting. A previous study illustrated that superheated steam roasting is associated with less 

colour deterioration and increased drying and evaporation rates, resulting in smaller losses 

regarding nutritional value in comparison to hot air, under similar conditions (Moreira, 2001). This 

could be attributed to less oxidation occurring during FCCT roasting using superheated steam 

(Schoeman et al., 2016a). Furthermore, oven-roasted samples had a bulged appearance, whereas 

FCCT-roasted samples were more uniform in shape. This indicates a more intense degree of 

roasting with the oven method. The Maillard reaction occurs when reducing sugars are heated in 

the presence of free amino groups (e.g., amino acids, amines and proteins) (Odjo et al., 2012). 

This gave rise to the colour development during roasting. The floury and vitreous endosperm 

regions are situated as opaque and translucent regions near the centre and towards the outside of 

the kernels, respectively (Fig. 6.2). The raw kernel had no visible internal cracks, whereas internal 

Stellenbosch University  https://scholar.sun.ac.za



156 
 

cracks were observed in the floury endosperm of the FCCT-roasted and both endosperm regions 

of oven-roasted samples. The oven-roasted sample had a much darker internal colour.  

  

 

   

 

 

Figure 6.2. Digital images (Canon SX40 digital camera, Canon, Ohtaku, Tokyo, Japan) of the 

same maize kernels before and after roasting: (a) and (b) raw, (c) and (d) FCCT-roasted, (e) and 

(f) raw, and (g) and (h) oven-roasted kernels. The cross-sectional digital images of (i) raw, (j) 

FCCT-roasted and (k) oven-roasted kernels reveals the internal structure, depicting the floury and 

vitreous endosperm regions as well as the germ (dashed arrow).  
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Qualitative image analysis  

Roasting is a time-temperature dependent process in which maize kernels undergo a series of 

reactions leading to several changes in their microstructure. Figure 6.3 illustrates the central plane 

of the sagittal and horisontal views of the 2D cross-sectional maize kernel images, acquired before 

and after roasting. As similar results were obtained, images of only one of the kernels are shown 

for each roasting method.  

 

Internal cracks, cavities, pores and porosity (2D analysis) 

Differences in grey level intensities (image contrast) correlate to density variations within the 

kernel. Black areas represent air voids, since it has a lower absorption coefficient with respect to 

kernel structure (also see Appendix J, K and L). In the raw kernels, the germ and vitreous 

endosperm are thus more dense components illustrated by a brighter region (Fig. 6.3). The softer 

floury endosperm is related to a less dense region portrayed by a darker grey scale.  

Large internal cracks developed in the floury endosperm of both the oven-roasted and FCCT-

roasted samples (Fig. 6.3). These cracks were larger and extended well into the vitreous 

endosperm, however, not reaching the pericarp, in the case of oven roasting. The pericarp 

remained intact and acts as a pressure vessel. When the internal water vapour pressure is greater 

than the material strength, internal cracks develop (Song & Litchfield, 1994). It is also more likely 

that crack development is initiated by differential expansion due to thermal or moisture gradients. 

The cracks seemed to initiate at the centre of the kernel since it narrowed when approaching the 

kernel surface. More voids were present in the floury endosperm, especially around the germ, for 

both roasted samples. Less structural interference in the vitreous endosperm region might be due 

to it being harder and having less intercellular spaces, making this region less susceptible to crack 

formation. An earlier study also observed stress cracks (see Appendix M) in maize during high 

temperature processing (Shoughy et al., 2009). Non-destructive light reflectance measurement and 

ultrasonic imaging were unsuitable to detect the presence of stress cracks, whereas 2D X-ray 

imaging was used successfully (Gunasekaran & Paulsen, 1986).  

Figure 6.4 illustrates the complexity and interconnectedness of the crack network by means of 

internal cavities (or cracks) and pores. The raw kernels had a dense internal structure with small 

cavities and only a few pores around the germ and in the floury endosperm (Fig. 6.4a). The 

roasted kernels had inconsistently distributed and partially interconnected cracks and large 

elongated cavities in the centre of the kernels, whereas smaller pores were particularly observed in 

the bottom region of the floury endosperm (Figs. 6.4b and c). The size of the cavities was much 

larger in the oven-roasted samples, resulting in an open porous structure. As expected, the floury 

endosperm had more cavities since the softer regions have more intercellular spaces between the 

starch granules and is thus more prone to from cracks. The oven-roasted kernels revealed much 

greater expansion and more air resulting in a lower density (as discussed later in the quantitative 

results section) in comparison to the FCCT-roasted samples (Fig. 6.3; sagittal view).  
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Cavities may have resulted from the fusion of a number of pores. During heat processing 

coalescence of two or more pores takes place leading to the formation of larger, asymmetric voids, 

resembling interconnected cavities (Pittia et al., 2011). Even though some researchers consider 

pore size as a quality evaluator (Gonzales-Barron & Butler, 2008), to date it has not been 

confirmed that pore characteristics can affect the final quality as perceived by the consumer. Air 

voids will, however, affect the density and hardness of the maize kernels, which will in turn, affect 

milling quality (Guelpa et al., 2015b).  

The germ was generally intact as the cracks did not propagate into this region (Fig. 6.3). Even 

though the outer layer of the germ, the scutellum, is in contact with the endosperm, it is still 

separate and discontinued from the endosperm (Wolf et al., 1952). A thin hyaline band of non-

cellular material occupies the space between the endosperm and the scutellum. It is possible that 

this structural discontinuity inhibits the propagation of cracks in the germ region. This will enable 

efficient degermination of also roasted samples before milling. The germ is also a more flexible 

tissue since it grows during germination.  

Roasting causes the conversion of the moisture entrapped within a kernel into vapour and this 

results in the development of ruptures and a puffing effect or expansion in volume (Pardeshi & 

Chattopadhyay, 2014). This vapour exerts pressure from within the kernel and leads to the 

development of cracks or fissures. It is through these cracks that the moisture ultimately escapes. 

Consequently, the cell walls separating pores get fractured and the pores increase in size, forming 

larger cavities illustrated as irregular black voids (Figs. 6.3 and 6.4). These zones are probably 

created by a flash of superheated steam that partially damages the structure (Sumithra & 

Bhattacharya, 2008).  

               Raw                    FCCT-roasted                           Raw                   Oven-roasted 

Figure 6.3. Grey scale tomographic images of the different views (sagittal and horisontal) of the 

whole maize kernels, before and after FCCT and oven roasting. Differences in the grey level 

intensities indicate density variations (light grey = high density; darker grey = low density) while the 

black areas represent air voids. 
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Figure 6.4. Detailed 2D tomogram representations of pores (dashed arrow) and cavities (solid 

arrow) as observed in the frontal slice images of a (a) raw, (b) FCCT-roasted and (c) oven-roasted 

maize kernel.  

 

Porosity, cavities and pores (3D analysis) 

Figure 6.5 illustrates the porosity (subdivided into cavities and pores) before and after roasting in 

3D volume rendered images and thus provides an indication of the cavity and pore size 

distribution. During roasting the porosity increased. In the raw samples separate cavities and pores 

were observed, whereas in the roasted samples the cavities and pore networks were 

interconnected, respectively. Most of the cavities in the raw samples were located near the middle 
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of the kernel, along the embryonic axis with pores in the floury endosperm. Pores as small as 41 

μm in diameter (FCCT-roasted; blue) could be detected, whereas the largest cavity was visible in 

the oven-roasted sample (dark red) (Fig. 6.5).  

The oven-roasted sample had the highest porosity and a widely dispersed pore network, with 

the cavities contributing to the majority of the air present. Variations in the distribution of pores and 

cavities in the roasted kernels could be due to the effect of heat and mass (water vapour) transfer 

during volume expansion mechanisms that occurs in the different regions (Pittia et al., 2011). It is 

implied that during roasting the increased internal pressure, due to the formation of water vapour, 

gave rise to the open porous structure. X-ray μCT analysis offers a more precise estimate of the 

porosity and the effect of roasting on the internal microstructure.  

Figure 6.6 illustrates the three skeletonized models of raw, FCCT and oven-roasted maize 

kernels, respectively. Skeletonization displays the thickness as well as the connectivity of the air 

paths inside the maize kernels. Compared to the raw skeleton (Fig. 6.6a), the FCCT-roasted (Fig. 

6.6b) skeleton was similar in density and thickness when observing the skeleton segments. In 

contrast, the oven-roasted sample yielded a complex skeleton (Fig. 6.6c) with a denser porous 

network of multiple twisting paths and interconnected segments of various thicknesses. The oven-

roasted skeleton was also distinctly different from the other skeletons, since a cavity initiation site 

could be observed as a spider web structure.  

 

Quantitative microstructural analysis  

The germ, that remained intact during roasting, was virtually excluded to enable more accurate 

segmentation of the vitreous and floury endosperm.  

 

Volume-of-interest (VOI) 

When hand dissection was used to quantify the volumes of the different endosperm types, the 

vitreous endosperm was determined to be approximately double the volume of the floury 

endosperm (Wolf et al., 1952). The mean volumes-of-interest (VOIs) for the different maize kernels 

constituents determined using X-ray μCT is presented in Table 6.1. Oven roasting had a significant 

(P≤0.05) effect on the air (porosity), more specifically the cavities, and also the floury endosperm. 

FCCT roasting resulted in no significant (P>0.05) volume changes. In the roasted kernels air was 

the component contributing to the largest increase in volume with an increase of 74.34% and 

462.79% during FCCT and oven roasting, respectively.  

Roasting had a greater impact on the floury endosperm (increase of 9.96% and 60.44% for 

FCCT and oven roasting, respectively) due to it being softer and closer to the centre of the maize 

kernel where internal cracks initiated. The vitreous endosperm volume increased with 1.60% 

(FCCT) and decreased with 0.50% (oven) (Table 6.1). The decrease could be due to the vitreous 

endosperm becoming softer during roasting and thus the greyscale values decreased and were 
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regarded as softer, floury endosperm. Roasting had no significant (P>0.05) effect on the total 

endosperm volume. 

 

Sample  Cavities Pores Porosity 

Raw 

   

FCCT 

   

Raw 

   

Oven 

   

Figure 6.5. Semi-transparent 3D X-ray μCT volumes (12 μm resolution) of cavities, pores and 

porosity (cavities and pores combined) before and after roasting. The colour scale bar indicates the 

volume size distribution (mm3) of the cavities and pores, where larger voids are magenta and 

smaller ones blue. In the raw kernels cavities and pores are separate (shown by different colours) 

whereas in the roasted kernels the voids are interconnected (shown as one colour).  
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Figure 6.6. Three-dimensional (3D) skeletonization images illustrating the topology and thickness 

of the pore network in (a) raw, (b) FCCT-roasted and (c) oven-roasted maize kernels. The 

segments of the skeletons are colour coded based on their thickness, according to the colour scale 

bar ranging from 0 (dark blue) to 1 (red). Blue represents thin segments and red thick segments, 

where a thickness of 1 is equal to 10 μm.   

 

The germ was not significantly (P>0.05) affected during roasting and increases of 1.94% and 

5.53% were observed for FCCT and oven roasting, respectively. The increase in whole kernel 

volume during FCCT roasting was only 3.41% in comparison to the 10.76% increase during oven 

(a) 

(b) (c) 

Thickness 

0 1 0.5 
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roasting. This was due to the large increase in air volume related to oven roasting and the 

formation of a more open crack network. In a previous study oven roasting also resulted in an 

almost threefold increase in whole wheat kernel VOI compared to FCCT roasting (Schoeman et al., 

2016a). X-ray μCT enables faster and more accurate analysis of total kernel volume as well as the 

different internal components compared to volume displacement and manual hand dissection. 

 

Table 6.1. Mean volumes-of-interest (VOIs), percentage object volumes (POVs), expansion ratios 

(ERs) and vitreous-to-floury endosperm ratios (V:Fs) of the two roasting methods  

 FCCT  Oven  

Properties Raw (n=10) Roasted 

(n=10) 

% Increase/ 

decrease 

 Raw (n=10) Roasted 

(n=10) 

% Increase/ 

decrease 

VOIs (mm³)        

Whole kernel 336.8±43.0
a 

348.3±43.5
a
 3.41  344.7±27.7

a
 381.8±46.6

a
 10.76 

Total air 11.3±5.7
b 

19.7±8.4
b 

74.34  8.6±6.7
b 

48.4±43.1
a 

462.79 

Cavities 9.2±6.1
b 

17.1±9.2
b 

85.87  6.9±6.7
b 

47.0±43.2
a 

581.16 

Pores 2.1±1.6
a 

2.7±2.4
a 

28.57  1.8±1.0
a 

1.4±0.79
a 

-22.22 

Germ 46.4±7.4
a 

47.3±6.9
a 

1.94  47.0±6.6
a 

49.6±6.9
a 

5.53
 

Floury 

endosperm 

71.3±19.2
ab 

78.4±34.5
ab 

9.96  59.4±10.7
b 

95.3±53.3
a
 60.44 

Vitreous 

endosperm 

219.1±39.6
a 

222.6±37.0
a 

1.60  238.2±22.3
a 

237.0±19.2
a 

-0.50 

Total 

endosperm 

290.4±36.9
a 

301.0±39.7
a 

3.65  297.6±21.8
a 

332.3±47.4
a 

11.66 

POV (%)        

Material  96.6±1.6
a 

94.3±2.0
a 

-2.30  97.5±2.0
a 

87.3±8.5
b 

-10.20 

Air (porosity)    3.4±1.6
b 

5.7±2.0
b 

2.30  2.5±2.0
b 

12.7±8.5
a 

10.20 

   Cavities        2.7±1.7
b 

4.9±2.3
b 

2.20  2.0±2.0
b 

12.3±8.5
a 

10.30 

   Pores 0.63±0.42
a 

0.76±0.72
a 

0.13  0.51±0.25
a 

0.37±0.20
a 

-0.14 

ER 1.03±0.07
a 

-  1.11±0.17
b 

- 

V:F 3.3±0.98
ab 

3.2±0.98
b 

-3.03  4.2±0.95
a 

3.0±1.2
b 

-28.57 

Values are means ± standard deviation of ten replicates (n=10). Different letters in the same row indicate significant 
differences (P≤0.05).   
 

Percentage object volume (POV)  

POV is an indication of the percentage volume of a specific component in the kernel relative to the 

entire kernel. Since yield is a highly desirable property for the milling industry, understanding the 

relative contribution of the material (excluding all cavities and pores) to the total maize kernel is 

relevant. The decrease in material POV was significantly (P≤0.05) higher for oven roasting 

(10.20%) compared to FCCT roasting (2.30%) (Table 6.1). 

 

Porosity (cavities and pores) 

Pores and voids are inherent to maize kernels due to the porous nature of the endosperm (Chang, 

1988). Oven-roasted samples had a significantly (P≤0.05) higher porosity (12.7%) than FCCT-
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roasted samples (5.7%) (Table 6.1). Due to the lower porosity, FCCT roasting is expected to 

deliver a higher quality kernel in terms of milling yield. Little is known about the development of 

cavities and pores during roasting. In order to obtain a better understanding of the size distribution 

of the air inside maize kernels the total porosity was further subdivided into larger cavities and 

smaller pores, quantified as percentage cavities and percentage pores (also see Appendix N, O 

and P). Figure 6.4 demonstrates the difference between pores and cavities as depicted in 2D. A 

recent study on wheat considered the porosity as the total air in the sample, thus the entirety of 

cavities and pores (Schoeman et al., 2016a). Here it was also reported that the porosity of wheat 

kernels was significantly (P≤0.05) higher after oven roasting.  

The percentage cavities for the raw samples were 2.7±1.7% (FCCT) and 2.0±2.0% (oven) 

(Table 6.1). Guelpa et al. (2015b) reported the percentage cavities and percentage pores (n=16) of 

raw whole maize kernels as 1.8% and 0.012%, respectively. The percentage cavities in the oven-

roasted (12.3±8.5%) samples were significantly (P≤0.05) higher than for the FCCT-roasted 

(4.9±2.3%) samples. In expanded cereal products, more cavities are formed due to less structural 

integrity. During oven roasting large cavities are created by coalescence of adjacent cells when the 

cell walls rupture.  

The percentage pores were not significantly (P>0.05) affected during roasting. The percentage 

pores of the oven-roasted samples decreased with 0.14%, while it increased with 0.13% for the 

FCCT-roasted samples (Table 6.1). It is likely that during FCCT roasting some new pores 

developed, whereas during oven roasting the existing pores fused to form larger cavities. Rapid 

evaporation of moisture inside the maize kernels, results in the formation of new pores. Due to 

moisture loss, these pores grow and fuse, especially during oven roasting, with neighbouring pores 

to create larger cavities (Sumithra & Bhattacharya, 2008).The minimum detectable pore size was 

41 μm in diameter detectable in a FCCT-roasted sample. Pores in popped popcorn are usually 30 

to 60 μm in diameter, whereas pore diameters of maize puffed using puffing guns are usually in the 

50 to 200 μm range (Schwartzberg et al., 1995).  

Harder maize kernels, having less cavities and pores, will have a better dry milling quality and 

yield compared to softer kernels (Guelpa et al., 2015b). During wet milling, kernels with a high 

cavity percentage will steep more rapidly and lose part of their starch in the steep water 

(Gunasekaran et al., 1985). Also, the protein is case-hardened in highly porous kernels which may 

lead to difficulty in separating the protein and starch, resulting in less recoverable starch.  

Using gas pycnometry, it was shown that adjacent cells that are closed and not interconnected 

might be counted as interconnected regions if there is a small crack in the cell wall that can allow 

gas to penetrate. X-ray μCT is thus more accurate as it can distinguish between adjacent closed 

cells and interconnected regions (Trater et al., 2005).  
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Expansion ratio (ER)    

A larger ER is associated with greater air volumes and a higher density decrease (Sumithra & 

Bhattacharya, 2008). Oven roasting produced kernels with a significantly (P≤0.05) higher sectional 

expansion (1.11±0.17) than FCCT roasting (1.03±0.07) indicating a much larger difference in the 

volumes of the oven-roasted kernels before and after roasting (Table 6.1). Visual assessment also 

indicated a bulged effect, especially toward the middle region, indicating localised high expansion, 

in the oven-roasted kernels. This is attributed to the fracturing of the cell walls that separates pores 

leading to an increase in cavity volume. In a study by Mrad et al. (2014), on the textural properties 

of roasted purple maize, the ER was in the range of 1.44-3.13. The most acceptable ER was found 

to be approximately 1.5 as kernels at this level were expanded without being deformed. This will 

however depend on the roasting method and conditions used. There are a large number of 

parameters that affect the degree of expansion in cereals, which are connected to both the 

compositional characteristics of the raw material (Jones et al., 2000) and the processing conditions 

(Mariotti et al., 2006).  

