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 III 

SUMMARY 

 

Maize (Zea mays L.) is one of the most important grain crops produced globally and serves as 

the primary source of carbohydrates and vitamins to millions of people in Africa. Whenever 

environmental conditions are favourable, fungal species such as Fusarium verticillioides, 

Fusarium graminearum sensu lato, Aspergillus flavus and Stenocarpella maydis frequently 

infect the ears of maize, reducing yield and grain quality. Of greater economic concern is the 

contamination of maize kernels with mycotoxins produced by ear rot pathogens due to its 

association with mycotoxicoses and immune suppression in humans and animals. Outbreaks 

of ear rot diseases commence in the field, but their associated toxins can be produced along 

the value chain. Planting resistant cultivars, as part of an integrated management strategy, 

could provide effective means of controlling preharvest ear rot diseases and mycotoxin 

accumulation in maize.  

Maize cultivars resistant to the major ear rot fungi and their mycotoxins are not yet 

available in South Africa and therefore should be developed in plant improvement 

programmes where durable resistance is combined with useful agronomic traits. The first step 

in introducing resistance into maize cultivars would be to find sources of genetic resistance. 

Infertility or unwanted traits may be present in wild relatives or other species of maize, and 

therefore locally adapted breeding material would be the most desirable source.  

This research aimed to identify publically available maize genotypes with durable 

resistance to the major ear rot pathogens and their associated mycotoxins in South Africa. In 

this study, a collection of inbred lines with diverse genetic backgrounds and valuable 

agronomic characteristics were evaluated under a range of field conditions. Some inbred lines 

were resistant to Fusarium ear rot (FER) and fumonisin contamination during artificially 

inoculated trials over two years. Furthermore, these FER-resistant inbred lines have been 

tested for resistance to other important maize ear rot diseases including Gibberella ear rot, 

Diplodia ear rot and Aspergillus ear rot in a multi-location field trial. Inbred lines with low 

and high levels of resistance to multiple infections were identified, but significant inbred x 

location interactions were observed. This suggests that potentially resistant lines will require 

further testing in an extra season to confirm their resistant status. If confirmed, these sources 

could be used to investigate the underlying mechanisms conferring resistance, or to develop 

molecular markers to facilitate the transfer of resistance into commercially valuable cultivars.   
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 IV 

OPSOMMING 

 

Mielies (Zea mays L.) is een van die belangrikste graangewasse wat wêreldwyd geproduseer 

word en dien as primêre bron van koolhidrate en vitamienes vir miljoene mense in Afrika. 

Tydens gunstige omstandighede, word die koppe van mielies dikwels geïnfekteer deur swam 

spesies soos Fusarium verticillioides, Fusarium graminearum sensu lato, Aspergillus flavus 

en Stenocarpella maydis wat lei tot ‘n afname in opbrengs en graan kwaliteit. Kontaminasie 

van mieliepitte met mikotoksiene wat geproduseer word deur kopvrot patogene, is egter van 

groter ekonomiese belang aangesien dit verband hou met mikotoksikoses en imuun 

onderdrukking in mens en dier. Uitbrake van kopvrot siektes begin in die veld, maar die 

produksie van geassosieerde mikotoksiene kan regdeur die voedselketting geskied. Die 

aanplanting van weerstandbiedende kultivars, as deel van geïntegreerde 

siektebestuurmaatreëls, kan effektief wees in die beheer van voor-oes kopvrot siektes en 

mikotoksien-kontaminasie.  

Mielie kultivars wat weerstand bied teenoor die hoof kopvrot swamme en hul 

mikotoksiene is nog nie in Suid-Afrika beskikbaar nie en moet dus ontwikkel word in plant 

verbeteringsprogramme waar duursame weerstand met nuttige agronomiese eienskappe 

gekombineer word. Die eerste stap in die verbetering van weerstand in mielie kultivars sal 

wees om bronne van genetiese weerstand te vind. Plaaslik-aangepaste teeltmateriaal bied die 

mees geskikte bron, omdat daar geen komplikasies van onvrugbaarheid of ongewenste 

kenmerke behoort te wees wat van wilde familielede of ander spesies afkomstig mag wees 

nie.  

Mielie genotipes met stabiele weerstand teen kopvrot patogene en hul geassosieerde 

mikotoksiene in Suid Afrika is in hierdie studie geïdentifiseer na evaluasie van ‘n 

versameling inteellyne met verskillende genetiese agtergronde en waardevolle agronomiese 

eienskappe. Na afloop van geïnokuleerde proewe is daar gevind dat sekere inteellyne 

weerstandbiedend is teenoor Fusarium kopvrot (FKV) en fumonisien-kontaminasie. Die 

FKV-weestandbiedende inteellyne is toe vir weerstand teen ander belangrike kopvrot siektes, 

insluitend Gibberella kopvrot, Aspergillus kopvrot en Diplodia kopvrot, getoets. Inteellyne 

met lae en hoë vlakke van weerstand teen verskeie infeksies is geïdentifiseer, maar ‘n 

beduidende inteellyn x lokaliteit interaksies is waargeneem. Dit dui daarop dat potensiële 

weerstandbiedende inteellyne verder getoets moet word om hul weerstandstatus te bevestig. 

Hierdie lyne kan dan gebruik word om die onderliggende meganismes wat weerstand teweeg 

bring te ondersoek of om molekulêre merkers te ontwikkel wat die oordrag van weerstand in 

kommersiële kultivars vergemaklik.  
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PREFACE 

 

Maize is the most important staple food for many South Africans. The crop may be affected 

by ear rot fungi that results in poor grain quality and yield. More importantly, these fungi 

produce mycotoxins that have been implicated in severe illness and immune suppressions in 

humans and livestock. Due to major economic losses, food safety concerns and health risks 

associated with the consumption of contaminated maize products, strategies are required to 

manage this problem effectively. Such preventative strategies should protect the crop prior to 

harvest, as damage and production of certain mycotoxins are known to be most extensive in 

the field.  

Chapter 1 provides an overview of maize production in South Africa, important ear rot 

diseases such as Fusarium ear rot, Gibberella ear rot, Aspergillus ear rot and Diplodia ear rot, 

and the contamination of grain with mycotoxins. Current disease management tactics are 

discussed and the role of host resistance emphasised. Finally, the use of conventional plant 

breeding to improve host resistance in maize to ear rot fungi and their mycotoxin is 

discussed.  

Host resistance, as part of an integrated management strategy, provides affordable and 

opportune means for controlling the mycotoxin problem. If resistant cultivars are not 

available, they should be developed in plant improvement programmes where durable 

resistance is combined with useful agronomic traits. The first step in establishing such a 

programme would be to find sources of genetic resistance, preferably in locally-adapted 

maize genotypes such as inbred lines. Chapter 2 describes how 11 genetically diverse maize 

inbred lines were tested for their resistance to Fusarium ear rot (FER) and fumonisin 

production in a multi-location trial over 2 years in South Africa. This was done to ensure that 

their resistance remained stable under different environmental conditions. The performance 

of these inbred lines were evaluated by visually rating ear rot symptoms and quantifying 

fungal concentration and fumonisin content by means of quantitative real-time PCR and 

liquid chromatography tandem mass spectrometry, respectively.  

Chapter 3 describes how six FER-resistant maize inbred lines were evaluated for their 

ability to resist Aspergillus ear rot, Gibberella ear rot and Diplodia ear rot and mycotoxin 

accumulation at three local field sites during the 2012/2013 season. This resistance, if stable, 

could be used in commercial and public conventional breeding programmes and be extremely 

advantageous to the local maize industry. The lines could be used to gain insight into host-

pathogen interactions and plant resistance responses, and to develop molecular markers that 

can aid in accelerating the process of conventional plant breeding. 
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CHAPTER 1 

 

Resistance in maize to ear rot pathogens and their mycotoxins: A review 

 

INTRODUCTION 

The Food and Agriculture Organization of the United Nations (FAO) describes maize (Zea 

mays L.) as one of the most important staple food crops produced worldwide (FAO, 1992). In 

Southern Africa, maize is the dominant grain crop with daily consumption levels ranging 

from 400 g to 500 g per person in certain regions (Shephard, 2008). Maize is also the largest 

field crop produced locally. The Free State, Mpumalanga and North West provinces are the 

primary producers, accounting for about 83% of total production (SAGL, 2011). It is 

estimated that approximately 50% of maize produced in the country is consumed by humans. 

Maize is the primary source of vitamins and carbohydrates and therefore plays an essential 

role in the livelihoods of millions of people. The rest of the maize produced is used for the 

animal feed industry (40%) and seed and industrial uses (10%)(National Department of 

Agriculture, 2009). Due to its adaptability to different geographical zones, ease of cultivation, 

high yield per hectare cropland and storage characteristics, maize has now become a 

commercial crop that many industries depend on for their raw materials (Asiedu, 1989; Iken 

and Amusa, 2004). However, sustainable maize production is compromised by the infestation 

of pathogens and pests prior to and after harvest (Lillehoj, 1987; White, 1999).  

In the field and under postharvest conditions, fungal infection damages the maize plant 

by causing leaf and stalk diseases as well as kernel decay. These diseases result in significant 

yield losses and decrease the quality and nutritive value of the grain (WHO, 2006; White, 

1999). The fungal genus Fusarium infects the maize, causing seedling diseases as well as 

root, stalk and ear rot, which can impact negatively on yield and plant growth (Munkvold and 

Desjardins, 1997). The species most frequently associated with ear rots of maize are 

Fusarium verticillioides (Sacc.) Nirenberg and Fusarium graminearum sensu lato (s.l.) 

(Ncube, 2008; Boutigny et al., 2011). Fusarium proliferatum (Matsushima) Nirenberg, 

Fusarium subglutinans (Wollenberg and Reinking) Nelson, Toussoun and Marasas, 

Aspergillus flavus Link ex Fries, Aspergillus parasiticus Speare, Stenocarpella maydis 

(Berck) Sutton and Stenocarpella macrospora Earle, also remain important causal agents of 

this disease (Munkvold, 2003b). Several of these species are responsible for producing a wide 

range of mycotoxigenic secondary metabolites, commonly referred to as mycotoxins.    
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Mycotoxin contamination in maize grain is currently of public concern due to its 

detrimental effect on both human and animal health (Wu, 2006; Murphy et al., 2006; Wu, 

2007; Balazs and Schepers, 2007). Although numerous fungal secondary metabolites can be 

found in maize-based foods and feeds, international research has focused  on certain 

mycotoxins that pose the greatest danger. These include fumonisins produced primarily by F. 

verticillioides and F. proliferatum, aflatoxins produced by A. flavus and A. parasiticus, and 

deoxynivalenol, nivalenol and zearalenone produced by Fusarium graminearum s.l. 

(Munkvold, 2003a; Boutigny et al., 2012). To date, the food-borne mycotoxins likely to be of 

greatest importance in Africa are the fumonisins and aflatoxins (Gelderblom et al., 1988; 

WHO, 2006), with the former being of current concern because it is a prevalent contaminant 

in South African maize (Ncube, 2008; Waalwijk et al., 2008). Due to their negative impact 

on society, advisory guidelines for mycotoxin content in maize products intended for 

commercial use have been implemented in several countries (Haumann, 1995; Van Egmond 

et al., 2007).   

In South Africa, regulatory legislation measures to facilitate safe and fair international 

trade of maize-based products are not in place except for aflatoxins (maximum limit of 10 

ppb) which are poorly enforced (Shephard, 2008; Rheeder, 2009). Consequently, a 

considerable part of the maize crop grown in the country could be receptive to mycotoxigenic 

fungi when environmental conditions are favourable. Detection of mycotoxins in maize 

products has resulted in pressure from international markets, regulatory, and trade policies in 

the form of reduced prices and even export rejection (WHO, 2006; Wu, 2007). The potential 

threat of ear rot diseases and subsequent mycotoxin production is exacerbated by an 

increasing human population and limited food supply. According to the Codex Alimentarius 

Commission (CAC)(2003) there is an urgent need for effective preventative management 

strategies and good agricultural practices to minimize economic losses and health risks 

associated with maize mycotoxin threat to food safety and security. 

Chemical and cultural practices have been relatively unsuccessful in eliminating 

infection and high mycotoxin levels in maize (Headrick and Pataky, 1991; Munkvold, 

2003a). The most effective strategy would be via host-plant resistance as it provides an 

affordable and opportune means to control mycotoxin contamination by ear rot pathogens. 

Maize hybrids and inbred lines have, therefore, been evaluated internationally for resistance 

to ear rot pathogens, especially A. flavus and F. verticillioides, but little is known about the 

resistance status of breeding material and commercial cultivars used in South Africa 

(Clements et al., 2004; Afolabi et al., 2007). In a recent investigation, potential resistance to 
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Fusarium ear rot and fumonisin contamination has been identified in a collection of maize 

inbred lines well adapted to South African growing conditions (Small et al., 2012). 

Additionally, Van Rensburg and Ferreira (1997) and Van Rensburg et al. (2003) also 

reported on local breeding material with high resistance to Diplodia ear rot.  

Studies have indicated that plant improvement for resistance to ear rot fungi may be 

achieved through plant breeding or genetic engineering (Munkvold and Desjardins, 1997; 

Iken and Amusa; 2004; Acquaah, 2007). Therefore, the objective of this literature review is 

to provide general background on host resistance in maize towards major ear rot diseases 

such as Fusarium ear rot, Gibberella ear rot, Aspergillus ear rot and Diplodia ear rot and their 

associated mycotoxins. The use of conventional plant breeding to improve host resistance in 

maize towards ear rot diseases and mycotoxin contamination is then discussed. 

 

MAIZE PRODUCTION IN SOUTH AFRICA 

 

Maize is the most important agricultural commodity in South Africa. It is estimated that 

South Africa has more than 9000 maize producers, who produced an average of 10 million 

tonnes annually between 1999 and 2011 (SAGL, 2011). These statistics indicate that South 

Africa is the largest maize producer in the Southern African Developing Community (SADC) 

region. Maize production systems in South Africa range from smallholder, subsistence 

farming to large-scale commercial farming. The latter accounts for 85% of maize grown in 

the country due to the use of improved agronomic practices (Bänziger and De Meyer, 2002). 

Maize is cultivated in a challenging environment. Public and socio-economic insecurity 

as well as a myriad of biotic and abiotic influences make it difficult to farm efficiently and 

profitably with maize. One of the major socio-economic problems associated with obtaining 

optimum yields involves the limited access of smallholder and subsistence farmers to 

additional inputs such as fertilisers, fungicides, education and employment (Bänziger and De 

Meyer, 2002). These farmers often avoid investing in their agricultural practices because of 

poverty or the risk of adverse economic responses. Additionally, biotic and abiotic maize 

production constraints include drought and heat stress, competition by weeds, plant diseases 

as well as the feeding damage caused by insects and rodents (Heisey and Edmeades, 1999; 

Pingali and Pandey, 2001). Public ignorance of the existence of mycotoxins exacerbates its 

potential threat to both humans and animals consuming contaminated maize products.  
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EAR ROTS OF MAIZE 

 

Fungal infestation of maize ears and kernels can be divided into distinct diseases that result in 

discolouration and the significant decrease in kernel density, yield, quality and feed value of 

the grain (White, 1999; WHO, 2006). These are Fusarium ear rot (FER), Gibberella ear rot 

(GER), Aspergillus ear rot (AER) and Diplodia ear rot (DER), of which FER and DER are 

the greatest economical concern to farmers in South Africa (Boutigny et al., 2012; Schoeman 

and Flett, 2012).  

 

Ear rot pathogens  

Fusarium species: The genus Fusarium is complex and consists of several species which are 

adapted to a broad range of environments throughout the world (Summerell et al., 2001). 

Many species grow as natural endophytes of maize in vegetative and/or reproductive tissue at 

some point during its lifecycle, while others are considered pathogens and cause rots, wilts 

and other diseases in agronomically important crops (Sikora et al., 2003). Pathogenic species 

of maize include F. verticillioides, F. proliferatum, F. subglutinans as well as F. 

graminearum sensu lato (Munkvold, 2003b). In most African countries, F. verticillioides is 

the predominant Fusarium species occurring on maize (Rheeder et al., 2002; Fandohan et al., 

2003; Ncube, 2008) and is responsible for causing FER. 

FER thrives in warm, dry weather and is characterized by a cottony, white-pinkish mold 

that usually occurs at the tip or in scattered areas on the maize ear (Munkvold, 2003b). 

Diseased kernels may also exhibit a distinctive “starburst symptom” which is observed as 

white streaks radiating out from the point of silk attachment or from the base of the kernel 

(Bush et al., 2004). Fusarium verticillioides grows over a broad range of temperatures and 

water activities (Reid et al., 1999) and infects the plant tissue during all development stages, 

in some cases without causing any visible symptoms (Munkvold et al., 1997; Bottalico, 1998; 

Munkvold, 2003b). High levels of infection have been reported in the western Free State, 

North West and Northern Cape provinces in South Africa (Boutigny et al., 2012).  

GER, primarily caused by F. graminearum s.l. (Boutigny et al., 2011), spreads from the 

tip of the maize ear, covers it extensively with pink or red mycelial growth, and results in 

yield and grain quality reduction (Logrieco et al., 2002). Natural epidemics of this disease are 

often localized and sporadic and thus difficult to predict (Viger et al., 2001). GER 

predominates in cooler areas such as the eastern Free State, Mpumalanga and KwaZulu-Natal 
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provinces (Boutigny et al., 2012). Low temperatures and high humidity favour infections to 

typically occur during the three week period after silking (Viger et al., 2001).  

 

Aspergillus species: Members of the genus Aspergillus are distributed worldwide, but are 

most abundant between 26° and 35° latitudes north and south of the equator and more 

common in tropical and subtropical regions (Klich et al., 1994). This genus contains 

economically important species such as Aspergillus flavus and closely related species A. 

parasiticus. Both species are primarily fungal saprophytes surviving on decaying plant matter 

but may be regarded as opportunistic pathogens in humans and animals (Klich et al., 1994). 

Aspergillus flavus is more common in maize and cottonseed due to its adaptation to upper-

ground niches whereas A. parasiticus, adapted to soil environments, is predominantly isolated 

from groundnuts (Yu et al., 2005). 

Aspergillus flavus and A. parasiticus are responsible for causing AER, one of the most 

familiar ear rot diseases in maize fields in west-central Africa, south-eastern United States 

and Texas (Henry et al., 2009). Aspergillus flavus appears as an olive-green and A. 

parasiticus as a green-gray powdery mold and are commonly observed at the tip of the ear 

during hot and humid seasons (Fennel et al., 1975). Similar to F. verticillioides, A. flavus can 

contaminate grain without causing any visible signs of infection (Henry et al., 2009). 

Extensive surveys by the South African Maize Board since 1986 have consistently indicated 

very low levels of aflatoxin contamination in both commercial and home-grown maize in 

South Africa (Janse van Rensburg, 2012). Although local maize is virtually free of aflatoxins, 

improper harvest and storage practices may cause A. flavus and A. parasiticus and subsequent 

aflatoxin accumulation (Shephard, 2005).    

 

Stenocarpella species: Stenocarpella maydis and the closely related S. macrospora are 

frequently reported in the literature as prevalent spoilage field fungi of maize (Odriozola et 

al. 2005). Although extensively published as species of Diplodia in previous years, S. maydis 

and S. macrospora belong to the order Diaporthales rather than the Botryosphaeriales as 

revealed by their distinct conidiogenesis (Sutton, 1980). 

Stenocarpella maydis and S. macrospora causes DER of maize where infection typically 

starts as a dense white to greyish mold growing from the base of the ear upward. In addition, 

S. maydis produces fruiting bodies (pycnidia) which appear as raised black bumps that may 

be scattered on the husks, ears and sides of rotten kernels (Lamprecht et al., 2011). Latent 

infection of S. maydis shows no apparent symptoms, but when the ears are broken in half and 
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the kernels removed, pycnidia can be found on the kernels whose embryos are discoloured 

(Nowell, 1997). 

The climatic conditions favouring S. maydis and S. macrospora differ dramatically. 

Stenocarpella maydis is monocyclic in nature and widely distributed over the entire maize-

producing area in South Africa (Van Rensburg and Flett, 2010; Lamprecht et al., 2011). It 

also prefers late season rains in warm climates (Flett and McLaren, 1994; Flett and McLaren, 

2001). Warm and humid weather favour infection by S. macrospora which is a polycyclic 

disease known to cause leaf lesions. DER caused by S. macrospora is frequently observed in 

the south-eastern regions of KwaZulu-Natal (Kloppers and Tweer, 2009).   

 

Life cycle of ear rot pathogens 

The cycle of infection and disease development in maize-pathosystems is complex and yet to 

be clarified (White, 1999). Fusarium species such as F. verticillioides and F. graminearum 

s.l, overwinter as thickened mycelia or fruiting structures on maize residues on the soil 

surface, or in the soil following mechanical incorporation. Soil-borne mycelia are believed to 

be the source of abundant conidia in maize fields during the growing season (Munkvold and 

Desjardins, 1997; Cotton and Munkvold, 1998). These spores are easily carried to the maize 

ear by wind, water and insects and serve as inoculum for infections (Munkvold, 2003b; Oren 

et al., 2003). Several infection pathways for F. verticillioides have been identified such as 

systemic movement from seed, root or stalk to the kernels, contamination of insect and bird 

damage as well as silk infection (Reid et al., 1996; Munkvold et al., 1997). Ear-invading 

lepidopteron pests such as stalk borers (Busseola fusca Fuller), ear borers (Ostrinia nubilalis 

Hübner), sap beetles (Carpophilus spp.; Glischrohilus quadrisignatus Hood) and thrips 

(Frankliniella williamsi Say) play a key role in the distribution of F. verticillioides and in 

FER disease development. They can act as wounding agents causing injury to the plant tissue 

that predisposes the kernels to fungal penetration, or they can act as vectors spreading the 

fungus from the origin of inoculum to new plantings (Fig. 1C) (Flett and Van Rensburg, 

1992; Munkvold and Desjardins, 1997; Dowd, 1998). The passive movement of spores along 

the surface of silks, perhaps via capillarity action, is considered to be the more important 

infection pathway for F. verticillioides into the ear (Manns and Adams, 1923; Koehler, 1942; 

Headrick and Pataky, 1991; Munkvold and Carlton, 1997). Duncan and Howard (2010) have 

recently suggested the phenotype of the stylar canal as a probable mechanism by which F. 

verticillioides enter developing kernels. 
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Sources of inoculum for A. flavus and A. parasiticus are conidia, mycelia and 

sporogenic scerotina (Calvo et al., 1999) that are produced by these fungi to prolong their 

survival in soil and plant debris (Yu et al., 2005). The large number of microconidia that are 

produced in the field stubble are easily wind dispersed and vectored in hot and humid 

weather. Spores may land on the silk tissue where they germinate and enter the ears prior to 

pollination. According to Payne (1999), green silks are relatively resistant to infection 

whereas senescent silks can be colonised by A. flavus and A. parasiticus. 

The life cycle of Stenocarpella species commence with a saprophytic phase when the 

fungi overwinter on unburied maize stubble as viable pycnidia or mycelia (Flett et al., 1992). 

Under warm moist conditions spores are extruded from the pycnidia and spread by wind or 

rain splashed onto several parts of the maize plant. Stenocarpella maydis and S. macrospora 

infect behind the leaf sheath at the stele and progress up the shank causing the ear to rot 

(Bensch et al., 1992). 

 

Mycotoxins and their toxicological effects  

In addition to causing ear rots, certain Fusarium, Aspergillus and Stenocarpella species also 

have the ability to produce a variety of mycotoxins with proven detrimental effects on both 

humans and animals (Pereira et al., 2011). Mycotoxins are secondary metabolites that are 

produced by many fungi in food crops and result in mycotoxicoses when ingested by humans 

and animals. The role of these substances in nature remains an open issue. Compelling 

evidence suggests that Fusarium graminearum s.l. may use its trichothecenes for 

pathogenicity (Desjardins and Hohn, 1997; Harris et al. 1999) and that F. verticillioides may 

produce fumonisins to obtain a competitive advantage during stressful environmental 

conditions such as water- and nutrient deficiency (Picot et al., 2010). 

