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Abstract

This dissertation addresses various topics that emerge from the unification of conventional struc-

tural optimization—based on ‘sequential approximate optimization’ (SAO)—with the alterna-

tive ‘direct’—or ‘simultaneous analysis and design’ (SAND)—formulation of the structural

topology design problem. Structural topology optimization—in the form of a ‘material distri-

bution problem’—is a generalisation of structural optimization, encompassing and simultane-

ously addressing al the aspects of structural design. In structural optimization, SAO techniques

are preferred because the number of structural analyses—which are expensive, computationally

speaking—are ostensibly minimised. However, particularly in the presence of local state-based

constraints—e.g. local stress constraints—the sensitivity analyses which accompany traditional

‘nested analysis an design’ (NAND) methods require a prohibitive number of structural analysis

runs per design iteration.

In the alternative SAND setting, structural analysis is conducted approximately and sequen-

tially: the finite element (FE) equilibrium equations are retained as a set of nonlinear equality

constraints and the state variables—i.e. displacements—form part of the overall set of primal

variables. Therefore, the FE equilibrium equations may only be satisfied at convergence of

the optimization algorithm, and the complex and expensive sensitivity analyses associated with

state-based constraints, simplify to the calculation of partial derivatives. Moreover, the equiv-

alent of a single structural analysis only is required per design iteration, notwithstanding the

imposition of a large number of state-based constraints.

Based on a dual method in theory, we propose a separable and strictly convex quadratic

Lagrange-Newton approximate subproblem for use in SAO of the SAND formulated topology

design problem. In classical (simply-constrained) minimum compliance design, the dual state-

ment of the subproblem is equivalent to the ever-popular optimality criteria (OC) approach—a

class of NAND methods. This relates, in turn, to the known equivalence between dual SAO-

NAND algorithms based on intervening variables and the OC method.

Due to the presence of nonlinear equality constraints, the classical SAO procedure (exclu-

sively geared, traditionally, for inequality constrained problems) is extended to a general, non-

linear and nonconvex, mathematical programming framework. It turns out that conventional

techniques of enforced convergence and termination in traditional NAND-based SAO may be

transplanted into the SAND setting with only minor complications.

It is demonstrated that the compounded issues of existence of solutions, mesh-dependence,

local minima, and macro-scale manufacturability, may be addressed in a computationally ef-

ficient manner by the imposition of so-called ‘slope constraints’—point-wise bounds on the

gradient of the material distribution function. For global optimization, random multistart strate-

gies may be pursued. A specialized version of ‘linear independence constraint qualification’

ii
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(LICQ) may hold in many practical situations, and because the global stiffness matrix is not

inverted per se, material density variables are permitted a value of zero on the lower bound.

Hence, singular local minima are feasible and available—in both simply-constrained and local

stress-constrained problems—and may be converged to with standard gradient-based optimiza-

tion methods without having to resort to any relaxation or perturbation techniques whatsoever.
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Opsomming

Hierdie proefskrif spreek verskeie aspekte aan wat volg op die samevoeging van konvensionele

struktuur optimering—gebaseer op herhaalde benaderde optimering (sequential approximate

optimization; SAO)—met die alternatiewe ‘direkte’—of ‘gelyktydige analise en ontwerp’ (si-

multaneous analysis and design; SAND)—formulering van die strukturele topologie ontwerp

probleem. Strukturele topologie optimering is ’n veralgemening van struktuur optimering—in

die vorm van ’n materiaal verspreidings probleem—en dus kan al die aspekte van struktuur ont-

werp gelyktydig aangespreek word. In struktuur optimering word SAO tegnieke verkies, want

die aantal struktuur analises—wat baie duur is, in terme van berekeninge—word oënskynlik

geminimeer. Nietemin, wanneer lokale spanning begrensings bygevoeg word, vereis die sensi-

tiwiteit analise wat gepaard gaan met tradisionele ‘geneste analise en ontwerp’ (nested analysis

and design; NAND) metodes, ’n groot aantal struktuur analises.