The internal pressure created inside the kernel causes expansion. Even though the roasting 

process is conducted at a low moisture content, the use of high temperature for a short time 

suddenly releases steam, leaving behind an expanded structure (Sumithra & Bhattacharya, 2008). 

Greater air volumes (oven-roasted samples) were synonymous with greater expansion ratios. The 

expansion of a sample is primarily reliant on the development of air pockets which are formed 

when vapour expands. A relationship exists between porosity and the expanded volume since the 

entrapped air plays an important role in expansion (Boischot et al., 2003).   

The mechanism that governs cereal expansion is similar for all thermal processes (Boischot et 

al., 2003). During heating, the starch matrix in the presence of water undergoes a phase transition 

from a glassy to a rubbery state that allows expansion and formation of the final structure (Boischot 

et al., 2003). Furthermore, moisture content plays a critical role in cereal expansion due to its 

ability to generate the driving force (vaporisation of water) during the roasting process and also 

through its impact on the extensional viscosity and phase transitions of the food matrix. Oven 

roasting had a significant (P≤0.05) effect on kernel weight and resulted in a loss of 2.64%, while 

the weight remained almost unaffected during FCCT roasting (Table 6.2). Oven roasting relies on 

only air movement while the sample is stationary, imparting a higher internal pressure and resulting 

in more moisture loss.  

A previous study comparing roasted peanuts using superheated steam and conventional oven 

(without steam) roasting demonstrated that during oven roasting the rate of decrease in moisture 

content is much higher compared to the superheated steam method (Idrus & Yang, 2012). This 

study also suggested that as a novel method for food processing, superheated steam roasting is 

more convenient and at the same time and temperature conditions favourable characteristics i.e. 

colour, texture and microstructure, are maintained.  
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Endosperm ratios  

Guelpa et al. (2016) reported a V:F of 0.69 to 7.18 for good milling hybrids and a range of 0.20 to 

3.17 for poor milling hybrids and indicated V:F to be a good descriptor of maize milling quality. 

According to Table 6.1 the V:F decreased from 3.3±0.98 to 3.2±0.98 for FCCT-roasted samples 

and from 4.2±0.95 to 3.0±1.2 for oven-roasted samples. The significant (P≤0.05) decrease of the 

V:F in the oven-roasted samples is due to the larger increase in floury endosperm and decrease in 

vitreous endosperm VOI.  

Previously a dissecting microscope and electronic planimeter was used to quantify the F:V 

(range of 0.12 to 0.30) in popped maize kernels (Pordesimo et al., 1991). Expansion was generally 

higher when the F:V was lower. In contrast, in this study kernels with a higher ER (oven-roasted) 

had the lowest V:F (or highest F:V). It can be hypothesised that, because the floury endosperm 

had a less dense structure, the vapour that was generated internally, diffused into the voids leading 

to an increase in internal pressure (Pordesimo et al., 1991). This caused the floury endosperm 

volume to increase more and this region thus underwent more structural alteration in comparison 

to the vitreous endosperm. Therefore a lower V:F was indicative of an increase in floury 

endosperm volume.  

Blandino et al. (2010) determined the V:F (range of 0.2 to 4.8) of maize kernels using hand 

dissection in combination with an image analysis system. These methods are destructive and time-

consuming and thus not practical for large sample sizes. X-ray μCT enabled more accurate and 

non-destructive segmentation of the vitreous and floury endosperm into specific ROIs in order to 

quantify the volumes and determine the V:F. X-ray μCT is unfortunately time-consuming with cost 

implications when analysing a large number of samples. However, a recent paper demonstrated a 

high-throughput approach where 150 maize kernels were scanned simultaneously (Guelpa et al., 

2016). Although this resulted in reduced resolution scans, sufficient segmentation and 

quantification of ROIs was still possible.   

 

Relative density analysis   

Density is an important property, which depends on the internal structure of food (Kelkar et al., 

2015). For porous foods, accurate density measurements is challenging because conventional 

methods are tedious, operator-dependent and incapable of precise volume measurements. Kelkar 

et al. (2015) overcome such limitations by developing a methodology, using both X-ray digital 

radiography and computed tomography (CT) to directly determine the apparent density of foods. X-

ray CT was more efficient giving results comparable with conventional methods.  

X-ray μCT enables images to be generated that maps variances in X-ray attenuation within a 

sample and this relates closely to density (Schoeman et al., 2016b). Each voxel in an image has a 

specific grey value which is reliant on density. The higher the grey values, the higher the 

attenuation coefficients and the higher the material density. Figure 6.7 represents a 3D volume 

illustrating relative density differences in a maize kernel.  
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Figure 6.7. A semi-transparent 3D volume illustrating the density differences of the maize 

constituents, where the less dense area (floury endosperm) is shown with partial transparency and 

the more dense regions (germ and vitreous endosperm) in grey. 

 

The mean relative densities of all the constituents decreased during roasting (Table 6.2). In 

contrast to wheat, here again it was important to evaluate both endosperm types, since a greater 

decrease in vitreous endosperm will have a significant effect on milling yield. It should be noted 

that the relative densities of the individual tissues e.g. floury endosperm include the air in that 

region. Oven roasting resulted in a significant (P≤0.05) decrease in whole kernel and material 

relative density, while no significant (P>0.05) density decreases were observed for FCCT roasting. 

During oven roasting a 6.33% decrease in whole kernel relative density were obtained in 

comparison to a 1.92% decrease by FCCT roasting. This can be attributed to the large increase in 

air volume that is accounted for in the whole kernel density of the oven-roasted kernels. These 

results are in accordance with a previous study that found a significant decrease in density due to 

an increase in the air volume after roasting coffee beans (Dutra et al., 2001).  

Voids in roasted kernels made up a large volume of the kernel, suggesting that whole kernel 

density may not be as informative of kernel hardness as material density (Gustin et al., 2013). The 

material density (also known as true density), which excludes all air voids, remained almost 

unaffected (decrease of 0.63%) during FCCT roasting, but decreased significantly (P≤0.05) with 

4.97% during oven roasting. Similarly Schoeman et al. (2016a) reported FCCT roasting to have no 

effect on the material density of wheat.   

Larger relative density decreases took place during oven roasting for the germ (3.13%) and 

vitreous endosperm (2.47%), in comparison to FCCT roasting (germ = 1.27%; vitreous endosperm 

= 1.25%). The floury endosperm was the component contributing most to the relative density 

decrease, resulting in a 6.25% and 4.83% decrease in the FCCT and oven-roasted kernels, 

respectively. The absence of a thick protein matrix that covers the starch granules in the floury 

endosperm led to formation of cracks, which ultimately developed into larger cavities when 
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moisture loss was experienced during roasting. Less intracellular air spaces were found in the 

tightly packed vitreous endosperm as opposed to the loosely packed floury endosperm, explaining 

the higher density.  

Gustin et al. (2013) correlated maize kernel density with kernel volume and internal air space. 

Similarly, in this study the whole kernel density was affected by the increased porosity during 

roasting. The relative density results corresponded well with the results obtained by Guelpa et al. 

(2015b), whom made use of a X-ray μCT density calibration for raw maize kernels (n=16) where 

the density ranges were 1.28 to 1.62 g/cm3, 1.60 to 1.75 g/cm3 and 1.21 to 1.53 g/cm3 for material, 

vitreous endosperm and floury endosperm, respectively.  

Jha (2005) found that the density of grains decreased during roasting due to expansion, 

development of pores and as a result of moisture loss. Chung et al. (2011) also reported a 

decrease in maize density due to puffing. A previous study on maize roasting (using a gas 

operated roaster) reported a density decrease of 41.9% at 137°C (Felsman et al., 1976). This 

decrease was much higher in comparison with the results presented in Table 6.2. Oven and FCCT 

roasting (both using electric heat) utilised in this study made use of a higher roasting temperature 

and shorter time. This indicates that differences in the roasting method and conditions may 

account for this discrepancy.  

Conventional density measurements, i.e. floating tests (Blandino et al., 2010) might lead to 

misleading results as internal cavities will greatly influence the results (Guelpa et al., 2015b). 

Conventional density methods overlook the influence of pores and cavities while with X-ray μCT it 

is possible to determine only the material density. X-ray μCT is capable of disregarding cavities 

that could have a negative influence on the results (Gustin et al., 2013). The ability of μCT to divide 

the maize kernel into biological material and air, for volume and density measurements, provides 

higher resolution information about kernel characteristics than either pycnometer or floating tests.   

 

Table 6.2. Mean relative densities of the different maize kernel constituents and the weight of the 

raw, FCCT and oven-roasted kernels 

 

Properties  

    FCCT    Oven 

Raw (n=10) Roasted 

(n=10) 

% 

decrease 

 Raw (n=10) Roasted 

(n=10) 

% 

decrease 

Relative density (g/cm
3
)        

Whole kernel 1.56±0.30
a
 1.53±0.20

a 
1.92  1.58±0.60

a 
1.48±0.80

b 
6.33 

Material   1.58±0.30
a 

1.57±0.30
ab 

0.63  1.61±0.50
a 

1.53±0.60
b 

4.97 

Germ 1.58±0.50
a 

1.56±0.50
a 

1.27  1.60±0.60
a 

1.55±0.90
a 

3.13 

Floury endosperm 1.44±0.40
a 

1.35±0.60
a 

6.25  1.45±0.50
a 

1.38±0.90
a 

4.83 

Vitreous endosperm 1.60±0.50
a 

1.58±0.40
a 

1.25  1.62±0.60
a 

1.58±0.80
a 

2.47 

Weight (mg) 424.1±54.0

8
ab 

420.78±55.

51
ab 

0.78 

 449.32±33.

73
a 

437.48±35.

26
b 

2.64 

Values are means ± standard deviation of ten replicates (n=10). Different letters in the same row indicate significant 
differences (P≤0.05). 
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Dry milling properties 

No significant (P>0.05) differences were observed between the HLM of the raw (78.47 kg hL-1), 

FCCT (78.40 kg hL-1) and oven-roasted (78.23 kg hL-1) samples. The values were similar to the 

average HLM of 78.30 kg hL-1 reported for the 2014/2015 maize season (SAGL, 2016). Milling yield 

of the control (77.06±0.49%), FCCT (76.05±1.37%) and oven-roasted (75.79±0.56%) samples was 

not significantly (P>0.05) different (Table 6.3). Oven-roasted samples had the lowest milling yield 

and this might be attributed to the higher porosity (Table 6.1) and lower density (Table 6.2). The 

porosity level cause reductions in mechanical strength, yielding softer, finer flour compared to 

FCCT roasting. These results are in agreement with the average extraction of 78.7% reported for 

white maize during the 2014/2015 season (SAGL, 2016). The hominy chop was also not 

significantly (P>0.05) influenced (Table 6.3). The raw, FCCT and oven-roasted samples had a 

hominy chop of 22.94±0.49%, 23.95±1.37% and 24.21±0.56%, respectively and all the samples 

could be classified within the good intermediate range.  

 

Table 6.3. Dry milling properties of the raw and roasted maize samples  

Sample HLM (kg hL-1)* Milling yield (%)* Hominy chop (%)** 

Raw 78.47±0.29a 77.06±0.49a 22.97±0.50a 

FCCT 78.40±0.44a 76.05±1.37a 23.97±1.34a 

Oven 78.23±0.55a 75.79±0.56a 24.20±0.53a 

Values are presented as mean ± standard deviation of three replicates (n=3). Mean values with different superscripts in a 
column differ significantly (P≤0.05). *Mean values of single measurements from three replicates; **mean values of 
duplicate measurements from three replicates. 

 

Conclusion  

Raw, sound maize kernels have a compact and homogenous internal microstructure. Roasting was 

associated with an increase in kernel volume and decrease in relative density, with the changes 

being more profound during oven roasting. Roasting increased the porosity of maize kernels 

comprising cavities and pores of different sizes. Kernel density and porosity were shown to be 

inversely correlated, with the oven-roasted samples having the highest density decrease and 

highest porosity increase. FCCT roasting had almost no effect on the material density of the 

samples, in contrast to oven roasting. Although structural changes occurred during roasting the 

milling properties were not significantly (P>0.05) influenced, indicating that roasting did not 

comprise milling yield and quality. Maize with good milling properties contain a higher proportion of 

vitreous endosperm and will thus result in greater yields with higher economic value. Further 

investigations are needed to assess the functional characteristics of roasted maize.  

Although this study was motivated by an innovative roasting method, FCCT roasting, the 

results also contributed to improved understanding of the effect of high-temperature processing on 

the internal microstructure of cereal grains in general. Taking all the measurements into account, 

the FCCT roaster, with the rotating cylinder, was a more effective roasting method. The qualitative 
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results also illustrated the less invasive impact on the kernel microstructure. FCCT roasting could 

thus be a more suitable roasting method for food applications. Even though X-ray μCT is ideal as a 

non-invasive tool for microstructural analysis, it is currently mainly used as a research tool and the 

application thereof for in-line measurements still needs further development. In the food industry 

2D X-ray images could be used for rapid and real-time quality control analyses. 
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CHAPTER 7   

Physicochemical, structural and functional properties of oven and forced 

convection continuous tumble (FCCT) roasted maize  

 

Abstract  

Roasted maize flour is widely consumed as an energy source by certain ethnic groups. Previous 

work reported that both oven and forced convection continuous tumble (FCCT) roasting changes 

the microstructure of maize; where oven roasting resulted in a more invasive impact, i.e. a 

decrease in density and increased porosity. From a food scientist’s perspective, information on the 

effect of roasting on the physicochemical, structural and functional properties is also essential for 

the development of value-added products. This study found that weight loss, bulk density, puffing 

index, moisture, crude protein and hardness were more affected by oven roasting in comparison to 

FCCT roasting, when using the same time-temperature (140 s; 180°C) combination. Furthermore, 

scanning electron microscopy (SEM) illustrated that oven roasting resulted in central ruptures in 

the starch granules of the vitreous endosperm and led to the development of larger cavities in the 

floury endosperm. X-ray diffraction (XRD) demonstrated a decrease in crystallinity, being 14.32%, 

13.87% (P>0.05) and 12.49% (P≤0.05) in the control, FCCT and oven-roasted samples, 

respectively. The thermal properties, measured using differential scanning calorimetry (DSC), of 

both FCCT and oven-roasted maize starch increased; while the enthalpy decreased after roasting, 

indicating partial gelatinisation and unfolding of the proteins. The peak viscosity, examined using 

the Rapid Visco Analyser (RVA), of the roasted flours increased significantly (P≤0.05) with 20.64% 

and 21.89% after FCCT and oven roasting, respectively. The results of this study revealed that 

FCCT roasting resulted in less weight loss and lower hardness reductions and thus indicate that 

FCCT roasting is the most desirable roasting method.   

 
  

Introduction  

Maize (Zea mays L.) is one of the most important crops in the developing world as it is used for 

human consumption and as animal feed (Fox & Manley, 2009). The word maize literally means 

‘‘that which sustains life” (Mrad et al., 2014a). In Africa, maize which is a highly nutritious staple 

food, is processed in various ways, i.e. roasting, boiling, fermenting, cooking, milling or a 

combination of these (Kayode et al., 2013). In its processed form maize is consumed as breads, 

muffins, wafers, biscuits, infant foods, tortillas, corn chips, snack bars and breakfast cereals (Velu 

et al., 2006). In poorer regions, where subsistence farming practices produces maize, this staple 

food undergoes limited processing and is consumed as porridges and flat-style breads (Fox & 

Manley, 2009). In Nigeria roasted maize snacks include fritters and cakes (Kayode et al., 2013).  

Cereal products, especially whole grain, are important in the diets of people worldwide and are 

a major contributor to good health (Köksel et al., 1998). New and more appealing products are, 

however, required in the market to increase the consumption of these foods (Köksel et al., 1998). 
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The utilisation of cereal grains should not be limited to regional or ethnic preferences and 

consumers worldwide should learn about new ingredients and processing methods (Köksel et al., 

1998). Hence, research on roasted maize, which is usually an ethnic food, might broaden the base 

of this product in the international market. Whole grain flour and products are desirable because of 

its taste and nutritional benefits. However, after milling, raw whole grain flour rapidly deteriorates 

due to enzymatic activities, i.e. lipase, peroxidase and lipoxygenase. To overcome this problem 

and extend storage stability maize can be heat-treated to deactivate enzymes. Thermal treatment 

will however modify functional, structural and physicochemical properties (Žilić et al., 2010).  

Cereal roasting has been reported to improve organoleptic properties, texture, palatability and 

nutritional and energy value by starch gelatinisation, protein denaturation, increased nutrient 

availability and inactivation of heat labile toxic compounds and other enzyme inhibitors (Sandhu et 

al., 2015; Oboh et al., 2010). Roasted whole grains exhibit enhanced crispiness and volume and 

have improved digestibility and flavour (Sandhu et al., 2015; Cämmerer & Kroh, 2009). Roasting 

also results in products with an extended shelf life and improved antioxidant properties (Gujral et 

al., 2013) and can easily be included into ready-to-eat foods and breakfast cereals (Murthy et al., 

2008). Roasting can potentially serve as a pre-processing step to reduce the energy consumption 

required for milling and to improve the processing efficiency of a subsequent milling step (Youn & 

Chung, 2012). These advantages are however decisively influenced by the roasting conditions (i.e. 

time and temperature), which are dependent on the roasting method (Youn & Chung, 2012).  

Roasting, as a form of maize processing is scarcely studied (Carrera et al., 2015; Oboh et al., 

2010; Ayatse et al., 1983). The effects of maize roasting on the nutritive value, hydration kinetics, 

physicochemical, rheological and textural properties were addressed in some earlier studies 

(Ayatse et al., 1983; Bhattacharya, 1995; Chung et al., 2011; Ingbian & Adegoke, 2007). The 

influence of roasting on the antioxidant properties (Oboh et al., 2010) and β-aflatoxins (Méndez-

Albores et al., 2004) were also evaluated.  