Many mycotoxins are economically important, but the five most often encountered on 

maize are aflatoxins, fumonisins, deoxynivalenol, nivalenol and zearalenone. Moreover, the 

neurotoxin diplonine that was recently isolated and characterized locally is also attracting 

public attention (Snyman et al., 2011).  

 

Aflatoxins: Aflatoxins are a family of structurally related polyketides with the four major 

aflatoxins being B1, B2, G1 and G2, primarily produced by strains of A. flavus and A. 

parasiticus (Pitt et al., 1993; Pitt et al., 1994). The “B” and “G” designations refer to the blue 

and green fluorescent colours displayed under long wave ultraviolet light in physicochemical 

assays, while the subscript numbers 1 and 2 indicate chromatographic mobility. Acute 
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exposure to aflatoxins can lead to growth impairment, childhood stunting as well as jaundice 

and in severe cases, death (Gong et al., 2002). To date, the largest outbreak of aflatoxicosis 

occurred in Kenya in 2004 where 215 recognized deaths were reported (Lewis et al., 2005). 

The International Agency for Research on Cancer (IARC) has evaluated aflatoxin B1 and 

mixtures of aflatoxins as Group 1 carcinogens producing liver cancer in humans (IARC, 

2002). Aflatoxins in animal feed have also led to liver necrosis, oxidative stress and 

haemorrhage in broiler chickens, pigs and cattle (Eraslan et al., 2005; Osweiler, 2005).  

 

Fumonisins: While aflatoxins are the most damaging mycotoxin reported in the international 

scientific literature, fumonisins are more prevalent in South African maize (Waalwijk et al., 

2008; Ncube, 2008) and the discovery of their oesophageal cancer-promoting activity has 

resulted in extensive research efforts (Gelderblom et al., 1988). Fumonisins are produced by 

several Fusarium species, of which F. verticillioides is the most prolific and common 

fumonisin producer belonging to Gibberella fujikuroi mating population A (Marasas, 2001). 

While members of the D mating population, such as F. proliferatum, also produce large 

quantities of fumonisins, they are found on maize in relatively low frequencies (Shephard et 

al., 1996). Fumonisins are comprised of chemically related structures that consist of a 

minimum of 28 analogues (Nelson et al., 1993). The most commonly found in naturally 

contaminated maize-based foodstuff and feeds worldwide (Shephard et al., 1996; Rheeder et 

al., 2002) are the fumonisins B1, B2 and B3 (Marasas, 2001). Research has shown that 

fumonisin B1 disrupts the sphingolipid metabolism in many types of cells and also changes 

poly-unsaturated fatty acid pools, followed by cellular deregulation and finally cell death 

(Wang et al., 1991; Gelderblom et al., 2001). Therefore, circumstantial evidence linking the 

consumption of fumonisin contaminated maize to incidences of human oesophageal cancer in 

regions of South Africa and central China is plausible (Gelderblom et al., 1988; Chu and Li, 

1994; Marasas et al., 2004). Fumonisin is also considered a potential risk factor causing 

neural tube defects in newborns internationally where maize is a staple food, and reduced 

immunity which increases the possible onset of AIDS in HIV-compromised individuals in 

Sub-Saharan Africa (Stack, 1998; Missmer et al., 2006; Williams et al. 2011). The acute 

effects of FB1 in animal feed has resulted in hepatosis and leukoencephalomalacia in equines 

(Kriek et al., 1981; Kellerman et al., 1990), pulmonary oedema syndrome in pigs, nephrosis 

in sheep (Harrison et al., 1990) and liver cancer in experimental mice and rats (Gelderblom et 

al., 1994; Marasas, 2001). Based on these findings, the IARC has classified fumonisins as 

possible carcinogens (group 2B) to humans (IARC, 2002).  
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Diplonine: Recent investigation by Snyman et al. (2011) indicated the ability of S. maydis to 

produce diplonine, a neurotoxin that causes symptoms similar to those caused by diplodiosis. 

In South Africa, diplodiosis is rated the sixth most important mycotoxicosis of sheep and 

cattle (Snyman et al., 2011), resulting in nervous system defects and neonatal losses, as well 

as acute toxicity in ducklings and chickens (Kellerman et al., 1985; Rabie et al., 1987; 

Kellerman et al., 1991). Diplonine is yet to be linked to detrimental effects in humans (Barros 

et al., 2008; Snyman et al., 2011). Further research is currently underway to isolate and 

characterise the possible mycotoxins produced by S. maydis. Publically available standards of 

such mycotoxins will enable accurate risk assessment in grazing fields, and could facilitate 

studies into pathogenesis that could lead to a cure or preventative treatment for diplodiosis in 

livestock (Snyman et al., 2011).  

 

Trichothecenes: Deoxynivalenol (DON) and its acetylated forms 3-acetyl-deoxynivalenol (3-

A-DON) and 15-acetyl-deoxynivelanol (15-A-DON) as well as nivalenol (NIV) are classified 

type B trichothecenes, a large group of sesquiterpenoid molecules. These mycotoxins are 

produced by F. graminearum s.l. (Boutigny et al., 2011). Type B trichothecenes are 

extremely potent inhibitors of eukaryotic proteins, and RNA and DNA synthesis and interact 

with the cell wall membrane (Pestka, 2007). DON and NIV are two of the most common 

mycotoxins present in grains such as maize, wheat, oats, barley and rice and when ingested in 

high doses can cause nausea, vomiting, and diarrhoea in farm animals. At lower doses, pigs 

exhibit feed refusal and decreased weigh gain (Rotter et al., 1996). DON and NIV are often 

found in association with zearalenone (ZEA), because all are produced by F. graminearum 

s.l. (Boutigny et al., 2012). 

 

Zearalenone: ZEA and its derivative zearalenol are nonsteroidal molecules with estrogenic 

properties. While biologically potent, they are hardly toxic (Kuiper-Goodman et al., 1987). 

Ingestion of ZEA as low as 1 ppm can cause infertility, abortion or other reproductive 

disorders in mammals and farm animals (Nelson et al., 1993). Since ZEA and zearalenol’s 

ability to block estrogen receptors was discovered in the early 1970’s, pharmaceutical 

companies have manipulated it to serve as growth-promoting hormones and postmenopausal 

treatment (Utian et al., 1973; Hidy et al., 1977).  
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PREVENTION AND CONTROL OF FOOD-BORNE MYCOTOXINS   

 

Regulatory limits  

On the grounds that there are possible health risks associated with exposure to mycotoxins, 

maximum tolerable limits allowed for human and animal consumption have been established 

by international authorities in more than 100 countries (Haumann, 1995; Van Egmond et al., 

2007) (Table 1). Under South African national policy (Act No. 54 of 1972, as amended by 

Government Notice No. R. 1145 of 8 October 2004), only limits for aflatoxins in all 

foodstuffs but specifically peanuts and dairy milk (maximum limit of 10 ppb), and patulin in 

apple-based fruit juices (maximum limit of 50 ppb) has been legalised (Rheeder et al., 2009). 

In local commercial systems, however, maize grain are graded according to their aflatoxin, 

fumonisin, DON and ZEA content as published in the Agricultural Product Standards Act 

(Act No. 119 of 1990, as amended by the Government Notice No. 32190 of 8 May 2009) 

(SAGL, 2011).   

A survey conducted by Ncube (2008) in the 2006 and 2007 planting seasons illustrated 

that the majority of moldy grain harvested by subsistence farmers in South Africa are used in 

brewing traditional beer and as stock feed. Worryingly, most African countries lack the basic 

infrastructure, formal food markets systems and capacity to detect and control mycotoxins in 

food and feed prior to consumption, with the result that mycotoxin-contaminated 

commodities present greater health risks in these regions. It is thus crucial to investigate and 

develop quick and reliable detection and in vivo screening tests for either mycotoxigenic 

fungi or their mycotoxins that can be made publicly available at low cost.   

 

Risk assessment of food commodities   

Mycotoxins are ubiquitous and exposure occurs worldwide, with a large part of the food and 

feed chain contaminated to some extent (Magan and Olsen, 2004). Screening for mycotoxins 

in commodities can aid in the prevention and diagnosis of mycotoxicoses. Potential health 

risks are usually determined at the silos during grading where disease severity is visually 

assessed (SAGL, 2011). This is not a true indicator of the presence of mycotoxin-producing 

fungi due to the ability of different organisms to induce similar kernel symptoms. The 

identification and quantitative measurement of mycotoxigenic ear rot fungi and their 

mycotoxins in situ generally requires accurate sampling, sample preparation and analytical 

techniques that are easy, rapid, selective and sensitive (Small, 2010). According to Miraglia 
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et al. (2005), the sampling technique is the most important step in risk assessment since only 

a representative sample will yield reliable and useful results. 

 

Detection and quantification of mycotoxins: Many standard methods have been developed 

and employed for the screening and routine analysis of mycotoxins which generally require 

mycotoxin extraction from the matrix with an adequate solvent, a clean-up step to eliminate 

interference from the extract and finally, detection of the mycotoxin by suitable analytical 

instruments (Pascale and Visconti, 2008). Analytical methods, such as thin-layer 

chromatography (TLC) and high performance liquid chromatography (HPLC) are commonly 

used in practice but are incapable of dealing with multi-analytes in complicated food matrices 

(Sulyok et al., 2005). Modern technology such as liquid chromatography with tandem mass 

spectrometry (LC-MS/MS) offers higher selectivity as its simple dilute and shoot approach 

enables the detection of several masked and diverse mycotoxins without dedicated sample 

clean-up (Berthiller et al., 2005; Sulyok et al., 2010). Other advanced technologies for 

mycotoxin analysis include lateral flow devices, infrared spectroscopy, fluorescence 

polarization immunoassays, biosensors, molecularly imprinted polymers and chip technology 

to name a few (Sulyok et al., 2010). These techniques are, however, very expensive and 

require specialist expertise. 

Enzyme linked immunosorbent assays (ELISA) for detection of mycotoxins have 

become very popular due to their affordability and easy application (Goryacheva et al., 

2007). Commercially available ELISA kits are based on a competitive assay design that uses 

a monoclonal antibody to target a specific molecule. These tests can be rapid, highly specific 

and portable (Stanker et al., 2008). The disadvantage of these kits lies in the fact that they are 

made for single use only and become cost-prohibitive in bulk screening. Additionally, ELISA 

tests have a limited detection range due to the narrow-based sensitivity of the antibodies 

(Stanker et al., 2008). 

 

Detection and quantification of mycotoxigenic fungi: Quantification of mycotoxigenic fungi 

in maize has involved plate counts and infection rates (percentage of seed that show fungal 

growth after surface disinfection) as an indication of fungal biomass (Schwadorf and Müller, 

1989; Saxena et al., 2001). These conventional methods are time-consuming and in the case 

of infection rate, not applicable to milled samples. Furthermore, microscopic identification of 

fungi in planta requires technical skill.  

Stellenbosch University  http://scholar.sun.ac.za



 
 

27 

 Ergosterol assays has proven to be useful in the early detection of fungi in grain crops 

such as rice (Gourama and Bullerman, 1994), wheat (Saxena et al., 2001) and maize (De 

Castro et al., 2002). Ergosterol is a core sterol component specific to fungal cell membranes 

that may be influenced by elevated oxygen levels and water activity. Ergosterol assays are 

therefore not trustworthy and cannot be used to measure specific fungal mass in a sample. 

The limitations of conventional methods have prompted scientists to develop nucleic 

acid based methods for the rapid identification and quantification of mycotoxigenic fungi. 

Although conventional polymerase chain reaction (PCR) is accurate and sensitive, Barros et 

al. (2008), Mideros et al. (2009) and Boutigny et al. (2012) found real-time PCR (qRT-PCR) 

to be more sensitive and specific, and therefore an effective tool for the quantification of ear 

rot fungi in dry milled maize. Presently, qRT-PCR is frequently used in laboratory assays as 

it is reproducible, time-effective and more reliable than culturing and visual ratings. This data 

may also be used to determine the distribution of certain ear rot pathogens (Boutigny et al. 

(2012). 

 

Current control strategies to reduce mycotoxin contamination  

Technology is not yet available to completely eliminate mycotoxins from maize products or 

other food commodities (Munkvold and Desjardins, 1997). However, the implementation of 

sound control strategies during production followed by good storage and manufacturing 

practices could ensure reduced pathogen and mycotoxin concentrations in foods and feeds. 

Such practices include preharvest management, postharvest handling, storage, transportation 

and processing phases (Wagacha and Muthomi, 2008).  According to the Codex Alimentarius 

Commission (CAC)(2003) the following agronomic and storage practices will help reduce 

fungal infection and consequent mycotoxin formation in cereal crops.  

 

Agronomic practices and postharvest storage: In the field, the incidence and severity of 

mycotoxin accumulation in maize depends on the coincidence of host susceptibility, 

inoculum pressure and environmental conditions conducive to both the epidemiology of 

mycotoxin-producing pathogens and mycotoxin production (Munkvold, 2003a). Therefore, 

preharvest measures recommended to decrease unacceptable mycotoxin levels, include i) 

seed bed preparation and crop-rotation with non-host crops to reduce inoculum build-up 

(Flett, 1993; Munkvold, 2003a), ii) planting locally adapted maize cultivars with enhanced 

resistance to ear diseases and mycotoxin accumulation (Munkvold, 2003a) iii) enriching the 

soil with adequate nitrogen and other essential growth nutrients to maintain plant health and 
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reduce susceptibility (Blandino et al., 2008), iv) adhering to earlier planting dates in 

temperate areas, and recommended row widths and plant densities to reduce water stress 

(Mukanga et al., 2011), v) irrigation during critical periods reduces mycotoxin levels in 

maize by avoiding elevated temperature and drought stress known to enhance fumonisin and 

aflatoxin production (Jones et al., 1980; Cole et al., 1985), vi) preharvest insecticides should 

be applied to control infection routes created by certain insects (Munkvold, 2003a) and vii) 

preharvest herbicide treatments are important to reduce plant stress as a result of competition 

with weeds for nutrients, space and water (Fandohan et al., 2003).  

In South Africa, maize is left to dry naturally in the field to a moisture content of 15%. It 

should be harvested as soon as practically possible, since delayed harvest under conditions 

favourable for ear rot and/or mycotoxin development results in elevated mycotoxin levels 

(Chulze et al., 1996; Bush et al., 2004). In subsistence farming systems, broken and rotten 

grain should be sorted and separated from the bulk before storing it in clean bins equipped 

with ventilation systems to allow dry and cool conditions (Afolabi et al., 2006). In 

commercial farming systems, the grain is graded according to national grading standards 

which take broken and rotten kernels into account (SAGL, 2011). Under commercial storage 

conditions, grain must be kept at a suitable temperature (preferably 1 to 4ºC) and moisture 

content (< 15%). Storage facilities, whether subsistence or commercial, must also protect the 

grain from the damage caused by unpredicted weather (rain, wind and hail) and bird, rodents 

and insects. Implementation of basic sanitation measures and appropriate control actions of 

pests will minimize infection of maize in storage (Wagacha and Muthomi, 2008; Mukanga et 

al., 2011). 

Developing countries rarely have the technical infrastructure and financial resources to 

optimise traditional management practises for mycotoxin control (Small, 2010). In light of 

this, research is aimed at integrating different management programmes for alternative 

control of maize ear rots and mycotoxin development. 

 

Physical control: Physical treatments include heating, washing, polishing, mechanical sorting 

and separation, UV radiation and ultrasound treatment to name a few (Fandohan et al., 2005). 

In subsistence farming systems, washing and crushing in combination with de-hulling maize 

grain have been shown to effectively prevent further accumulation of fumonisins and 

aflatoxins after harvest (Siwela et al., 2005; Fandohan et al., 2008). Physical control 

strategies have met limited success because their application is labour and time-intensive and 
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most mycotoxins are chemically stable and thus not destroyed by long term storage and 

boiling (IARC, 1993; Howard et al., 1998). 

 

Biological control: Biological methods have shown great promise in reducing mycotoxin 

levels in the field, because it is safe to the environment and most specific to the particular 

pest (Meissle et al., 2009). Interactions between different fungal species can significantly 

affect the conditions of disease development and subsequent mycotoxin production. With 

respect to Fusarium species, Marin et al. (1998) found F. verticillioides to competitively 

exclude A. flavus at a water activity above 0.96 under both field and laboratory conditions. In 

field studies, Reid et al., (1999) suggested F. verticillioides to dominate F. graminearum 

whereas in vitro studies contradicted this finding (Velluti et al. 2000; Velluti et al., 2001). 

Many bacterial species have shown potential to limit fungal growth effectively under 

laboratory conditions. Bressen and Figuieredo (2005) reported the antagonistic abilities of 

Streptomyces to manage S. maydis in maize seeds and seedlings whereas Bacillus, 

Pseudomonas, Ralstonia and Burkholderia strains completely inhibit A. flavus and its 

aflatoxins (Palumbo et al., 2006). The use of endophytic bacteria to reduce fumonisin-

producing Fusarium species has also been demonstrated by Bacon et al. (2001). Although 

bacteria appear to be effective in vitro, their use in the field remains a challenge due to their 

inability to be effective under field conditions (Dorner, 2004).    

The biological control strategy with the greatest potential to reduce fumonisin and 

aflatoxin contamination, involves the application of atoxigenic strains to maize fields 

(Desjardins and Plattner, 2000). Atoxigenic strains naturally outcompete and displace the 

toxigenic isolates in the same niche (Phillips et al., 2005; Pitt and Hocking, 2006; Dorner, 

2008). Based on this technology, commercial biopesticides such as Alfaguard™ and 

Aflasafe™ have been developed and are readily available to reduce aflatoxin contamination 

in American and African maize, respectively (Abbas et al., 2006).  

 

Chemical control: There are no effective fungicides registered in South Africa to control the 

major ear rot diseases of maize (Janse van Rensburg, 2012). A possible reason for this could 

be that the maize ear is difficult to reach when using a spray programme. Even if there were 

fungicides available, it might not be a sustainable solution in the long-term in most African 

countries since it is not economically feasible at small-scale farm level (Wagacha and 

Muthomi, 2008). While some approaches are directed at managing mycotoxin accumulation 
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with biopesticides together with the use of fungicides, others are focused on decontaminating 

maize after harvest.  

To date, innovative attempts to detoxify mycotoxins in maize products by chemical 

means have met with limited success. Ammoniation and oxidising agents are well recognized 

internationally in the maize industry because they successfully detoxify aflatoxins in milled 

maize (Park et al., 1992). Their efficacy to reduce sufficient quantities of FB1, however, is 

inconsistent (Moustafa et al., 2001). In contrast, non-enzymatic browning (Lu et al., 1997) 

and nixtamalization (Park et al., 1996) were found to reduce FB1 concentrations in maize.  

Another manner to reduce the uptake of mycotoxins from contaminated animal feed is 

with the use of mycotoxin binders. These adsorbent materials are intended to absorb 

mycotoxins in the gastrointestinal tract, thus preventing their uptake in the blood and 

distribution to target organs. Many absorbent materials such as activated carbon, hydrated 

sodium calcium aluminosilicates (HSCAS) and polymers have been studied (Mayura et al., 

1998; Solfrizzo et al., 1998) and some have been promoted as animal feed additives in 

intensive pig and chicken farming systems (Pasha et al., 2007; Jacela et al., 2010). However, 

most of them appear to be highly specific. HSCAS,  for example, are very effective in 

animals as they alleviate the toxic effects of aflatoxins, but have little or no beneficial effect 

against fumonisins, trichothecenes or zearalenone (Lindemann et al., 1993). Additionally, the 

uptake and utilization of essential nutrients from the feed may also be inhibited (Mayura et 

al., 1998; Solfrizzo et al., 1998). Clinical trials regarding the short-term safety evaluation of 

processed calcium montmorillonite clay (NovaSil) in reducing human exposure to aflatoxin 

are currently underway (Wang et al., 2005; Phillips et al., 2008).  

 

Host-plant resistance: Breeding maize varieties to improve plant resistance is the most 

efficient strategy thus far in controlling the mycotoxin menace. This technology is convenient 

for farmers and producers as it provides affordable and environmentally sound control over 

ear diseases and mycotoxins in grain without the reliance on pesticides. Enhanced plant 

resistance has widely been used since the 20th century and sources of resistance to ear rot 

pathogens have been found internationally (Biffen, 1905; Dorrance et al., 1998; Keen, 2000; 

Clements et al., 2004; Presello et al., 2004; Kleinschmidt et al., 2005; Afolabi et al., 2007; 

Mesterházy et al., 2012). DER-resistance in breeding material (Wiser et al., 1960; Van 

Rensburg and Ferreira, 1997; Van Rensburg et al., 2003) and hybrids (Rheeder et al., 1990; 

Flett and McLaren, 1994) tested under local growing conditions have also been reported. In a 

recent investigation by Small et al. (2012) locally-adapted maize inbred lines with high 
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resistance to F. verticillioides and fumonisin contamination have been identified. These lines 

were selected by maize breeders for their good combinability and agronomic traits and are 

used extensively in the Agricultural Research Council Grain Crops Institute’s breeding 

programmes (Potchefstroom, South Africa).  

 

NATIVE DEFENCE IN PLANT-PATHOGEN INTERACTIONS 

 

Green plants are an attractive source of nutrients for organisms that are not able to produce 

their own food. In order to discourage consumption by potentially harmful micro-organisms 

and animals, plants have developed defence strategies; some that are preformed and prevent 

invasion of the attackers (constitutive) and others that act in response to pathogen detection 

by means of active host-defence (inducible) (Niks et al., 2011). 

 

Constitutive defence 

Plants have various defence mechanisms in the form of structural and biochemical barriers as 

well as other protein-based defences to combat potential pathogens and insects that target and 

damage their cells (Guest and Brown, 1997). These barriers represent the first line of defence 

against attackers. 

 

Structural barriers: The physical shape and structure of plants play a key role in limiting 

pathogens to successfully attach, invade and cause infection in host tissue. Some plants shield 

their leaves with a thick, waxy cuticle layer while others have evolved thorns and spines to 

deter insect predators. Many of the defence mechanisms in maize plants are poorly 

understood. However, the type of cultivar and certain features of the maize ear and kernel 

morphology have been indicated in the resistance of major ear rot pathogens.  

With respect to FER, maize traits that may act as barriers for penetration include closed 

ear tips (Fig. 1A) and tightness of the husk (Warfield and Davis, 1996); droopy ears 

(Munkvold, 2003a); stems that do not lodge easily (Alakonya et al., 2008); delayed silk 

senescence after pollination (Headrick and Pataky, 1991); pericarp thickness (Sampietro et 

al., 2009); the structure of the stylar canal (Duncan and Howard, 2010); the waxy and black 

layers of the kernel (Headrick and Pataky, 1991; Guo et al., 1995) as well as decreased 

tendency of the kernel to split (Odvody et al., 1990). Additionally, Brown et al. (1993) 

demonstrated the viability of the embryo to mediate resistance to AER and aflatoxin 

accumulation whereas Munkvold (2003a) suggested pendant ears (Fig. 1B) and ears with 
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loose husks to be more susceptible to GER development after heavy rainfall. Physical barriers 

documented for DER-resistance include husk protection (Koehler, 1953), pericarp thickness 

and droopy ears (Koehler, 1959).  

 

Biochemical barriers: Biochemical barriers are molecules secreted in cells or onto the plant 

surface preventing tissue infection by pathogens. In specific cases these secretions may be 

essential for infection by certain pathogens. An example of such a situation would be the eggs 

of the potato cyst nematode, Globodera rostochiensis, which cannot hatch in the absence of 

specific exudates (Guest and Brown, 1997). The bitter-tasting properties of tannins and 

alkaloids repel herbivores, whereas phytotoxic mixtures of phenolic compounds, defensins 

and antioxidant enzymes contribute to the anti-microbial activity in resistant maize genotypes 

(Brown et al., 1999; Chen et al., 2001; Bily et al., 2003). Assabgui et al. (1993) reported on 

the correlation of kernel (E)-ferulic acid content in maize with resistance to GER infection. 

Furthermore, a study conducted by Chen et al. (1999) revealed a 14 kDa trypsin inhibitor 

protein that arrested the production of aflatoxin by A. flavus. Toxic chemicals and defence-

related proteins are not actively produced by the plant until pathogens are detected because of 

the high energy cost to the plant and nutrient requirements associated with their production 

and maintenance (Freeman and Beattie, 2008). 