In die alternatiewe SAND raamwerk word struktuur analise benaderd en herhaaldelik uit-

gevoer: die eindige element (EE) ewewigs vergelykings word behou in die optimering probleem

as ’n groot aantal gelykheidsbegrensings, en die verplasings vorm deel van die algehele stel pri-

male veranderlikes. Dit wil sê, die EE ewewigs vergelykings sal net tevrede gestel word indien

die optimerings algoritme konvergeer, en die duur sensitiwiteit analises wat gepaard gaan met

begrensings in terme van verplasings—soos bv. spanning begrensings—vereenvoudig na die

berekening van eenvoudige parsiële afgeleides. Wat meer is, net ’n enkele struktuur analise

word benodig per ontwerp iterasie, al word daar ’n groot aantal lokale spanning begrensings

bygevoeg.

Gebaseer op ’n duale metode in teorie, stel ons voor dat ’n skeibare en streng konvekse

kwadratiese Lagrange-Newton subprobleem gebruik word vir SAO van die SAND geformuleerde

probleem. In klassieke maksimum styfheid ontwerp kan aangetoon word dat die duale metode

soortgelyk is aan die populêre optimale kriteria (optimality criteria; OC) metode—wat ’n NAND

formulering is. Dit is, op sy beurt, identies aan die ooreenstemming tussen duale SAO-NAND

algoritmes gebaseer op tussentydse veranderlikes en die OC metode.

Omdat die optimerings probleem nie-lineêre gelykheidsbegrensings bevat, moet die SAO

prosedure (wat gewoonlik net van toepassing is op nie-gelykheid begrensde probleme) toegepas

word in ’n algehele, nie-lineêre en nie-konvekse, wiskundige programmerings raamwerk. In-

derdaad, konvensionele tegnieke wat konvergensie af dwing in tradisionele NAND-SAO, kan

amper net so gebruik word in die SAND raamwerk.

Dit word bewys dat die ooreenstemmende uitdagings wat gepaard gaan met die bestaan van

oplossings, maas-onafhanklikheid, lokale minima en makro-skaal vervaardiging tegnieke, kan

geadresseer word deur middel van helling-begrensings—wat puntsgewys die gradiënt van die

materiaal verspreiding bind—solank dit ook gepaard gaan met ’n lukrake multi-begin strate-

iv
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gie (vir globale optimering). ’n Gespesialiseerde soort ‘lineêre onafhanklike begrensing kwali-

fikasie’ (linear independence constraint qualification; LICQ) mag geld in baie praktiese gevalle,

en omdat die inverse van die globale styfheid matriks nie per se uitgewerk word nie, word ’n on-

derste grens van presies nul toegelaat vir die materiaal veranderlikes. Dit beteken, op sy beurt,

dat die singulariteite wat gepaard gaan met die lokale minima in beide eenvoudig-begrensde

probleme en lokale spanning-begrensde probleme, oorkom kan word met gewone gradiënt-

gebaseerde optimerings metodes, sonder dat daar enigsins verslapping- of perturbasie-tegnieke

gebruik moet word.
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The destruction of the world is mirrored

in the slowing currents of our sun. The ex-

traction of things from the ground. The emp-

tying of reserves. Degradation. A tighten-

ing of the oesophagus. The hottest year on

record. Let us embrace nothingness and try to

fill it with being because in our ever-increasing

specialised imaginations we trundle toward

nothingness and absence not with any cere-

mony or sanctity but blindly. Our domain

over matter, things, people, is only ever a pro-

gression downwards, away from the light of

our roiling sun into the empty space of a world

unfurling, a fiction that is real.

—JOHN HOLTEN

Oslo, Norway (2015)
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Chapter 1

Introduction

An abridged version of this chapter, entitled ‘A contemplation on topology optimization’, can

be found in the December 2016 issue of Digital Engineering [1]. Digital Engineering is an

online magazine (not a peer-reviewed journal) which reports on high-performance computing,

simulation-based modelling, and computer-aided design.

A contemplation on topology optimization

Topology optimization is an algorithmic approach to a ubiquitous engineering problem: how to

distribute a limited resource (e.g. material), in a predefined design domain—subject to applied

loads, boundary conditions, and certain design restrictions—in an optimal way? In engineering

terms, the state of material is discrete: at each and every spatial position material is either

present or absent. Therefore, the term material distribution is often used interchangeably with

terms like shape, geometry, connectivity, or lay-out. The word topology is derived from the

Greek word topos, literally meaning place. Topology thus refers to the study of place: the

relative positions of the constituent parts of a structure, and the manner in which these are

connected, interrelated, and arranged.