Roasting is a rapid processing method that uses dry heat for short time periods (Mrad et al., 

2014b). Roasted maize flour can be processed into a snack, beverage, an oatmeal-type paste,  

breakfast porridge or baked into a cake or bread (Carrera et al., 2015). It can also be used as the 

basis for cooked pastes, in soups and as thickening agent (Ingbian & Adegoke, 2007). Pinole, a 

traditional energy food attained from roasted ground maize, was shown to result in a significant 

increase in total available starches and in vitro hydrolysis rate (Carrera et al., 2015), making it a 

suitable ingredient for specialised energy cereal bar products. This study provided insights for 

understanding the extensive use of pinole, as an energy food, by impoverished ethnic groups and 

also more recently by ultra-runners. Athletes regard pinole as an all-natural energy booster 

(Carrera et al., 2015). Pinole is widely eaten in Nigeria, across low- and high-income groups 

(Ayatse et al., 1983) and is also consumed by diverse ethnic groups in Northern Mexico and 

Southern USA (Carrera et al., 2015; Méndez-Albores et al., 2004). At the household level of 

production, the process of roasting and milling small quantities of grains in commercial mills is 
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inconvenient and not cost effective. The solution lies in small-scale enterprise development to 

handle the preparation and distribution of these products as a commercial venture (Plahar et al., 

2003). 

Forced convection continuous tumble (FCCT) roasting has been shown to have a less 

invasive impact on the microstructure of maize in comparison to conventional oven roasting when 

using the same time and temperature combination (Schoeman et al., 2016b). Oven roasting makes 

use of dry heat treatment, whereas FCCT roasting utilises superheated steam. Furthermore, during 

FCCT the sample is continuously moving inside the roasting chamber, resulting in a more 

homogenous roasting process, in comparison to oven roasting where the sample is static. Both 

roasting methods did not significantly (P>0.05) influence the dry milling properties. However, from 

a food scientist’s perspective, the effect on physicochemical, structural (in terms of the starch-

protein morphology and crystallinity) and functional properties is essential for the development of 

value-added products. 

Roasting can be monitored by physicochemical changes occurring during this thermal 

treatment (Mendes et al., 2001). Information on these changes may help in controlling the roasting 

process to obtain a better quality product. Maize hardness is an important quality feature for the 

milling industry as it influences several stages of grain handling and processing and gives an 

estimated idea of the overall milling characteristics (Raigar et al., 2016). In South Africa dry milling 

is used for the production of maize meal, grits and samp and adequate hardness is necessary to 

obtain an optimum yield and high quality product (O'Kennedy, 2011). Harder kernels are 

associated with more resistance to breakage, while softer kernels are more susceptible to 

mechanical damage as well as pathogen attack (Blandino et al., 2010). Softer kernels can reduce 

milling yield and milling efficiency (Fox & Manley, 2009) and also require less time for steeping for 

wet milling and are more amenable to separating the storage proteins from the starch (Blandino et 

al., 2010). The coarse-to-fine ratio (c/f) defines kernel hardness by providing an indirect but precise 

estimation of the hard and soft portions of maize endosperm (Blandino et al., 2010). Bulk density is 

also considered an important physical property of pre-processed cereals in terms of storage and 

transportation. 

In maize, starch is laid down in the endosperm tissue (which comprises 80% of the kernel 

volume) where it serves as the main storage carbohydrate (Delcour & Hoseney, 2010). The 

endosperm is formed by clusters of starch granules, packed differently and covered by a protein 

matrix (Gustin et al., 2013). Two types of starch granules embedded within a complex protein 

matrix are present in the endosperm: densely packed polygonal starch granules (7-18 μm in 

diameter) are associated with the outer region (near aleurone) of the kernel, i.e. the vitreous (hard) 

endosperm; while the granules in the kernel centre (floury/soft endosperm) tend to be spherical 

with many intergranular spaces (loosely packed) (Delcour & Hoseney, 2010). The region where the 

two endosperms meet is referred to as the junction or transition phase (O’Kennedy, 2011).  
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Schoeman et al. (2016b) demonstrated that roasting induce changes in the volume and 

relative density of the two different endosperm regions, with the floury endosperm being more 

adversely affected than the vitreous endosperm. It is however, important to illustrate the starch-

protein morphology, using scanning electron microscopy (SEM), in order to understand these 

changes. Furthermore, X-ray diffraction (XRD) can identify the crystalline material in maize 

samples, based on their unique crystal structure (Carrera et al., 2015). When irradiated with X-

rays, starch granules behave like crystals and form distinctive patterns according to their crystal 

structure. Cereal starches typically yields an A-type pattern. Carrera et al. (2015) showed that the 

crystallinity content of maize starch decreased after roasting, which resulted in an improved 

hydrolysis rate and in vitro starch digestibility.  

Microstructural changes in the endosperm may result in changes in functionality. Water 

absorption capacity (WAC), is a measure of the quantity of water absorbed by starch (index of 

gelatinisation), while water solubility index (WSI) is an indicator of the degree of degradation of 

molecular components as it measures the amount of soluble components released from starch 

(Hernández-Nava et al., 2011). Flour dispersibility (FD) in water indicates the ability to reconstitute 

and is also known as the reconstitution index (RI) (Edema et al., 2005). Changes in structure 

induced by roasting may also influence thermal transitions and gelatinisation characteristics. 

Differential scanning calorimetry (DSC) endotherms can be used to determine the temperature 

range over which the crystal structure is being melted as well as the degree of gelatinisation.  

Pasting properties are key to understanding physical characteristics and potential utilisation 

(Olayinka et al., 2008). Changes in the consistency of the starch pastes can be attributed to 

changes in structure (Guzmán et al., 2009). The effect of roasting on the functional properties has 

been reported for oats (Doehlert et al., 1997; Gujral et al., 2011), quinoa (Rothschild et al., 2015), 

barley (Sharma et al., 2011) and sorghum (Ranganathan et al., 2014). Sharma et al. (2011) found 

that roasting significantly affected the pasting and thermal properties of barley flour. From this work 

it was postulated that structural changes during roasting could be in great extent responsible for 

changes in functionality.  

Conventional oven roasting used presently in food industries has a number of shortcomings as 

it is less energy efficient, more costly and may adversely affect not only physicochemical properties 

but also nutritional quality of the end product (Zzaman & Yang, 2013). Convection oven roasting 

contributed to increased bitterness, loss of aroma and higher hardness reductions in cocoa beans. 

In contrast, superheated steam roasting resulted in lower moisture losses and less discolouration 

(Zzaman & Yang, 2013). Thus, superheated steam roasting can be applied as new thermal 

processing method because of its convenience, flexibility and more desirable food characteristics. 

Superheated steam is a type of unsaturated (dry) steam that is generated by the addition of 

sensible heat to saturated (wet) steam (Head et al., 2010). This method is more energy efficient 

since it reuses the latent heat during evaporation in comparison to conventional hot air roasting 

(Zzaman & Yang, 2013). Superheated steam as a drying medium for foodstuff retains vitamins and 
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other essential nutrients and are thus regarded as healthy, while it  results in the preservation of 

more desirable food characteristics in terms of colour and microstructure (Pronyk et al., 2004; Idrus 

& Yang, 2012).  

Increasing interest in roasted whole grains in food products is arising due to the potential 

health benefits and bioavailability of minerals because of the greater loss in phytic acid during 

roasting (Khan et al., 1991; Carrera et al., 2015). In a review article factors affecting the 

physicochemical, morphological and functional properties of starch from different sources have 

been published (Singh et al., 2007). However, few studies on the effect of roasting on the 

physicochemical properties, structure and functionality of maize are found in literature (Carrera et 

al., 2015; Bhattacharya, 1995). Maize kernels undergo a series of structural changes, e.g. volume, 

porosity and relative density, during roasting which will affect the final product (Schoeman et al., 

2016b). Chemical reactions, i.e. protein denaturation, starch gelatinisation and Maillard reactions 

are also induced during roasting (Idrus & Yang, 2012).  

The aim of this research was to evaluate the physicochemical, structural and functional 

properties of oven and FCCT-roasted maize kernels. This was achieved by analysing weight loss, 

bulk density, puffing index, moisture content, crude protein and particle size index (hardness). 

Structural evaluation included examination of the starch-protein morphology and crystallinity using 

SEM and XRD, respectively. Determination of WAC, WSI, FD and thermal and pasting properties 

formed part of the functional analyses.  

 

Materials and methods  

Maize samples 

A 19.8 kg commercial white maize variety was kindly provided by Sasko (Essential Foods, Division 

of Pioneer Foods (Pty.) Ltd., Paarl, South Africa). The maize was cleaned using a Carter Day 

Dockage Tester (Carter Day International, Minneapolis, MN) to remove foreign materials and 

broken kernels and then thoroughly mixed and divided into nine batches of 2.20 kg each using a 

Boerner Divider (Seedburo Equipment Co., Chicago, USA). Each sample was stored in an airtight 

plastic container at ambient temperature prior to use. 

 

Tempering of test run sample before FCCT roasting  

Before FCCT roasting was performed, a test run sample (400 g) was tempered with pure deionised 

water (dH2O) to a final moisture content of between 18 and 20%. This was required for the FCCT 

roaster to create some initial moisture and generate superheated steam in the roasting chamber to 

result in a more homogenous roasting process. The quantity of water (Eq. 1) to add was calculated 

from the original moisture content and mass of the sample (400 g) according to the AACC Method 

26-95.01(AACC, 1999b). The test sample was shaken regularly during tempering (24 h at room 

temperature) in an airtight container to ensure even distribution of the water. 
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Weight of water to add (g) = (
100−original moisture (%)

100−desired moisture (%)
− 1) × sample weight (g)     (1) 

 

Roasting 

Maize samples were roasted at 180°C for 140 s using conventional convection oven roasting (831 

Electric Multifunction Thermofan Solid Plate Oven, Defy Appliances, Durban, South Africa) and 

forced convection continuous tumble (FCCT) (model R100E, Roastech, Bloemfontein, South 

Africa) roasting, respectively. A temperature of 180°C is commonly used for roasting maize (Chung 

et al., 2011; Bhattacharya, 1995). Three batches of 2.20 kg each were roasted according to the 

roasting procedure described earlier (Schoeman et al., 2016a). After roasting the samples were 

immediately cooled to ambient temperature by spreading it out on a cold flat surface to prevent 

excessive roast and further moisture loss. Both roasting methods were performed in triplicate. The 

samples were stored in airtight plastic containers at ambient temperature until being milled and 

used for further analyses. 

 

Grinding of maize samples  

The control and roasted maize samples (300 g of each sample) were milled separately into flour 

using a hammer-type cyclone Laboratory Mill 3100 (Perten, Hägersten, Sweden) fitted with a 1 mm 

sieve. The whole grain flour samples were stored in airtight containers (at ambient temperature) 

from which the required quantities were removed for further analyses. 

 

Experimental design 

Figure 7.1 demonstrates the experimental design used for this study. The physiochemical, 

structural and functional properties of the control and roasted maize, respectively were examined.  

 

Physicochemical analyses 

Weight loss 

The weight of the samples was recorded before and after roasting to determine the percentage 

weight loss.  

 

Bulk density and puffing index (PI) 

Bulk density and PI were determined in triplicate according to the method described in Chapter 5. 

 

Moisture content 

Moisture content determinations were performed in triplicate using air-oven drying according to the 

AACC Method 44-19.01 (AACC, 1999c). Maize flour (2 g ± 1 mg) was heated in aluminium 

moisture dishes for 2 h at 135°C in an Oven, model EM10 (CHOPIN Technologies, Cedex, 

France). Moisture loss was used to calculate the percentage moisture (Eq.2).  
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Moisture (%) =
Moisture loss (g)

 Sample weight (g)  
× 100        (2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1. Illustration of a simplified flow diagram of the roasting and analyses procedures used. 

PSI= particle size index; SEM= scanning electron microscopy; XRD= X-ray diffraction; WAC= 

water absorption capacity; WSI= water solubility index; FD= flour dispersibility; DSC= differential 

scanning calorimetry; RVA= Rapid Visco Analyser.  

 

Crude protein 

Crude protein content of the control and roasted maize flour was determined in duplicate using the 

Dumas combustion method according to the AACC Approved Method 46-30.01 (AACC, 1999d). A 

LECO TruMac N (LECO Corporation, Saint Joseph, Michigan, USA) instrument was used to 

determine the crude protein content at 12% moisture base (mb). A protein conversion factor of 

6.25 was used to calculate the crude protein (%) from the nitrogen.  

 

Particle size index (PSI) 

PSI was determined to give an indication of maize kernel hardness. The control and roasted 

samples (50 g of each sample) were milled using a cyclone Laboratory Mill 3100 (Perten, 

19.8 kg raw maize sample (cleaned) 

Roasting (180°C; 140s)   Control  

FCCT: 2.2 kg x 3 

repetitions 

Oven: 2.2 kg x 3 

repetitions 

Analyses 

Raw/unroasted: 2.2 kg x 3  

Physicochemical 

 

 Weight loss 

 Bulk density 

 Puffing index 

 Moisture 

 Crude protein  

 PSI 

Functional 

 

 WAC 

 WSI 

 FD 

 DCS 

 RVA 

  

Structural 

 

 SEM 

 XRD 
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Hägersten, Sweden) fitted with a 1 mm sieve. The two-sieve method reported by Guelpa et al. 

(2015) was used, where the 150 μm sieve was placed on a 75 μm sieve, fitted with a receiving pan 

and a lid. The two sets of pans and sieves (Retsch, Haan, Germany) were stacked on top of each 

other and placed in a Retsch AS 200 Tap Sieve Shaker (Retsch, Haan, Germany) for 10 min. This 

delivered three fractions: PSI1, PSI2 and PSI3 from which a c/f was calculated. To determine PSI1, 

the 150 μm sieve was weighed (W150 μm sieve). Hereafter, 10 ± 0.01 g of ground maize was weighed 

(Wmaize) into the 150 μm sieve along with 10 ± 0.01 g whole wheat kernels (Wwheat on 150 μm sieve). The 

whole wheat kernels were added for more efficient sieving. After the sieving and tapping process, 

the fine maize meal adhering to the bottom of the 150 μm sieve was brushed off into the 75 μm 

sieve and the 150 μm sieve was weighed (W1). Equation 3 was used to determine PSI1: 

PSI1 =
(W1  −(W150 μm sieve + Wwheat on 150 μm sieve ))

Wmaize 
        (3) 

Next, the fine maize meal adhering to the bottom of the 75 μm sieve was brushed off into the 

receiving pan and the 75 μm sieve was weighed (W2). The empty 75 μm sieve weight (W75 μm sieve) 

was recorded as well as the weight of the whole wheat kernels 10±0.01g placed on the 75 μm 

sieve (Wwheat on 75 μm sieve). PSI2 was determined according to equation 4:  

PSI2 =
(W2  −(W75 μm sieve + Wwheat on 75 μm sieve ))

Wmaize 
         (4) 

Equation 5 was used to determine PSI3. The empty receiving pan was weighed (Wpan) and 

deducted from the weighed of the pan obtained after sieving (W3). 

PSI3 =
(W3  −Wpan)

Wmaize 
            (5) 

Three factions were determined: PSI1 (particles > 150 μm), PSI2 (particles <150 μm, but > 75 

μm) and PSI3 (particles < 75 μm). High PSI1 values are indicative of harder kernels, whilst high 

PSI2 and PSI3 values relates to softer kernels. Equation 6 was used to calculate the c/f which gives 

the ratio between the larger (PSI1) and smaller (PSI2 + PSI3) particle sizes (Guelpa et al., 2015). A 

high c/f indicates a harder or denser sample and vice versa.   

c/f =  
𝑃𝑆𝐼1

(𝑃𝑆𝐼2 +   𝑃𝑆𝐼3)
              (6) 

 

Structural analyses 

Scanning electron microscopy (SEM) 

Two control, two FCCT-roasted and two oven-roasted whole maize kernels were cut with a 

Solingen blade along the transverse axis. The cut kernels were mounted on aluminium stubs with 

double-sided carbon tape (Fig. 7.2a) and coated with a thin layer of gold dust using a 5150A 

sputter-coater (HHV, Crawley, United Kingdom). The samples were imaged, using a LEO 1430VP 

scanning electron microscope (Zeiss, Germany) (Fig 7.2b), under high vacuum conditions at an 

accelerating voltage of 7 kV and a current of 11μA. The surface structure of the samples was 

identified with secondary electron images. Representative micrographs of cross-sections of the 

kernels were obtained at a 500 and 1500 x magnification, respectively to observe the starch 
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granule morphology within the vitreous and floury endosperm matrices. At least four SEM 

micrographs were obtained for each maize kernel.  

     

                                (a)                                                                 (b) 

Figure 7.2. Photograph of (a) the maize kernels mounted on aluminium stubs with double-sided 

carbon tape and placed into the sample holder; (b) the LEO 1430VP scanning electron microscope 

(Zeiss, Germany).  

  

X-ray diffraction (XRD)  

XRD traces of the flour samples were measured at room temperature using a D8 Advance Bruker 

X-ray powder diffractometer (BRUKER AXS, Germany) according to the method reported by 

Carrera et al. (2015), with slight modifications. The instrument was equipped with a water-cooled 

rotating copper anode that produces Cu-Kα radiation (λ= 1.5406) with an accelerating voltage of 30 

kV and tube current of 10 mA. Intensities were measured in the 5-40° range 2ϴ with a 0.016° step 

size and measuring time of 0.5 seconds per point. The total effect time was 1285 s. The scattered 

intensities are given in arbitrary units (a.u.). The scan mode was continuous PSD fast and a Lynx 

Eye PSD detector type was used. One diffractogram was collected for each of the nine samples 

and the average of three replicates was reported. The crystalline and amorphous areas were 

quantified using EVA software (BRUKER AXS, Germany). To determine the degree of crystallinity 

the integrated area of the upper region of the curve (crystalline peaks) was divided by the total 

integrated area under the curve and above the straight baseline (amorphous + crystalline peaks) 

(Yoo & Jane, 2002). Equation 7 was used to calculate the percentage crystallinity. 

Crystallinity (%) = 
𝐴𝑐

(𝐴𝑐+ 𝐴𝑎)
 x 100          (7) 

where Ac is the crystalline area on the X-ray diffractogram and Aa is the amorphous area on the X-

ray diffractogram.   
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Functional analyses 

Water absorption capacity (WAC) and water solubility index (WSI)  

The WAC of the control and roasted flour samples was determined in triplicate using centrifugation 

according to the AACC method 56-20.01 (AACC, 1999e), with slight modifications as reported by 

Mwangwela et al. (2007). The WSI was determined in triplicate according to the method reported 

by Hafsa et al. (2015). These methods were described earlier in Chapter 5. WAC (g water/g flour) 

was expressed as the weight of water absorbed/bound per gram of dry flour. WSI was calculated 

as the ratio of the weight of dried solids recovered by evaporation of the supernatant over the initial 

sample weight and was expressed as percent dry solids.  

 

Flour dispersibility (FD)  

FD analysis was performed in triplicate following the method of Edema et al. (2005). For each 

sample, 10 g of flour was weighed into a 100 mL measuring cylinder and filled to the 100 mL mark 

with dH2O. The sample was vigorously stirred and then allowed to settle. After 3 h the volume of 

the settled particles was recorded and subtracted from 100 to give a difference that is recorded as 

percentage dispersibility.  