 

Induced defence 

Biotrophic pathogens must be able to interact with host cells to manipulate them to their 

advantage. Once the pathogen overcomes the initial line of defence, the pathogen must then 

contend with a secondary line of defence that is actively deployed by the host to stop the 

pathogen’s spread within the tissue. 

 

Localized and systemic induced resistance: Induced resistance requires recognition of 

specific elicitor molecules, which can either be of foreign origin such as microbial proteins, 

or derived from the plant itself after it has been damaged (Van Wees et al., 2008). Elicitors 

are perceived by the plant as danger signals, thereby activating an array of signalling 

networks and production of anti-microbial compounds. In the course of coevolution, certain 

pathogens have developed counter measures to suppress plant defence responses. Among 

these, secretions of effectors or virulence factors interfere with signal transduction pathways 

required to trigger plant immunity (Van Wees et al., 2008). In turn, certain plants have gained 

the means to detect effectors by the production of pathogenesis-related (PR) proteins. 

Stellenbosch University  http://scholar.sun.ac.za



 
 

33 

Effector recognition often leads to localized plant cell death, the hypersensitive response 

(HR), which ultimately results in long-lasting and broad-spectrum resistance throughout the 

host plant (Van Wees et al., 2008). This systemic induced resistance (SAR) uses the  plant’s 

own resources as defence mechanisms in case of further pathogen attack. Plants are able to 

induce systemic resistance upon colonisation of roots by beneficial soil-borne micro-

organisms such as rhizobacteria and mycorrhizal fungi (Van Loon et al., 2006; Van Wees et 

al., 2008).  

Besides these biological elicitors, SAR can be triggered with natural chemical activators 

such as plant hormones. Salicylic acid (SA), jasmonic acid (JA), ethylene (ET) and β-amino-

butyric acid (BABA) are known to play central roles in the regulation of plant defence 

(Navarro et al., 2006; Bari and Jones, 2009; Vlot et al., 2009). Previous investigation by 

Cohen (2002) has shown that BABA effectively reduced F. verticillioides infection in maize 

seedlings whereas field and glasshouse studies by Small et al. (2012) contradicted this 

finding. Synthetic substances based on the structural analogues of these plant hormones are 

gaining favour in the agricultural community as they are effective against certain crop 

diseases and less detrimental to humans and wildlife than the use of fungicides or antibiotics 

(Walters et al., 2005; Freeman and Beattie, 2008; Walters et al., 2009).  

 

IMPROVEMENT OF CROP PERFORMANCE VIA HOST RESISTANCE 

 

Resistance to maize ear rots and mycotoxins can be enhanced either by conventional (plant 

breeding) and unconventional (molecular biology and biotechnology) breeding techniques. 

To understand the basis of resistance in plants, an intensive knowledge of the pathogen, the 

host and environmental factors that affect disease development and the interactions between 

these factors is required. The ultimate goal of plant improvement is to develop crop selections 

that have durable resistance to diseases and the resultant mycotoxins whilst having good 

recombining potential and desirable agronomic traits (Robertson et al., 2005). The 

development of new cultivars consists of several phases namely i) creating genetic diversity 

via plant breeding or biotechnology, ii) evaluating and identifying elite crop material and iii) 

seed certification, release and distribution of commercial cultivars (Acquaah, 2007). 

 

Biotechnological approaches 

The use of biotechnology provides alternative means of creating resistant germplasm when 

resistance is not readily available or significant in crop plants against biotic stresses. Genetic 
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modification of maize to reduce mycotoxins is aimed at either i) preventing fungal infection 

(Munkvold, 2003a), ii) interfering with mycotoxin formation (Woloshuk and Fakhoury, 

2000), or to iii) neutralize mycotoxin effects (Kimura et al., 1998; Duvick, 2001; Kant et al., 

2012). Transgenic maize possessing insecticidal crystal proteins from Bacillus thuringiensis 

has shown the greatest potential thus far in conferring resistance to certain mycotoxins. 

Reduction of stem borer feeding damage has led to reduced fumonisin, aflatoxin, DON and 

ZEA levels in most locations it has been studied (Munkvold et al., 1999; Betz et al., 2000; 

Bakan et al., 2002). Other transgenic modification approaches include induced mutations and 

gene silencing via irradiation with fast neutrons and RNAi technology, respectively. Contrary 

to the negative public opinion and intellectual property rights surrounding genetically 

modified cultivars, traditional breeding of plants is widely accepted. Therefore, only the use 

of classical plant breeding as a method to increase host resistance in maize towards the major 

ear rot diseases and mycotoxin contamination will be further emphasised in this review. 

 

Plant breeding 

Plant breeding has been practiced for thousands of years with the general aim of adding 

important traits to crops from which society can benefit. Classical plant breeding originated 

from identifying and selecting varieties with desirable properties followed by crosses to 

produce hybrid plants (Gepts, 2002). This procedure mainly relies on the i) generation of 

genetic diversity, ii) the selection and testing of segregating populations and the iii) 

development of cultivars. Today, selection still remains the primary strategy to establish 

genetic variation although the modern plant breeder also uses many in vitro techniques such 

as protoplast fusion, embryo rescue and mutagenesis (Baenziger and Otayk, 2007). 

Breeding for increased quality, yield and tolerance against environmental stress is 

conceptually different from breeding for resistance to biotic stresses (pathogen attack). 

According to Cooper et al. (2009), “plant breeders consistently work within a field of trait 

genetic complexity where some traits show a relative simple underlying genetic basis” and 

others such as pathogen resistance, may have a complex design. For example, research 

conducted in California suggests that tight husk covering may reduce FER severity in areas 

where mechanical damage by insects is a problem, but it may also favour F. verticillioides 

infection because of slow ear drying (Munkvold, 2003a).  

The success of breeding maize for reduced ear rot development and mycotoxin levels has 

mainly been attributed to subjecting plant material to high inoculum pressure and then 
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selecting physiological traits that suppress fungal activity directly or indirectly (Munkvold, 

2003a).  

 

Resistance breeding: the basic principles 

Different responses are observed when a plant is exposed to high disease pressure. In a 

breeding context, these responses are categorised as “resistant” or “susceptible”. While 

resistant genotypes contain the lowest disease levels, susceptible genotypes can either show 

moderate signs of infection (intermediate) or be very prone to disease development 

depending on what the genotype is compared to (Niks et al., 2011). 

 

Sources of resistance: The first requirement of breeding for resistance against a certain 

pathogen is to find possible germplasm donors from which the resistance (R) genes can be 

introduced. Such sources may originate from exotic or indigenous cultivars, wild types of the 

same species or even closely related species or genera (Acquaah, 2007) and the technical ease 

of introducing resistance into a crop decreases, respectively. For example, unwanted traits 

may derive from interspecific hybrids and wild relatives whereas the use of related species 

and genera presents the complication of infertility (Acquaah, 2007). Inbred lines that are 

locally adapted and available remain the most useful sources of resistance in a breeding 

programme (Niks et al., 2011). Significant differences among maize inbred lines and hybrids 

for resistance to ear rot diseases has been thoroughly investigated in the past decade and 

genotypes with great potential to resist certain ear rot fungi have been identified, locally and 

internationally (Brown et al., 2001; Rossouw et al., 2002; Van Rensburg et al., 2003; 

Williams et al., 2003; Hefny et al., 2012; Kelly et al., 2012; Small et al., 2012; Tembo et al., 

2012). Limited progress, however, has been made to successfully exploit the genetic 

resistance within the breeding material due to its polygenic nature and poor agronomic 

performance (Munkvold, 2003a).  

 

Types of genetic resistance: Disease resistance in plants is divided into two distinct classes: i) 

specific resistance governed by one or a few genes, called qualitative resistance and ii) 

general resistance governed by many genes with additive effects on the phenotypic 

expression, called quantitative resistance (Van der Plank, 1968). In elite maize varieties, most 

disease resistance displays a quantitatively inherited pattern which is often influenced by 

environmental conditions, making proper selection difficult (Ali and Yan, 2012). Qualitative 

resistance is easier to work with in crop genomics as it has high heritability, but breeders 
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prefer to incorporate quantitative resistance in their breeding programme due to its broad 

specificity and high durability (Lindthout, 2002). 

 

Gene effects and heritability: It is not crucial for plant breeders to understand exactly how 

resistance is inherited but it is useful to know whether the R genes are dominant or recessive 

and whether it is located on the chromosome or in the cytoplasm. With the onset of molecular 

markers technologies, estimating the number of R genes, their chromosomal location and 

effects involved in quantitative resistance, has become feasible (Lindthout, 2002). 

A plant’s R genes interact with other genes in their surroundings, with these interactions 

influencing the expression of resistance (Russell, 1978). Gene action can be partitioned into 

additive, dominant and epistatic effects. R genes are known to be additive in their effects 

when each of the R genes involved enhances the expression of resistance by equal 

increments. Alternatively, the expression of the R gene may depend on the presence of two or 

more “modifier genes” (epistatis) and in some cases one of these genes may mask the effect 

of the R gene. Epistatis can be compared with dominance, which is the interaction between 

pairs of alleles at the same locus. A single resistance mechanism may also be conditioned by 

duplicate genes, with the presence of any one of these genes affording non-additive effects 

(Russell, 1978). Studies have indicated that the resistance found in maize to important ear rot 

diseases are mostly conditioned by additive gene effects whereby resistance to AER and GER 

are also conditioned by epistasis and non-additive gene action, respectively (Mukanga et al., 

2010). Some knowledge of gene interactions can be useful in any programme when breeding 

for resistance. For instance, combining several R genes with additive effect in a single variety 

is likely to increase expression of resistance (Russell, 1978). 

Progress on enhancing quantitative resistance in field maize varieties against fungal 

pathogens has been slow due in part to the complexity of this trait. This has prompted 

scientists to explore quantitative trait loci (QTL) responsible for resistance to ear rot diseases 

and mycotoxins. It was concluded that these traits are distinct with relatively low heritability 

and high environmental influence (Pérez-Brito et al., 2001; Ali et al., 2005; Brooks et al., 

2005; Ding et al., 2008). In contrast, Robertson-Hoyt et al. (2006) found a strong genotypic 

correlation between FER and fumonisin contamination with both of these traits having 

moderate to high entry mean heritability. Similar conclusions were drawn by Martin et al. 

(2011; 2012) from the findings of GER and DON resistance in four maize populations. 

Generally, pedigree and marker-assisted selection is suggested to facilitate the process of 

resistance breeding for GER and reduced DON contamination due to the consistency of the 
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QTLs across the mapping populations. Additionally, these QTL studies yielded strong 

evidence of a fixed QTL for GER, FER and reduced mycotoxin concentrations. Robertson-

Hoyt et al. (2007) and Henry et al. (2009) also indicated a significant relationship between 

FER and AER; and fumonisin and aflatoxin accumulation, respectively, in a set of hybrids. 

This implies that a common resistance mechanism may function for ear rot diseases, and 

breeding for enhanced host resistance against one form of ear rot may lead to reduced disease 

and mycotoxin levels of another and vice versa. 

 

Evaluating and selecting for resistance: Maize can be tested in the field, the greenhouse or in 

the laboratory. In the latter, parameters such as light, humidity and temperature can be 

controlled. However, selecting for disease resistance in field crops under laboratory 

conditions are not representative for commercial cultivation and therefore the results are 

irrelevant. (Niks et al., 2011).  

The main objective in plant selection is to easily discriminate between resistant and 

susceptible genotypes. It is thus important that the entire plant population be homogeneously 

exposed to the same level of disease pressure (Russell, 1978). Since the severity of natural 

infections is not consistent from one year to the next, maize breeders have learnt that 

genotypic differentiation can only be achieved by the use of appropriate artificial inoculation 

methods (Barug et al., 2003). Many artificial inoculation methods and their variants have 

been developed to screen for ear rot pathogens and related mycotoxins with the oldest being 

Young’s toothpick method (1943). Currently, literature suggests that the silk channel method 

is the most effective in screening for resistance against FER, GER and AER. This method 

involves the injection of a spore suspension down the silk channel of maize ears using 

syringes or cattle vaccinators (Bush et al., 2004; Afolabi et al., 2007). The timing and amount 

of inoculum usually varies for the respective ear rot diseases. For FER, a spore suspension of 

1 x 106 conidia ml-1 at the R2 stage is used (Presello et al., 2008) while earlier inoculations (7 

days after mid-silking) with 1 x 105 conidia ml-1 for GER (Löffler et al. 2010) and 1 x 108 

conidia ml-1 for AER are generally recommended (LaPrade and Manwiller, 1977). It should 

be noted that another inoculation technique described by Flett and McLaren (1994) is 

preferred when screening for improved DER resistance in maize. Additionally, many authors 

stress the importance of testing resistant material at multiple locations and seasons to account 

for significant genotype x environmental effects (Afolabi et al., 2007; Eller et al., 2008; 

Small et al., 2012). 
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Selecting for improved phenotypic resistance in maize against ear rot diseases and 

mycotoxins should be effective due to the modest to high heritability of these traits 

(Robertson-Hoyt et al., 2007). Of these traits, mycotoxin content has proven to be more 

reliable than visual ratings of disease symptoms. Toxin analysis, however, can be time-

consuming and cost-prohibitive whereas visual ratings can be relatively simple and extended 

to thousands of genotypes (Eller et al., 2008). Accordingly, the debate continues on whether 

or not to include toxin evaluation in a breeding programme. 

 

CONCLUSION 

 

Ear rot diseases and mycotoxin contamination in maize present daunting challenges for the 

maize producers in subsistence and commercial farming systems. Enhanced host resistance, 

as part of an integrated disease management strategy, could be a viable solution to the 

mycotoxin problem. The first requirement of any resistance breeding program is to obtain 

usable sources of resistance. Ideally, these sources would be in the form of locally adapted 

maize varieties such as inbred lines. Currently, there are no known maize cultivars available 

with immunity to any of the ear rot pathogens and their related mycotoxins in South Africa. It 

is, therefore, crucial to continue the search for durable resistance sources to ultimately 

introduce into high-yielding and agronomically superior female lines. 

Breeding for improved ear rot and mycotoxin resistance has been slow due to its genetic 

complexity likely to be influenced by external factors. However, the many QTL mapping 

studies for disease resistance in maize have provided an abundance of DNA marker trait 

associations (Mesterházy et al., 2012). The use of molecular marker technologies to assist 

classical plant breeding could accelerate the development of crops resistant to fungal and 

mycotoxin contamination. 
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Table 1. Regulatory limits for mycotoxins in feed and food as issued by the United States 

Food and Drug Administration (Adapted from NGFA, 2011). 

 

ppb, parts per billion; ppm, parts per million 

* None existent  

 

 

 

 

Fig. 1. Poor husk coverage (A), pendant maize ears (B) and insect feeding-damage (C) render 

maize plants more susceptible to Fusarium ear rot disease development. 

 

 

 
Current mycotoxin limits 

Food and Feed 
Aflatoxin B1 

(ppb) 

Deoxynivalenol 

(ppm) 

Zearalenone 

(ppm) 

Fumonisin 

B1+B2+B3 (ppm) 

Human foods 20 1 0.5 2 - 4 

Infant formulae 0.5 * * * 

Animal feeds 20 - 300 5 - 10 0.5 5 - 100 

B A C 
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CHAPTER 2 

 

Multi-site screening for resistance in South African maize inbred lines to 

Fusarium ear rot and fumonisin contamination 

 

ABSTRACT 

 

Fusarium verticillioides is a common pathogen of maize, causing Fusarium ear rot 

worldwide. Aside from reducing yield and grain quality, F. verticillioides produces 

fumonisins, a group of mycotoxins which are harmful to both human and animal health. The 

planting of resistant cultivars can be an efficient approach to reduce ear rot diseases and 

minimize the risk of economic losses and mycotoxin accumulation in maize. The objective of 

this study, therefore, was to evaluate 11 genetically diverse maize inbred lines as potential 

sources of resistance to Fusarium ear rot and fumonisin contamination under different 

production systems and environmental conditions. Inbred lines were artificially inoculated 

with a cocktail of F. verticillioides isolates MRC 826, GCI 316 and GCI 790 just after 

anthesis, in field trials planted at Potchefstroom, Vaalharts, Cedara, Makhatini and 

Buffelsvallei in 2011 and 2012. Following harvest, maize ears were evaluated using visual 

disease severity rating, followed by the quantification of fungal concentration and total 

fumonisin (B1 + B2 + B3) content by means of quantitative real-time PCR and liquid 

chromatography tandem mass spectrometry, respectively. Genotype main effect and genotype 

by environment interaction (GGE), as well as additive main effects and multiplicative 

interaction analyses revealed a significant (P ≤ 0.01) genotype x environment interaction for 

visual symptoms, fungal biomass and toxin rating. Additionally, the GGE biplot technique 

was used to identify resistant inbred lines at target-environments. Inbred lines CML390, 

CML444, US2540W, and R0424W consistently showed low Fusarium ear rot severity (≤ 

5%), fungal biomass (≤ 0.1 ng µl-1) and accumulated fumonisin levels (≤ 5 ppm) at most test 

locations. Moreover, inbred lines R0424W, CML390 and CML444 were well adapted under 

Makhatini and Cedara conditions while inbred line US2540W performed better at Vaalharts 

and Potchefstroom. These resistant lines could be included in local conventional breeding 

programmes to improve local maize genotypes’ resistance to F. verticillioides and the 

fumonisins it produces.  
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INTRODUCTION 

 

With an ever increasing human population, the security and safety of accessible food sources 

demand top priority. Maize is the most widely cultivated crop in Southern Africa and serves 

as a staple diet to millions of people (Asiedu, 1989). However, sustainable production of 

maize is compromised by the infection of maize grain with fungal pathogens in the field and 

during storage. One of the more serious diseases of maize is Fusarium ear rot (FER) caused 

by Fusarium proliferatum, Fusarium subglutinans and Fusarium verticillioides (Munkvold, 

2003). Of these, F. verticillioides is most often associated with FER. Apart from reducing 

yield and grain quality, F. verticillioides also produces toxic secondary metabolites, known as 

fumonisins (Munkvold, 2003). 

Fumonisins are a group of structurally related polyketide-derived chemicals with the 

most prolific and thoroughly studied member being FB1 (Rheeder et al., 2002). 

Contamination of maize with fumonisins presents a challenging problem as contamination 

results in serious illness and immune suppressions in humans and livestock (Marasas, 2001). 

While desirable, prevention of fumonisin contamination of foods and feeds is not possible 

since their production in field maize is largely a matter of uncontrollable events (Munkvold, 

2003). However, certain practices, such as the “farm to fork” policy of the Codex 

Alimentarius Commission, are available to reduce fumonisin levels (CAC, 2003). The 

planting of resistant and partially resistant maize cultivars, as well as cultivars improved by 

introduction of maize-derived and/or foreign genes will in future form an important strategy 

to reduce ear rot diseases and mycotoxin contamination of grain (Munkvold, 2003). 

Various degrees of resistance to FER and fumonisins exists among maize inbred lines 

and hybrids (Warren, 1978; Hoenisch and Davis, 1994; Balconi et al., 2004; Desjardins et al., 

2005; Palaversic et al., 2008). As resistant genotypes adapted to all environments are rare to 

find, it is crucial to continuously search for new resistant sources to use in breeding 

programmes. Such an approach would include multi-location field testing of breeding lines to 

estimate genotype x environment effects and to identify genotypes with stable resistance to 

disease and mycotoxin contamination. In a recent investigation by Small et al. (2012), 

genetically diverse maize inbred lines were evaluated in South Africa. From this study, nine 

inbred lines were identified for further testing in the current study over 2 years and multiple 

locations in South Africa. Inbred lines that proved to be resistant over all of these locations 

would provide breeders with material to cross with agronomic superior female lines, 

especially since genetic engineering does not yet enjoy widespread public acceptance.    
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MATERIALS AND METHODS 

 

Plant material  

In the 2007/2008 and 2008/2009 growing seasons, a total of 24 maize inbred lines, selected 

by the South African Agricultural Research Council Grain Crops Institute (ARC-GCI) for 

their genetic discrepancy and good agronomic traits, were evaluated for resistance to F. 

verticillioides and the fumonisin it produces (Small et al., 2012). Based on the results of this 

study, nine inbred lines (Table 1) were selected for further evaluation under diverse 

geographical, climatic and irrigation conditions. Additionally, two inbred lines (R2565Y and 

R0544W) of South African origin were included in the trial as susceptible checks (Table 1). 

The inbred lines comprised of white and yellow maize with a normal to high-lysine protein 

content and were evaluated at five field sites in maize-producing areas in South Africa. 

 

Field sites 

Field trials were planted in the 2010/2011 and 2011/2012 maize seasons at Potchefstroom 

(grid ref.: 26˚73'S, 27˚07'E; altitude, 1349 m), Buffelsvallei (grid ref.: 26˚48'S, 26˚61'E; 

altitude, 1383 m), Vaalharts (grid ref.: 27˚95'S, 24˚83'E; altitude, 1180 m), Cedara (grid ref.: 

29˚54'S, 30.26'E; altitude, 1068 m) and Makhatini (grid ref.: 22˚39'S, 32˚17'E; altitude, 77 m) 

(Fig. 1). Based on their micro- and macroclimates, these five sites can be divided into western 

and eastern locations. Western experimental locations such as Potchefstroom, Buffelsvallei 

and Vaalharts are situated in the drier and warmer parts of the maize-production area whereas 

eastern localities such as Cedara and Makhatini are situated in areas of high humidity. Site-

specific (ARC reference numbers: 30649, 30693, 30142, 30817 and 30729) weather data 

including temperature, radiation, humidity, wind velocity and total rainfall were obtained 

from the ARC-Institute for Soil Water and Climate’s meteorology office.  

 

Land preparations 

Agricultural practices applied at each locality were in line with common practices at each 

locality. Experimental lands were sprayed with pre-emergence herbicide flumetsum/S-

metolachlor at 630 g L-1 (Bateleur Gold EC) and the post-emergence herbicide halosulfuron-

methyl at 750 g kg-1 (Servian 75 WG/Cyprex WP) to manage weeds such as Cyperus 

esculentus and Cyperus rotundus. Trials were fertilised using a rate of 150 kg ha-1 (30) + 0.5 

Zn at Potchefstroom, Vaalharts, Cedara and Buffelsvallei, and 2:3:4 (30) + 0.5 Zn at 

Makhatini before planting. Maize seeds were hand planted (two seeds per planting hole) in 
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double-row plots that were 10 m long, and 3 weeks after emergence were thinned to 33 plants 

per row. The intra-row spacing was 0.3 m with an inter-row spacing of 1 m. The trials were 

planted using a randomised block design and were replicated three times. The Potchefstroom 

trials were conducted under dryland conditions with moisture stress being monitored and 

overhead irrigation applied when necessary. The trials in Makhatini and Cedara were 

irrigated via overhead and central pivot systems, respectively, whereas the trials in Vaalharts 

were flood irrigated on a weekly basis. At the sixth leaf stage, top dressing was applied at 

trials planted at Buffelsvallei and Makhatini with LAN 28 at a rate of 150 kg ha-1 and 250 kg 

ha-1, respectively. The same broadcast method was followed for field trials at the 

Potchefstroom (100 kg ha-1), Vaalharts (100 kg ha-1) and Cedara (980 kg ha-1) localities using 

LAN 28 at the eight leaf stage. For control of stalk borer infestation, field trials at 

Potchefstroom, Vaalharts and Buffelsvallei were treated with the insecticide beta-cyfluthrin 

at 0.5 g kg-1 (Bulldock 0.05 GR) at the 10th to 12th leaf stage and trials at Makhatini and 

Cedara were treated with Carbaryl at 25 g kg-1 (Kombat GR) at the 12th leaf stage. Both 

insecticides were applied (40 g per 50 m) manually into the whorl of the maize plants. 