Topology optimization is typically studied as a sub-field of structural optimization—with

automotive, aerospace and civil engineering applications in mind—however, topology opti-

mization is an attempt to generalise structural optimization, encompassing and simultaneously

addressing all the aspects of structural design1. In 1990 Haftka, Gürdal and Kamat wrote that

‘structural optimization is still a relatively new field undergoing rapid changes in methods and

focus’, and that computational cost and integration with ‘general-purpose software packages for

structural analysis’ are some major challenges [3]. For them, ‘the motivation is to exploit the

available limited resources in a manner that maximizes output or profit’ [3, p. 1]. That is, from

Haftka, Gürdal and Kamat’s point of view, the emphasis is on the optimality of the design—

exploitation of resources for maximum output and profit—defined in terms of the objective and

the restrictions that form a given design scenario.

More than a quarter of a century later, the issues highlighted by Haftka, Gürdal and Kamat

have remained much the same, while structural optimization methods, and their focus, have

1See Bendsøe and Sigmund’s canonical introduction [2, p. 1].

1
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CHAPTER 1. INTRODUCTION 2

changed. On the one hand, topology optimization methods and techniques—i.e. very detailed

structural optimizations—are plagued by issues pertaining to the control of the complexity of

the design—its ‘manufacturabillity’. If this aspect is not accounted for, a topologically opti-

mized design may not be physically realizable, or the cost of manufacture may outweigh the

efficiency and profit associated with the optimized design. On the other hand, with the de-

velopment of additive manufacturing techniques—selective laser melting and 3D printing, for

example—unprecedented levels of structural complexity may be realised (both in terms of the

geometry and the material properties of the design). However, a human designer may not be

able to the design on the level of structural complexity afforded by additive production pro-

cesses. That is, topology optimization may have the potential to fully exploit the increased

scope of complexity afforded by additive manufacturing techniques, and these algorithmic pro-

cedures may be the only way to translate and communicate the wishes of a human designer—an

objective, and the restrictions, within a predefined design domain—to the additive production

process. This automated avenue of design and manufacture—the so-called ‘third production

revolution’ [4]—is buttressed by a continual increase in common computational capabilities,

improvements in the efficiency of computational methods and, more recently, user-friendly in-

tegration with computer aided design (CAD) platforms.

∗ ∗ ∗

In July 2015, the software corporation Autodesk released a topology design tool called

Within—aimed at automotive, aerospace, and orthopaedic implant specialists—given a user

defined geometry, a ‘generative design’ algorithm suggests a lightweight lattice structure to

replace the original design—Figure 1.1a—manufacturable with additive techniques like 3-D

printing [5]. In October of the same year, Autodesk released a topology optimization tool

called Shape Generator, set within its popular CAD package—Inventor—and based on Au-

todesk’s Nastran finite element (FE) solver, the software suggests an ‘optimal’ geometry based

on predefined boundary conditions and applied loads [6]—Figure 1.1b. In January 2016, Graph-

ics Systems Corporation, partnered with Dassault Systèmes, released SIMULIA, offering ‘new

capabilities’ like topology optimization [7]. In February 2016, Vanderplaats Research and

Development Incorporated released GENESIS, a structural optimization platform for ANSYS

Mechanical [8]. SolidThinking’s Inspire, first released in 2009, employs a so-called ‘mor-

phogenesis tool’—based on Altair’s OptiStruct solver—to mimic the way human bones grow

and thereby suggest optimal designs. The 2016 version includes a new geometry representa-

tion based on computer graphics applications, permitting simple geometry manipulation and

smooth integration with additive manufacturing processes [9]. ‘The upshot is’, writes Anthony

Lockwood, editor of Digital Engineering, using topology optimization ‘early in the concept

development process enhances your ability to create and study structurally efficient, optimally

shaped parts and assemblies’, which, ‘weigh less and use fewer materials, reducing costs and

development time’ [9].

Since the year 2000 a number of simple and efficient ‘instructional’ or ‘educational’ topol-

ogy optimization codes have been released—invariably set in Matlab, a high-level programming

language many engineers are familiar with. The first ‘99 line topology optimization code’ [10]

is due to Sigmund, followed by a variety of contributions by various authors [11–14]. Notably,
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CHAPTER 1. INTRODUCTION 3

(a) Autodesk Within [5]. (b) Autodesk Shape generator [6].