 

Differential scanning calorimetry (DSC) 

The thermal properties of the control and roasted maize flour samples were analysed using a 

differential scanning calorimeter (DSC Q20, TA Instruments, New Castle, USA), following the 

procedure described by Carrera et al. (2015). The DSC cell and a universal thermal analysis data 

station was used to measure endothermal changes. On the thermograms the heat flow (W/g) was 

measured as a function of temperature (°C). The operating procedure was previously described in 

Chapter 5. Onset, peak and endset temperatures (To, Tp and Te) correspond to the onset, peak and 

offset of the heat flow with respect to the baseline and were calculated from the DSC thermograms 

(Carrera et al., 2015). The average values of three replicates were reported. The gelatinisation 

range (ΔT) was calculated as Te -To. The change in enthalpy (ΔH) of the transitions (associated 

with starch gelatinisation and protein denaturation) was determined by calculating the peak areas 

under the endotherm (curve) using Matlab™ 2014b software (Mathworks, Natick, MA, USA) 

(Ahmed et al., 2007). The degree of gelatinisation (%) was calculated as reported by Sharma et al. 

(2011) (Eq. 8): 

Degree of gelatinisation (%) =  [1 − ( 
ΔH of roasted sample

Δ H of control sample
)] x 100                                       (8) 

 

Pasting properties and α-amylase activity using the RVA  

The pasting properties of the control and roasted maize flour samples were determined according 

to the AACC method 76-21.01 (AACC, 1999f) using the Rapid Visco Analyser (RVA) model 4500 

(Perten Instruments, Eden, Australia). The Thermocline for WindowsTM (Version 3) software was 

used to accept configuration information and test profiles from the operator. Standard profile 1 was 
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used to capture rheological information (RVA curves). The details of this profile is summarised in 

Table 7.1. The method has been described earlier in Chapter 5. The viscosity was measured in 

centipoise (cP) and triplicate runs were conducted for each sample. Pasting properties of the 

samples were characterised using the parameters recorded on the viscosity trace: pasting 

temperature (Ptemp) (temperature where viscosity first increases by at least 25 cP over a 20 s 

period), peak time (time at which peak viscosity occurred), peak viscosity (Pv) (maximum hot paste 

viscosity), trough viscosity (Vt) (trough at the minimum hot paste viscosity), final viscosity (Vf) 

(viscosity at the end of test after cooling to 50°C and holding at this temperature), breakdown 

viscosity (Vb) (peak viscosity –trough viscosity) and setback viscosity (Vs) (final viscosity – trough 

viscosity) (Ragaee & Abdel-Aal, 2006).  

 

Table 7.1. Details of the RVA standard profile 1  

Stage  Standard profile 1 

Initial temperature (°C) 50 

Initial holding time (min) 1:00 

Heating time (min) 3:42 

Maximum temperature (°C) 95 

Hold at max temperature (min) 2:30 

Cooling time (min) 3:48 

Final temperature (°C) 50 

Final holding time (min) 2:00 

Total test time (min) 13:00 

 

In a separate experiment, stirring number (SN) was measured by the RVA, as described in the 

the AACC method 22-08.01 (AACC, 1999a). The SN is an indication of amylase activity and is 

defined as the apparent viscosity at the 180th second of stirring a hot aqueous flour suspension 

undergoing liquefaction. The SN profile, reported in Table 7.2 was used. After termination of the 

test the SN, displayed as the final viscosity, were recorded in cP.  

 
Table 7.2. Details of the RVA stirring number profile   

Stage Stirring number profile  

Idle temperature (°C) 95 

Idle tolerance temperature (°C) 1 

1: 960 rpm 0 sec 

2: 160 rpm 10 sec 

3: 95 °C 3 min 

End of test 3 min 
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Statistical analysis 

One-way analysis of variance (ANOVA) was performed to compare averages of the respective 

quantitative measurements with respect to the control and the two roasting methods. Data was 

reported as mean ± standard deviation for procedures performed in triplicate. Statistical analysis 

was carried out using STATISTICA version 13 (StatSoft, Inc., Tulsa, USA). The level of confidence 

required for significance was selected at P≤0.05. 

 

Results and discussion  

Physicochemical analyses 

Table 7.3 illustrates the physicochemical properties of the control and roasted maize samples. 

Information about changes in physicochemical properties may help in controlling the roasting 

process in order to obtain a better quality roasted product.  

 

Table 7.3. Physicochemical properties of the control and roasted maize samples  

Sample Weight loss (%)  Bulk density 

(g/cm
3
) 

PI Moisture (%) Crude protein 

(%)
a
** 

PSI (c/f)
b**

 

Control 0
c 

0.73±0.001
a
 0

c
 12.78±0.18

a 
7.21±0.03

a
 2.17±0.19

a
 

FCCT 0.61±0.03
b 
 0.69±0.004

b
 1.05±0.007

b
 12.43±0.08

b
 6.97±0.32

a
 1.07±0.07

b
 

Oven 1.21±0.25
a 
 0.66±0.002

c
 1.11±0.00

a
 11.91±0.18

c
 6.54±0.16

b
 0.90±0.10

b
 

Values are presented as mean ± standard deviation of three replicates (n=3). Mean values with different superscripts in a 

column differ significantly (P≤0.05). 
a
Crude protein are expressed as (N x 6.25) on a 12% moisture basis; 

b
Particle size 

index (course-to-fine ratio); **Mean values from duplicate measurements of three replicates. 

   

Weight loss 

Weight loss was significantly (P≤0.05) higher for oven roasting (1.21%) in comparison to the 0.61% 

loss by FCCT roasting (Table 7.3). Weight loss is mainly due to moisture evaporation during 

roasting (Chung et al., 2011) and therefore the difference between the weight losses of the two 

roasting methods may be explained by the difference in evaporation rate. FCCT roasting generates 

superheated steam from the moisture inside the product and this together with the continuous 

rotation of the sample in the roasting chamber results in more homogenous roasting. In contrast 

oven roasting uses dry air and the sample remains in a static position during roasting. Sharma et 

al. (2011) reported much higher weight losses of 2.1-13.7% for barley when using traditional sand 

roasting at 280°C for 20 s.  

 

Bulk density and puffing index (PI) 

Bulk density is an index of the extent of puffing (Gupta et al., 2008) and thus used to measure the 

PI. Higher reduction in bulk density and more puffing (larger PI) was achieved by oven roasting 

(Table 7.3). The significant (P≤0.05) decrease in bulk density during roasting can be due to a 

combination of factors i.e. loss in cellular structure, weight and moisture, volume increase (kernel 
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expansion) and the development of internal pores and cavities (Jha, 2005; Pittia et al., 2001; 

Schoeman et al., 2016a). The bulk density obtained, for both roasting methods, in this study was 

comparable to that of roasted maize (0.52 to 0.79 g/cm3) reported by Chung et al. (2011) using an 

electric rotary roaster. Chung et al. (2011) reported that roasting time and temperature significantly 

affected (P≤0.05) the bulk density of maize kernels, with an increase in roasting temperature and 

time resulting in a decrease in bulk density. Sandhu et al. (2015) similarly observed that toasting 

oats resulted in a decreased bulk density and increased puffing and ascribed this phenomenon to 

the loss of structural integrity between starch–starch and starch–protein matrices and/or due to the 

formation of air spaces in the endosperm. Bulk density decreases and PI index increases as starch 

gelatinisation and the volume of products increases (Case et al., 1992). 

 

Moisture content  

For the same time-temperature roasting conditions, oven roasting had a greater impact on 

moisture content compared to FCCT roasting (Table 7.3). Again this can be attributed to the more 

homogenous roasting process of FCCT roasting. Vivas et al. (1987) reported a decrease in 

moisture content from 9.6% to 7.2% when maize was oven-roasted at 232°C for 10 min. Oboh et 

al. (2010) reported that pan roasting (120-130°C; 17 min) of white maize resulted in moisture 

reductions between 14.31-16.92%. In our case, lower moisture reductions were expected since a 

shorter roasting time (140 s) was used. 

Studying the effect of superheated steam and convection oven roasting on cocoa beans, the 

results demonstrated that moisture loss were lower at each temperature in superheated steam  

roasting (Zzaman & Yang, 2013). Similarly, when roasting peanuts, Idrus & Yang (2012) reported 

oven roasting to result in greater moisture loss than superheated steam roasting. This illustrates 

that the rate of decrease in moisture content during oven roasting was higher compared to 

superheated steam roasting. These results are in concurrence with the results obtained from the 

two roasting methods applied in this study.  

Moisture content plays a vital role in the shelf-life of products and is associated with microbial 

spoilage. Fungal growth are inhibited at moisture contents below 14% (Hoseney, 1994), while a 

moisture content of less than 13.5% is recommended for proper storage of maize and its products 

(Humpf & Voss, 2004). The values obtained in this study were below the recommended 13.5% 

(Table 7.3).   

 

Crude protein  

The crude protein content of the maize samples was not significantly (P>0.05) affected by FCCT 

roasting, in contrast to oven roasting which resulted in a significant (P≤0.05) decrease (Table 7.3). 

The reduction in protein content after roasting can be ascribed to the denaturation and loss of 

protein due to participation of amino acids in the Maillard reaction (Oboh et al., 2010). During 

roasting the application of high temperature (>180°C) together with low moisture (<15%) favour the 
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development of a reaction between the free amino groups of the amino acids and reducing sugar 

aldehyde groups, giving rise to Maillard reaction (Rufián-Henares & Delgado-Andrade, 2009). This 

reaction is capable of producing insoluble brown polymers called melanoidins.  

Bala (2016) reported that FCCT roasting did not significantly (P>0.05) affect the protein 

content, which agreed with the present finding. This can be attributed to the use of superheated 

steam instead of dry hot air. Similarly, flame roasting (74-160°C) of maize had no (P>0.05) effect 

on protein content (Costa et al., 1976; McNiven et al., 1994). Oboh et al. (2010) reported a 

significant (P≤0.05) decrease in the protein content of roasted maize suggesting protein quality 

depletion due to thermal degradation and formation of melanoidins. Contrary to this, Ingbian & 

Adegoke (2007) reported a significant (P≤0.05) increase in protein content during maize roasting. 

These contrasting findings could be due to differences in the roasting conditions and methods 

used. 

 
PSI (c/f)  

Raw (harder) grains had a coarser particle size (higher c/f) than the softer, roasted maize (Table 

7.3). The significantly (P≤0.05) smaller c/f of both roasted samples, more specifically the oven-

roasted sample, is attributed to the sample being more finely milled and the coarse particles were 

removed by sieving. These results are in concurrence with previous studies that reported a 

reduction in hardness after cereal roasting (Murthy et al., 2008; Sharma et al., 2011). This has 

been attributed to volumetric expansion and starch gelatinisation. The decreasing trend in 

hardness during roasting were also observed for peanuts when superheated steam and oven 

roasting (250°C) were compared (Idrus & Yang, 2012). The rate of hardness reduction during 

convection oven roasting was higher than for superheated steam roasting (Idrus & Yang, 2012). 

Hence, hardness was more affected during oven roasting. This trend, also observed in this study, 

was however, not statistically significant (P>0.05) for the two roasting methods.  

Roasting caused a decrease in hardness, which can be attributed to the increased porosity 

and cavity development (Schoeman et al., 2016a) as well as structural modifications caused by 

chemical and physical changes (Schenker et al., 2000). A study on roasting oats attributed 

changes in physical properties e.g. hardness to grain expansion that occurred as a result of the 

development of cavities and disorganisation of the endosperm (Gujral et al., 2011).  

 

Structural analyses 

Scanning electron microscopy (SEM) 

Figure 7.3 depicts the longitudinal digital slice images and SEM micrographs of (a) control, (b) 

FCCT and (c) oven-roasted maize kernels. The floury (opaque) and vitreous (glassy) endosperm 

matrices are illustrated as white and translucent regions, respectively (Fig. 7.3a). The control 

kernel has no visible internal cracks and it is closely packed in a honeycomb structure, whereas 

the roasted kernels reveal internal cracks and cavity development (Fig. 7.3b and c). The transition 
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region (Fig. 7.3 a), illustrates the polygonal shape of the starch granules and the tightly compacted 

structure of the vitreous endosperm and the opaque, floury endosperm is seen as spherical 

shaped starch granules with a loosely packed structure. The starch granules in the vitreous 

endosperm have an adhering thick continuous protein matrix (P) surrounding it. The floury 

endosperm contains thin sheets of protein and many intergranular air spaces (Dombrink-Kurtzman 

& Knutson, 1997).  

Roasting resulted in some transformation of the starch granules and disintegration of the 

protein network (Fig. 7.3b and c). Roasting temperature is the leading factor for structural 

alterations in the endosperm and breakage of polysaccharide bonds (Oboh et al., 2010). In the 

floury endosperm of the FCCT-roasted samples very few cavities could be detected, but the starch 

matrix appeared disordered. The lack of a thick protein matrix covering the starch granules in the 

floury endosperm, led to the formation of cavities. Proportionally, the vitreous endosperm starch 

granules remained densely packed and held intact by a thick protein matrix. 

The oven-roasted sample (Fig. 7.3c) has a much darker internal colour, especially the germ, 

indicating a more intense degree of roasting. Larger fissures and cavities observed in the oven-

roasted kernels contributed significantly to kernel expansion. More intergranular air spaces during 

oven roasting relates to the lower bulk density and hardness reported (Table 7.3) in comparison to 

FCCT roasting. In the oven-roasted kernels, a loss of endosperm structure occurred with ruptures 

(due to high internal pressure) in the centre of the vitreous endosperm starch granules and 

numerous large, irregular cavities in the floury endosperm. Hoseney et al. (1983) reported that the 

voids around the starch in the floury endosperm provide an alternative site to which the internal 

steam vaporises. Thus, no ruptures occurred in the floury endosperm as was observed in the 

vitreous endosperm.  

The pericarp acts as a vessel that allows pressure built-up in the endosperm (Hoseney et al., 

1983). Since no intergranular cavities developed in the vitreous endosperm, the build-up of internal 

pressure in the starch granules forced ruptures to occur in the centre of the granules. The starch 

granules, however, maintained their polygonal shape. Starch granules contain a microscopic pore 

(hilum) in the centre (Schwartzberg et al., 1995). The hilum acts as a nucleation site to which water 

vapour (internal steam) diffuses in the process of expansion (Hoseney et al., 1983). Evidence 

proposes that the development of cavities at the hilum can be attributed to dehydration, which 

involves moisture loss, usually at high temperatures (Baldwin et al., 1994). The hilum is believed to 

be the least organised region because gelatinisation, acid-catalysed hydrolysis, enzymatic attack 

and cavitation originates here (Fuwa et al., 1978). In a study by Zhang et al. (2012) on the 

characterisation of gelatinised starches it was observed that starch granules started to burst from 

the centre, where the hilum is located.  

Both roasting methods resulted in disintegration of the protein network into thin elongated 

strands in the floury endosperm. These fragmented glue-like strands are possibly composed of a 

mixture of melted starch and denatured protein matrix. The shape of the starch granules 
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predominantly remained intact and the granule boundaries were still visible in both roasting 

methods. It can be postulated that the starch partially melts during roasting since maize starch 

begin to melt at approximately 150°C, with a peak at 180 to 186°C (Schwartzberg et al., 1995). 

Even though the roasting temperature exceeds the gelatinisation temperature (62-72°C) of 

maize starch, most starch granules maintained their polygonal or round shape (Delcour & 

Hoseney, 2010). Thus, the majority of the starch granules seemed not to have gelatinised during 

roasting. Further evaluation using DSC was performed to support these conclusions. The low 

moisture content may be the contributing factor to the limited gelatinisation (Köksel et al., 1998). 

Usually during gelatinisation, swelling and melting of starch granules will occur and the molten 

starch granules will fuse with each other (Srikaeo et al., 2006). This phenomenon was not 

observed for either of the roasting methods. According to Case et al. (1992) gelatinisation 

predominates at moisture contents above 20% and maximum gelatinisation occurs at 28-29% 

moisture. It can thus be assumed that the limited amount of moisture (Table 7.3) along with the 

short roasting time, did not allow complete starch gelatinisation to occur.  

The structural configuration (not the starch granules itself, but rather the spatial distribution 

thereof) of the vitreous endosperm was less affected than that of the floury endosperm. This could 

be explained by the vitreous endosperm cells having thinner cell walls but a thicker protein network 

(Gunasekaran et al., 1985). Due to the thicker protein network, more force is required to break the 

cell walls in comparison to the floury endosperm. Thus, the vitreous endosperm is more resistant to 

the formation of large voids. During roasting the floury endosperm structure is disrupted, tearing 

the thin protein matrix and resulting in loosely bound starch granules and large voids.  

Even though the roasting temperature exceeds the gelatinisation temperature (62-72°C) of 

maize starch, most starch granules maintained their polygonal or round shape (Delcour & 

Hoseney, 2010). Thus, the majority of the starch granules seemed not to have gelatinised during 

roasting. Further evaluation using DSC was performed to support these conclusions. The low 

moisture content may be the contributing factor to the limited gelatinisation (Köksel et al., 1998). 

Usually during gelatinisation, swelling and melting of starch granules will occur and the molten 

starch granules will fuse with each other (Srikaeo et al., 2006). This phenomenon was not 

observed for either of the roasting methods. According to Case et al. (1992) gelatinisation 

predominates at moisture contents above 20% and maximum gelatinisation occurs at 28-29% 

moisture. It can thus be assumed that the limited amount of moisture (Table 7.3) along with the 

short roasting time, did not allow complete starch gelatinisation to occur.  

The structural configuration (not the starch granules itself, but rather the spatial distribution 

thereof) of the vitreous endosperm was less affected than that of the floury endosperm. This could 

be explained by the vitreous endosperm cells having thinner cell walls but a thicker protein network 

(Gunasekaran et al., 1985). Due to the thicker protein network, more force is required to break the 

cell walls in comparison to the floury endosperm. Thus, the vitreous endosperm is more resistant to 
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the formation of large voids. During roasting the floury endosperm structure is disrupted, tearing 

the thin protein matrix and resulting in loosely bound starch granules and large voids.  
 