 

Production of fungal inoculum 

The conidial suspension for the artificial inoculation of field trials was prepared according to 

the protocol used by Small et al. (2012). A cocktail of aggressive F. verticillioides isolates 

was inoculated and consisted of isolates MRC 826, provided by Dr. Vismer from the Medical 

Research Council – Programme on Mycotoxins and Experimental Carcinogenesis unit 

(MRC-PROMEC, Tygerberg, South Africa) and isolates GCI 316 and GCI 790, provided by 

Dr. Janse van Rensburg from the ARC-GCI (Potchefstroom, South Africa). Fusarium 

verticillioides isolates GCI 316 and GCI 790 were originally isolated from infected maize in 

Ndwedwe (KwaZulu-Natal) and Rushof (Northern Cape) respectively. In contrast, the well 

characterized MRC 826 was collected from infected maize in the Transkei region (Eastern 

Cape) and is known to produce unsurpassed high levels of FB1 (Rheeder et al., 2002). These 

isolates have been preserved at ­80°C in the culture collection of the Department of Plant 

Pathology at Stellenbosch University.  

 

Artificial inoculation of maize ears 

The maize lines planted in the field trials were artificially inoculated with F. verticillioides 

isolates to ensure proper selection of genotypes with high resistance, because previous studies 

have indicated that insufficient disease development occurs under natural infection (Papst et 
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al., 2007; Blandino et al., 2009; Small et al., 2012). Maize ears were inoculated using a cattle 

vaccinator fitted with an 18 G × 1.5" (1.20 × 38 mm) Terumo needle (sterile, non-toxic, non-

pyrogenic)(Fig. 2). Liquid spore suspensions (2 ml) were injected down the silk channel of all 

ears and plants at 50% silk-emergence, based on the silk channel inoculation method 

described by Afolabi et al. (2007). The inoculation procedure and timing were the same for 

each field location. 

 

Disease severity 

At physiological maturity, (kernel moisture content of 18%) ears were hand-harvested, 

bulked by plot and de-husked in order to quantify the severity of ear rot development on each 

ear. Disease severity was evaluated by estimating the percentage of each ear surface covered 

by visible damage of infection (Fig. 3), such as white streaking radiating from the cap of the 

kernels or white-pinkish mycelial growth in between the kernels alongside stalk borer 

channels (Clements et al., 2004). 

 

Grain processing  

Following disease quantification, ears were mechanically threshed and bulked separately for 

each field plot. Subsequently, a sample of 250 g was taken from each bulked sample and 

ground using a coffee grinder that was provided by the ARC-Plant Protection Research 

Institute in Stellenbosch. The grinder was thoroughly cleaned with high pressure air between 

each sample to avoid cross contamination. A Philips blender (400 W, 1.75 L) was further 

used to grind the maize into a fine powder after which a 2- and 5-g sub-samples of the ground 

grain from each plot was weighed into a 50-ml Falcon tube (BD Biosciences, Durham, USA) 

and kept at ­20°C until used for DNA and fumonisin extractions, respectively. 

 

Quantification of Fusarium verticillioides in maize grain 

Genomic DNA extractions: Fusarium verticillioides isolate MRC 826 was used as a positive 

control to produce DNA standards for the absolute quantification of this ear rot pathogen in 

maize samples. The fungus was grown in 100 ml potato dextrose broth (PDB) incubated in a 

250-ml Erlenmeyer flask at 25°C on a rotary shaker. After 2 weeks, mycelium was harvested 

by filtration through two layers of sterile cheesecloth, washed twice with autoclaved water 

and freeze-died. Freeze-dried mycelia were then stored at ­20°C until genomic DNA was 

extracted with the DNeasy® Plant Mini kit (QIAGEN) using the CTAB/PVP lysis method 

due to its high reproducibility (Boutigny et al., 2012).  
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DNA from milled maize samples (2 g) were extracted using the same commercial kit 

and protocol described by Boutigny et al. (2012). A NanoDrop ND-1000 Spectrophotometer 

(Inqaba Biotechnical Industries (Pty) Ltd., Pretoria, South Africa) was employed to verify the 

quantity of the DNA whilst the purity of the DNA was evaluated by comparing absorbance 

ratios A260/A280 and A260/A230. Good quality DNA was diluted to a concentration of 10 

ng µl-1 for the detection and absolute quantification of F. verticillioides in the maize samples 

using quantitative real-time PCR (qRT­PCR). 

 

Quantitative detection of F. verticillioides in maize using qRT­PCR: Due to the subjective 

nature of visual ratings and the ability of F. verticillioides to be present in symptomless 

material, the amount of fungal material present in the grain was determined in qRT­PCR 

assays as described in Boutigny et al. (2012). The qRT­PCR assays contained one replicate of 

each maize sample, a negative control containing no template DNA, and standard pathogen 

DNA that was diluted 16-fold in maize DNA (10 ng µl-1) free of F. verticillioides infection. 

Regression equations of standard curves created to detect F. verticillioides in the maize 

samples were highly significant (R2 > 0.99). Slopes were within the acceptance criterion (m = 

-3.4) and efficiencies ranged from 95 to 97%. The detection limit of the qRT­PCR assays was 

found to be between 5.48 ng µl-1 and 0.016 ng µl-1. The presence of inhibitors in pathogen 

DNA as well as intra- and inter run variability of the qRT­PCR assays were not tested as 

these techniques have been previously validated in the same laboratory by Boutigny et al. 

(2012).   

 

Fumonisin analysis 

Sample preparation: A 5-g sub-sample of the stored milled maize from each plot per trial 

was accurately weighed (to the nearest 0.01 g) into 50-ml Falcon tubes and stored at ­20°C. 

Fumonisin extractions were carried out following the method established by Small et al. 

(2012). 

Following preparation of an extraction buffer consisting of 70% AR grade methanol and 

30% Milli-Q H2O (Millipore, Bedford, MA, USA), 20 ml was added to each sample (4 ml:1 

g) using the Fast pipette (Labnet International Inc., Edison, USA). Tubes were shaken 

vigorously and fumonisins were extracted by placing the tubes on a rotary shaker at an angle 

for 30 min at 25°C and 200 rpm. The tubes were subsequently centrifuged at 4°C for 10 min 

at 4000 rpm after which 2 ml of the clear extract was filtered through a 0.20 µm nylon filter 

disk and placed in the fridge overnight. After centrifugation for 10 min at maximum rpm, 
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extracts were diluted in 2-fold by adding 900 µl of supernatant to 900 µl of Milli-Q H2O in a 

glass vial. Caps were then fitted onto the vials and the vials were vortexed. 

 

Liquid chromatographic tandem mass spectrometry (LC-MS/MS) analysis: Standards of FB1 

(10 mg), FB2 (10 mg) and FB3 (1 mg), > 95% pure, were obtained from the MRC-PROMEC 

unit at Tygerberg in South Africa and prepared as described by Small et al. (2012). Standards 

were combined in a 50-ml stock solution with final concentrations of 200, 200, and 20 μg ml-

1 for FB1, FB2 and FB3, respectively. From the 50-ml stock solution, volumes of 1 ml were 

aliquoted into 2-ml Eppendorf tubes and dried in a flow cabinet overnight. The dried 

standards were then stored at ­20°C. 

A dried standard aliquot was reconstituted with 1 ml acetonitrile/Milli-Q H2O (50/50, 

v/v) on the day of analysis and served as a calibration standard solution. Furthermore, the 

calibration standard solution was diluted to produce a series of standards that was included in 

each run. Unkowns were plotted on the standard curve to calculate total levels of fumonisin 

ranging from 0.05 to 20 ppm for FB1 and FB2, and between 0.005 and 2 ppm for FB3. 

The concentration of fumonisins in the contaminated maize samples was determined by 

the Central Analytical Facility at Stellenbosch University. The solutions were thoroughly 

vortexed and 5 μl injected into the LC-MS/MS system. Samples with results exceeding the 

standard curve limits were subjected to further dilution using Milli-Q H2O before being re-

analysed. For confirmation, about 20% of the samples were analysed in duplicate. Minimum 

detectable limits for FB1, FB2 and FB3 were 0.02, 0.002 and 0.02 ppm, respectively. The 

recovery rates ranged between 60 and 65% for each of the compounds analysed (Small et al., 

2012).   

 

Statistical analysis 

Data obtained from visual ratings, fumonisin analysis and qRT­PCR was subjected to 

univariate analysis of variance (ANOVA) using the General linear model (GLM) procedure 

of SAS statistical software version 9.2 (SAS Institute Inc., Cary, NC, USA). Experimental 

results were combined in one ANOVA (John and Quenouille, 1977) after testing for 

homogeneity of variance using Levene’s test (Levene, 1960). The Shapiro-Wilk test was 

performed to test for normality (Shapiro and Wilk, 1965) and variables were Ln(x+1) 

transformed to stabilise the variance and improve normality where needed (Snedecor and 

Cochran, 1980). Student’s t-least significant difference (LSD) was calculated at the 5% level 

to compare treatment means (Ott, 1998) and a probability level of 5% was considered 
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significant for all significance tests. Non-parametric Pearson correlation coefficients were 

determined for relationships among ear rot symptoms, fungal biomass and total fumonisins 

using the CORR procedure in SAS based on untransformed means.  

To determine the effects of field location and inbred lines on the severity of FER, fungal 

biomass and fumonisin accumulation in the grain, genotype main effect and genotype by 

environment interaction (GGE) biplots were constructed with genotype-focus and 

symmetrical scaling using GenStat 15th edition (Payne et al., 2012). GGE biplot analysis is a 

valuable tool for plant breeders and researchers for assessing the performance of genotypes 

planted in different locations because it visually displays both entries (genotype) and testers 

(environment or traits) in a two-way table (Yan and Kang, 2003). This allows identification 

of maize inbred lines with stable resistance in different environments, comparison of their 

performance as well as identification of potential target-environments. 

Further interpretation of genotype x environmental interactions was complemented by 

additive main effects and multiplicative interaction (AMMI) analysis of variance (Gauch and 

Zobel, 1996) that was performed using SAS statistical software version 9.2. Similar to GGE 

biplot analysis, the AMMI method combines traditional ANOVA and principle component 

analysis (PCA) graphically in a biplot where interaction PCA scores are plotted against 

genotype and environment means. Additionally, AMMI stability values for the individual 

maize genotypes are generated in a table which provides insights into the stability and 

relative adaptability of the inbred lines across multiple environments.   

 

RESULTS 

 

Artificial silk channel inoculation resulted in sufficient FER development and high 

concentrations of F. verticillioides and fumonisins in the maize lines during the two planting 

seasons. This allowed for adequate differentiation between resistant genotypes and 

susceptible checks. In the 2011/2012 season, however, only four locations were included in 

the multi-site screening trial as the trial planted at Buffelsvallei resulted in poor germination 

and was discarded. According to the ANOVA, a significant year x genotype x location 

interaction was observed for FER severity (P ≤ 0.01), fungal biomass (P ≤ 0.01) and total 

fumonisin contamination (P ≤ 0.01). There was too many variation in the genotype x 

environment interactions and therefore it was decided to report on the main genotypic effects 

found across locations within each season. GGE and AMMI analyses (Table 2) were used to 

best explain these interactions and to identify resistant genotypes in target-environments. 
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Disease severity 

The mean visual rating of FER infection of maize ears in 2011 and 2012 were 8.38 and 

7.96%, respectively. FER development was significantly more severe at Cedara in 2011 

(11.57%) than in 2012 (1.20%)(P ≤ 0.01) while the mean visual ratings of FER symptoms 

were significantly higher at Makhatini and Vaalharts in 2012 (7.51 and 8.80%, respectively) 

compared to the previous year (2.18 and 3.61%, respectively)(P ≤ 0.01). At Potchefstroom 

there was no significant difference between mean FER symptoms for the two seasons (P = 

0.08). 

During the 2010/2011 season, disease levels at Buffelsvallei (4.46%), Makhatini (2.18%) 

and Vaalharts (3.61%) did not differ significantly, but mean visual ratings of FER symptoms 

were significantly higher (P ≤ 0.05) at Cedara (11.57%) and Potchefstroom (8.43%)(Table 3) 

than the other field sites. The inbred lines showed different responses to FER severity 

between locations (P ≤ 0.05). For example, line R2565Y developed significantly (P = 0.02) 

more FER at Potchefstroom (23.33%) than at Vaalharts (0.25%), exemplifying the high 

inbred x location effect (P ≤ 0.01). Inbred line US2540 consistently developed low levels of 

FER across all locations, with mean visual ratings ranging from 0.47 to 2.10% (Table 3). 

Differences in FER severity among inbred lines were also observed within individual field 

sites (Table 3). At Cedara, for instance, seven inbred lines including lines VO617Y-1, 

R0549W, US2540, CML390, R0424W, I-B, and R2565Y had significantly (P ≤ 0.05) less 

FER when compared with lines R119W and K62R-2 (Table 3).  

FER disease developed during the 2011/2012 season in the inoculated maize ears with 

maximum levels found at Potchefstroom and Makhatini as high as 41.67 and 26.5%, 

respectively (Table 3). As seen in the previous year, lines differed significantly (P ≤ 0.05) in 

visual FER symptoms within and amongst locations. For instance, at Vaalharts, lines R2565Y 

and I-B had significantly (P ≤ 0.05) different responses than those displaying the lowest risk 

in FER severity (lines K62R-2, R0549W, US2540, R0544W and CML444); and line I-B was 

significantly (P = 0.00) more prone to FER disease development at Vaalharts (21.89%) than 

at Cedara (1.31%)(Table 3).  

 

Quantification of Fusarium verticillioides 

The average fungal concentrations recorded for the two planting seasons were comparable 

(0.10 and 0.09 ng µl-1). A higher average fungal biomass was observed at Cedara during the 

2010/2011 season (0.16 ng µl-1) when compared to the 2011/2012 season (0.05 ng µl-1) while 

F. verticillioides infection was more severe at the Makhatini location in the second (0.20 ng 
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µl-1) than the first year (0.09 ng µl-1)(P ≤ 0.01)(Table 4). There was no significant difference 

between mean fungal levels for the two seasons at Potchefstroom and Vaalharts (P ≥ 0.05). 

The individual inbred lines differed substantially in fungal biomass concentrations 

across locations during the 2010/2011 season (P ≤ 0.05). For example, at Cedara, line 

VO617Y-1 accumulated significantly (P = 0.00) more F. verticillioides DNA (0.33 ng µl-1) 

than at Potchefstroom (0.03 ng µl-1)(Table 4). This location effect was also indicated by the 

higher mean fungal biomass observed at Cedara (0.16 ng µl-1) compared with Potchefstroom 

(0.06 ng µl-1)(P = 0.00). Maize inbred lines showed significantly different reactions (P ≤ 

0.05) to F. verticillioides within each location with lines US2540, R0424W, CML444 and 

CML390 being the only lines that constantly contained low levels of fungal DNA (0.01 to 

0.10 ng µl-1)(Table 4). 

The significant inbred x location effect that was observed during the 2011/2012 season 

(P ≤ 0.01; Table 2) manifested in the lower average fungal biomass detected at Cedara (0.05 

ng µl-1), Potchefstroom (0.09 ng µl-1) and Vaalharts (0.06 ng µl-1) than at Makhatini (0.20 ng 

µl-1). Significant differences between the inbred lines could be determined (P ≤ 0.05) within 

field sites (Table 4). At Makhatini, for instance, relatively more fungal DNA accumulated in 

lines US2540 and I-B (P ≤ 0.05) while lines R0549W, CML444, CML390, K62-R, R0424W, 

R2565Y and R0544W had comparable responses to the growth and proliferation of F. 

verticillioides (Table 4).  

 

Fumonisin analysis 

The mean total fumonisin concentrations determined in the maize kernels were significantly 

higher (P ≤ 0.05) in the 2010/2011 season (9.66 ppm) than the 2011/2012 season (6.97 ppm).  

A significant amount of fumonisins (P ≤ 0.01) accumulated in the maize at Cedara and 

Vaalharts in 2011 (21.18 and 7.42 ppm, respectively) but not in 2012 (3.30 and 2.06 ppm, 

respectively) (Table 5). The significant year x location interaction (P ≤ 0.01) was also 

apparent at Makhatini with a 4-fold increase in mean total fumonisin levels during the 

2011/2012 season (Table 5). 

During the 2010/2011 season, lines differed considerably (P ≤ 0.05) in total fumonisin 

content across locations as recorded in lines VO617Y-1 and R0549W which had lower 

accumulated fumonisins at Buffelsvallei (1.92 and 1.32 ppm, respectively) when compared 

with Cedara (35.57 and 74.31 ppm, respectively) (Table 5). Additionally, the significant 

inbred x location interaction was also indicated by the higher mean fumonisin levels 

measured at Cedara (21.18 ppm) than at Buffelsvallei (9.22 ppm)(P = 0.00). Despite 
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differences in fumonisin concentrations across locations, inbred lines R0424W, CML444 and 

CML390 had consistently low fumonisin contamination (≤ 5 ppm) in the grain during the 

2010/2011 season, with exception of Cedara (Table 5). Significant effects of the inbred lines 

on fumonisin contamination were also observed at all field sites (P ≤ 0.05). At Makhatini, for 

example, lines R119W (5.94 ppm) and I-B (7.81 ppm) were significantly (P ≤ 0.05) more 

prone to fumonisin contamination than line R0424W (2.64 ppm)(Table 5).  

During the 2011/2012 season, total fumonisin levels at Cedara (3.30 ppm), 

Potchefstroom (2.82 ppm) and Vaalharts (2.06 ppm) did not differ significantly (P ≥ 0.05), 

but fumonisin concentrations were significantly higher at Makhatini (17.69 ppm) (Table 5). 

Fumonisin analysis also indicated several lines with significant different responses to 

fumonisins in different environments. One such an example includes line CML444 which 

was more susceptible (P = 0.02) to fumonisin accumulation at Cedara (10.82 ppm) when 

compared with Vaalharts (2.89 ppm). Of the 11 inbred lines tested, only lines VO617Y-1, 

K62R-2, US2540, R0424W, R0544W and CML390 consistently showed low accumulated 

fumonisin levels (≤ 5 ppm) across the locations, with exception of Makhatini (Table 5). The 

selected inbred lines also differed significantly in their response to fumonisin contamination 

at all locations (P ≤ 0.05). For instance, at Potchefstroom, lines R2565Y, I-B, CML444 and 

R119W had significantly (P ≤ 0.05) higher fumonisin levels than the other lines (VO617Y-1, 

K62R-2, US2540, R0549W, R0424W, R0544W and CML390) having fumonisin 

concentrations below the detectable limit (0.02 ppm)(Table 5).  

 

Correlations between ear rot severity, fungal biomass and fumonisin contamination 

A poor but significant relationship was established between visual and qRT­PCR data 

(Pearson correlation of r = 0.19; P ≤ 0.01), as well as visual and toxin rating (r = 0.25; P ≤ 

0.01) over the 2 years. For instance, line VO617Y-1 had a FER severity rating of 0.87% and 

a fungal DNA concentration of 0.33 ng µl-1 at Cedara, and line R119W showed no FER 

symptoms but contained 47.2 ppm of fumonisin at Buffelsvallei during the 2010/2011 season. 

In contrast, a strong and significant correlation was found between toxin and qRT­PCR data 

(r = 0.71; P ≤ 0.01) which is exemplified by line I-B and R119W having relatively high 

fumonisin (32.29 and 27.69 ppm, respectively) and F. verticillioides (0.56 and 0.25 ng µl-1, 

respectively) concentrations at Makhatini in the 2011/2012 growing season.  
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Genotype main effect, genotype by environment interaction (GGE) and additive main 

effects and multiplicative interaction (AMMI) analyses 

Combined AMMI analysis of variance in a multi-location trial over 2 years revealed the 

effect of location, inbred line and inbred line x location interaction to be highly significant (P 

 0.01)(Table 2). Therefore, the GGE biplot method was used to identify resistant genotypes 

in target-environments by ranking the inbred lines in terms of their FER severity, fungal 

biomass and total fumonisin content, taking the inbred line x location effect into account. The 

stability of the inbred lines’ performance across multiple locations was confirmed by AMMI 

stability values (ASV)(Table 6).   

GGE biplot analysis for resistance to FER severity is presented with two principle 

components accounting for a total of 57.5% (PC1 34.9%, PC2 22.6%) of the variance seen in 

the visual data (Fig. 4). The first principle component (PC1) is located on the X-axis and 

indicates the level of resistance exhibited by the inbred lines, with inbred lines having higher 

PC1 values considered lower risk to FER development than others. The second principle 

component (PC2) is located on the Y-axis and presents performance stability where lines 

with PC2 values near zero demonstrate broader adaptability (Yan and Kang, 2003). Based on 

their visual ranking, lines CML390, US2540, VO617Y-1, R0544W and CML444 are 

considered highly resistant to FER disease severity (Fig. 4). Of these, lines CML390, 

US2540, VO617Y-1 are relatively stable while line CML444 is unstable in performance 

across locations (Table 6). Inbred lines R0424W and R0544W, as well as lines I-B, R2565Y 

and R0549W can be placed in the “moderate risk and high stability” and “moderate risk and 

low stability” groups, respectively (Fig. 4; Table 6). Furthermore, inbred lines K62R-2 and 

R119W exhibited high susceptibility but low stability over all of the trial sites (Fig. 4; Table 

6). 

GGE biplot analysis also enables identification of potential target-environments (Yan 

and Kang, 2003). Inbred lines furthest away from the origin are connected by a straight line 

and form a polygon (Fig. 4). This polygon is divided into several sectors when lines radiating 

from the origin of the biplot intersect the sides of the polygon perpendicularly. Consequently, 

environments placed within a given sector are those where the inbred lines in that sector are 

best suited for (Yan and Kang, 2003). Six sectors can be distinguished with the largest sectors 

incorporating lines R2565Y and I-B that were best suited for the Makhatini location during 

the 2011/2012 growing season (Fig. 4). Inbred line CML444 was highly resistant at 

Makhatini and Buffelsvallei in 2011 and at Vaalharts in 2012 whilst line US2540 was the 

leading genotype at the Potchefstroom location in 2011. Although lines VO617Y-1 and 
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CML390 performed the best in the majority of the test locations (Vaalharts_10, 

Potchefstroom_11, Cedara_10 and Cedara_11), only Cedara was identified as target- 

environment for these inbred lines.   

GGE biplot analysis for resistance to fungal biomass showed significance for the first 

two principle components explaining 43.7% (PC1) and 18.8% (PC2) of the variance (Fig. 5). 

Genotype-focus scaling of the biplot differed substantially in comparison to visual 

representation of resistance to FER severity (Fig. 4). This is not surprising due to poor 

relationship established between visual and qRT­PCR data earlier in this study. Inbred lines 

with the highest resistance to fungal biomass concentration include lines CML390, US2540, 

VO617Y-1, R0424W and CML444 with only the former line being stable in performance 

across locations (Fig. 5; Table 6). Additionally, lines CML390 and R0424W were consistent 

in their performance at Makhatini and Vaalharts during the 2 years. Conversely, lines 

R119W, I-B, R2565Y and K62R-2 did not perform well in the field and contained 

unacceptable concentrations of F. verticillioides (Fig. 5; Table 5).   

Similar conclusions were drawn from the GGE biplot method regarding resistance to 

total fumonisin content (Fig. 6). It was re-iterated that inbred lines CML390, R0424W, 

US2540 and CML444 had the highest resistance status over the 2 years (Fig. 6). However, 

inbred lines CML444 and CML390 in conjunction with lines R0549W, VO617Y-1 and 

K62R-2 showed a less stable performance when compared with the other inbred lines (Table 

6). In the largest sector, Makhatini was identified as a target-environment for lines CML444 

and R0424W and the fourth largest sector which includes the Buffelsvallei_10, 

Potchefstroom_11 and Vaalharts_11 environments, had line US2450 as leading genotype. 

Furthermore, line CML444 was most resistant at Cedara and Potchefstroom during the 

2010/2011 season (Fig. 6). AMMI and GGE analyses also confirmed inbred lines R119W, I-

B and R2565Y to be high risk due to their durable susceptibility to fumonisin accumulation 

(Fig. 4; Table 6).  