Figure 7.3. Representation of a longitudinal digital slice image and SEM micrograph of (a) a 

control maize kernel revealing the transition (encircled region) phase from the vitreous (left) to the 

floury (right) endosperm. Figures (b) and (c) represent a digital longitudinal slice image and SEM 

micrograph of a FCCT and oven-roasted kernel, respectively. S= starch granules; P= protein 

matrix; V= vitreous endosperm; F= floury endosperm; E= elongated strands; C= cavity and R= 

ruptures. The scale bar (20 μm) is given in the lower left corner of the micrographs.  
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Both roasting methods resulted in disintegration of the protein network into thin elongated 

strands in the floury endosperm (Fig. 7.3). These fragmented glue-like strands are possibly 

composed of a mixture of melted starch and denatured protein matrix. The shape of the starch 

granules predominantly remained intact and the granule boundaries were still visible in both 

roasting methods. It can be postulated that the starch partially melts during roasting since maize 

starch begin to melt at approximately 150°C, with a peak at 180 to 186°C (Schwartzberg et al., 

1995). 

Even though the roasting temperature exceeds the gelatinisation temperature (62-72°C) of 

maize starch, most starch granules maintained their polygonal or round shape (Delcour & 

Hoseney, 2010). Thus, the majority of the starch granules seemed not to have gelatinised during 

roasting. Further evaluation using DSC was performed to support these conclusions. The low 

moisture content may be the contributing factor to the limited gelatinisation (Köksel et al., 1998). 

Usually during gelatinisation, swelling and melting of starch granules will occur and the molten 

starch granules will fuse with each other (Srikaeo et al., 2006). This phenomenon was not 

observed for either of the roasting methods. According to Case et al. (1992) gelatinisation 

predominates at moisture contents above 20% and maximum gelatinisation occurs at 28-29% 

moisture. It can thus be assumed that the limited amount of moisture (Table 7.3) along with the 

short roasting time, did not allow complete starch gelatinisation to occur.  

The structural configuration (not the starch granules itself, but rather the spatial distribution 

thereof) of the vitreous endosperm was less affected than that of the floury endosperm. This could 

be explained by the vitreous endosperm cells having thinner cell walls but a thicker protein network 

(Gunasekaran et al., 1985). Due to the thicker protein network, more force is required to break the 

cell walls in comparison to the floury endosperm. Thus, the vitreous endosperm is more resistant to 

the formation of large voids. During roasting the floury endosperm structure is disrupted, tearing 

the thin protein matrix and resulting in loosely bound starch granules and large voids.  

 

X-ray diffraction (XRD) 

The characteristic A-type XRD pattern was only slightly disturbed when the maize starch was 

subjected to roasting. Figure 7.4 illustrates the XRD patterns of the control and roasted maize 

flours. The dashed vertical lines are used to highlight the four prominent intensity peaks at about 

15°, 17°, 18° and 23° in 2ϴ, which indicates A-type crystallinity (Carrera et al., 2015). It can be 

observed that all the maize samples showed typical A-type patterns. The most prominent peak was 

the doublet at 17-18° and the broadest peak occurred at 23°. These peaks appeared in both the 

control and roasted flours. It can be noted that small intensity peaks appeared at 12° and 20° for 

the roasted samples. These peaks can be indicative of V-type crystallinity, indicating that amylose 

is complexed with other non-carbohydrate substances, i.e. proteins and lipids. The results compare 

favourably with that of Carrera et al. (2015) for roasted maize. Pre-gelatinisation processes 

induces the formation of V-amylose–lipid complexes (Mohorič et al., 2009). Several other studies 
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suggested that thermal treatment induces a V-type crystalline structure of cereal starches and rice 

(Witek et al., 2010; Mahadevamma & Tharanathan, 2007). Figure 7.4 illustrates that the X-ray 

intensity peaks of the roasted samples were higher than for the control sample. Previous studies 

also reported the intensity peaks on the X-ray diffractogram of roasted samples to be higher than 

those of the raw sample (Köksel et al., 1998; Christa et al., 2009; Hoover & Manuel, 1996). The 

increase in X-ray intensities of the thermally treated starches are due to shifting of the double 

helical chains, due to thermal energy and also due to the decreased moisture content (Hoover & 

Manuel, 1996).  

The crystallinity of starch decrease as the content of damaged starch increase (Barrera et al., 

2013). The double helical and crystalline patterns are disrupted during roasting. This was 

confirmed by the crystallinity (%) determinations. Roasting manifested changes in the crystalline 

structure, since the crystallinity content of the control samples was 14.32±0.22% and after roasting 

it decreased to 13.87±0.21% (P>0.05) and 12.49±0.25% (P≤0.05) for FCCT and oven roasting, 

respectively. Carrera et al. (2015) also reported that the crystallinity decreased from 17.16% to 

15.63% after roasting of white maize. Roasting induces partial material melting (mainly amylose), 

which causes disruption of the ordered structure (i.e. double helices) within and over the starch 

granules (Fig 7.3 b and c). Loss in crystallinity with conversion to an amorphous structure is due to 

partial starch gelatinisation but can also be attributed to starch-protein and starch-lipid interactions 

(Guzmán et al., 2009). A decrease in the crystallinity content after maize roasting could greatly 

improve the in vitro starch digestibility, since the roasting process disrupts the order within the 

starch granules, thereby increasing the action of enzymatic digestion (Carrera et al., 2015).  

 

Figure 7.4. XRD traces of the control, FCCT and oven-roasted maize flour samples. Dashed 

vertical lines indicate the location of the prominent peaks for A-type crystallinity. Solid lines indicate 

the development of new peaks that resembles V-type crystallinity in the roasted samples.  
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Functional analyses 

Water absorption capacity (WAC) and water solubility index (WSI) 

Although not significant (P>0.05) for FCCT roasting, both roasting methods resulted in an 

increased WAC (Table 7.4). It can be postulated that as the starch granule structure (Fig. 7.3 b and 

c) is disrupted during roasting more water is bound, resulting in increased WAC. The increase in 

WAC is thus attributed to starch damaged due to partial gelatinisation and formation of pores and 

cavities in the endosperm, which imbibes and holds water by capillary action (Mariotti et al., 2006). 

The increased WAC, may also be due to the loss in crystallinity, as already discussed, that 

increases water penetration within the starch granules (Maache-Rezzoug et al., 2008). These 

results are in concurrence with previous studies that also reported an increase in WAC after 

roasting cereals and legumes (Sharma et al., 2011; Gujral et al., 2011; Griffith & Castell-Perez, 

1998; Ranganathan et al., 2014). Starches with enhanced WAC can be used in soups, sauces, 

puddings, pie fillings and gravies as thickening agents (Dries et al., 2014). A high WAC is a 

desirable functional property in food such as dough, since it should absorb water without 

dissolution of proteins to attain a viscous texture.  

Lee et al. (2006) stated that hardness also plays a role in WAC, where softer samples usually 

display a higher WAC. This can be explained by the higher degree of structural order (crystallinity) 

and less starch damage (e.g. control samples), resulting in the inaccessibility of water to the 

compact structure. Roasting (150°C; 20 min), using the FCCT roaster, of whole marama beans 

increased the WAC from 1.5 to 2.4 g/g (Maruatona et al., 2010). This was attributed to unfolding of 

protein molecules upon roasting, which exposed previously concealed hydration sites. Thus, these 

sites were made available to interact with water, which increased the WAC. Oven roasting could 

have resulted in more available hydrophilic binding sites for water holding.  

Upon roasting, the WSI decreased (P>0.05) from 10.26% to 7.34 and 7.64% for FCCT and 

oven roasting, respectively. These results were in concurrence with Gujral et al. (2011) and 

Bhattacharya (1995) who also reported a decrease in WSI during roasting of oats and maize 

semolina, respectively. This decrease in WSI can be attributed to the formation of amylose-lipid 

complexes during roasting, which have been reported to reduce water solubility (Gujral et al., 

2011). A decrease in WSI is an indication that the protein present in the sample lost its solubility by 

denaturation when subjected to roasting (Hernández-Nava et al., 2011). Furthermore, since FCCT 

roasting involves moist heating by steam, this had an increased effect in reducing the solubility 

when compared to dry roasting (Maruatona et al., 2010). The inverse trend of increasing WAC and 

decreasing WSI were also observed by Zhu et al. (2010).  

 

Flour dispersibility (FD)  

FCCT roasting had no significant (P≤0.05) effect on FD, while oven roasting resulted in a 

significant (P≤0.05) increase. PSI is an important feature of any granular mix that requires 

reconstitution with water. The smaller the PSI, the more surface area is available for water 
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absorption (Kulkarni, 1991). Thus for the oven-roasted samples, with the lower PSI, the FD 

increased (Table 7.4). The percentage dispersibility of weaning food ingredients range from 63 to 

79 (Kulkarni, 1991). The results obtained in this study fall within this range. A previous study 

observed that cereal roasting resulted in better reconstitution indices compared to unroasted 

samples (Onilude et al., 1999).   

 

Table 7.4. WAC, WSI and FD properties of the control and roasted whole maize flours 

Sample    WAC (g/g) WSI (%) FD (%) 

Control 2.02±0.24b 10.26±2.94a 76.22±0.25b 

FCCT 2.22±0.05ab 7.34±1.76a 76.22±0.09b 

Oven 2.34±0.08a 7.64±2.29a 77.28±0.35a 

Results are mean values of triplicate determinations (n=3). Mean values followed by different superscripts in each 

column are significantly different at P≤0.05. WAC= water absorbance capacity; WSI = water solubility index; FD= flour 

dispersibility.  

 

Differential scanning calorimetry (DSC) 

The control sample had an endotherm with onset (To), peak (Tp) and endset (Te) temperatures of 

53.54, 68.12 and 82.09°C, respectively and a ΔH of 10.29 J/g (Table 7.5). A previous study 

reported similar results for maize starch with a gelatinisation temperature (Tp) of 70°C and 

corresponding heat absorbed as 10.2 J/g (Li et al., 2007). The Tp and gelatinisation enthalpy 

values were in agreement with others studies (Carrera et al., 2015; Dries et al., 2014; Guzmán et 

al., 2009; Maache-Rezzoug et al., 2008) and might be considered typical of normal maize starch. 

The To, Tp and Te increased for both roasting methods, where the Tp and Te were significantly 

(P≤0.05) higher for the oven-roasted samples. The high Te (116.30°C) of the oven-roasted sample 

could be an indication of protein denaturation (Köksel et al., 1998) and corresponded with the 

decreased crude protein content reported earlier. Differences in the transition peak position of the 

control and roasted samples are dependent on moisture content (Khan & Yu, 2013). In general, 

higher moisture content (control sample) causes a shifting endothermic peak at a lower position. 

Since FCCT roasting was performed in a moist atmosphere, the endothermic transition was shifted 

at a lower temperature than for oven roasting. Both roasting methods showed a gelatinisation 

endotherm occurring at a higher temperature than the control sample. These findings were in 

concurrence with Dries et al. (2014) whom reported thermal treatment to show a gelatinisation 

endotherm at higher temperatures than native maize starch.  

Roasting resulted in a decrease (P>0.05) in ΔH and the residual starch gelatinised at higher 

temperatures, with these changes being more profound for the oven-roasted sample. A decrease 

in ΔH after roasting suggest disruption of the double helices within the amorphous regions of the 

granules and partial loss of protein structure (Mahadevamma & Tharanathan, 2007). The ΔH of 

gelatinisation primarily reflect the loss of double helical order and corresponded the with 

crystallinity results reported in the previous section. However, the observed reduction in ΔH cannot 
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be attributed solely to partial gelatinisation or unfolding of proteins; it is rather due to a combination 

of these factors (Ahmed et al., 2007). The endothermic heat of starch gelatinisation represents the 

energy required for disruption of the native molecular organisation to gelatinised starch (Dries et 

al., 2014). In the roasted samples the starch is partially gelatinised, thus less energy is required 

(Dharmaraj et al., 2015).   

Liu et al. (2009) also displayed an increasing To and Tp, and decreasing ΔH after thermal 

treatment of maize starch. Hoover & Manuel (1996) reported that gelatinisation transition 

temperatures (To, Tp and Te) of maize starch increased after thermal treatment, while the ΔH 

remained unchanged. This suggested that identical amounts of double helices in the control and 

heat-treated sample unravelled and melted during gelatinisation (Hoover & Manuel, 1996). Khan & 

Yu (2013) studied the thermal degradation behaviour of cereal grains treated by autoclaving (moist 

heating) and roasting at 121°C for 80 min. The position of the major endothermic peak of the 

control sample shifted toward a higher temperature after treatment suggesting the high thermal 

stability of the cereals. Heating with moisture, comparable to FCCT roasting, had a lower 

endothermic transition peak than dry roasting (comparable with oven roasting) (Khan & Yu, 2013).  

The transition temperature range (ΔT) decreased (P≤0.05) for FCCT (17.31°C) roasting but 

increased (P≤0.05) for oven roasting (61.96°C). A previous study comparing the effect of roasting 

on the thermal properties of white and blue maize also reported an opposite trend for the ΔT since 

it increased for white maize but decreased for blue maize (Carrera et al., 2015). Maache-Rezzoug 

et al. (2008) reported a decrease in ΔT after thermal treatment, while Hoover and Manuel (1996) 

reported a broadening of the ΔT. Since roasting is the loss of order, it causes different effects in 

starch granules (Carrera et al., 2015). 

An endotherm at lower temperatures corresponds to gelatinisation-melting of crystalline 

lamellae, whereas an endotherm at higher temperatures resembles disintegration of amylose–lipid 

complexes (Maache-Rezzoug et al., 2008). Amylose–lipid complexes seldom exist in native cereal 

starches and are generally formed upon heating or gelatinisation. According to the XRD results 

new peaks appeared at 12° and 20° in the roasted samples, indicating the formation of amylose-

lipid complexes (Maache-Rezzoug et al., 2008). The loss of structural order and decrease in 

crystallinity (previously discussed) during roasting explains why the roasted samples are more 

prone to starch gelatinisation (Witek et al., 2010). The occurrence of partial gelatinisation was 

clearly attested by the decrease in gelatinisation enthalpy (Maache-Rezzoug et al., 2008). 

Previous research have found that the occurrence of transition endotherms in starch is 

dependent on both temperature and moisture (Köksel et al., 1998). Thus, the limited degree of 

gelatinisation (FCCT=16.23%; oven=25.27%) during roasting can be attributed to the limited water 

available. The moisture content (Table 7.3) of all the samples were below the range (28-29%) at 

which gelatinisation is expected (Case et al., 1992). SEM micrographs confirmed that complete 

gelatinisation did not occur. 
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Table 7.5. DSC thermal characteristics of the control and roasted maize flours 

Sample To (°C) Tp (°C) Te (°C) ΔH (J/g) ΔT (°C) % 

Gelatinisation 

Control  53.54±0.57
b
 68.12±0.77

b
 82.09±0.72

b
 10.29±2.74

a
 28.55±1.25

b
 - 

FCCT  67.96±5.93
a
 73.85±3.80

b
 85.27±1.24

b
 8.62±0.17

a
 17.31±5.72

c
 16.23±20.04

a
 

Oven 54.33±4.09
b
 97.91±5.40

a
 116.30±5.04

a
 7.69±0.37

a
 61.96±3.40

a
 25.27±17.29

a
 

Values are means ± standard deviation of three replicates (n=3). Different letters in the same column indicate significant 

differences (P≤0.05). To, Tp, and Te indicate onset, peak and endset temperatures, respectively; ΔH = enthalpy of 

gelatinisation; ΔT (Te – To) = gelatinisation temperature range. 

 

Pasting properties and α -amylase activity using the RVA 

The pasting properties of the control and roasted samples are presented in Table 7.6, while a 

representative RVA viscogram is shown in Figure 7.5. Both roasting methods increased the 

pasting viscosities (Vp, Vb, Vf, Vt and Vs) significantly (P≤ 0.05). The increase in viscosity (Table 

7.6) may be attributed to the smaller PSI (Table 7.3) of the roasted flours. The control (harder) 

sample produces coarser particles once milled, while the roasted samples produce finer particles. 

Thus, there will be differences in the gelatinisation and hydration rates (Almeida-Dominguez et al., 

1997). Coarse particles have slow water diffusion and limited starch swelling, resulting in slow 

viscosity development (Narváez-González et al., 2006). Smaller or finer particles, obtained from 

roasted samples, have a larger surface area and will result in rapid hydration and thus higher 

viscosity. Vivas et al. (1987) reported that the apparent viscosity of roasted maize was higher than 

for the raw sample because of the smaller PSI of the roasted flours. 

A previous study using FCCT roasting also observed significant increases in the pasting 

viscosities of whole grain maize flour (Bala, 2016). In the roasted samples the starch granules are 

loosely packed and partially gelatinised and can thus hydrate and swell more rapidly in the 

presence of heat, resulting in increased viscosities (Fig 7.5). According to Griffith & Castell-Perez 

(1998) the reduction in moisture due to roasting allows a larger concentration of solids by weight, 

thus causing an increased viscosity. Differences in the Vp can be attributed to differences in the 

rates of WAC of the starch granules (Ragaee & Abdel-Aal, 2006). Starch granules of thermally 

treated maize can bind more water and thus become thick and viscous at low concentrations (Žilić 

et al., 2010).  

Žilić et al. (2010) found that micronisation (140°C for 40s) significantly increased the Vp of 

maize flour and this was attributed to changes in protein and starch properties and also the 

formation of both hydrophobic and disulphide bonds during thermal treatment. Higher Vb were 

obtained after roasting, indicating a weaker ability to withstand stress during cooking. Breakdown is 

a measure of the ease with which the swollen starch granule can disintegrate and thus an 

indication of the degree of its organisation (Olayinka et al., 2008). Final viscosity is an indication of 

the stability of the cooked paste. Food products, especially baked goods, may benefit from using a 

blend of roasted and raw flours for products that require gelatinisation (Rothschild et al., 2015). 

The decrease in Ptemp (though, not significant) and significant (P≤.05) increase in pasting 
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viscosities of the roasted maize flour compared to the control is an indication of better gelling 

quality. The Ptemp of the roasted samples were slightly lower than that of the control sample. A low 

Ptemp indicates that fewer associate forces and crosslinks are present within the starch granule; 

thus the roasted samples will gelatinise faster.  

The pasting properties of both control and roasted samples were well within the ranges 

reported by Sandhu et al. (2007) for maize. This study inferred that harder maize has tightly 

packed starch granules (e.g. control sample) and thus developed lower viscosity levels (Fig. 7.5). 

The degree of gelatinisation achieved during roasting dictates the rheological properties (Ahmed et 

al., 2007). This is in agreement with a previous report on roasted maize meal (Ingbian & Adegoke, 

2007), which demonstrated that starch gelatinisation results in an increased Vp. Oven roasting 

resulted in a higher degree of gelatinisation, thus a higher Vp than FCCT roasting.   

The stimulated enzymes (due to lower SN) in the roasted samples are capable of breaking 

down the matrix that embeds the starch granules and this allows the granules to swell more freely 

and gelatinise faster (Bolade, 2009). This relates to the increased pasting properties. SN of cereals 

flours provides an indirect measurement of amylase activity and the level of activity has an 

influence on viscosity (Ragaee & Abdel-Aal, 2006). The SN decreased significantly (P≤0.05) as a 

result of roasting (Table 7.6). The higher SN of the control samples is an indication of lower 

amylase activity. The oven-roasted sample has the lowest SN (1290.67cP) and thus the highest 

amylase activity. This can be attributed to the leaching of amylose during roasting. 

 

Table 7.6. RVA pasting properties of the control and roasted whole maize flours 

Sample    Ptemp (°C) Peak time 

(min) 

Vp (cP) Vb (cP) Vf (cP) Vt (cP) Vs (cP) SN (cP) 

Control 78.31±0.

57
a
 

5.49±0.11
a
 1251.67

±10.69
b
 

122.00± 

17.52
c
 

2564.33± 

19.73
b
 

1129.67±

17.79
c
 

1434.66± 

2.08
b
 

1490.00±4

7.95
a
 

FCCT 77.73±0.

96
a
 

5.22±0.03
b
 1510.00

±5.57
a
 

307.67± 

41.57
a
 

3120.67± 

244.92
a
 

1202.33±

6.51
b
 

1918.34± 

230.61
a
 

1378.67±2

0.98
b
 

Oven 77.99±0.

51
a
 

5.11±0.02
b
 1525.67

±19.04
a
 

272.00± 

18.61
b
 

3210.00± 

72.67
a
 

1253.67±

30.99
a
 

1956.33± 

44
a
 

1290.67± 

39.72
c
 

Results are mean values of triplicate determinations (n=3). Mean values followed by different superscripts in each 

column are significantly different at P≤0.05. Ptemp= pasting temperature; Vp= peak viscosity; Vb = breakdown viscosity; 

Vf= final viscosity; Vt= trough viscosity; Vs= setback viscosity and SN= stirring number.  
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Figure 7.5. RVA pasting profiles of a representative control, FCCT-roasted and oven-roasted 

maize flour. The RVA viscogram reports the viscosity as a function of time together with the 

temperature ramp.  

 

Conclusion  

Maize flour is a staple food in a country like Southern Africa where it forms one of the most 

important pre-processed products for the production of ‘Mielie pap’. Since roasted maize flour has 

been reported to deliver many health benefits, it is also important to understand the the 

physicochemical, structural and functional properties if a potential value-added product is to be 

developed.  

Significant (P≤0.05) differences were observed between the weight loss, bulk density, PI and 

crude protein content of the oven and FCCT-roasted samples, when using the same roasting 

conditions (180°C; 140s). These results revealed that the physicochemical properties were 

negatively affected during oven roasting. Hardness decreased significantly (P≤0.05) during both 

roasting methods which will result in lower energy consumption during milling.  

SEM revealed that structural disruption was more pronounced for oven roasting, where it 

resulted in a less dense endosperm texture and modified starch granules by causing central 

ruptures in the vitreous endosperm. XRD a revealed a significant (P≤0.05) decrease in the 

crystallinity (%) of the oven-roasted sample, which indicated a disruption in the crystalline 

organisation of the starch granules. A decrease in crystallinity content could eventually have a 

positive effect on the starch availability and digestibility, since it can be exploited for the fabrication 

of food where fast digestibility is desired, i.e. energy cereal bars. DSC revealed that partial 

gelatinisation of oven-roasted maize occurred at a higher temperature and required less energy 

(lower enthalpy) compared to the FCCT-roasted and control samples. Both roasting methods 

resulted in only partial starch gelatinisation, with the degree of gelatinisation being higher after 
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oven roasting. The SEM observations confirmed the DSC results that only partial gelatinisation 

occurred and that the degree of gelatinisation was more pronounced for the oven roasting method. 

Partially gelatinised starch can be used as a thickening or gelling agent. Roasting resulted in 

beneficial functional changes, i.e. increased WAC and pasting behaviour. Thus the roasted flour 

enhances gel formation and can be widely used in different food preparations such as instant 

mixes, porridge and starch-thickened sauces. 

The results supported the hypothesis that the more destructive microstructural changes 

induced by oven roasting also resulted in more adverse changes in the physical, structural and 

functional properties of maize. FCCT roasting, using superheated steam, resulted in more 

homogenous roasting and was more effective in maintaining these properties. It will thus not 

compromise the quality of the end product when used to develop potential value-added products. It 

is recommended that future studies examine the nutritional and sensory characteristics of the 

roasted product, as well as explore various time-temperature roasting combinations to determine 

the optimum conditions for a specific end-product use.  
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CHAPTER 8 

General discussion and conclusions 

 

Food microstructure is one of the key elements defining the physical, sensory, textural and 

functional properties, as well as stability of the end product (Frisullo et al., 2009). Thus, 

microstructural information is of great interest to the food industry (Pinzer et al., 2012). A proper 

understanding of food microstructure needs to be developed to produce products with desired 

sensory, physical and functional properties (Frisullo et al., 2009). Microstructural changes in 

proteins, cell walls and starch of cereal grains is produced during processes such as milling, 

malting, roasting, baking and extrusion (Salmenkallio-Marttila et al., 2004). Modification of 

structural features by means of processing can be used to design products with desired properties. 

There is thus a need for quantitative methods to accurately characterise the microstructure of food 

to understand and control structure-property relationships (Herremans et al., 2013). Nowadays 

food microstructure can be studied at almost any microstructural level, in real-time and with 

minimum interference (Aguilera, 2005).   

There is an increasing trend towards the consumption of roasted whole grain products due to 

its higher dietary content and antioxidant activity (Carrera et al., 2015; Sandhu et al., 2015). This 

provides a fundamental basis for the incorporation of roasted grains into food as health-enhancing 

ingredients. In this study the effect of two roasting methods, conventional oven and innovative 

forced convection continuous tumble (FCCT) roasting, was evaluated on whole wheat and maize 

and analysed at different scales for assessment of the microstructure, starch-protein morphology 

and crystallinity, as well as physicochemical and functional properties. The microstructure was 

investigated using X-ray micro-computed tomography (μCT) and scanning electron microscopy 

(SEM), whereas the molecular and mesoscopic level were evaluated using X-ray diffraction (XRD) 

and differential scanning calorimetry (DSC) to characterise the crystalline structure and 

gelatinisation behaviour, respectively. Furthermore, investigation of the functionality of the roasted 

whole grains was undertaken by determining the pasting properties using the Rapid Visco Analyser 

(RVA), water absorbance capacity (WAC), water solubility index (WSI) and flour dispersibility (FD). 

Wheat rheology was examined using a Micrograph and Alveograph. Knowledge on all these 

properties of roasted grains would be valuable for the design of equipment and processes, i.e. 

handling, transportation, separation and storing as well as for applications in different food 

formulations (Işikli et al., 2014).  

X-ray μCT is an elegant imaging technique that has been proven to be capable of investigating 

microstructural properties of porous roasted products, where it played a major role in 

understanding the impact of roasting on microstructure (Pittia et al., 2011; Schoeman et al., 

2016a). Quantifying X-ray μCT results was a means of demonstrating the relevance of X-ray μCT 

beyond the mere visualisation of microstructure. X-ray μCT enabled precise microstructural 

measurements of specific regions-of-interest (ROIs), i.e. volumetric and relative density 
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measurements and even more advanced analysis such as pore (void) size distributions 

(Schoeman et al., 2016b). Segmenting kernels into ROIs was a critical; although tedious and time-

consuming part of image processing. Nevertheless, with future advancements in software 

capabilities, manual intervention will be minimised (Singhal et al., 2013).   

Understanding the impact of roasting on microstructural, physicochemical and functional 

properties of cereal grains is of importance because it governs subsequent processes and final 

product quality. X-ray μCT enabled full three-dimensional (3D) visualisation and quantification of 

the kernel microstructure and revealed the porosity distribution in raw and roasted kernels. 

Reconstructed 3D volumes, obtained from a set of 2D images, allowed the spatial visualisation of 

internal features. 3D characterisation provided a convenient way to obtain both qualitative and 

quantitative information on the microstructural evolution during roasting, which is not always 

achievable from 2D image analysis. Quantitative analysis allowed more comprehensive and 

objective characterisation of the whole samples and extracted ROIs. Cereal grains are 

heterogeneous materials and the ability to create ROIs, e.g. pores, enables greater visual 

interpretation and aids in a better appreciation of the differences in pore size, shape and frequency 

in samples. X-ray μCT posed to be a useful method when a specific region within a sample needed 

to be excluded (e.g. germ), non-destructively. The two roasting methods resulted in a distinctly 

different inner grain structure with FCCT roasting being less destructive; resulting in fewer cracks 

and smaller cavities.  

Quantitative X-ray μCT analyses confirmed the qualitative results, reporting an increase in 

volume, porosity and expansion ratio (ER), and a decrease in relative density (oven: wheat=2.76% 

and maize=6.33%; FCCT: wheat=0.55% and maize=1.92%) which in turn affected kernel hardness 

and bulk density (oven: wheat=0.77 g/cm3 and maize=0.66 g/cm3; FCCT: wheat=0.81 g/cm3 and 

maize=0.69 g/cm3). The higher ER and lower relative density in the oven-roasted samples were 

consistent with the greater porosity. It was shown that porosity was the microstructural property 

indicator affected most during roasting. X-ray μCT demonstrated that during roasting the grains 

experienced the coupled phenomena of expansion and crack development, which resulted in a 

complex 3D porous structure. The ER results evidenced the effects of volume expansion induced 

by water vapour generated, which led to the irregular and porous internal structure. Moisture inside 

the kernels were converted to superheated steam which created internal pressure and provided 

the driving force for expansion (Altan, 2014). Skeletonization was performed, at a much higher 

resolution, on the maize samples to demonstrate another means of displaying the connectivity and 

thickness of the air paths in the extracted skeleton. The raw and FCCT-roasted skeleton was 

similar in density and thickness, while the oven-roasted sample yielded a complex skeleton with a 

much denser porous network of multiple interconnected segments of various thicknesses. In the 

oven-roasted skeleton a cavity initiation site could be observed as a spider web structure. 

A potential extension of the X-ray μCT results could be to perform void/pore wall thickness 

analysis on higher resolution nano-CT (submicron) scans leading to the visualisation of samples in 
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greater detail and thus providing new insights on the submicron structure. Although ideally larger 

sample sets should be used, it was limited in this study due to the high cost of performing X-ray 

μCT acquisition and analysis. The small number of samples used may question the 

representativeness of the data; nevertheless a definite trend (under similar roasting conditions) 

was indicated between the two roasting methods, resulting in less structural alteration during FCCT 

roasting. In this study a roasting temperature of 180°C was used. It is also recommended that 

additional studies ought to be performed according to an appropriate experimental design to 

determine the optimal roasting parameters to attain desired properties that are required for 

optimum end product quality. This work has the potential to be extended to other cereal grains and 

roasted products, e.g. nuts and cacao.   

It is evident that X-ray μCT has been used successfully for 3D characterisation of the 

microstructure of roasted wheat and maize and provided a unique insight of the microstructural 

changes during roasting. The capability of X-ray μCT in combination with image analysis could 

open a new avenue for using this technique to determine roasting conditions and processing 

parameters and to assess the quality of grains. This study illustrated that the roasting method, 

using similar roasting conditions, have a direct impact on the microstructure and thus quality of the 

final product. The results evidenced that X-ray μCT is a feasible technique capable of providing a 

resolution at micrometer level that are able to characterise and quantify the 3D microstructure of 

raw and roasted samples.  

Unfortunately, X-ray μCT is not without limitations, e.g. limited availability of facilities, high 

costs involved with image acquisition and analysis, penetration capability of dense samples and 3D 

rendering is a computationally intensive and requires super computers. The harmful effects of the 

X-rays are prevented by properly designed shielding. Even though physics limit X-ray CT to a 

certain extent, the amount of useful information that can be obtained from this technique continues 

to grow (Landis & Keane, 2010). Despite being an expensive and time-consuming method, the 

advantages outweigh the limitations. With advances in image acquisition capabilities, availability of 

advanced CT systems, new detector technologies, high-performance X-ray tubes, real-time 

imaging, user friendliness of data analysis, computational power, in terms of both hardware and 

software, increased reconstruction speed, resolution and image quality, and cost diminution, it is 

anticipated that X-ray CT would become more applicable in the future (Hanke et al., 2008; 

Kalender, 2011). 

Conventional density methods, i.e. floating tests overlook the influence of pores and cavities 

(Gustin et al., 2013). The feasibility of X-ray μCT was demonstrated by its capability to divide the 

grains into biological material and air to perform subsequent relative density measurements. This 

enabled the determination of material density, which excludes all internal air that may influence the 

results and was thus more representative of the true density (Gustin et al., 2013). It was 

noteworthy to observe that for both cereal grains the material density remained unaffected during 

FCCT roasting. This indicated FCCT roasting to be a less destructive process. These results were 
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in agreement with the physicochemical outcomes, since FCCT also affected weight loss, bulk 

density, puffing index, moisture, hardness, crude protein and milling properties less than oven 

roasting. Roasting compromises the structural integrity, increasing the friability of cereal grains 

before milling, resulting in the potential for reduction in energy costs and milling time (Pronyk et al., 

2006). Oven-roasted samples, containing larger fissures, resulted in a greater decrease in 

hardness (PSI of wheat=41.37%; c/f of maize=0.90). Harder maize is favoured by the milling 

industry due to higher yield. Hardness, bulk density and milling properties can be useful to evaluate 

the quality of roasted cereal grains as well as the efficacy of the milling process.  

Both starch and protein properties determine the quality of a cereal product. Further 

investigation of the effect of roasting on the texture and starch granule packing density in the 

endosperm required destructive testing using SEM. Both roasting methods led to disintegrated 

protein networks in the wheat and maize (floury endosperm), which resulted in thin elongated 

strands. The starch granules, however, maintained their shape. Oven roasting led to more 

dispersed starch granules as well as larger and more cavities between the granules in the 

endosperm, compared to FCCT roasting. This structural alteration may be attributed to the fusion 

of pores into larger interconnected cavities, as illustrated for maize with skeletonization, due to the 

higher internal pressure generated during this roasting method. The region most affected by 

roasting was the centre, indicating that the thermal centre was localised in the kernels.  

Roasting of wheat and maize imparted important effects on the functionality of the flours. The 

starch in the roasted grains was only partially gelatinised due to inadequate water availability. The 

limited gelatinisation of the starch granules observed by SEM was thus confirmed by DSC 

analysis. Partial gelatinisation (oven: wheat=17.16% and maize=25.27%; FCCT: wheat=10.14% 

and maize=16.23%) was also evidenced by the decrease in crystallinity (oven: wheat=0.16% and 

maize=1.83%; FCCT: wheat=0.12% and maize=0.45%) and gelatinisation enthalpy. The loss in 

structural order (SEM and XRD) explains why the roasted grains were more prone to starch 

gelatinisation. Morphological changes, i.e. a decrease in crystallinity content may have positive 

effects on starch availability and protein digestibility and it would be worthwhile evaluating these 

properties in a future study since it can exploited for the production of food where fast digestibility 

is desired. Further research should also be conducted to determine the risk/benefit balance of 

roasting as a food processing method.  

Roasting of cereal grains offered beneficial effects, i.e. an increased WAC such that the 

roasted flour can be used to prepare foods e.g. instant mixes, porridges and soup. Thus roasting 

enhanced gel formation and strength, a desirable property that can be used in starch-thickened 

sauces (Olayinka et al., 2008). Furthermore, the RVA results revealed that roasted flour provided 

increased pasting properties. This illustrated the effectiveness of roasting for value addition to a 

specific end-use. SEM micrographs indicated that more adverse structural changes occur during 

oven roasting and these changes are responsible for the more profound changes in the pasting 

behaviour of oven-roasted samples.  
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Microscopy is increasingly used in combination with rheology to gain complementary 

information on food structure (Wilkinson et al., 2000). It was important for its application in food to 

find that the rheological properties of the whole wheat flour, i.e. the Alveographic indices were not 

significantly (P>0.05) affected by roasting. The Mixographic indices, i.e. peak time increased 

significantly (P≤0.05) (FCCT=3.81 min; oven=3.50 min), while the water absorption decreased 

slightly (FCCT=61.69%; oven=61.73%) after roasting. Both these parameters did not differ 

significantly (P>0.05) between the two roasting methods. Roasting at 180°C for 140 s did not result 

in detrimental effects in the rheological properties and will thus not have a negative effect on the 

baking quality.  

Food preparations from roasted cereal grains have been rarely considered. Applications of 

roasted cereal products can include the development of value-added products, e.g. pinole, a 

traditional energy product obtained from roasted ground maize, which is now also consumed by 

athletes and ultra-runners as an all-natural rapid energy booster (Carrera et al., 2015). Roasted 

cereal grains can be used to manufacture modified starches, pre-cooked breakfast cereals, pasta 

products and dietetic foods. Since roasting decreases the moisture content, roasted cereal grains 

are a good candidate for incorporation into specialised cereal bars (Carrera et al., 2015). Roasted 

whole wheat flour can be used as composites for bread production to obtain an aromatic roasted 

flavour (Baiano et al., 2009). In addition, the increase in WAC observed  (oven: wheat=2.02% and 

maize=15.84%; FCCT roasting: wheat=0.81% and maize=9.90%) suggests that flours from 

roasted cereal grains can be used as functional ingredient in snack foods and to control moisture 

migration in baked products (Mariotti et al., 2006). An increased WAC is a result of the 

development of a porous endosperm structure during roasting which is capable of absorbing and 

holding water by capillary action (Mariotti et al., 2006). Bread staling occurs due to moisture 

transfer between the components (Gray & Bemiller, 2003). Hence, the use of roasted flour in bread 

dough is capable of delaying the staling phenomenon; resulting in softer bread with a longer shelf 

life.  

Although roasting increase shelf life by lowering water activity which reduces microbial growth 

and enzymatic activity, Lazar et al. (1974) reported the development of two types (enzymatic and 

pyrolytic) of off-odours when storing roasted wheat. Enzymatically induced off-odours typically 

occur when grains with high initial moisture are roasted at low temperature for a short period, 

which leave behind great concentrations of enzymes. In contrast, pyrolytic off-odours arise in 

samples where there is no active enzyme system, but where excess heat exposure resulted in the 

development of carbonyl compounds, alcohols and free fatty acids (Lazar et al., 1974). Thus, it is 

recommended that future studies look into storage stability, since it appears that additives might be 

required to extend the shelf life of roasted products. Little has been published on the health 

benefits of roasted cereals. The main advantage of roasting continues to be contributions to 

sensory and storage quality of the end product (Griffith & Castell-Perez, 1998). Despite growing 

interest towards functional foods from roasted whole grain products which have specific health-
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promoting benefits, desirable sensory characteristics still remain a key priority for consumers 

(Ragaee & Abdel-Aal, 2006). Prospective studies should focus on the effect of roasting on the 

nutritional and sensory characteristics. 