 

Weather data 

The average monthly temperatures were generally similar for the 2 years at the each field site 

with a slight temperature increase in 2011 at Makhatini and Cedara at pollination time 

(March)(Fig. 7). Maximum temperatures for the 2010/2011 planting season were recorded at 

Makhatini (34.61°C) during grain filling (March) whereas Vaalharts reached a temperature of 

36°C during seedling emergence (January) in the 2011/2012 season. Additionally, there was 

substantial fluctuation in mean monthly rainfall amongst locations for the same experimental 

Stellenbosch University  http://scholar.sun.ac.za



 
 

73 

period except during December at Buffelsvallei where up to 222 mm of rain was recorded 

(Fig. 7). Total monthly rainfall was higher in 2010/2011 at Potchefstroom and Buffelsvallei 

at the start of the planting season (December) and over the inoculation period (February) than 

at the Vaalharts and Makhatini locations. At Vaalharts there was lower rainfall in 2011 and 

2012 during grain filling (March) and drying (April and May) when compared to the other 

respective field locations (Fig. 7). 

 

DISCUSSION 

 

In this study, the stability of resistance in maize inbred lines to FER and fumonisin 

contamination, previously characterized by Small et al. (2012), has been confirmed in a 

multi-location trial over 2 years. This is of great importance, as F. verticillioides is the 

predominant fungus associated with FER of maize in South Africa (Boutigny et al., 2012), 

and because none of the cultivars commercially available in the country have immunity to 

FER or fumonisin accumulation (Rheeder et al., 1990; Schjøth et al., 2008). Maize genotypes 

with potential resistance to F. verticillioides and its fumonisins have also been identified in 

tropical parts of Africa (Afolabi et al., 2007), but their agronomic suitability to production 

conditions in South Africa has not been established. 

Highly significant genotype x environment interactions were observed for the inbred 

lines tested. Such interactions could be the result of differential responses of a genotype to 

various biotic and abiotic factors such as inoculum pressure, host susceptibility, climatic 

conditions, insect infestation, kernel maturation, as well as pre- and postharvest handling 

(Munkvold, 2003). Genotype x environment interactions are of leading concern to plant 

breeders as these often changes the performance of the inbred lines in different locations 

making proper selection difficult (Sharma et al., 1987). For this reason it is important that the 

genotype x environment effect is properly understood and analysed.  

Fumonisin production results from the complex interaction of several physiological 

stress factors such as pH, temperature, water availability or nutrient sources (Jurado et al., 

2008). Amongst these, temperature and water stress are considered key factors modulating 

fumonisin production (Marín et al., 2010). In planta studies by Marín et al. (1999) have 

shown that the optimal growth conditions for F. verticillioides and fumonisin B1 production 

are a temperature of 30°C and a water activity of 0.97, with a dramatic reduction in 

germination and fumonisin production below a water activity of 0.92. These findings suggest 
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that dry and warm weather, followed by a period of high humidity may promote infection and 

higher fumonisin accumulation in the grain. 

The fungal and total fumonisin content in the maize were highly and positively 

correlated. In contrast, a poor relationship between visual ratings, F. verticillioides and 

fumonisin concentration was established as certain lines were recorded as having severe FER 

symptoms but low fungal biomass and total fumonisin levels. The subjective nature of visual 

ratings and the ability of non-fumonisin producing Fusarium species to induce similar disease 

symptoms as F. verticillioides, may have contributed to the lower correlations involving ear 

rot severity (Small et al., 2012). Inbred lines with symptomless infection but with high 

fumonisin levels were also observed, which is in agreement with previous investigations 

(Clements et al., 2003; Small et al., 2012). Due to the poor correlations found between visual 

symptoms, fungal biomass and toxin rating, qRT­PCR and mycotoxin analysis are highly 

recommended when evaluating resistance in maize. Quantitative procedures, however, can be 

time-consuming and cost-prohibitive whereas visual ratings can be relatively simple when 

conducting large-scale trials (Eller et al., 2008).  

In this study, fumonisin analysis revealed that FER caused by fumonisin-producing F. 

verticillioides can reach serious proportions in certain commercial production areas of South 

Africa such as Cedara and Makhatini. Mean total fumonisins ranged from 6.91-74.31 ppm at 

Cedara in the 2010/2011 season and 8.14-32.29 ppm at Makhatini in the 2011/2012 season. 

These levels far exceed the 4 ppm fumonisin allowed for human and animal consumption as 

set by United States authorities, a limit used as guideline in the absence of South African 

legislation (NGFA, 2011). Given that precautionary control measures such as fertilisation, 

irrigation, herbicide and insecticide treatments were implemented to reduce plant stress in the 

field, the high fumonisin concentrations in the grain of Cedara and Makhatini could most 

likely be attributed to prevailing climatic conditions. Both field sites had an average 

temperature of 30°C during grain filling (March) which is known to favour FER development 

and fumonisin production (Janse van Rensburg et al., 2011). Additionally, relative high 

rainfall during the months of April and May when the grain was drying, combined with 

elevated humidity due to overhead irrigation, may have allowed extended fumonisin 

accumulation at these field sites.  

Fumonisins in maize constitute a challenge in commercial and subsistence farming 

systems in South Africa. Cultural approaches are currently being used, but host-plant 

resistance other than Bt maize has not been utilized to address the mycotoxin problem 

(Clements et al., 2004). None of the maize inbred lines tested in the current study were 
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immune to FER severity, fungal biomass or total fumonisin accumulation (Small et al., 

2012). However, four inbred lines including lines US2540, R0424W, CML444 and CML390 

consistently showed low disease severity, fungal biomass and fumonisin levels across most 

locations and years. Amongst these, inbred lines R0424W and CML390 are considered most 

superior as they exhibited broader adaptability at Cedara and Makhatini which are situated in 

the “high risk” parts of the country. These lines can be used to identify sources of genetic 

resistance that can be introduced into high-yielding superior female lines. Resistant cultivars 

will give the South African maize industry a competitive advantage for markets that require 

high quality and safe foods. Additionally, certain lines were highly susceptible to FER 

development, fungal biomass and fumonisin accumulation, such as lines K62R-2, R2565Y 

and R119W. They could be used for comparative functional genomics/proteomics, or as 

control checks in future studies. 
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Table 1.  Maize inbred lines evaluated for resistance to Fusarium ear rot severity, fungal 

biomass and fumonisin accumulation during multi-site field trials in the 2010/2011 and 

2011/2012 seasons. 

 

Inbred line identity Origin Resistance: FER/fumonisin* 

VO617Y-1 ARC-GCI-South Africa Resistant 

K62R-2 ARC-GCI-South Africa Intermediate 

R2565Y ARC-GCI-South Africa Susceptible 

R0549W ARC-GCI-South Africa Resistant 

US2540 ARC-GCI-South Africa Resistant 

R0424W ARC-GCI-South Africa Intermediate 

R0544W ARC-GCI-South Africa Susceptible 

I-B ARC-GCI-South Africa Intermediate 

CML444 CIMMYT-Zimbabwe Resistant 

R119W ARC-GCI-South Africa Resistant 

CML390 CIMMYT-Zimbabwe Resistant 

 

ARC-GCI, Agricultural Research Council Grain Crops Institute 

CIMMYT, International Maize and Wheat Improvement Centre 

*As characterized by Small et al. (2012) 
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Table 2. AMMI analysis of variance (ANOVA) for resistance to Fusarium ear rot severity, fungal biomass and fumonisin accumulation in 11 maize 

inbred lines tested in nine environments in South Africa during the 2010/2011 and 2011/2012 seasons.   

  FER severity1 Fungal biomass2 Fumonisins3 

Source of variation Df MS F value P > F MS F value P > F MS F value P > F 

Total 296 9.72 * * 10.03 * * 9.75 * * 

Treatment 98 17.69 2.78 0.00 21.35 4.37 0.00 20.10 3.95 0.00 

Environment 8 0.00 * * 0.00 * * 0.00 * * 

Block 18 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 

Genotype 10 45.41 7.14 0.00 79.61 16.32 0.00 63.25 12.44 0.00 

Interaction 80 16 2.51 0.00 16.20 3.32 0.00 16.72 3.28 0.00 

IPCA 17 23.28 3.66 0.00 25.19 5.16 0.00 28.10 5.52 0.00 

IPCA 15 22.01 3.46 0.00 24.57 5.03 0.00 25.02 4.92 0.00 

Residual 48 11.54 1.81 0.00 10.40 2.13 0.00 10.09 1.98 0.00 

Error 180 6.36 * * 4.88 * * 5.08 *   * 

1 Percentage of maize ears covered with visual symptoms of Fusarium ear rot  

2 Absolute concentrations of Fusarium verticillioides DNA (ng µl-1)  

3 Fumonisin content = Total of FB1 + FB2 + FB3 (ppm) 
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Table 3. Evaluation of 11 maize inbred lines for resistance to Fusarium ear rot in a multi-location field trial in South Africa during the 2010/2011 

and 2011/2012 growing seasons.  

1 Percentage of maize ears covered with visual symptoms of Fusarium ear rot  

2 Mean of disease severity for three field plots  

3 Means followed by the same alphabetical letter in each column are not significantly different according to Student’s t-least significant difference test (P ≥ 0.05)  

Fusarium ear rot severity (%)1,2,3 

Inbred line  Buffelsvallei Cedara Makhatini Potchefstroom Vaalharts 

 2011 2012 2011 2012 2011 2012 2011 2012 2011 2012 

VO617Y-1 1.15     c-e - 0.87     d 2.43     ab 2.04     b 9.71     a-c 2.17     d-g 0.00     c 1.21     de 6.32     a-d 

R0549W 1.08     c-e - 5.30     b-d 0.91     b 0.44     b 3.23     bc 14.43   a-c 0.00     c 5.34     a-c 2.42     cd 

US2540 0.47     de - 2.10     cd 0.00     b 1.22     b 2.67     c 0.75     e-g 1.20     bc 1.62     c-e 0.98     d 

CML444 5.15     b - 9.34     a-c 1.71     ab 0.79     b 26.50   a 0.05     g 2.96     bc 1.10     de 1.14     cd 

R119W 0.00     e - 36.51   a 1.53     b 1.64     b 15.72   ab 7.69     b-d 41.67   a 13.56    a 8.09     a-c 

CML390 2.47     b-d - 7.05     bc 0.50     b 0.44     b 5.08     bc 0.48     fg 0.00     c 0.14      e 6.59     a-d 

K62R-2 21.43   a - 33.51   a 9.94     a 0.47     b 4.56     bc 30.55   a 3.01     b 10.15   ab 4.23     b-d 

R0424W 2.04     b-d - 2.00     cd 0.99     b 1.49     b 5.94     a-c 5.29     cd 2.20     bc 3.21     b-d 15.61   ab 

I-B 5.15     b - 4.41     cd 1.31     b 1.74     b 3.69     bc 4.32     c-e 1.34     bc 1.28     c-e 21.89   a 

R2565Y 6.49     b - 3.97     cd 0.85     b 12.50   a 3.41     bc 23.33   ab 3.01     b 0.25     e 26.03   a 

R0544W 3.60     bc - 22.15   ab 1.79     ab 1.22     b 2.13     c 3.69     c-f 0.00     c 1.85     c-e 3.53     b-d 

Mean 4.46 - 11.57 1.20 2.18 7.51 8.43 5.04 3.61 8.80 
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Table 4. Evaluation of 11 maize inbred lines for resistance to fungal biomass in a multi-location field trial in South Africa during the 2010/2011 and 

2011/2012 growing seasons. 

1 Mean absolute concentrations of Fusarium verticillioides DNA for three field plots 

2 Means followed by the same alphabetical letter in each column are not significantly different according to Student’s t-least significant difference test (P ≥ 0.05)  

 

Fungal biomass (ng µl-1)1,2 

Inbred line  Buffelsvallei Cedara Makhatini Potchefstroom Vaalharts 

 2011 2012 2011 2012 2011 2012 2011 2012 2011 2012 

VO617Y-1 0.02    de - 0.33     a 0.02     bc 0.13     a 0.18     a-c 0.03     c-e 0.01     c 0.05     cd 0.05     c-e 

R0549W 0.02    de - 0.28     ab 0.02     c 0.08     a 0.08     c 0.14     a 0.03     c 0.31     a 0.03     de 

US2540 0.01    e - 0.06     d 0.03     bc 0.10     a 0.33     a 0.02     de 0.02     c 0.05     cd 0.02     de 

CML444 0.04    de - 0.08     d 0.13     a 0.06     a 0.13     bc 0.00     e 0.07     bc 0.05     cd 0.04     de 

R119W 0.81    a - 0.27     a-c 0.08     a-c 0.11     a 0.25     b 0.06     bc 0.13     a-c 0.12     b 0.12     a-c 

CML390 0.03    de - 0.09     cd 0.03     bc 0.09     a 0.09     c 0.01     e 0.01     c 0.01     d 0.03     de 

K62R-2 0.15    c - 0.18     a-d 0.09     ab 0.09     a 0.17     cd 0.05     b-d 0.25     a 0.11     bc 0.01     e 

R0424W 0.04    de - 0.10     b-d 0.05     bc 0.06     a 0.12     bc 0.05     b-d 0.02     c 0.03     d 0.04     de 

I-B 0.07    d - 0.12     b-d 0.04     bc 0.11     a 0.56     a 0.07     b 0.09     a-c 0.16     b 0.13     ab 

R2565Y 0.16    c - 0.15     b-d 0.02     c 0.08     a 0.14     bc 0.13     a 0.20     ab 0.10     bc 0.15     a 

R0544W 0.26    b - 0.12     b-d 0.04     bc 0.06     a 0.10     bc 0.05     b-d 0.16     a-c 0.03     d 0.08     b-d 

Mean 0.15 - 0.16 0.05 0.09 0.20 0.06 0.09 0.09 0.06 
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Table 5. Evaluation of 11 maize inbred lines for resistance to fumonisin accumulation in a multi-location field trial in South Africa during the 

2010/2011 and 2011/2012 growing seasons.  

1 Fumonisin content = Total of FB1 + FB2 + FB3  
2 Mean fumonisin concentration for three field plots  
3 Means followed by the same alphabetical letter in each column are not significantly different according to Student’s t-least significant difference test (P ≥ 0.05)  

* Below detectable limit  

Fumonisin (ppm)1,2,3 

Inbred line  Buffelsvallei Cedara Makhatini Potchefstroom Vaalharts 

 2011 2012 2011 2012 2011 2012 2011 2012 2011 2012 

VO617Y-1 1.92     de - 35.57    b  1.51     c-f 4.91    a-c 24.23    ab 5.44     ab 0.00*    c 5.18     ef 3.60     a 

R0549W 1.32     e - 74.31    a 4.14     bc 4.43    a-c 10.69    cd 5.54     ab 0.00*    c 13.54   b 0.58     c 

US2540 1.62     de - 6.91      f 0.54     f 3.88    bc 23.09    a-c 4.11     b 0.00*    c 4.88     d-f 0.98     a-c 

CML444 4.68     c - 8.02      ef 10.82   a 3.33    bc 10.74    b-d 0.17     d 6.69      b 5.07     e 2.89     ab 

R119W 47.21   a - 27.75    cd 5.81     ab 5.94    ab 27.69    a 4.72     ab 9.91      a 10.58   c 3.20     ab 

CML390 3.12     cd - 7.86      ef 3.88     b-d 3.05    bc 8.14      d 1.59     c 0.00*    c 3.88     g 1.02     a-c 

K62R-2 4.78     c - 22.19    b-d 2.78     b-e 4.84    a-c 15.01    a-d 4.26     b 0.00*    c 7.70     d 0.89     bc 

R0424W 2.71     c-e - 8.98      ef 1.30     d-f 2.64    c 10.57    cd 3.86     b 0.00*    c 4.18     fg 1.58     a-c 

I-B 5.08     c - 8.57      ef 2.18     b-f 7.81    a 32.29    a 4.86     ab 6.98      b 17.01   a 3.60     a 

R2565Y 4.53     c - 12.80    de 0.93     ef 3.90    a-c 14.95    a-d 7.51     a 7.43      ab 9.62     cd 2.44     a-c 

R0544W 24.48   b - 20.01    cd 2.40     b-e 4.72    a-c 17.23    a-d 3.82     b 0.00*    c 4.12     fg 1.86     a-c 

Mean 9.22 - 21.18 3.30 4.49 17.69 4.17 2.82 7.42 2.06 

Stellenbosch University  http://scholar.sun.ac.za

Stellenbosch University  http://scholar.sun.ac.za



 
 

8
4
 

Table 6. AMMI stability values (ASV) and ranking orders for Fusarium ear rot severity, fungal biomass and fumonisin contamination of the 11 

maize inbred lines tested in nine environments in South Africa during the 2010/2011 and 2011/2012 seasons.  

1 Percentage of maize ears covered with visual symptoms of Fusarium ear rot  

2 Absolute concentrations of Fusarium verticillioides DNA (ng µl-1)  

3 Fumonisin content = Total of FB1 + FB2 + FB3 (ppm)

 
FER severity1 Fungal biomass2 Fumonisins3 

Inbred line # ASV Rank ASV Rank ASV Rank 

VO617Y-1 0.66 3 2.64 11 2.32 9 

R0549W 1.57 7 2.32 10 2.96 10 

US2540 0.84 4 1.03 6 1.27 4 

CML444 2.60 11 1.69 7 3.67 11 

R119W 2.14 9 0.77 5 1.16 3 

CML390 0.95 5 0.61 4 2.16 7 

K62R-2 1.47 6 0.13 1 2.28 8 

R0424W 0.21 1 0.13 2 0.36 1 

I-B 1.63 8 0.15 3 1.84 6 

R2565Y 2.45 10 2.11 8 1.43 5 

R0544W 0.38 2 2.32 9 0.89 2 
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Fig. 1. The five localities in South Africa where maize samples were collected for the 

quantitative detection of Fusarium verticillioides and the fumonisins it produces. The dotted 

line divides the country into western and eastern localities. 
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Fig. 2. Artificial silk channel inoculation at Blister (R2) stage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Graphic representation of Fusarium ear rot disease assessment (Courtesy: M. 

Vermeulen).
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PC1 = 34.9%, PC2 = 22.6%, Sum = 57.5% 

Fig. 4. Genotype main effect + genotype by environment interaction (GGE) biplot showing Fusarium ear rot severity of 11 maize inbred 

lines tested in nine locations in South Africa during the 2010/2011 and 2011/2012 growing seasons. Line 3: VO617Y-1; line 4: K62R-2; 

line 7: R2565Y; line 8: R0549W; line 9: US2540; line 12: R0424W; line 13: R0544W; line 17: I-B; line 18: CML444; line 19: R119W; 

line 22: CML390. 
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PC1 = 43.7%, PC2 = 18.8%, Sum = 62.5% 

Fig. 5. Genotype main effect + genotype by environment interaction (GGE) biplot showing fungal biomass of 11 maize inbred lines 

tested in nine locations in South Africa during the 2010/2011 and 2011/2012 growing seasons. Line 3: VO617Y-1; line 4: K62R-2; line 

7: R2565Y; line 8: R0549W; line 9: US2540; line 12: R0424W; line 13: R0544W; line 17: I-B; line 18: CML444; line 19: R119W; line 

22: CML390. 
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PC1 = 37.1%, PC2 = 24.2%, Sum = 61.3% 

Fig. 6. Genotype main effect + genotype by environment interaction (GGE) biplot showing total fumonisin accumulation of 11 maize 

inbred lines tested in nine locations during the 2010/2011 and 2011/2012 seasons. Line 3: VO617Y-1; line 4: K62R-2; line 7: R2565Y; 

line 8: R0549W; line 9: US2540; line 12: R0424W; line 13: R0544W; line 17: I-B; line 18: CML444; line 19: R119W; line 22: CML390. 
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Fig. 7. Weather data recorded from Agricultural Research Council’s weather stations for the 2010/2011 

(blue) and 2011/2012 season (green) at the respective field locations. Bar and line series indicate total 

monthly rainfall and mean monthly temperature, respectively, for the two planting seasons.  
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CHAPTER 3  

 

Evaluation of Fusarium ear rot-resistant maize inbred lines as potential 

sources of resistance to other major ear rot diseases and associated 

mycotoxin contamination 

 

ABSTRACT 

 

Mycotoxin contamination of maize grain regularly occurs in countries where climatic 

conditions favour the growth and proliferation of ear rot fungi. The threat of these 

mycotoxins becomes most important when the food supply is limited, and animals and 

humans are forced to consume mycotoxin-infected food. Host-resistance offers the most 

effective means for control of mycotoxins and their producers, commonly known as maize 

ear rot fungi. As maize cultivars and breeding lines with resistance to multiple ear rot 

pathogens have not been identified in South Africa, Fusarium ear rot-resistant inbred lines 

were evaluated at multiple locations for their potential to resist Gibberella ear rot (GER), 

Aspergillus ear rot (AER) and Diplodia ear rot (DER) as well as their associated mycotoxins. 

The inbred lines were artificially inoculated to ensure adequate inoculum pressure. Following 

harvest, maize ears were visually evaluated for ear rot and concentrations of fungal biomass 

and mycotoxins, respectively, determined by quantitative real-time PCR (qRT­PCR) and 

liquid chromatography tandem mass spectrometry assays. Visual disease ratings correlated 

poorly with both qRT­PCR and mycotoxin data. Consequently, mycotoxin data from the 

GER and AER trials, and qRT­PCR data from the DER trials, were subjected to genotype 

main effect and genotype by environment interaction, as well as additive main effects and 

multiplicative interaction analyses. Although significant genotype x environment interactions 

were observed in the field, inbred lines CML444 and CML390 showed to be resistant while 

line R119W was highly susceptible to ear rot infection and mycotoxin contamination across 

the tested locations. These inbred lines could be used for future studies on host-pathogen 

interaction, plant resistance responses, and to develop molecular markers to aid in marker-

assisted selection.  
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INTRODUCTION 

 

Demand for maize grain is projected to increase with 45% by 2020 (James, 2008). This 

increase translates to 852 million metric tonnes of maize, of which the majority will be 

destined for food consumption in developing countries − particularly Sub-Saharan Africa. 

The only way that these countries can meet their maize needs by 2020 is to increase the 

productivity of croplands (James, 2008). This presents a daunting challenge to emerging and 

subsistence farmers in South Africa, who have limited access to the necessary resources 

required to overcome the multitude of biotic and abiotic constraints (Bänziger and De Meyer, 

2002). Among the biotic constraints, ear rot diseases can cause huge yield losses and 

deterioration in grain quality, and in some years, the entire crop can be destroyed (Rao and 

Ristanovic, 1986).  

Economically important ear rot diseases of maize include Fusarium ear rot (FER), 

Gibberella ear rot (GER), Aspergillus ear rot (AER) and Diplodia ear rot (DER), which are 

caused by fungal species of the genera Fusarium, Aspergillus and Stenocarpella, respectively 

(Afolabi et al., 2007). The distribution of the different ear rot fungi in maize fields varies 

according to year, agro-ecological zones, climatic factors, cultivar susceptibility as well as 

agricultural practices (Logrieco et al., 2002). Warm, dry weather is conducive to FER 

profileration (caused by Fusarium verticillioides)(Munkvold, 2003) whereas AER (caused by 

Aspergillus flavus) is typically associated with drought stress and humid temperatures as 

kernels mature (Afolabi, 2007). GER (caused by Fusarium graminearum sensu lato) tends to 

be more severe in cooler areas with elevated precipitation during grain filling (Boutigny et 

al., 2012) while DER (caused by Stenocarpella maydis) requires warm and wet conditions 

after silk emergence (Van Rensburg and Flett, 2010). Once environmental conditions are 

conducive to infection, the development of ear rot diseases becomes worrisome to maize 

producers and traders, not only because it compromises the economic value of the grain, but 

also because ear rot fungi deposit mycotoxins in their hosts (Marasas, 2001). 

Several diseases that are fatal to humans and livestock have been associated with 

mycotoxins. (Richard and Payne, 2002). Despite their omnipresence in maize-based foods 

and feeds, the management of mycotoxins has only focused on those that pose a serious threat 

to society. These include the fumonisins primarily produced by F. verticillioides, the 

aflatoxins produced by A. flavus and the type B trichothecenes (TCT B) and zearalenone 

(ZEA) which are produced by F. graminearum s.l. (Boutigny et al., 2011). A recent study 

conducted by Snyman et al. (2011) reported that S. maydis produces diplonine, a neurotoxin 
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that causes symptoms similar to diplodiosis in cattle and sheep. However, standards of this 

toxin are still to be commercialized and linked to harmful effects in humans (Barros et al., 

2008; Snyman et al., 2011). Food-borne mycotoxins that are considered to be of greatest 

importance in west-central Africa and south-eastern United States are the aflatoxins (Afolabi 

et al., 2007; Henry et al., 2009), whereas the fumonisins, type B trichothecenes and 

zearalenone are of particular concern because of its prevalence in Southern African maize 

(Boutigny et al., 2012).   