X-ray μCT is considered the most promising tool for food structure characterisation (Van Dalen 

et al., 2003). Currently interest in 3D food microstructural investigations are increasing and serves 

as a method of understanding food functionality and to evaluate the impact of processing on 

structural parameters that relates to quality (Pittia et al., 2011; Frisullo et al., 2012). In future a 

continuous increase in the applications related to food science is foreseen as evidenced by the 

large amount of publications dedicated to X-ray μCT (Schoeman et al., 2016c). Most X-ray μCT 

investigations on food to date have been feasibility studies, executed only on a limited number of 

samples, due to the costs involved for scanning and analysis. Despite the extensive research 

effort, internal characterisation are still uncommon in the food industry (Donis-González et al., 

2014). Developments in using this technique in food related fields could open the horizon for 

developing mathematical and computational models capable of linking food microstructure to 

rheology, texture and sensory related properties or even to design foods based on the information 

obtained, making CT much more powerful. This technique will become indispensable for food 

quality evaluation and product development.  

Techniques are needed on-line and at-line to non-destructively measure microstructural 

properties (Herremans et al., 2013). 2D X-ray inspection systems are used on-line in limited 

applications, e.g. to detect internal defects in fruits and vegetables. In the food industry CT is an 

emerging technique that can be integrated in packaging lines to monitor the content of vacuum 

sealed products, to detect contaminants, e.g. glass, metal or stones and in meat processing 

factories fat and bone content can be tested and meat can be priced accordingly (De Chiffre et al., 

2014). However, X-ray μCT is not often used in- and on-line due to the challenge of high 

throughput requirements that has to be met and the expense of equipment (Chen et al., 2013). The 

large size of some equipment and the considerable time needed for data acquisition and image 

analysis makes it impractical for in- and on-line use (Magwaza & Opara, 2014). Similar 

developments to the CT scanner truck, an on-line X-ray system to measure the meat-fat-

distribution in pig carcasses, is foreseen in the future (De Chiffre et al., 2014). Other promising 

applications include the determination and distribution of ingredients, e.g. berries, nuts or liquid 

fillings in chocolate bars, which are essential quality considerations for consumers (De Chiffre et 

al., 2014). A future trend in the food industry will involve the development of high-performance, 

low-cost imaging equipment (Chen et al., 2013). 

A range of image processing algorithms can be employed for reconstruction, image 

enhancement, segmentation and classification (Kotwaliwale et al., 2014). There is however no 

standard image processing protocol yet. This may be due to the large diversity of products. In 

future it is foreseen that tailored protocols will be developed. To date it was not the purpose of X-

ray μCT to aid as a fast detection technique for microstructural changes, but rather to serve as a 
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good research tool to obtain more insight into the microstructure of products. Animations can be 

created with 3D volumes which clearly illustrate evolutionary processes and assist in 

microstructural evaluation in a way that 2D analyses are unable to. Although X-ray μCT is still in its 

nascent stage, the non-destructive nature and flexibility of this technique for many food science 

applications helps to retain its attractiveness for the food industry. Continuous developments in the 

technique, instrumentation and analysis will result in increasing implementation to meet the 

constantly growing requirements of the food industry. 

FCCT roasting preserved desirable characteristics better than oven roasting under the same 

time and temperature conditions, since the FCCT-roasted sample was more comparable to the 

control in terms of the physicochemical, structural and functional properties. FCCT roasting is a 

less severe heat treatment than oven roasting, as the latter involve more direct dry heat 

penetration. One of the most important limitations in using oven roasting is that it is associated with 

non-uniform heat distribution. During FCCT roasting, the superheated steam generated in 

combination with the continuous tumbling movement of the screw conveyer inside the roasting 

drum, resulted in constant agitation of the sample. This results in faster and even heat transfer to 

the sample, ensuring a uniformly roasted product. In contrast, during oven roasting the samples 

were stationary. Formerly, superheated steam heating was reported to be associated with 

improved product quality (no scorching), less loss in nutritional value and to be cleaner and cause 

less oxidation compared to hot air heating (Moreira, 2001).  

Although this study was motivated by an innovative roasting method, FCCT roasting, the 

results provide insights for even better understanding of the effect of cereal grain roasting in 

general. FCCT roasting has served to be a promising method to modify the structure of cereal 

grains without excessive deformation. FCCT roasting provides a promising incentive to utilise this 

roasting method, due to lower processing costs, energy efficiency, minimal disruption of structural 

integrity and more acceptable physicochemical and functional alterations. Knowing the different 

effects of FCCT and oven roasting allow manufacturers to make informed decisions on which 

roasting method would be most appropriate for a specific product.  

In conclusion, this study provided a better understanding of the structural, physicochemical 

and functional evolution induced by roasting of cereal grains, which can be useful to elucidate their 

role in the development of new, healthy foods. Among the imaging techniques, the combination of 

non-destructive X-ray μCT with a more conventional destructive imaging method, SEM, proved to 

be a valuable method that provided a more comprehensive understanding of the microstructural 

changes. In this study a small number of samples were X-ray μCT scanned per roasting method, 

however, high-throughput scans, using multiple kernels in one scan can reduce acquisition time 

and cost (Guelpa et al., 2016). While X-ray μCT explained the microstructural differences observed 

in cereal grains using two roasting methods, SEM, XRD, DSC and the RVA provided valuable 

information on the starch-protein morphology, crystallinity and thermal and pasting properties, 

respectively. The changes observed in this study may provide a basis for understanding the 
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efficiency of roasting at an industrial scale. It is hoped that this study provided inspiration for new 

investigations that will benefit from X-ray μCT as well as guided the utilisation of roasted cereal 

grains to provide a foundation for further studies.  
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APPENDICES  

 

Appendix A: X-ray μCT acquisition and reconstruction process of wheat kernels 

 

 
 

           

 

 

 

 

 

       

   

                                                   

 

 

 

 

 

 

Figure A.1. Schematic illustration of the X-ray μCT acquisition and reconstruction process for the 

wheat kernels. A series of X-ray projection images was acquired and mathematically reconstructed 

to produce a 3D map of the X-ray absorption in the volume. The 3D volume was constructed from 

a series of 2D slice images.  
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Appendix B: Qualitative image analysis of wheat kernels 

Figures B.1 to B.11 illustrates 2D and 3D results of the microstructure of raw and roasted wheat 

kernels.  

 

 

Figure B.1. Illustration of the different views of a raw wheat kernel, i.e. horisontal (blue), 

frontal/coronal (green) and sagittal plane (red) and a 3D rendered volume (bottom right).  

 

 

Figure B.2. Visualisation of the scan setup where two raw wheat kernels were imaged.  
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Figure B.3. Illustration of the segmentation procedure where the background air was selected and 

extracted from the image.  

 

 

Figure B.4. Visualisation of the volume size distribution of the porosity in a raw sample.  
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Figure B.5. Illustration of the different X-ray image views (horisontal, frontal and sagittal) of a raw 

wheat kernel. Two-dimensional views are shown on the left and the corresponding section in the 

3D view on the right.  
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Figure B.6. Visualisation of a raw wheat kernel, viewed with partial transparency (left) to illustrate 

the porosity in grey.  

 

Figure B.7. Illustration of a (a) raw and (b) oven-roasted wheat kernel where the porosity is 

characterised in blue.  

 

Figure B.8. Visualisation of the impact of oven roasting on the microstructure, where air is 

characterised in blue, while the kernel structure is presented in yellow.  
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Figure B.9. Representations of the frontal slice images of an (a) and (c) oven-roasted and a (b) 

and (d) FCCT-roasted wheat kernel before and after roasting. The crack and cavity size and 

distribution can be observed together with the differences in the grey level intensities which 

represent density variations.   

 

Figure B.10. Representation of a raw wheat kernel where dimensional measurements on specific 

regions-of-interest, i.e. cracks were performed.   
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Figure B.11. Illustration of the different clipping views of raw and oven-roasted wheat kernels, 

virtually cut to reveal the internal structure.    
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Appendix C: Preliminary roasting trails   

Roasting trails were performed to select the desired roasting temperature, since the forced 

convection continuous tumble (FCCT) roaster is a relatively new roasting technique. The 

independent variables were the roasting speed (which determined the roasting time) and the 

internal temperature of the roaster at the beginning of the roasting process. Based on preliminary 

trails (Fig. A.1), temperatures higher than 220°C were rejected due the observation of the popping 

phenomenon and a temperature of 200°C led to an undesired dark colour and external cracks. 

Furthermore, temperatures lower than 150°C did not have the desired roasting effect. The roasting 

conditions was standardised by trials to get maximum grain expansion without burning. 

During oven roasting dry hot air was circulated inside the oven by means of a fan (thermofan) 

which reverses its direction of rotation to ensure a more uniform heat transfer to the product. This 

enabled the oven roasting method to be more comparable with FCCT roasting.  

During roasting the pericarp holds water vapour and allows the internal pressure to build up to 

a certain point. When this point is exceeded, the pericarp will rupture resulting in popcorn. The 

water vapour provides the driving force for expansion. Presumably at low moistures there is 

insufficient superheated water for complete expansion. At high moistures it is assumed that 

moisture weakens the pericarp causing an early release of pressure.  

For FCCT roasting samples were fed into the feed hopper and then transferred to the drum by 

gravity where it was roasted. The drum comprises of a perforated cylinder and a screw conveyer 

inside which mixes the sample as it propels it forward at a set speed. Hereby a continuous and 

uniform heat distribution to the sample is ensured which is more effective than in a stationary 

roasting method. The screw speed setting of 80 Hz remained constant during roasting. When a 

sample (at ambient temperature) was fed into the roaster, the temperature dropped with ca. 3°C. 

The roaster reached the desired temperature of 180°C again within a few seconds. 

 

Figure C.1. Photograph of undesirable roasted maize kernels obtained from preliminary trails.    
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Appendix D: X-ray μCT instrumentation  

Real-time X-ray μCT scans of the raw and roasted whole maize kernels were obtained using a 

commercial X-ray computed tomography system, i.e. a General Electric Phoenix V|Tome|X L240 

(General Electric Sensing & Inspection Technologies GmbH, Phoenix, Wunstorff, Germany) (Fig. 

D.1). The high-resolution X-ray μCT imaging system consists of a micro-focus X-ray tube with an 

additional nano-focus tube (Fig. D.2.). The system comprises of a lead-lined cabinet that houses 

the X-ray tube, the sample manipulator and the detector. Figure D.3 demonstrates the (a) lead-

lined cabinet with the cooling unit and (b) the external control panel.  

 

Figure D.1. The General Electric Phoenix V|Tome|X L240 X-ray μCT scanner used for acquiring 

X-ray images.  

 

Figure D.2. Photograph of the internal setup of the Phoenix V|Tome|X L240 X-ray μCT scanner, 

showcasing the X-ray source, rotation stage, sample holder and detector system.  

 

Nano focus X-ray 

source  
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                                            (a)                                                                  (b) 

Figure D.3. Photograph of the (a) lead-lined cabinet with the cooling unit and (b) the control 

monitor. 
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Appendix E: Optimising X-ray μCT scanning parameters 

Various system settings were tested to optimise the scan quality. Instrumental conditions that 

needed to be optimised included beam energy and current, sample-to-detector-distance and 

exposure time. The energy spectrum (usually between 20 and 100 kV for food) describes the 

penetrative ability of the X-rays, as well the relative attenuation that is expected as X-rays pass 

through material varying in density. The current is associated with the number of X-ray photons 

generated. Higher energy X-rays are more effective in penetrating a sample but it is less sensitive 

to changes in composition and material density in comparison to lower energy X-rays. An energy 

value of 60 kV was thus sufficient as the cereal grains did not require a high penetrating power, but 

rather a higher sensitivity in terms of image contrast. 

The only preparation necessary for μCT scanning is to ensure that the sample fits inside the 

field-of-view (FOV) and that it does not move during the scan. The full scan field is cylindrical (i.e., 

a stack of circular fields-of-view) and therefor the most efficient geometry to scan is a cylinder. 

Thus, the sample was stacked onto a polymeric disc in order to take on a cylindrical geometry (Fig. 

E.1.). Experimental conditions were optimised to allow high quality radiographic projections and 

were based on the compromise of enhancing both contrast and resolution of the images and using 

the shortest scanning time of the whole sample volume. 

 

 

Figure E.1.  Illustration of a maize kernel mounted on oases and polymeric disc in a 2D side view 

and frontal view.  
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Appendix F: Stacking of X-ray μCT slices  

The fundamental principle of μCT is to acquire multiple sets of views of a sample over a range of 

angular orientations. In doing so additional dimensional data are obtained in comparison to 

conventional X-ray radiography. These data are used to create 2D images, known as tomograms 

or radiographs and they correspond to what would be seen if the objects were sliced along the 

scanning plane.  

Figure F.1 illustrates the stacking of 2D projection images to obtain a 3D volume. From X-ray 

μCT images, the brightness is a function of X-ray absorption, where brighter regions correspond to 

a higher absorption and dark areas correlate to a lower absorption.  

 

 

    

                                        

 

                                                 

 

Figure F.1. Illustration of the stacking of 2D slice images to obtain a 3D volume.  
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Appendix G: Image and histogram analysis  

Considering the 2D slice image in Figure G.1, a multiphase composition can be observed as the 

maize kernel is made up of a germ, floury and vitreous endosperm and air spaces. There can be 

distinguished between these different components based of the difference in the X-ray absorption. 

This difference manifests itself through the variation in grey scale intensities and therefore it 

visually appears as distinct phases. Figure G.2 illustrates the spatial distribution of the different 

density components within a kernel at a higher magnification. Air voids is represented by the black 

areas as the absorption coefficient is lower with respect to the solid fractions. The black areas 

indicate that there was no material to interact with the X-ray beams and therefore the beam was 

not attenuated at all. The grey level intensity within one pixel is a linear function of the local X-ray 

attenuation coefficient. The brighter grey areas represent the denser germ and vitreous endosperm 

and these two components have a higher absorption coefficient in comparison with the less dense 

floury endosperm and the air. Endosperm textural attibutes can be obtained from a 2D slice image.  

Figure G.3 demonstrates that maize kernel components can be separated based on the grey 

level distribution in the data histogram. The grey value histogram provides a diagram of the 

number and intensity of voxels in the whole image or specific regions-of- interest (ROIs), illustrating 

the density distribution based on grey values. The y-axis display the number of voxels associated 

with each grey value, whereas the x-axis indicates the grey values and thus the intensity of the 

voxels in an image. Lower grey values correspond to internal air space and higher values to solid 

material. This is valuable for phase analysis and it is often used to segment an image into different 

ROIs. Separate peaks are observed in Fig. G.3 each corresponding to a different phase, i.e. solid 

or air. 

 

 

Figure G.1. X-ray μCT image of a maize kernel illustrating the different grey scale intensities of the 

various components. 
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Figure G.2. An enlarged 2D X-ray μCT image of the endosperm textural properties of a maize 

kernel. The vitreous endosperm is light grey (more dense), the germ is visible at the top (white) 

and the less dense floury endosperm with the air spaces (black) is visible in darker grey.  

 

 

Figure G.3. A typical data histogram presenting the grey values for the different maize 

components.  
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Appendix H: Segmentation and defining regions-of-interest  

Segmentation 

Segmentation entails the process of dividing volume data into different sections, thus the volume is 

partitioned into different voxel groups called ROIs. Once a ROI has been defined, analyses are 

restricted to this area. Grey value based segmentation was performed using the Region growing 

tool where separation of the different ROIs was based on tolerance differences of the associated 

grey pixels. The threshold value for each sample was established manually based on the 

distribution in the histogram. In selecting a threshold value, the objective was to separate the 

kernel into different regions: the germ and vitreous and floury endosperm, which constitutes the 

solid phase and the cavities and pores which forms the gaseous phase. Image segmentation was 

carried out on the smoothed 16-bit grey scale images that were obtained from the reconstruction 

step.  

The Adaptive rectangle and Region growing tool was used to remove the background (air) 

around the kernel. Surface fitting was performed using interactive thresholding of the grey values 

and observing the fit line on a slice view. Background was removed by creating an ROI of the 

background and then inverting and extracting the ROI. Figure H.1 illustrates the original, 

unsegmented images before and after roasting. Figure H.2 represents a raw and roasted kernel 

with the background and internal air and with the background and internal air removed. Once the 

background was removed, individual components were virtually segmented from the reconstructed 

volumes. The Region growing tool propagates through the 3D volume, connecting voxels within a 

specified grey value range to create a ROI; allowing each voxel of a specific colour to be compared 

with surrounding voxels. If neighbouring voxels has the same colour, they are considered to be 

part of the same ROI.  

After segmentation a cleaning step were applied to remove small numbers of pixels not of 

interest (noise) i.e. the partial volume effect. This effect is the result of one pixel containing 

numerous phases. The cleaning techniques used were an Opening and closing tool and Erode and 

dilate function. The germ was virtually (in each slice) removed using the Drawing tool in VGStudio 

Max 2.2 software. Once a segmented volume, with the various ROIs has been defined structural 

measurements was performed. ROIs were subjected to the Volume analyser function (Fig. H.3) to 

calculate whole kernel and ROIs volumes and relative densities. A representative slice from the 

maize kernels was selected from the dataset to obtain a mean grey value for each of the 

components in the kernel.  
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 FCCT Oven 

Raw  

  

Roasted 

  

Figure H.1. Original, unsegmented X-ray projection images before and after oven and FCCT 

roasting. 

 

   

               (a1)                          (a2) (b1)      (b2) 

Figure H.2. Illustration of (a) raw and (b) FCCT-roasted maize kernels with the background and 

internal air (a1 and b1) and with the background and internal air removed (a2 and b2).   
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Figure H.3. The Volume analyser function, illustrating the mean grey value and volume of the ROI 

of a maize kernel (encircled).  

 

Regions-of-interest  

Since a 3D model can be viewed from any angle, it is possible to virtually scroll through the sample 

to allow visualisation of the internal structure. This feature makes X-ray μCT ideally suited for the 

non-invasive imaging of internal features of food products, especially foods with a delicate 

structure, giving X-ray μCT a leading edge over other methods. ROIs can be manipulated by 

creating intersections or combinations of several ROIs.  