Host resistance is widely regarded to be the most effective strategy for the control of ear 

rot pathogens and their mycotoxins (Russell et al., 2010). However, the development of 

resistant cultivars has been difficult due to i) high environmental effects; ii) ineffective 

disease screening methods, iii) unwanted traits coupled with highly resistant germplasm and 

iv) the polygenetic nature of resistance. As global warming threatens to increase the range 

and severity of plant diseases in the near future, research is aimed at finding genetic markers 

to accelerate the pace at which breeders can incorporate stable resistance into hybrid plants 

(Russell et al., 2010).   

Quantitative trait loci (QTL) studies by Robertson-Hoyt et al. (2007) revealed that some 

of the genes involved in resistance to FER and AER, as well as their associated mycotoxins 

are identical or genetically linked. Additionally, studies by Martin et al. (2012) yielded strong 

evidence of a fixed QTL for GER, FER and reduced mycotoxin concentrations. These studies 

imply that breeding for resistance against one type of ear rot pathogen and its mycotoxin may 

lead to similar responses for another ear rot pathogen and its mycotoxin. Both constitutive 

and induced kernel proteins inhibitory to A. flavus and its aflatoxins have been characterized 

(Chen et al., 1999; Chen et al., 2001) and a few major genes associated with resistance to 

GER have been identified (Reid et al., 1994; Ali et al., 2005; Yuan et al., 2008). 

Additionally, Van Rensburg and Ferreira (1997) and Van Rensburg et al. (2003) identified 

maize inbred lines with enhanced resistance to DER, but no attempt to map the genes 

underlying such resistance had been made. 

Maize inbred lines with desirable traits and good combinability have been shown to 

exhibit resistance to FER and fumonisin accumulation (Small et al., 2012). The objective of 

this study, therefore, was to evaluate whether local FER and fumonisin-resistant maize inbred 

lines also have resistance to AER, GER and DER at multiple field sites. Inbred lines 

possessing such resistance would be valuable for the development of multiple ear rot and 

mycotoxin resistant hybrids that can be grown by farmers to ensure safe and high quality 

maize grain.  
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MATERIAL AND METHODS 

 

Plant material 

Seven maize inbred lines with diverse genetic backgrounds, previously evaluated for 

resistance to FER and fumonisin accumulation, were screened for resistance to AER, GER 

and DER and associated mycotoxin contamination under local growing conditions. 

Additionally, two inbred lines (I137tnW and R2565y) previously characterized by Small et 

al. (2012) were included in the study as susceptible checks (Table 1).   

 

Field sites 

Separate field trials, one for each of the ear rot diseases under investigation, were planted in 

December 2012 at Potchefstroom (North West Province) and Vaalharts (Northern Cape 

Province), and in February 2013 at Makhatini (KwaZulu-Natal Province). The first two 

locations are situated in the drier and warmer areas of South Africa while the third is situated 

in a hot area with relative high humidity (Chapter 2). Site-specific weather data was obtained 

from the ARC’s weather stations. 

Agricultural practices at the field locations were similar to those described in Chapter 2 

with slight modifications. Field trials were irrigated on a regular basis to mitigate drought 

stress. Elevated humidity caused weeds to grow dense in between trials planted at Vaalharts 

as these trials were not treated with herbicides. The trial layout was a randomised block 

design, using three replications (33 plants per row) per trial. Furthermore, a split plot design 

was used for the DER trials where one row was artificially inoculated and the other left 

untreated in order to determine the level of natural infection in the vicinity (Flett and 

McLaren, 1994).  

 

Production of fungal inoculum   

The conidial suspension for the artificial inoculation of the GER trials was prepared 

according to the protocol used by Reid et al. (1996). Three local isolates of F. graminearum 

s.l. (M0002, M0010 and M0100), were used as inoculum. These isolates were originally 

isolated from infected maize ears in Warden (Free State province), Delmas (Mpumalanga 

province) and Ventersdorp (North West province), respectively (Boutigny et al., 2011). 

Isolates were incubated separately for 2 weeks in potato dextrose broth (PDB), the resulting 

macroconidial suspensions adjusted to 3 x 104 conidia ml-1 and stored at 4°C for 1 or 2 days. 
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The inoculum was produced by combining the three spore suspensions in equal proportions 

prior to inoculation.  

Inoculum for the AER trials was prepared using a modified procedure of Henry et al. 

(2009). Three toxigenic strains of A. flavus (MRC 3951, MRC 3952 and MRC 3954) were 

obtained from the Medical Research Council’s Programme on Mycotoxins and Experimental 

Carcinogenesis unit (MRC-PROMEC, Tygerberg, South Africa) and grown separately on 

sterile maize kernels in 250-ml Erlenmeyer flasks. Each flask contained 50 g of maize 

kernels, firstly soaked in 25 ml distilled water overnight and then autoclaved for 40 min. The 

inoculated kernels were incubated for 2 weeks at 30°C after which the conidia were washed 

from the maize kernels with a 2% Tween 20 solution and filtered through two layers of sterile 

cheesecloth into a 500-ml Schott bottle. The conidial concentration was determined with a 

haemocytometer, adjusted to 5 x 105 conidia ml-1 and refrigerated at 4°C for 1 or 2 days 

before inoculations. The inoculum was produced by combining the three spore suspensions in 

equal proportions prior to inoculation.  

Ground maize kernels infected with aggressive cultures of S. maydis was prepared 

accordingly to the protocol described by Flett and McLaren (1994) at the ARC-GCI 

(Potchefstroom, South Africa) to serve as inoculum for the DER field trials. Maize kernels 

(400 ml) in clean jars (500 ml) were soaked in tap water for 1 day after which the water was 

decanted and 30 ml of Fries Bosal medium (Chambers, 1987) was added. The jars were then 

autoclaved for 30 min on 2 consecutive days. Each jar was inoculated with S. maydis mycelia 

and incubated at 28ºC for 60 days. Following incubation, the infected kernels were removed, 

air-dried for 5 days and milled to a fine powder. Inoculum was stored in a cool room (± 6ºC) 

prior to use (Flett and McLaren, 1994).   

 

Artificial inoculation of maize ears 

GER and AER trials were inoculated 7 days after mid-silk with A. flavus and F. graminearum 

s.l. cocktails, respectively, using the silk channel inoculation method (Chapter 2). 

Conversely, the DER field trials were inoculated by placing 5 g of S. maydis inoculum into 

the apical whorl of each plant at approximately 2 weeks before anthesis (Moremoholo et al. 

2010). The inoculation procedure and timing were the same for each location. After field 

inoculations, irrigation was applied to facilitate disease development. 
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Disease severity 

The inoculated maize ears were harvested from the field at 18% kernel moisture and 

subjected to visual ratings to determine disease severity. Disease screening for GER and AER 

was conducted by estimating the percentage of each ear covered by apparent symptoms of 

infection (Mukanga et al., 2011)(Table 2). Symptoms of DER were observed by removing 

kernels from the base and tip of the ear due to assess “hidden diplodia” (Nowell, 1997) 

(Table 2). Stenocarpella maydis-infected ears of the inoculated and uninoculated treatments 

were expressed as a percentage of the total number of ears harvested in each row of each plot 

(Rossouw et al., 2002).  

After visual assessment of disease severity, the maize grain was milled to fine particles 

(Chapter 2). Ground maize samples from each plot were weighed into 2-g and 5-g sub-

samples and stored at -20°C for quantification of fungal biomass and mycotoxin content, 

respectively. 

 

Development of species-specific primers for Stenocarpella maydis  

Fungal isolates: A total of 41 S. maydis isolates were selected for this study. These 

comprised of 30 isolates recovered from naturally infected maize ears exhibiting DER in the 

Potchefstroom field trial during the 2011/2012 season and an additional 11 isolates obtained 

from maize collected from different maize-producing areas in South Africa provided by Prof. 

Bradley Flett (ARC-GCI, Potchefstroom). Single spore isolations were made after which S. 

maydis isolates were subcultured and grown on malt extract agar (MEA)(MERK, Gauteng, 

South Africa) at 25°C under near-UV radiation (12h/day) for 2 weeks.  

 

Genomic DNA extractions, PCR amplification and sequencing: Genomic DNA was extracted 

from mycelia established on MEA plates by using the Wizard® SV Genomic DNA 

Purification kit (Promega Corporation, Madison, USA). Primer sets ITS1 and ITS4 (White et 

al., 1990), EF1-728F and EF1-986R (Carbone and Kohn, 1999) and Bt2a and Bt2b (Glass and 

Donaldson, 1995) were used to amplify the internal transcribed spacer (ITS), translation 

elongation factor 1-alpha (TEF1-α) and β-tubulin (β-tub) gene regions, respectively.  

All PCR amplification was performed in a Veriti Thermal Cycler 9902 (Applied 

Biosystems, Singapore) in a total reaction volume of 40 µl. The PCR assays consisted of 1 x 

reaction buffer, 1.5 mM  MgCl2, 0.4 mM of each primer, 0.2 µM of each dNTP’s, 1 unit of 

BioTaq DNA polymerase (5 U μl-1) and 30 ng genomic DNA to amplify the ITS gene region. 

PCR reaction concentrations were similar for the amplification of the TEF1-α while the 
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magnesium concentration in the β-tub PCR assay was increased to 2 mM MgCl2. PCR 

amplification conditions for the ITS and TEF1-α gene region were as follows: an initial 

denaturation temperature of 94°C for 5 min, followed by 35 cycles of denaturation 

temperature of 94°C for 30 s, primer annealing at 50°C for 45 s, primer extension at 72°C for 

1 min and a final extension step at 72°C for 5 min. PCR amplification of the β-tub gene 

region was carried out with an initial denaturation temperature of 94°C for 5 min, followed 

by 35 cycles of denaturation temperature of 94°C for 45 s, primer annealing at 60°C for 45 s, 

primer extension at 72°C for 1 min and a final extension step at 72°C for 10 min. 

Amplified PCR products were separated by electrophoresis at 75 V for 60 min on a 

horizontal 1% agarose gel (w/v) in 1 X Tris-acetate EDTA (TAE) running buffer (40 mM 

Tris base, 11.4 ml of acetic acid glacial, 2 mM EDTA disodium salt, pH 8) and visualized 

under UV light (GeneSnap v6.08, SynGene, Cambridge, UK) following GRGreen staining. 

Subsequently, PCR fragments were purified and concentrated according to the 

manufacturer’s instructions using a PCR cleanup kit (MSB® Spin PCRapace, STRATEC 

Molecular GmbH, Berlin, Germany). Purified PCR products were sequenced in both 

directions by the Central Analytical Facility at Stellenbosch University and edited using the 

Geneious Pro version 5.4.6 software (Biomatters Ltd, Auckland, New Zealand). The 

nucleotide sequences of the ITS, TEF1-α and β-tub gene regions generated in this study were 

assembled separately and added to other sequences of S. maydis, its closely related species S. 

macrospora as well as other maize ear rot fungi that were retrieved from GenBank 

(http://www.ncbi.nlm.nih.gov)(Table 3). Sequences were aligned using Geneious Pro v.5.4.6 

software and gene regions unique to S. maydis were visually identified.  

 

Primer design: Species-specific primers were designed using Primer3 Input v.4.0.0 software 

(Untergrasser et al., 2012). Primers of sufficient GC contents, length and high annealing 

temperatures were chosen (> 55°C), thereby preventing co-amplification of non-specific 

DNA targets.  Additionally, the resulting amplicon size was restricted to 100 base pairs (bp) 

for further evaluation under qRT­PCR conditions. Visual inspection of primer pairs based on 

the ITS sequences showed that they were not suitable for the species-specific amplification. 

However, primer sets Maydis1 F (5’-CTTGTCACATCACCCCTCCT-3’) and Maydis1 R 

(5’-CCCAGGCATACTTGAAGGAA-3’) and Maydis2 F (5’-CAGCACATGCCT 

TCCTTTCT-3’) and Maydis2 R (5’-AGGAGGGGTGATGTGACAAG-3’) were designed on 

the TEF1-α sequences to amplify a 161-bp and 196-bp PCR product, respectively. Primers 

Maydis3 F (5’-CAGCTCCAAGCCTACCACTG-3’) and Maydis3 R (5’-GTGCTCGCCA 
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GAGATGGT-3’) were designed based on the β-tub gene region to amplify a 104-bp PCR 

product. Primers were synthesized by Whitehead Scientific (Pty) Ltd in Cape Town, South 

Africa, reconstituted with 0.1 x TE buffer (pH 7.5) and made up to stock solutions of 100 

mM. 

 

Specificity of the primer sets to S. maydis: The designed primer sets were blasted against the 

National Centre of Biotechnology Information (NCBI) database to determine their specificity 

to the target genes. No homologies were found with any published nucleotide sequences 

including pathogenic ear rot fungi. PCR assays with the designed primer pairs were also 

tested on genomic DNA extracted from three S. maydis isolates as well as a range of 

unrelated fungal species known to frequently infect maize (Fig. 1). In order to avoid false 

negative results, PCR assays were conducted three times. The PCR reaction mixtures for the 

amplification of the TEF1-α and the ß-tubulin gene regions was as previously described and 

conducted in 25-μl reaction volumes. The amplification conditions for the TEF1-α gene 

region was as previously described and the optimized PCR thermal profile for the 

amplification of the ß-tubulin gene region consisted of an initial denaturation at 96°C for 5 

min, followed by 30 cycles consisting of denaturation at 96°C for 30 s, primer annealing at 

63°C for 30 s, primer extension at 72°C for 90 s and a final extension step at 72°C for 7 min.   

After amplification, the PCR products were loaded onto a horizontal 2% agarose gel 

(w/v), separated by electrophoresis at 40 V for 90 min and stained with GRGreen. PCR 

products were then visualized under UV light and images of the gel were digitally captured 

using a GeneSnap v.6.08 (SynGene, Cambridge, UK) camera system.  

 

Quantification of F. graminearum s.l., A. flavus and S. maydis in maize grain 

Genomic DNA extractions: Fusarium graminearum isolate NRRL 28439, provided by Dr. 

O’Donnell from the Department of Agriculture-Agriculture Research Service (Peoria, USA); 

S. maydis isolate BF 10, provided by Prof. Flett from the ARC-GCI (Potchefstroom, South 

Africa) and A. flavus isolate MRC 3951, provided by Dr. Rheeder from the MRC-PROMEC 

unit (Tygerberg, South Africa) were utilized to generate DNA standards for the detection and 

quantification of these fungi in infected maize samples. These isolates are now maintained in 

the culture collection of the Department of Plant Pathology at Stellenbosch University. 

Isolates NRRL 28439 and BF 10 were incubated on a rotary shaker at 25°C for 2 weeks. 

Following incubation, mycelium was harvested by filtration through two layers of sterile 

cheesecloth, washed twice with autoclaved water and freeze-died. The isolate of A. flavus 
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was grown on potato dextrose agar (PDA) at 30°C for 1 week after which the mycelia were 

scraped off into 2-ml Eppendorf tubes and freeze-dried. Freeze-dried material was stored at -

20°C until DNA extractions were carried out.  

Genomic DNA of the fungal isolates and milled maize samples was extracted with the 

DNeasy Plant Mini Kit (QIAGEN) using the protocols described by Boutigny et al. (2012). 

The DNA concentration of each maize sample was determined in duplicate using the 

NanoDrop ND-1000 Spectrophotometer (Inqaba Biotechnical Industries (Pty) Ltd., Pretoria, 

South Africa). High quality DNA was obtained and diluted to a concentration of 10 ng µl-1 

for the absolute quantification of the respective ear rot fungi in quantitative real-time PCR 

(qRT­PCR) assays.  

 

Quantitative detection of maize ear rot fungi using qRT­PCR: The primers used for the 

detection of F. graminearum s.l. were FgramB379 fwd/FgramB411 (Nicolaisen et al., 2009) 

while Af2 fwd/Af2 rev were used for the detection of A. flavus (Mideros et al., 2009) and 

Maydis3 fwd/Maydis3 rev for the detection of S. maydis. 

All qRT­PCR assays were performed on a Rotor-gene TM 6000 (Corbett Life Science) 

in a total reaction volume of 25 μl consisting of 1 x SensiMix SYBR (Quantace), 200 nM of 

each primer and 20 ng μl-1 template DNA. For the amplification of A. flavus in maize 

samples, the assay employed 200 nM of the forward primer, 75 nM of the reverse primer and 

10 ng μl-1 template DNA. The cycling conditions for the amplification of F. graminearum s.l. 

consisted of an initial denaturation step at 95ºC for 10 min followed by 40 cycles of 95ºC for 

15 s; 60ºC for 15 s and 72ºC for 15 s. The melting curve was set at 72ºC to 95ºC, rising by 

1˚C each step (Boutigny et al., 2012) and gain optimization performed at the first acquisition. 

The cycling conditions for the amplification of S. maydis were the same as for F. 

graminearum s.l. with an annealing termperature of 64oC. The cycling conditions for the 

amplification of A. flavus 95ºC for 10 min; 35 cycles of 59ºC for 30 s; 72ºC for 30 s, and a 

melting analysis of 72ºC to 95ºC,  rising by 1ºC each step (Mideros et al., 2009). Gain 

optimization was performed at the first acquisition. 

To test for linearity and presence of inhibitors, a 4-fold dilution series was prepared for 

each pathogen and contained purified fungal DNA ranging from 25 ng µl-1 to 24 pg µl-1 

mixed in pure maize DNA at 10 ng µl-1. Each standard sample was run in triplicate and 

standard curves were generated by plotting the threshold cycle values (Ct) against the 

logarithm of known DNA concentrations (measured by the Nanodrop). Criteria for DNA 

quality acceptance are a slope between -3.1 and -3.6 and efficiency between 0.90 and 1.1 
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(Mideros et al., 2009). The standard curves produced for F. graminearum s.l. and S. maydis 

had a linear relation (R2) above 0.99, efficiency of 0.98 and a slope of -3.3, whereas the 

standard curve for A. flavus had linearity above 0.99, efficiency of 0.92 and slope of -3.5 

when only considering DNA concentrations from 10 to 0.01 ng µl-1 (due to inhibition at 

higher pathogen concentration). Inhibition was evaluated by extrapolating the Ct value of the 

undiluted sample with the equation calculated by linear regression and comparing it with the 

measured Ct value. The presence of inhibitors is indicated with ΔCt above 0.5 (Boutigny et 

al., 2012). Additionally, assays containing one replicate of each maize sample, non-template 

control and triplicate standard DNA (diluted 16-fold) were carried out and the equation of R2 

used to transform Ct values into fungal biomass concentrations. 

The robustness of real-time quantification for F. graminearum s.l. in contaminated grain 

has previously been validated in the same laboratory (Boutigny et al., 2012). Nonetheless, 

qRT­PCR reactions were also performed to determine intra- and inter-run variability of 

assays and to test reproducibility of the method used to extract DNA from maize infected 

with S. maydis and A. flavus. Four different maize samples were selected to accommodate the 

largest variation in contamination with S. maydis. Firstly, DNA was extracted from four 

independent sub-samples of each of these four samples of ground maize kernels and, 

secondly, three independent runs were performed for each maize sample and triplicates 

included in each run. These experiments were repeated with maize contaminated with A. 

flavus. For S. maydis and A. flavus, triplicate qRT­PCR on the same extracted DNA 

preparation within a single run showed marginal variation in Ct values (mean SDSm = 0.08, 

nSm = 60; mean SDAf = 0.07, nAf = 60) whereas larger variation was found between separate 

runs (mean SDSm = 0.20, nSm = 12; mean SDAf = 0.19, nAf = 12). Therefore, it can be 

concluded that the DNA extraction method and qRT­PCR assays used to assess S. maydis and 

A. flavus in artificially inoculated maize samples from field studies were highly reproducible.  

 

Mycotoxin analysis 

Milled maize (5 g) from the GER and AER trials were subjected to liquid chromatographic 

tandem mass spectrometry (LC-MS/MS) analysis as described in Chapter 2, with some 

modifications. The mycotoxins were extracted from milled maize (5 g) sub-samples as 

follows: 20 ml methanol extraction buffer (70% meOH:30% Milli-Q H2O) was added to each 

sample and the suspension shaken at 200 rpm in an incubator/shaker set at 25oC for 30 min. 

The samples were then centrifuged at 4000 rpm at 4oC for 10 min. A sterile syringe was used 

to remove 2 ml clear extract that was filtered through a 0.20 μm nylon filter into a 2-ml 

Stellenbosch University  http://scholar.sun.ac.za



101 
 

Eppendorf tube. The samples were placed at 4oC overnight after which they were centrifuged 

for 10 min at 14 000 rpm before transferring 1.8 ml clear extract to LC-MS/MS glass vials 

(undiluted). 

Standards of deoxynivalenol (DON)(5 mg), 3-acetyl-deoxynivalenol (3-A-DON)(5 mg), 

15-acetyl-deoxynivelanol (15-A-DON)(5 mg), nivalenol (NIV)(5 mg) were obtained from 

Tega Marketing (Gauteng, South Africa), and standards of ZEA (10 mg) and an aflatoxin B 

and G mixture (AFB1 and AFG1 = 28.75 µg; AFB2 and AFG2 = 8.3 µg) were obtained from 

Sigma-Aldrich (Aston Manor, South Africa). TCT B (DON, A-DON and NIV) and ZEA 

were reconstituted in their own original glass vials with 1 ml acetonitrile (ACN). The vials 

were closed, well shaken and the respective mycotoxins left to fully dissolve. Each standard 

was then transferred in equal amounts into a 500-µl Eppendorf tube and used as stock 

solution. The final concentrations for TCT B and ZEA in the combined stock solution were 

500 and 1000 ppm, respectively. A stock solution for aflatoxins was obtained by 

reconstitution of dried standards with 5 ml ACN, that had a final concentration of 5.75 and 

1.66 µg µl-1 for AFB1/AFG1 and AFB2/AFG2, respectively. Since aflatoxins are light 

sensitive, the 5-ml stock solution was aliquoted in volumes of 1 ml into 2-ml Eppendorf tubes 

and kept in the dark at 4 °C.  

On the day of analysis, stock solutions were diluted with 70% methanol to generate 

calibration curves which were included in each run of the LC-MS/MS. Unkowns were plotted 

on the standard curve to calculate total levels of TCT B and ZEA ranging from 0.032 and 100 

ppm for DON, A-DON and NIV, and between 0.064 and 200 ppm for ZEA. The detection 

range for the aflatoxins was 0.015 to 383 ppb for AFB1/AFG1, and between 0.004 and 110 

ppb for AFB2/AFG2. 

Multi-mycotoxin analysis was conducted at the Central Analytical Facility at 

Stellenbosch University. Solutions were thoroughly vortexed and 5 μl injected into the LC-

MS/MS system. For samples with results above the standard curve limits (aflatoxins have 

high carry-over) an appropriate dilution was made using Milli-Q H2O, and the samples re-

analysed. Approximately 20% of the samples were run in duplicate for confirmation. 

Minimum limits of quantification for DON, NIV, A-DON, ZEA, AFB1/AFB2 and 

AFG1/AFG2 were 0.010, 0.100, 0.010 ppm, 0.5, 0.1 and 0.2 ppb, respectively. Diplonine 

concentrations potentially present in the DER maize samples were not quantified in this study 

as calibration standards for this mycotoxin are not commercially available. 
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Statistical analysis 

Data obtained from the GER, AER and DER trials, were separately subjected to univariate 

analysis of variance using the General linear model (GML) procedure of SAS statistical 

software version 9.2 (SAS Institute Inc., Cary, NC, USA). Experimental results were 

combined in one ANOVA (John and Quenouille, 1977) after testing for homogeneity of 

variance using Levene’s test (Levene, 1960). The Shapiro-Wilk test was performed to test for 

normality (Shapiro, 1965) and the Student’s t-least significant difference (LSD) was 

calculated at the 5% level to compare treatment means (Ott, 1998). Non-parametric Pearson 

correlation coefficients were determined for relationships among ear rot severity, fungal 

biomass and mycotoxin contamination using the CORR procedure in SAS based on 

untransformed means (Chapter 2).  