Often, with the traditional approach (e.g. hand dissection), it is difficult to properly select a ROI 

because the target region cannot be identified beforehand and one only has one opportunity for 

sectioning the sample. By means of 3D reconstruction the selection of a ROI can be repeated as 

many times as desired and the selection can be changed until the target ROI is attained. Once the 

ROI is selected in 3D it can be viewed from any arbitrary angle.  

 

Reference standard as ROI 

The average grey value of the polymer disc, used as a reference standard, was attained by 

selecting a representative volume from the disc (Fig. H.4). Each voxel has a certain grey value 

associated with it, which is dependent on the density and atomic number of the material. The mean 

grey value of the homogenous polymer disc is thus a measure of its density.  
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Figure H.4. Illustration of the acquisition setup where the polymer disc was scanned in the FOV for 

relative density determinations. 

 

Germ as ROI  

The usefulness of X-ray μCT was illustrated in the ability to exclude certain regions in the maize 

kernel to facilitate further separation of the ROIs. In this case the germ region was selected as ‘n 

ROI and then removed. This was done to allow more accurate segmentation of the vitreous and 

floury endosperm. Figures H.5 to H.8 visualises the germ as ROI.   

 

      

                                    (a)                                                            (b)                                   (c) 

Figure H.5. 2D projection images of a raw kernel with the germ selected as ROI in the (a) 

horisontal, (b) frontal and (c) sagittal view.     
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Figure H.6. Images of raw and FCCT-roasted maize kernels where the germ was selected as ROI, 

removed and extracted. 

 

Sample Raw Roasted 

FCCT 

  

Oven 

  

Figure H.7. Comparison of FCCT and oven roasting, with the germ as ROI before and after 

roasting.  
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                                        (a)                                                                      (b) 

 

                                        (c)                                                                 (d) 

Figure H.8. X-ray μCT volumes of a raw kernel where the germ (a) was selected as ROI and (b) 

was extracted. Volumes (c) and (d) illustrate a 3D reconstructed μCT image with the germ 

removed in a raw and FCCT-roasted kernel, respectively.  

 

Floury and vitreous endosperm as ROI  

Figures H.9. to H.17 illustrates the endosperm as ROI.  
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               (a)                                (b)                         (c)                                 (d) 

Figure H.9. Illustration of the floury endosperm in a raw maize kernel as viewed from different 

arbitrary angles: (a) back, (b) frontal, (c) side and (d) bottom 3D view.  

 

    

                                  (a) (b) 

Figure H.10. Demonstration of the (a) transverse and (b) frontal slice images of a raw maize kernel 

where the germ was removed and the floury endosperm (yellow), vitreous endosperm (grey) and 

pores (blue) were selected as ROIs.  

  

                             (a)                                                            (b) 

Figure H.11. Illustration of (a) the grey scale and (b) floury endosperm (yellow) extracted views of 

a FCCT-roasted maize kernel.  
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                                (a)                                                         (b)                                (c) 

Figure H.12. 2D Greyscale images illustrating the floury endosperm in a raw and oven-roasted 

maize kernel in the (a) transverse, (b) frontal and (c) sagittal view.  

 

 

Figure H.13. Representation of the 2D and 3D views of the germ (blue) and floury endosperm 

(yellow) extracted from a raw maize kernel.   

 

Raw  

Roasted  
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                (a)                              (b)                                             (c) 

Figure H.14. 3D and 2D visualisation of the (a) sagittal view, (b) frontal view and (c) back view of 

the floury endosperm in a raw maize kernel.  

     

     

Figure H.15. 2D images of a raw maize kernel illustrating the (a) vitreous endosperm (blue) and 

germ and (b) floury (yellow) and vitreous (blue) endosperm with the germ removed.  

(a)  

(b)  
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Figure H.16. 3D volumes of the floury (yellow) and vitreous (blue) endosperm in a raw maize 

kernel.  
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Sample Frontal view Transverse view Sagittal view 

Raw  

   

FCCT 

   

Raw 

   

Oven 

   

Figure H.17. 2D images illustrating the vitreous endosperm (blue) in the (a) frontal, (b) transverse 

and (c) sagittal view in raw and roasted maize kernels.  
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Appendix I: Quantitative measurements 

 

i. Percentage object volume (POV): The proportion of volume-of-interest (VOI) in relation to 

the total sample (Laverse et al., 2012). The VOI and total volumes were measured using 

the Volume analyser tool. 

POV (%) =  
VOI (mm3)

Total volume (mm3) 
 × 100%      (1) 

 

ii. Porosity: A measure of the volume of air voids (all the black pixels) divided by the total 

volume of the analysed sample (voids and material) (Gondek et al., 2013). Porosity 

analysis was performed by thresholding the voids and calculating the total air volume 

against the total sample volume (Du Plessis et al., 2014). It should be noted that for this 

study the porosity were considered as the total air in the sample, thus the totality of the 

cavities and the pores.   

Porosity (%) =  
Volume of air (mm3)

Total volume  (mm3)
 × 100%           (2) 

For the maize cavities were manually selected using the Region growing tool and the 

volumes were obtained using the Volume analyser function (VGStudio Max 2.2). The 

Defect detection tool was used to perform a Custom defect mask to colour code the cavities 

according to size. The %pores is also known as the closed porosity, where a closed pore in 

3D is described as a connected assemblage of black voxels that is fully surrounded by 

white voxels (Gondek et al., 2013). Pore volumes containing more than eight adjacent black 

voxels were regarded as pores (Guelpa, 2015). 

iii. Expansion ratio (ER): The ratio of the volume after roasting to the volume before roasting 

(Nath & Chattopadhyay, 2008). The ER was determined in order to quantify the volume 

increase induced by roasting. 

ER =  
Volume after roasting (mm3)

Volume before roasting(mm3)
        (3) 

 

iv. Vitreous-to-floury endosperm ratio (V:F): The ratio of vitreous (hard) to floury (soft) 

endosperm (Guelpa, 2015). 

V: F =  
volume of vitreous endosperm (mm3)

volume of floury endosperm (mm3)
       (4) 

  

v. Relative density: Measured in terms of the mean grey value of the ROI in relation to the 

mean grey value of the reference standard. It was then multiplied with the known density of 

the reference standard (2.15 g/cm3). Within the kernel, areas with a different density will 

result in differences in the X-ray attenuation.  

Relative density (g/cm3 ) =  
mean greyvalue of ROI

mean greyvalue of reference standard
 ×  2.15 g/cm3  (5) 

Stellenbosch University  https://scholar.sun.ac.za



245 
 

The mean grey value of this disc was attained by selecting a representative volume from 

the disc. Each voxel has a certain grey value associated with it, which is dependent on the 

density and atomic number of the material. The mean grey value of the homogenous 

polymer disc is thus a measure of its density. Subsequently the grey values determined for 

the different ROIs were substituted into formulae (5) to obtain the relative densities.  
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Appendix J: Qualitative image analysis of maize kernels 

Image contrast is based on differences in the absorption of X-rays by the different components of 

the sample (e.g. germ, endosperm and air voids) as these components have different X-ray 

absorption coefficients. This contrast is produced by variation in the material density and alteration 

in sample composition. It is based exclusively on the detection of variations in the amplitude of the 

X-rays transmitted through the sample itself. The brightness of a voxel is thus proportional to the 

density: the higher the density, the brighter the image. Figure J.1 presents the different views of a 

raw maize kernel in VGStudio Max 2.2. One window is a 3D volume, whereas the other three 

windows are 2D sectional views allowing the visualisation of different orientations (frontal, 

horisontal and sagittal). In comparison with other microscopic imaging techniques, the virtual 

inspection of the μCT serial section is easier as semi-automated data analysis is available. 

 

 

Figure J.1. Illustration of the different views of a raw maize kernel, i.e. horisontal/transverse (blue), 

frontal/coronal (green), sagittal (red) and a 3D rendered image (bottom right).  
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Sample Frontal view Horisontal view Sagittal view 
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Raw 

   
Oven 

   
Figure J.2. Grey scale tomographic images of the different views (frontal, horisontal and sagittal) 

of the whole maize kernels, before and after FCCT and oven roasting.  
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Appendix K: 2D and 3D interpretation and visualisation of X-ray μCT images  

Volume data consists of a continuous set of voxels arranged in a 3D grid structure. Voxels are 

volumetric pixels and thus the 3D equivalent of pixels. The x and y axis represents the horisontal 

and vertical pixel coordinates (2D), whereas the z axis represents the 3D coordinate. Each voxel 

represents a specific area in the object and the grey value provides information on the material 

properties in this area. A 3D map of X-ray absorption can be obtained from 2D projection images. 

Different features can be identified from these images due to the absorption differences of different 

materials. Figure K.1 (a) illustrates this approach with a 2D tomographic slice image. The slice 

represents a series of slices of a complete 3D volume. Figure K.1 (b) illustrates the 3D rendered 

image of the same kernel, (c) visualises a 3D clipped image, while (d) represents a semi-

transparent 3D image.  

Two-dimensional data is not always fully representative of the true 3D structures, e.g. where 

the shapes and sizes of pores in a sample are dependent on the location of the 2D section. Images 

will demonstrate a better change in the size and geometry of the pores or cavities when viewed in 

3D. The internal structure of different materials can be studied and the distribution of regions 

varying in density can be visualised through virtual slicing of a 3D volume rendering (Fig. K.2). This 

is however only possible if the X-ray attenuation of the ROIs is significantly different to provide 

adequate contrast. Image analyses is not limited to one individual slice image at a time, but covers 

the volume in all three dimensions. Figures K.3 and K.4 presents a sequence of snapshots of the 

internal structure (as seen from the top at various depts) of raw (left) and roasted (right) maize 

kernels. 

  

                (a)                                    (b)                                  (c)    (d) 

Figure K.1. Illustration of a (a) 2D slice image, (b) 3D volume rendering, (c) clipped (sectioned) 

image and (d) semi-transparent 3D volume of a raw maize kernel.  

 

y

  

x
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                           (a)                                                               (b) 

Figure K.2. Illustration of (a) 2D projection images and (b) 3D reconstructed models of maize 

kernel before (left) and after FCCT roasting (right).  

 

                    

                    

              

                                    

                           

          

                        

Figure K.3. Diagram of the two-dimensional slice-by-slice (traversing the X–Z axis) images of a 

raw (left) and FCCT-roasted (right) maize kernel. 

  

(5) 
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Figure K.4. Diagram of the two-dimensional slice-by-slice (traversing the X–Z axis) images of a 

raw (left) and oven-roasted (right) maize kernel. 

In Figure K.5 2D slice images and corresponding 3D models are presented and in Figure K.6 2D 

views of a raw and roasted kernel are shown to visualise the spatial distribution of voids.  
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Figure K.5. Illustration of the 2D slice images and corresponding 3D reconstructed models through 

the different planes (frontal, sagittal and horisontal) of an oven-roasted maize kernel.  
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                   (a)                                     (b)                                                    (c) 

Figure K.6. 2D slice images of a raw and FCCT-roasted kernel illustrating the (a) frontal, (b) 

sagittal and (c) transverse view with the voids (blue) selected as ROI.  

  

Raw  

FCCT 
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Appendix L: Clipping  

The clipping tool denotes the ability to virtually cut into a sample volume in the 3D window and also 

to make 2D sections in any orientation. The clipped areas can be made completely transparent to 

hide them or semi-transparent to illustrate certain features. The samples can also be freely 

positioned and rotated within the 2D and 3D display areas. The clipping tool enables the sample to 

be sliced along any arbitrary axis (Figs. L.1-L.4). Analysis software allows one to easily scroll forth 

and back through a sample. Making use of the 3D cursor tool a certain feature in one window can 

be marked and then the actual position of this feature will show in all the 2D windows. This tool is 

helpful, e.g. visualising the orientation of cracks and fractures in maize kernels.  

    

    

Figure L.1. Illustration of the different clipping views of a raw maize kernel, cut to reveal the 

internal structure.    
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                     (a)                                                (b)                                                

Figure L.2. Illustration of a clipped view of (a) a raw and (b) FCCT-roasted floury endosperm 

region. 

  

                (a)                                 (b)                                  (c)                                (d)     

Figure L.3. Representation of different clipping views of a (a and b) FCCT-roasted and (c and d) 

oven-roasted maize kernel. 

      

                                  (a)                                                                        (b) 

Figure L.4. Illustration of the dimensional analysis of a clipped (a) raw and (b) FCCT-roasted 

maize kernel.  
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Appendix M: Stress cracks  

Kim et al. (2002) stated that if grains are exposed to high temperature drying, stress cracking 

levels might increase. The formation of stress cracks is associated with the rapid drying of maize at 

high temperatures (Gunasekaran et al., 1985). Thus this phenomenon could be assumed for the 

roasting process. The internal type of damage, referred to as stress cracks, is cracks or fissures 

that forms on the inside of grains due to excessive compressive or tensile stresses that occur 

during drying, or in this case roasting (Kim et al., 2002). The extent of the stress cracks are also an 

indicator of heat damage such and protein denaturation and starch gelatinisation. Even though 

stress cracking itself does not cause direct physical damage, high stress crack levels leads to 

higher breakage susceptibility. This will also lead to a lower yield during dry milling and reduce 

starch recovery during wet milling. 

The general method for detecting internal cracks or cavities in maize kernels is visual 

inspection, by holding the germ side towards a light source (Chowdhury & Buchele, 1976). Internal 

cracks caused by high temperature during the development of a maize kernel were characterised 

using visual, X-ray and scanning electron microscopical analysis (Moreira de Carvalho et al, 1999). 

Analysis with the X-ray machine enabled the visualisation of stress cracks that were not visible with 

the human eye and, thus, gave a better estimate of the percentage of cracks. 

According to Moreira de Carvalho et al. (1999) stress cracks differ from external cracks 

caused by mechanical impact. Defects like pericarp cracks, caused by mechanical stress are 

easily identified, in contrast to internal cracks caused by thermal stress which are not readily 

identifiable. It is supposed that if stress cracks are located inside or perpendicular to the embryo 

axis, it may have an influence on the kernel quality.  

In a study by Song & Litchfield (1994) drying induced stress cracks in maize kernels were non-

destructively measured during drying and cooling procedures using magnetic resonance imaging 

(MRI). They observed stress cracks in the vitreous endosperm in areas with a larger moisture 

gradient and lower moisture content (Song & Litchfield, 1994). Song et al. (1992) used 3D 

microscopic MRI to non-destructively measure the moisture transfer in individual maize kernels 

during two drying conditions. This study confirmed that the floury endosperm loses moisture faster 

than the vitreous endosperm. 

Gunasekaran et al. (1987) developed an image processing algorithm for detecting stress 

cracks in maize kernels using a commercial vision system and found that stress cracks propagates 

from the centre of the kernel and does not extend into the pericarp. The same results were found 

by Balastreire et al. (1982), by means of optical microscopy. If cracks are internal and invisible to 

the human eye, a more accurate and automated method, such as X-ray imaging is desired. 

Girardin et al. (1993) concluded that X-ray radiography was the best method to non-destructively 

characterise maize kernels characteristics.   
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Appendix N: Cavity analysis  

Along with thermal degradation of the structure and organic compounds, non-enzymatic reactions 

also occur. The high quality of the μCT images reveals details of the microstructure such as 

internal void shape, size and spatial distribution. Figures N.1 to N.6 reveals the X-ray μCT images 

obtained at a resolution of 12 μm to illustrate the cavities in maize kernels before and after 

roasting. It should be noted that the colour bar indicates the size (mm3) of the cavities, where large 

cavities are magenta and smaller ones purple.  

 

Figure N.1. Image of the volume size distribution of the cavities in a raw sample.  

Pores and cavities in porous materials can have different structures: (i) interconnected segments 

or (ii) isolated or non-interconnected segments (Ali et al., 1996). Interconnected spaces are 

accessible on both ends, while isolated spaces are inaccessible closed pores within the solid 

material. Thus, interconnected voids are viewed as open apertures, while isolated spaces are 

closed. The cavities is colour coded according to size, where cavity 1 (green) is 0.55 mm3, cavity 2 

(yellow) is 0.72 mm3, cavity 3 (red) is 0.99 mm3 and cavity 4 (blue) is 0.15 mm3 (Fig. N.2.).  
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Figure N.2. Magnified image of the volume size distribution of the cavities in a raw maize kernel. 

 

Figure N.3. Image of the volume size distribution of the cavities in a FCCT-roasted kernel. 

1 

2 

3 
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Figure N.4. Image of the volume size distribution of the cavities in a raw kernel. 

 

 

Figure N.5.  Image of the volume size distribution of the cavities in an oven-roasted kernel.  
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Figure N.6. 3D visualisation of the volume size distribution of the cavities in an oven-roasted 

kernel from the side (left) and form the top (right) view.  
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Appendix O: Pore network analysis   

The results of the Defect detection function also allowed pores to be visualised in a clear manner 

(Fig. O.1-O.5). Comparing the raw and roasted samples separate pore networks are present in the 

raw samples, illustrated by different colours, whereas in the roasted samples the pores is 

interconnected forming a pore network illustrated by only one colour.  

 

Figure O.1. Image of the pore volume size distribution of the pore network in raw sample. 

 

 

Figure O.2. 3D visualisation of the volume size distribution of the pore networks in a raw sample 

from the back (left) and form the side (right) view.  
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Figure O.3. Image of the volume size distribution of the pores in a FCCT-roasted kernel. 

 

 

Figure O.4. Image of the volume size distribution of the pores in a raw kernel. 

Stellenbosch University  https://scholar.sun.ac.za



262 
 

 

Figure O.5. Image of the volume size distribution of the pores in an oven-roasted kernel. 
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Appendix P: Porosity (pores and cavities) analysis in three dimensions  

Figures P.1 to P.5 showcases porosity (pores and cavities) distribution in 3D volume renderings of 

the samples reconstructed from the CT slices. The cavities and pores are coloured according to 

the scale bar to indicate the size and illustrated in one image. The sample is made semi-

transparent in order to observe the cavities and pores more clearly.  

 

 

Figure P.1. 3D volume of a raw sample illustrating the presence of both the cavities and pores.  

 

Figure P.2. 3D volume of a FCCT-roasted kernel illustrating the cavities (yellow) and pores (blue).  
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Figure P.3. 3D visualisation of the volume size distribution of the cavity and pore networks in a raw 

sample from the back (left) and from the side (right) view.  

 

Figure P.4. Illustration of the presence of both the cavities (dark red) and pores (blue) in a oven-

roasted kernel.  
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Figure P.5. 3D visualisation of the volume size distribution of the cavity (dark red) and pore (blue) 

networks in an oven-roasted sample from the back (left) and form the side (right) view.  
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