To determine the effects of inbred x location interaction on mycotoxin contamination, 

data from the GER and AER trials were subjected to genotype main effect and genotype by 

environmental interaction (GGE) biplot analysis using GenStat 15th edition (Payne et al., 

2012). Visual representation of the GGE biplot was further supported with additive main 

effects and multiplicative interaction (AMMI) analysis of variance (Gauch and Zobel, 1996) 

performed in SAS version 9.2  (Chapter 2).  

The consistency of the inbred lines reactions towards DER and S. maydis infection were 

established using Spearman rank correlations of the six (three locations x two treatments) 

regression points. Regression analyses with the model Y = AXb were used to determine the 

relationship between infection potential (X) of a trial site and fungal biomass within a 

genotype (Y). Infection potential is defined as the average fungal concentration over all 

inbred lines associated with a specific season, location and inoculation treatment (Flett and 

McLaren, 1994). Additionally, GGE and AMMI analyses were conducted to determine the 

inbred x location interaction effect on S. maydis biomass (inoculated treatment).  

 

RESULTS 

 

Gibberella ear rot  

Disease severity, fungal biomass and mycotoxin production: After field inoculations, fungal 

colonization resulted in GER development and mycotoxin accumulation in all maize entries 

during the 2012/2013 season (Table 4). The mean GER severity for the nine inbred lines 

ranged from 4.70 ± 1.77% to 23.10 ± 21.9% at Potchefstroom, 1.00 ± 0.2 % to 85 ± 15% at 

Vaalharts, and 8.37 ± 4.53% to 28.82 ± 8.18% at Makhatini (Table 4). Mean fungal DNA 
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levels ranged from below 0.02 ng µl-1 (detectable limit) to 0.78 ± 0.19 ng µl-1 at 

Potchefstroom, 0.02 ± 0.01 ng µl-1 to 1.44 ± 0.19 ng µl-1 at Vaalharts, and 0.65 ± 0.34 ng µl-1 

to 3.23 ± 1.32 ng µl-1 at Makhatini (Table 4). Mycotoxin contamination included DON, A-

DON and ZEA as no NIV was detected in the maize samples. DON was detected in 96.29% 

of the maize samples collected (n = 81) with mean and maximum levels of 13.13 ppm and 

35.29 ppm, respectively. All of the DON-contaminated samples also contained the acetylated 

derivative 15-A-DON (mean: 0.74 ppm, maximum: 3.01 ppm) while none of the samples 

contained 3-A-DON. ZEA was detected in 48.14% of the samples investigated with an 

average concentration of 1.13 ppm. According to the ANOVA, a significant inbred x location 

interaction was observed for both GER severity and fungal biomass (P ≤ 0.01), but not for 

associated mycotoxin contamination (P = 0.06). GGE and AMMI (Table 5) analyses were 

used to best explain these interactions.  

There were no significant differences between inbred lines evaluated for GER severity at 

Makhatini (P = 0.75). At the Potchefstroom and Vaalharts locations, however, the inbred 

lines differed significantly in their responses to GER severity (P ≤ 0.01). At Vaalharts, for 

example, lines R2565Y, R119W and I137tnW exhibited significantly more GER symptoms 

when compared to the other inbred lines (P ≤ 0.05)(Table 4). Additionally, the influence of 

location on disease development was exemplified by line R2565Y, having the highest disease 

severity at Vaalharts (85.00%) and the lowest at Makhatini (8.37%)(Table 4). 

The individual inbred lines responded differently to F. graminearum s.l. infection within 

each location (P ≤ 0.05), with lines VO617Y-1, US2540, CML444, R119W and CML390 

being significantly more susceptible at Makhatini than at the other two field sites (P ≤ 0.05). 

This location effect also manifested in the higher average F. graminearum s.l. concentration 

found at Makhatini (1.20 ng μl-1) when compared with Potchefstroom (0.23 ng μl-1) and 

Vaalharts (0.33 ng μl-1)(Table 4). 

The higher average mycotoxin concentration found at Makhatini (20.54 ppm)(Table 4) 

was not surprising as fungal biomass and mycotoxin content (TCT B + ZEA) have been 

indicated to correlate well (Boutigny et al., 2012). Similar mean mycotoxin levels observed at 

Potchefstroom (11.67 ppm) and Vaalharts (12.83 ppm) were merely co-incidental as 

significant differences between inbred lines were recorded at both locations (Table 4). At 

Makhatini, for instance, lines VO617Y-1(37.43 ppm) and R119W (25.32 ppm) accumulated 

significantly more mycotoxins than the other seven inbred lines evaluated (P ≤ 0.05)(Table 

4). Some individual inbred lines also differed significantly in their mycotoxin levels across 

locations (Table 5). For instance, lines VO617Y-1, US2540, CML444, CML390 and 
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CML182 had significantly higher mycotoxin concentrations at Makhatini (P ≤ 0.05) than the 

other two field sites (Table 5).  

 

Correlations between ear rot severity, fungal biomass and mycotoxin contamination: Despite 

fungal growth and mycotoxin contamination being present in all of the samples that showed 

symptoms of GER, a significant but poor correlation was established between visual and 

qRT-PCR data (Pearson correlation of r = 0.32; P ≤ 0.01), as well as between visual and toxin 

rating (r = 0.53; P ≤ 0.01). This finding is exemplified by line R2565Y which had a visual 

rating of 23.10% and F. graminearum s.l. concentration below the detectable limit (0.02 ng 

μl-1) at Potchefstroom, or line US2540 having a GER severity of 13.04% while still 

containing 22.58 ppm of mycotoxins (TCT B + ZEA) at Makhatini (Table 4). Conversely, a 

strong and significant relationship was observed between the toxin and qRT-PCR results (r = 

0.70; P ≤ 0.01) which is supported by lines R2565Y and R119W having the highest 

mycotoxin (38.47 and 21.48 ppm, respectively) and F. graminearum s.l. (1.44 and 0.45 ng µl-

1, respectively) concentrations at Vaalharts in the 2012/2013 growing season (Table 4). 

 

Genotype main effect, genotype by environment interaction (GGE) and additive main effects 

and multiplicative interaction (AMMI) analyses: From the findings in the current study and 

in Chapter 2, it is palpable that visual ratings of disease severity should not be used as 

selection criteria for ear rot resistance and reduced mycotoxin contamination. Although 

expensive, mycotoxin analysis provides an alternative means for resistance screening in 

maize germplasm that is not only time-effective but also reliable. Therefore, the nine lines 

were ranked in terms of their total mycotoxin concentration to rid the problems encountered 

with normality and homogeneity of variance. Results were then combined in a GGE biplot 

(Fig. 2) for visual summary of stable resistance towards F. graminearum s.l. and its 

mycotoxins (TCT B + ZEA). The consistency of the inbred lines’ performance across the 

multiple locations was also supported by AMMI stability values (ASV)(Table 6).  

The GGE biplot is based on principle component analysis where the first two principle 

components were significant at P = 0.01 level, and cumulatively contributed to 91.3% of the 

genotypic variance (Fig. 2). This finding indicates that the inbred x location interaction is 

very complex. PC1 is located on the X-axis and across its value is estimated resistance, while 

PC2 is located on the Y-axis and presents performance stability of the inbred lines (Yan and 

Kang, 2003). For selection, the best inbred lines are considered those with high resistance to 

F. graminearum s.l. and stable performance across locations.  
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The genotypes were grouped into six sectors with the largest sector incorporating all 

three test environments (Fig. 2). Based on their toxin ranking and AVS, inbred lines 

CML390, CML182 and CML444 were constantly resistant to mycotoxin accumulation across 

locations (Fig. 2; Table 6). The rest of the inbred lines evaluated were not suited for any 

target-environment as they performed less than average. For example, line US2540 exhibited 

high resistance but low stability and lines VO617Y-1 and I137tnW exhibited low stability 

and moderate resistance (Fig. 2; Table 6). Furthermore, lines R119W, R2565Y and R0549W 

had low stability and low resistance to mycotoxin accumulation (Fig. 2; Table 6).   

 

Aspergillus ear rot  

Disease severity, fungal biomass and aflatoxin production: Following artificial silk channel 

inoculation, disease development was generally low with a higher AER severity recorded at 

Makhatini (4.97%) than at Potchefstroom (1.21%) and Vaalharts (0.62%)(Table 7). In 

addition, A. flavus and aflatoxin concentrations determined in the maize samples were also 

low (Table 7). Average fungal biomass content ranged between 0.3 ± 0.13 ng μl-1 and 0.31 ± 

0.01 ng μl-1 at Potchefstroom, < 0.3 ng μl-1 (detectable limit) and 1.26 ± 0.75 ng μl-1at 

Vaalharts, and from < 0.3 ng μl-1 to 0.3 ± 0.01 ng μl-1 at Makhatini. The mean total aflatoxin 

levels ranged from < 0.1 ppb (detectable limit) to 0.1 ± 0.02 ppm at Potchefstroom, and < 0.1 

ppb to 0.18 ± 0.15 ppm at Vaalharts. No aflatoxins accumulated in the individual inbred lines 

at the Makhatini site (Table 7). The ANOVA indicated a significant inbred x location effect 

for AER severity, fungal biomass and aflatoxin contamination (P ≤ 0.01). These interactions 

were explained by GGE and AMMI analyses (Table 8).  

Although low disease severity percentages were recorded, significant difference could be 

determined for the AER trials at all the field locations (P ≤ 0.01). At Makhatini, lines 

CML390 (9.28%) and CML444 (0.68%) differed significantly (P ≤ 0.05) in their visual 

ratings whereas line R119W (4.91%) exhibited significantly more AER symptoms at 

Potchefstroom when compared to the other inbred lines (P ≤ 0.05)(Table 7).  At Vaalharts, 

inbred lines VO617Y-1, R119W, CML390, CML182 and I137tnW (0.05 to 0.19%) had 

significantly less AER than lines R2565Y, R0549W, US2540 and CML444 (0.58 to 2.50%) 

displaying the highest disease severities (P ≤ 0.05) (Table 7). Significant differences in 

response of inbred lines to AER also occurred amongst field locations. At Makhatini, for 

instance, lines CML390 (9.28%), CML182 (6.37%), R119W (7.81%), R2565Y (4.32%) and 

I137tnW (7.11%) were significantly more prone to disease development than at 

Potchefstroom and Vaalharts (P ≤ 0.05). Maize inbred lines VO617Y-1, R2565Y, R0549W, 
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US2540 and CML444 were the only lines constantly having low visual ratings (0.12 to 

4.32%) across the tested locations (Table 7).  

At Makhatini, no significant difference between inbred lines for mean fungal content 

was observed (P = 0.39)(Table 7).  However, the individual inbred lines differed significantly 

in their response to fungal colonization at Potchefstroom and Vaalharts (P ≤ 0.01). For 

instance, at the Potchefstroom lines R2565Y, R0549W, CML444, CML390 and CML182 

(0.03 ng μl-1) accumulated lower fungal DNA than lines VO617Y-1, US2540, R119W and 

I137tnW (0.04 to 0.31 ng μl-1) (Table 7). In contrast, lines R2565Y (1.26 ng μl-1) and 

R0549W (0.76 ng μl-1) displayed the highest A. flavus concentrations in the Vaalharts trail, 

exemplifying the highly significant inbred x location interaction (P ≤ 0.01)(Table 8). 

Aflatoxins were only detected in maize lines tested at Vaalharts and Potchefstroom with 

genotypic differences in aflatoxin accumulation being significant at both locations (P ≤ 0.01). 

At Potchefstroom, for example, lines VO617Y-1 (0.02 ppm) and R119W (0.10 ppm) 

recorded higher aflatoxin levels compared to the other inbred lines (Table 7). A significant 

inbred x location effect was observed for aflatoxin contamination (P = 0.00) despite lines 

R0549W, US2540, CML444, CML390 and CML182 having aflatoxin levels below the 

detectable limit of 0.1 ppb at both the Potchefstroom and Makhatini locations (Table 7).  

 

Correlations between ear rot severity, fungal biomass and aflatoxin contamination: Certain 

lines recorded a high disease severity but low fungal concentrations, such as line US2540 

which had a disease severity of 2.5% and A. flavus concentration of 0.04 ng μl-1 at Vaalharts; 

or a high disease severity and low aflatoxin content, indicated by line CML390 with AER 

symptoms of 9.28% and no aflatoxin contamination (< 0.1 ppb) at Makhatini (Table 7). It 

was, therefore, not surprising that the visual and qRT-PCR data as well as the visual and 

toxin data did not correlate well (Pearson correlation of r = -0.21; P = 0.06 and r = -0.16; P = 

0.16). Conversely, the fungal biomass and aflatoxin results correlated moderately well (r = 

0.59; P ≤ 0.01). 

 

Genotype main effect, genotype by environment interaction (GGE) and additive main effects 

and multiplicative interaction (AMMI) analyses: GGE biplot analysis of total aflatoxin 

content revealed that PC1 and PC2 accounted for 78.3% and 21.6%, respectively, explaining 

a total of 100% variation (Fig. 3). Two groups of environments could be distinguished (Fig. 

3). The first group includes the Makhatini and Potchefstroom environments with inbred lines 

CML182 and CML444 as the resistant genotypes and the second group includes the 
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Vaalharts location with line CML390 having the lowest aflatoxin levels. Conversely, inbred 

lines R119W and VO617Y-1 are not suited for any environment as they were classified as the 

susceptible genotypes in this study (Fig. 3). None of these resistant or susceptible lines were 

consistent in their performance across the field sites (Table 6) and therefore it is required that 

the identified target-environments are verified within multi-year experiments.  

 

Diplodia ear rot  

Disease severity and fungal biomass: With three exceptions, artificial inoculation did not 

significantly increase the level of DER found in the inoculated maize samples when 

compared with the natural infection at the field locations (P = 0.19)(Table 9). There were, 

however, significant differences observed between inoculated and uninoculated lines in mean 

S. maydis biomass (P = 0.02). Inoculated treatment means for disease severity and fungal 

concentration reached maximum levels, respectively, of 44.14% and 0.85 ng μl-1 at 

Potchefstroom, 32.80% and 0.41 ng μl-1 at Vaalharts, and 6.67% and 0.08 ng μl-1 at 

Makhatini (Table 9) which could allow for proper discrimination between susceptible and 

resistant genotypes. A significant inbred x location interaction was observed for fungal 

biomass (P = 0.02), but not for DER severity (P = 0.05)(Table 10). 

While most of the inoculated inbred lines (lines VO617Y-1, US2540, CML444, 

CML390 and I137tnW) showed comparable responses to DER across locations (P ≥ 0.05), 

significant differences in the reactions of some inbred lines were evident within trial sites 

(Table 9). For example, at Potchefstroom, lines R119W (43.88%) and I137tnW (44.14%) 

exhibited considerably more severe DER symptoms than lines VO617Y-1 (6.43%) and 

CML390 (4.79%) whereas at the Vaalharts location, lines US2540 (2.13%) and CML390 

(8.77%) had significantly less ear rot than those displaying the highest severities (lines 

R2565Y, R0549W and I137tnW)(28.07 to 32.80%)(Table 9). 

The inoculated inbred lines differed significantly from each other in their fungal biomass 

amounts at Potchefstroom (P = 0.03) and Makhatini (P = 0.04) but not at Vaalharts (P = 

0.61) (Table 9). For example, at Potchefstroom lines R0549W (0.85 ng μl-1) and R119W 

(0.74 ng μl-1) developed significantly more S. maydis DNA (P ≤ 0.05) than lines VO617Y-1 

(0.02 ng μl-1), R2565Y (0.10 ng μl-1), CML444 (0.05 ng μl-1) and CML390 (0.02 ng μl-1). 

The resistance of the lines to fungal colonisation over locations were also inconsistent as 

indicated by a significant inbred x location effect (P = 0.02)(Table 10) and poor spearman 

rank correlation. Rankings ranged from -0.91 to 0.56, with only one of a possible 15 pair 

combinations (three locations x one season x two treatments/ ) positively correlated (r >  
:2:4

:6
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0.7)(data not shown).  

 

Correlations between ear rot severity and fungal biomass: Primer sets Maydis1 F/Maydis1 R 

and Maydis2 F/Maydis2 R routinely amplified DNA from S. maydis and F. graminearum s.l., 

F. verticillioides, F. subglutinans and F. proliferatum (data not shown). On the other hand, 

primer set Maydis3 F/Maydis3 R was specific for S. maydis (Fig. 1), and was thus used for 

quantitative detection of S. maydis in maize grain.  

The relationship found between DER severity and fungal biomass in inoculated 

treatments was significant but poor (Pearson correlation of r = 0.37; P ≤ 0.01). This could be 

explained by certain lines, such as lines R2565Y and CML390, having similar infection 

levels (± 0.23 ng μl-1) but different disease severities (32.80% and 8.77%, respectively) at 

Vaalharts during the 2012/2013 growing season (Table 9).  

 

Regression analysis: qRT­PCR data (inoculated and uninoculated treatments) for each inbred 

line were used in the regression model Y = AXb, where Y = mean fungal biomass recorded in 

each line and X = the mean infection level of a trial site (infection potential). This served to 

explain the true nature of a genotype’s resistance status in the presence of location effects 

(Flett and McLaren, 1994). Inbred lines were characterized according to their B parameter 

where B = ±1 indicated moderate resistance (intermediate); B < 1 indicated resistance and B > 

1 indicated susceptibility to S. maydis infection (Table 11). Lines below the regression line 

(X=Y) in Fig. 4, such as lines VO617Y-1, R2565Y, CML444 and CML390 were regarded as 

the resistant genotypes and lines above regression, such as lines R0549W and R119W were 

regarded the susceptible genotypes. Additionally, lines US2540, CML390 and I137tnW were 

moderately resistant due to their close proximity to linear regression (Fig. 4). To support this 

finding, confidence limits were fitted to regression lines but mostly overlapped which 

prevented reliable selection of resistant and susceptible genotypes (data not shown). For this 

reason, GGE and AMMI analyses were carried out on the qRT­PCR data from the inoculated 

DER field trials.  

 

Genotype main effect, genotype by environment interaction (GGE) and additive main effects 

and multiplicative interaction (AMMI) analyses: The partitioning of the GE effect through 

biplot analysis showed that PC1 and PC2 accounted for 52.5% and 37.2% of the GGE sum of 

squares, respectively, explaining a total of 89.7% variation (Fig. 5). Inbred lines with the 

lowest accumulated S. maydis DNA concentrations included lines VO617Y-1 > CML390 > 
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R2565Y > CML444 (Fig. 5). Amongst these, lines VO617Y-1 and CML444 are more 

desirable because lines R2565Y and CML390 were very unstable in their performance as 

indicated by their ASV values (Table 6). Furthermore, lines VO617Y-1 and CML390 had 

Potchefstroom and Vaalharts as target-environments while lines R2565Y and CML444 were 

best suited for the Makhatini location (Fig. 5). The other five inbred lines performed poorly 

across locations, with lines US2540, CML182 and I137tnW being moderately resistant 

whereas lines R0549W and R119W are sensitive towards S. maydis infection (Fig. 5). These 

results are in agreement with the observations earlier made with regression analysis (Fig. 4). 

 

Weather data 

Average monthly temperatures were slightly lower at Potchefstroom than at Vaalharts during 

the growing season (December to July)(Fig. 6). In contrast, Makhatini was notably warmer 

between March and July when compared to the other two field sites (Fig. 6). This period 

represents the seedling emergence (March), inoculation (May) and grain filling (June) stages 

of maize production at Makhatini as the planting date for the Makhatini trials were postponed 

to February 2013. Mean monthly rainfall was higher at Potchefstroom at the beginning of the 

season (December) and over the pollination (March) and drying periods (April) than at 

Vaalharts (Fig. 6). At the Makhatini location, an average rainfall of 16.60 mm was recorded 

between February and September, which is considerably less when compared with 

Potchefstroom (83.38 mm) and Vaalharts (70.49 mm)(Fig. 6).   

 

DISCUSSION 

 

Among the different strategies available, plant breeding offers the best opportunity to reduce 

mycotoxin contamination in grain crops effectively. Paucity in the literature on adequate ear 

rot-resistance in maize germplasm, supports that the current study is of great importance as it 

represents the most comprehensive evaluation of local genotypes’ resistance to multiple 

infections by mycotoxigenic fungi to date. These inbred lines were chosen by plant breeders 

from ARC-Grain Crops Institute (Potchefstroom, South Africa) for their good combinability 

and agronomic features, and are therefore, ideal for use in plant breeding programmes.  

Artificial inoculation of FER-resistant inbred lines resulted in high GER severities as 

well as TCT B (DON + A-DON) and ZEA concentrations (38.29 and 6.76 ppm, respectively) 

which are greater than the maximum tolerable levels allowed by United States Food and Drug 

Administration (NGFA, 2011). High TCT B and ZEA levels found in maize samples are not 
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unlikely since FER-resistant material prevented the antagonistic abilities of F. verticillioides 

in the field, which in turn could have allowed growth and proliferation of F. graminearum s.l. 

(Picot et al., 2012). The strong and significant correlation found between mycotoxin and 

fungal content support the notion that DON and its acetylated forms may play a role in fungal 

pathogenicity (Harris et al., 1999).  

AER severity, fungal biomass and aflatoxin contamination was expectedly low at all 

three test locations. It could be argued that the climate in South Africa is unfavourable for A. 

flavus growth and aflatoxin production, making resistance screening difficult. Correlated 

responses of the lines for FER and AER resistance are, however, in accordance with previous 

studies (Robertson-Hoyt et al., 2007; Henry et al., 2009) and suggest that common resistance 

mechanisms may function for the two diseases.  

Stenocarpella maydis has been an important ear rot pathogen of maize in South Africa 

since the early 1980’s when the breeding line B73 was extensively used. Commercial 

companies, therefore, screen hybrids annually before release to prevent susceptible hybrids 

from entering the local the market (Schoeman and Flett, 2012). Artificial inoculation in this 

study did not significantly increase the level of DER found in the inoculated maize samples 

when compared with natural infection at the field sites. This could imply that artificial 

inoculation might not be necessary when screening for DER-resistance. However, early 

harvesting of maize ears may have prevented proper disease development, which could 

explain the low percentage of visual symptoms. Artificial inoculation thus remains important 

to ensure suitable selection of DER-resistant material because several reports have indicated 

that natural epidemics of S. maydis do not occur every year (Du Toit and Nordier, 1989;  

1990; 1991; Flett and McLaren; 1994). 

Since S. maydis infection is not limited to the surface of maize kernels and visual ratings 

may result in inaccurate results (Barros et al., 2008), a quick and reliable method to detect S. 

maydis in planta was important to develop. The species-specific primer set developed in this 

study (Maydis3 fwd/Maydis3 rev) proved to be highly specific to distinguish S. maydis from 

other maize ear rot pathogens, which justified its use for quantification of this fungus in the 

maize samples. However, it should be further tested against all other Stenocarpella and 

related species before being used as a general diagnostic tool.  

The significant differences in disease severity, fungal biomass and mycotoxin levels 

observed between trials could be attributed to variation in environmental factors such as 

temperature and humidity (Picot et al., 2010). Additionally, poor husk protection, droopy 

ears, slow ear drydown, water logging and feeding-damage of birds and insects are known to 
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increase GER severity (Munkvold, 2003), whereas kernel damage may also result in higher 

AER severity in the field (Narasaiah et al., 2006). Higher DER incidences have been reported 

in maize monocultures where no or limited tilling practices are applied (Flett et al., 1998). In 

the current study, mean F. graminearum s.l. levels and total mycotoxin contamination (TCT 

B + ZEA) were significantly more severe at Makhatini when compared with the other field 

sites. This could not be explained by weather data since the temperature and rainfall amounts 

of the field sites were similar after silking, the period most critical for infection (Munkvold, 

2003). Water logging and feeding-damage of birds recorded in the field and during disease 

evaluation could possibly explain the extended mycotoxin contamination at Makhatini 

(Munkvold, 2003). A higher average A. flavus and aflatoxin concentration was further 

recorded at Vaalharts in spite of having a lower ear rot rating compared to Potchefstroom and 

Makhatini. Aspergillus flavus is regarded as a storage pathogen, but may produce aflatoxins 

in the field under stressful conditions such as water- and nutrient deficiency (Narasaiah et al., 

2006; Reverberi et al., 2008). Despite the low rainfall recorded during the season at each 

location, the trials were irrigated weekly, thereby excluding drought stress as explanation. It 

is therefore speculated that the enhanced aflatoxin production was merely a response to plant 

stress due to the competition with weeds at Vaalharts as no herbicide treatments were 

applied. A slightly higher rainfall at Vaalharts and Potchefstroom during silking (March), 

combined with increased relative humidity due to irrigation, could explain the higher S. 

maydis infection found at these two locations (Schoeman and Flett, 2012). 

The low correlation coefficients found for both visual and qRT-PCR rating, and visual 

and toxin rating, highlighted the importance of mycotoxin analysis in routine screening for 

resistance to ear rot pathogens. However, quantification of mycotoxin concentrations in 

maize samples is cost-prohibitive and requires certain finesse. More efficient selection 

systems are therefore being sought to replace traditional phenotype-based selection systems. 

Marker-assisted selection has been proposed by many authors who studied the complex 

nature of heritability and correlations of AER and GER diseases and reduced mycotoxin 

contamination (Ali et al., 2005; Brooks et al. 2005; Martin et al., 2011; Martin et al., 2012). 

In summary, none of the maize inbred lines in this study were completely resistant to F. 

graminearum s.l., A. flavus and S. maydis and subsequent mycotoxin contamination. Line 

R119W appeared to be highly susceptible while lines CML444 and CML390 were the only 

genotypes with good resistance to infection and multi-mycotoxin accumulation. Even so, 

none of these candidates were stable in their performance across the test locations and should 

be evaluated in multi-year experiments to further confirm their level of resistance. The 
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existence of common resistance gene areas for the different ear rot fungi warrants future 

investigation. This might require QTL analysis following crosses between highly resistant 

(for example line CML390) and susceptible (for example line R119W) inbred lines. 
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Table 1. Maize inbred lines evaluated for resistance to Gibberella, Aspergillus and Diplodia ear rot and associated mycotoxin 

contamination in a multi-location trail in South Africa during the 2012/2013 season.  

 

Inbred line 

identity 
Origin 

Resistance: 

FER/Fumonisin 

Resistance: 

GER/Trichothecenes B/ 

Zearalenone 

Resistance: 

DER/Diplonine 

Resistance: 

AER/Aflatoxin 

VO617Y-1A ARC-GCI-South Africa Resistant Unknown Unknown Unknown 

R2565YA ARC-GCI-South Africa Susceptible Unknown Unknown Unknown 

R0549WA ARC-GCI-South Africa Resistant Unknown Unknown Unknown 

US2540A ARC-GCI-South Africa Resistant Unknown Unknown Unknown 

CML444A CIMMYT-Zimbabwe Resistant Unknown Unknown Unknown 

R119WA ARC-GCI-South Africa Susceptible Unknown Unknown Unknown 

CML390A CIMMYT-Zimbabwe Resistant Unknown Unknown Unknown 

CML182B CIMMYT-Zimbabwe Resistant Unknown Unknown Unknown 

I137tnWB ARC-GCI-South Africa Susceptible Unknown Unknown Unknown 

ARC-GCI, Agricultural Research Council Grain Crops Institute 

CIMMYT, International Maize and Wheat Improvement Centre 

A Maize inbred lines evaluated for resistance to FER and fumonisin accumulation during field trials (Chapter 2) 

B Maize inbred lines evaluated for resistance to FER and fumonisin accumulation during field and glasshouse trials in Small et al. (2012) 
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Table 2. Visible symptoms of the major ear rot diseases of maize in Sub-Saharan Africa (Adapted from Mukanga et al., 2011). 

 

Kernel discoloration Nature of damage Ear rot disease Fungal species 

Yellow-green grain 
Localized rotten kernels with insect 

mining in between kernels 
Aspergillus ear rot 

A. flavus 

A. parasiticus 

Dense white or greyish brown (latent 

infection) mold all over the grain, sometimes 

with black pycnidia 

Lightweight, bleached, shrunken 

kernels. 

Rotting from the base upwards 

Diplodia ear rot 
S. maydis 

S. macrospora 

Pale pink, reddish brown or lavender grain 

surface with white streaks 

Rotten grain scattered all over the 

cob 

Rotting from ear tip downwards 

Fusarium ear rot 

F. verticillioides 

F. proliferatum 

F. subglutinans 

Reddish or pink mycelia covering the grain 
Rotten grain 

Rotting from ear tip downward 
Gibberella ear rot F. graminearum sensu lato 

Powdery blue-green growth on and in between 

kernels 

Localized bleached and streaked 

kernels 

 

Penicillium ear rot 

P. oxalicum 

P. chrysogenum 

P. cyclopium 

P. funiculosum 
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Table 3. Genbank accession numbers for gene sequences used to design species-specific primers for the quantification of 

Stenocarpella maydis in maize.  

  Genbank accession numbers 

Species Strain number ITS TEF1-α β-tub 

Aspergillus flavus 290499/60 AY677676 - - 

 - AB008415 - - 

A. A. parasiticus - JX857815 - - 

Fusarium graminearum sensu lato 92 R JQ363729 - - 

 ITEM 8504 - JN687920 - 

 ICMP 15495 - - EU490257 

F. proliferatum MTCC 9690 HM245296 - - 

 MRC 8550 - GU564309 GU564312 

F. subglutinans MD 29 JQ886413 - - 

 NRRL 22016 - HM057336 - 

 ATCC 38016 - - AB587056 

F. verticillioides HTITV 50 KF010170 - - 

 5 SNO - GU5642961 - 

 MRC 7817 - - AF366546 

 K 351 - - KF484464 

Penicillium oxalicum YLJ 87 JX231010 - - 

P. viridicatum IBT 5273 AJ005482 - - 
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Phomopsis viticola Pho CT1L - - HQ586930 

Phaecytostroma ambiguum CPC 16775 FR748034 FR748066 - 

 CPC 16776 FR748035 FR748067 - 

 CPC 17072 FR748037 FR748069 - 

Stenocarpella macrospora CBS 117560 FR748048 - - 

 CPC 11863 FR748049 - - 

S. maydis CBS 117558 FR748051 FR748080 - 

 CBS 117559 FR748052 FR748081 - 

 CPC 16779 FR748055 FR748084 - 

 CPC 16781 FR748056 FR748085 - 

 CPC 16784 FR748059 FR748088 - 
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Table 4. Evaluation of nine maize inbred lines for resistance to Gibberella ear rot in a multi-location field trial in South Africa during 

the 2012/2013 growing season.  

1 Percentage of maize ears covered with visual symptoms of Gibberella ear rot  

2 Absolute concentrations of Fusarium graminearum sensu lato DNA (ng µl-1)  

3 Mycotoxin content = DON + A-DON + ZEA (ppm) 

4 Mean values for three field plots 

5 Means followed by the same alphabetical letter in each column are not significantly different according to Student’s t-least significant difference test (P ≥ 0.05)  

Inbred line  Potchefstroom Vaalharts Makhatini 

 GER 

severity1,4,5 

Fungal 

biomass2,4,5 

Mycotoxin 

content3,4,5 

GER 

severity1,4,5 

Fungal 

biomass2,4,5 

Mycotoxin 

content3,4,5 

GER 

severity1,4,5 

Fungal 

biomass2,4,5 

Mycotoxin 

content3,4,5 

VO617Y-1 10.64    a-c 0.20     b-d 6.09     bc 8.98     de 0.14    b-d 6.71     c-e 28.82  a 3.25   a 37.43  a 

R0549W 15.30    a-c 0.32     b 15.27   b 11.56   d 0.24    b-d 12.79   b-d 28.01  a 0.76   bc 20.65  b 

US2540 9.02      a-c 0.30     b 7.65     bc 12.09   d 0.06    cd 4.50     de 13.04  a 0.94   bc 22.58  b 

CML444 11.62    a-c 0.24     bc 7.47     bc 8.30     de 0.10    cd 5.26     c-e 11.65  a 0.88   bc 16.71  b 

CML390 4.70      c 0.06     cd 2.86     c 1.00     e 0.02    d 0.25     e 21.02  a 0.89   bc 12.83  b 

CML182 7.53      bc  0.15     b-d 3.99     c 12.41   d 0.20    b-d 10.35   c-e 12.27  a 0.65   c 16.30  b 

R119W 19.89    ab 0.78     a 37.49   a 40.11   b 0.45    b 21.48   b 22.19  a 1.83   b 25.32  a 

R2565Y 23.10    a 0.02     d 10.98   bc 85.00   a 1.44    a 38.47   a 8.37    a 0.72   bc 19.53  b 

I137tnW 12.84    a-c 0.02     d 13.28   bc 26.63   c 0.36    bc 15.70   bc 19.07  a 0.92   bc 13.53  b 

Mean 12.74 0.23 11.67 22.79 0.33 12.83 18.27 1.20 20.54 

Stellenbosch University  http://scholar.sun.ac.za

Stellenbosch University  http://scholar.sun.ac.za



 

 

1
2

3
 

Table 5. AMMI analysis of variance (ANOVA) for resistance to Gibberella ear rot severity, fungal biomass and mycotoxin 

accumulation in nine maize inbred lines tested in three environments in South Africa during the 2012/2013 season.   

  GER severity1 Fungal biomass2 Mycotoxins3 

Source of variation Df MS F value P >F MS F value P >F MS F value P >F 

Total 80 6.75 * * 6.75 * * 6.74 * * 

Treatment 26 11.41 2.25 0.00 15.30 5.17 0.00 12.55 2.83 0.00 

Environment 2 0.00 * * 0.00 * * 0.00 * * 

Block 6 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 

Genotype 8 17.91 3.53 0.00 19.02 6.43 0.00 25.07 5.65 0.00 

Interaction 16 9.58 1.89 0.04 15.36 5.19 0.00 7.86 1.77 0.06 

IPCA 9 14.95 2.95 0.00 19.11 6.46 0.00 10.61 2.39 0.02 

IPCA 7 2.67 0.52 0.80 10.53 3.56 0.00 4.33 0.97 0.45 

Residual 0 * * * * * * * * * 

Error 48 5.06 * * 2.95 * * 4.43 * * 

1 Percentage of maize ears covered with visual symptoms of Gibberella ear rot  

2 Absolute concentrations of Fusarium graminearum sensu lato DNA (ng µl-1) 

3 Mycotoxin content = Total of DON + A-DON + ZEA (ppm) 

 

 

Stellenbosch University  http://scholar.sun.ac.za

Stellenbosch University  http://scholar.sun.ac.za



 

 

1
2

4
 

Table 6. AMMI stability values (ASV) and ranking orders for trichothecenes B, zearalenone and aflatoxin contamination and 

Stenocarpella maydis biomass of the nine maize inbred lines tested in three environments in South Africa during the 2012/2013 

season.  

1 Mycotoxin content = Total of DON + A-DON + ZEA (ppm) 

2 Mycotoxin content = Total of AFB1 + AFB2 (ppm) 

3 Absolute concentrations of Stenocarpella maydis DNA (ng µl-1) 

 Trichothecenes B and Zearalenone1 Aflatoxins2 S. maydis biomass3 

Inbred line  ASV Rank ASV Rank ASV Rank 

VO617Y-1 4.31 9 1.31 6 1.42 4 

R0549W 1.99 5 0.58 2 0.95 3 

US2540 3.55 8 1.03 5 1.74 6 

CML444 0.81 2 1.34 7 0.41 1 

CML390 1.37 3 1.53 8 4.70 9 

CML182 0.71 1 0.99 4 1.70 5 

R119W 1.43 4 1.86 9 2.20 7 

R2565Y 3.43 7 0.83 3 2.69 8 

I137tnW 2.64 6 0.19 1 0.71 2 
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Table 7. Evaluation of nine maize inbred lines for resistance to Aspergillus ear rot in a multi-location field trial in South Africa during 

the 2012/2013 growing season.  

1 Percentage of maize ears covered with visual symptoms of Aspergillus ear rot  

2 Absolute concentrations of Aspergillus flavus DNA (ng µl-1) 

3 Mycotoxin content = AFB1 + AFB2 (ppm) 

4 Mean values for three field plots; *Below detectable limit 

5 Means followed by the same alphabetical letter in each column are not significantly different according to Student’s t-least significant difference test (P ≥ 0.05)  

Inbred line  Potchefstroom Vaalharts Makhatini 

 
AER 

severity1,4,5 

Fungal 

biomass2,4,5 

Mycotoxin 

content3,4,5 

AER 

severity1,4,5 

Fungal 

biomass2,4,5 

Mycotoxin 

content3,4,5 

AER 

severity1,4,5 

Fungal 

biomass2,4,5 

Mycotoxin 

content3,4,5 

VO617Y-1 0.19   c 0.14    b 0.02    b 0.12  c 0.00*  d 0.10     ab 2.20   bc 0.00*    b 0.00*   a 

R0549W 1.69   bc 0.03    d 0.00*  c 1.03  b 0.76    ab 0.04     ab 3.79   a-c 0.00*    b 0.00*   a 

US2540 1.69   b 0.04    c 0.00*  c 2.50  a 0.04    cd 0.17     a 3.20   bc 0.03      ab 0.00*   a 

CML444 0.58   bc 0.03    d 0.00*  c 0.58  b 0.11    cd 0.04     ab 0.68   c 0.00*    ab 0.00*   a 

CML390 0.17   c 0.03    d 0.00*  c 0.17  c 0.26    b-d 0.00*    b 9.28   a 0.03      a 0.00*   a 

CML182 0.11   c 0.03    d 0.00*  c 0.11  c 0.00*  d 0.00*    b 6.37   ab 0.00*    ab 0.00*   a 

R119W 4.91   a 0.31    a 0.10    a 0.05  c 0.55    b-d 0.12     ab 7.81   ab 0.00*    b 0.00*   a 

R2565Y 0.82   bc 0.03    d 0.01    c 0.86  b 1.26    a 0.18     ab 4.32   a-c 0.00*    b 0.00*   a 

I137tnW 0.76   bc 0.13    b 0.01    c 0.19  c 0.66    a-c 0.08     ab 7.11   a-c 0.00*    ab 0.00*   a 

Mean 1.21 0.08 0.02 0.62 0.40 0.08 4.97 0.00 0.00 
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Table 8. AMMI analysis of variance (ANOVA) for resistance to Aspergillus ear rot severity, fungal biomass and aflatoxin 

accumulation in nine maize inbred lines tested in three environments in South Africa during the 2012/2013 season.   

  AER severity1 Fungal biomass2 Aflatoxins3 

Source of variation Df MS F value P >F MS F value P >F MS F value P >F 

Total 80 6.66 * * 6.74 * * 4.28 * * 

Treatment 26 11.86 2.53 0.00 14.08 3.90 0.00 8.26 3.10 0.00 

Environment 2 0.00 * * 0.00 * * 0.00 * * 

Block 6 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 

Genotype 8 9.07 1.93 0.07 11.75 3.25 0.00 13.93 5.22 0.00 

Interaction 16 14.74 3.14 0.00 17.00 4.71 0.00 6.47 2.42 0.00 

IPCA 9 19.22 4.10 0.00 17.11 4.73 0.00 6.68 2.50 0.01 

IPCA 7 8.97 1.91 0.08 16.87 4.67 0.00 6.19 2.32 0.04 

Residual 0 * * * * * * * * * 

Error 48 4.68 * * 3.61 * * 2.66 * * 

1 Percentage of maize ears covered with visual symptoms of Aspergillus ear rot  

2 Absolute concentrations of Aspergillus flavus DNA (ng µl-1) 

3 Mycotoxin content = Total of AFB1 + AFB2 (ppm) 
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Table 9. Evaluation of nine maize inbred lines for resistance to Diplodia ear rot and fungal biomass in a multi-location field trial in 

South Africa during the 2012/2013 growing season. 

A.I., Artificial inoculation; N.I., Natural infection 

1 Percentage of total number of maize ears covered with visual symptoms of Diplodia ear rot  

2 Absolute concentrations of Stenocarpella maydis DNA (ng µl-1) 

3 Mean values for three field plots; *Below detectable limit 

4 Means followed by the same alphabetical letter in each column are not significantly different according to Student’s t-least significant difference test (P ≥ 0.05)  

Inbred line  Potchefstroom Vaalharts Makhatini 

 DER severity1,3,4 Fungal biomass2,3,4 DER severity1,3,4 Fungal biomass2,3,4 DER severity1,3,4 Fungal biomass2,3,4 

 A. I. N. I. A. I. N. I. A. I. N. I. A. I. N. I. A. I. N. I. A. I. N. I. 

VO617Y-1 6.43    b 12.69  ab 0.02  b 0.24  a-c 16.67 a-c 3.02    a 0.19  a 0.00*  b  0.00  a 1.85  b 0.00*  ab 0.02    a 

R0549W 25.60  ab 42.11  a 0.85  a 0.30  ab 31.50 ab 19.44  a 0.41  a 0.00*  b 0.00  a 1.85  b 0.02    ab 0.03    a 

US2540 17.67  ab 25.53  ab 0.30  ab 0.15  a-c 2.13   c 28.68  a 0.10  a 0.02    b 0.00  a 0.00  b 0.04    ab 0.00*  a 

CML444 22.84  ab 11.09  b 0.05  b 0.07  a-c 12.18 a-c 26.19  a 0.17  a 0.00*  b 0.00  a 1.15  b 0.00*  ab 0.12    a 

CML390 4.79    b 8.38    b 0.02  b 0.02  c 8.77   c 12.12  a 0.24  a 0.48    a 6.67  a 0.00  b 0.08    a 0.00*  a 

CML182 31.44  ab 19.64  ab 0.36  ab 0.23  a-c 14.8   a-c 11.90  a 0.33  a 0.03    b 0.00  a 10.4  a 0.00*  ab 0.00*  a 

R119W 43.88  a 20.21  ab 0.74  a 0.15  a-c 15.15 a-c 27.78  a 0.35  a 0.02    b 0.00  a 0.00  b 0.00*  ab 0.06    a 

R2565Y 25.60  ab  34.55  ab 0.10  b 0.04  a-c 32.80 a 11.11  a 0.22  a 0.00*  b 4.17  a 0.00  b 0.00*  b 0.15    a 

I137tnW 44.14  a 17.72  ab 0.38  ab 0.32  a 28.1   ab 17.39  a 0.29  a 0.00*  b 1.33  a 0.00  b 0.00*  ab 0.07    a 

Mean 24.75 21.33 0.31 0.17 18.00 17.51 0.26 0.06 1.35 1.70 0.02 0.05 
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Table 10. AMMI analysis of variance (ANOVA) for resistance to Diplodia ear rot severity and fungal biomass in nine maize inbred 

lines tested in three environments in South Africa during the 2012/2013 season.   

  DER severity1 Fungal biomass2 

Source of variation Df MS F value P >F MS F value P >F 

Total 80 4.98 * * 6.71 * * 

Treatment 26 8.19 2.11 0.01 9.34 1.52 0.10 

Environment 2 0.00 * * 0.00 * * 

Block 6 0.00 0.00 1.00 0.00 0.00 1.00 

Genotype 8 12.52 3.23 0.00 13.95 2.27 0.03 

Interaction 16 7.05 1.82 0.05 8.20 1.33 0.02 

IPCA 9 8.65 2.23 0.03 10.61 1.72 0.10 

IPCA 7 5.01 1.29 0.27 5.10 0.83 0.56 

Residual 0 * * * * * * 

Error 48 3.87 * * 6.13 * * 

1 Percentage of maize ears covered with visual symptoms of Diplodia ear rot (inoculated treatment) 

2 Absolute concentrations of Stenocarpella maydis DNA (ng µl-1) 
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Table 11. Estimatesa for the relationship between Stenocarpella maydis infection potential and fungal biomass concentrations in the 

maize inbred lines. 

CL, Confidence limits fitted to regression lines 

a For the regression exponential function Y = AXb,  where X is the mean fungal biomass per trial site and treatment (infection potential) and Y is the mean fungal 

biomass within each inbred line associated with a specific location and treatment. 

 

Inbred line  
A 

estimate 

Standard 

error 

Lower 95% 

CL 

Upper 95% 

CL 

B 

estimate 

Standard 

error 

Lower 95% 

CL 

Upper 95% 

CL 

R2 

 

VO617Y-1 0.23 0.25 -0.46 0.91 0.44 0.61 -1.24 2.13 0.28 

R0549W 9.01 5.69 -6.79 24.81 2.09 0.50 0.70 3.48 0.96 

US2540 1.90 2.33 -4.57 8.38 1.70 0.96 -0.95 4.36 0.80 

CML444 0.17 0.12 -0.16 0.51 0.37 0.36 -0.63 1.37 0.37 

CML390 0.19 0.30 -0.63 1.01 0.53 0.93 -2.04 3.10 0.15 

CML182 1.35 0.45 0.10 2.60 1.07 0.24 0.40 1.75 0.96 

R119W 27.21 14.87 -14.08 68.49 3.12 0.45 1.87 4.37 0.99 

R2565Y 0.25 0.19 -0.28 0.77 0.44 0.43 -0.76 1.65 0.39 

I137tnW 0.95 0.30 0.11 1.78 0.77 0.22 0.17 1.38 0.93 

Stellenbosch University  http://scholar.sun.ac.za

Stellenbosch University  http://scholar.sun.ac.za



 

 

1
3

0
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Gel image representing PCR-based identification of Stenocarpella maydis using the primer pair Maydis3 F/Maydis3 R. Lanes 

1, 2 and 3: Stenocarpella maydis, Lanes 4, 5, 6, 7, 8: Fusarium graminearum sensu lato, Lane 9: Aspergillus flavus, Lane 10: 

Fusarium proliferatum, Lane 11: Fusarium subglutinans and Lane 12: Fusarium verticillioides. Fine bands at the bottom of the gel 

indicate primer-dimer formation. 

 

 

 

                    L             1           2             3           4             5             6             7           8               9           10             11          12      dH2O         L  

   104 bp 

104  bp 
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Fig. 2. Genotype main effect + genotype by environment interaction (GGE) biplot showing total mycotoxin content (TCT B + ZEA) 

of nine maize inbred lines tested in three locations in South Africa during the 2012/2013 growing season. Line 3: VO617Y-1; line 7: 

R2565Y; line 8: R0549W; line 9: US2540; line 18: CML444; line 19: R119W; line 22: CML390; line 23: CML182; line 24: I137tnW.  

 

 

 

PC1 = 68.0%, PC2 = 23.3%, Sum = 91.3% 
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PC1 = 78.3%, PC2 = 21.6%, Sum = 100% 

Fig. 3. Genotype main effect + genotype by environment interaction (GGE) biplot showing total aflatoxin content (AFB1 + AFB2) of 

nine maize inbred lines tested in three locations in South Africa during the 2012/2013 growing season. Line 3: VO617Y-1; line 7: 

R2565Y; line 8: R0549W; line 9: US2540; line 18: CML444; line 19: R119W; line 22: CML390; line 23: CML182; line 24: I137tnW. 
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Fig. 4. Relationship between Stenocarpella maydis infection potential and observed fungal biomass concentrations in resistant, 

intermediate and susceptible maize inbred lines. Line 3: VO617Y-1; line 7: R2565Y; line 8: R0549W; line 9: US2540; line 18: 

CML444; line 19: R119W; line 22: CML390; line 23: CML182; line 24: I137tnW. 
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Fig. 5. Genotype main effect + genotype by environment interaction (GGE) biplot showing Stenocarpella maydis biomass of nine 

maize inbred lines tested in three locations in South Africa during the 2012/2013 growing season. Line 3: VO617Y-1; line 7: R2565Y; 

line 8: R0549W; line 9: US2540; line 18: CML444; line 19: R119W; line 22: CML390; line 23: CML182; line 24: I137tnW. 

 

 

 

PC1 = 52.5%, PC2 = 37.2%, Sum = 89.7% 
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Fig. 6. Weather data recorded from Agricultural Research Council’s weather stations for the 2012/2013 

season at the respective field locations. Bar and line series indicate total monthly rainfall and mean 

monthly temperature, respectively, for the planting season.  
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