Figure 1.1: CAD integrated topology optimization.

in November 2015, a team at University of Wisconsin-Madison released a free to use cloud-

based CAD web application CloudTopopt [15]. The software has large-scale FE analysis and

topology optimization capabilities—computations are carried out remotely on the cloud server.

Krishnan Suresh, associate professor at UW-Madison and developer of the software, is of the

opinion that ‘design optimization lies at the heart of modern engineering’ and ‘is critical in re-

ducing cost, reducing material, reducing weight and increasing quality, and is a driving force

behind innovation’ [15].

In September 2015, The Economist reports on the Amsterdam office of Arup—a global

engineering consulting firm—who used topology optimization and 3D printing technology to

create ‘wonderful widgets’—‘components become more elegant with software that produces

the most efficient shape’ [16]. Arup’s task was to design 1 200 components (or ‘brackets’,

each slightly different) to hold the support cables of a large outdoor lighting system. A artist

rendering of the structure (which was, unfortunately, never built) can be seen in Figure 1.2a—

the image is courtesy of Salomé Galjaard, team leader of the project. Three versions of the

bracket is depicted in Figure 1.2b. The component to left (about a metre tall) was designed

using traditional methods and manufactured by cutting, drilling, and finally welding sections

together—the work would predominately be carried out by hand. The other two components

(middle and right) were designed with topology optimization techniques and manufactured with

an additive process. The middle component is optimized for weight, but the connection points

are kept in much the same place—the result is a 40% weight saving. The component to right

is also optimized for weight, but in this case the positions of the connection points were al-

lowed to change—cf. Figure 1.2c—resulting in a 70% weight saving. The Economist writes

that ‘optimization software typically comes up with natural-looking shapes that seem to mimic

nature’ and that ‘this is not surprising’, because ‘nature has had a few million years head start

in designing structures like bones, stems and leaves’—this sentiment is reiterated in ‘Alloy

angels’ (May, 2016) [17], a report on a 3D printed lightweight motorcycle (Figure 1.3a), de-

signed and manufactured by APWorks, a division of the Airbus Group. Galjaard believes that

optimised 3D-printed parts and components is an important avenue in the pursuit of weight,

material, and cost savings, provided that these are accepted by contractors and standards au-

thorities [16]. ‘This seems to be happening’, writes The Economist, reportedly, Stratasys, an

American producer of 3D printers, was commissioned by Airbus to make more than a 1000

parts for the A350 airliner—the parts had ‘enhanced performance’, were ‘25% lighter’, ‘should
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CHAPTER 1. INTRODUCTION 4

last five times longer’ and ‘met aerospace certification standards’ [16].

(a) Outdoor light structure. (b) ‘Wonderful widgets’. (c) Brackets in place.

Figure 1.2: Outdoor lighting structure and brackets, Grote Markstraat, Den Haag.

In 2015, Precision Casting Centre, a foundry on the south-coast of England, won the coveted

British Cast Metals Federation Component of the year award for their design and manufacture

of an aluminium wheel upright [18]. The team employed a thorough topology optimization

process, leading to a part five times stiffer than the original (but manufactured from the same

amount of material). The part is produced by 3D printing a model in transparent thermoplastic,

in turn surrounded by metal to form a mould, before it is cast in aluminium.

In January 2016, Engineering.com reports on a team of engineers at Hanning Elektro-

Werke (Germany) who used topology optimization to decrease mechanical losses in an electric

motor—an efficiency improvement of 27% was realised [19].

In 2014, manufacturing giant Ford invested heavily in lightweighting efforts, making ‘ag-

gressive use of advanced simulation and optimization software’ [20], in the drive to meet the

rigorous emissions standards imposed by the Obama administration.

Structural and topology optimization is found in small scale and bespoke production envi-

ronments too—e.g. chain cases and bulkheads in snowmobiles [21], and implants used in facial

reconstructive surgery [22]. Alok Sutradhar, of Ohio State University, an aeronautical engi-

neer and pioneer of topology optimization in craniofacial reconstruction, notes that ‘when I saw

how the surgeons are, at present, reshaping faces without any structural analysis, using simple

heuristics instead, I thought: wait a minute, we can at least tell you where you need the materials

so that the patient will have a structurally stable structure for basic functions: breathing, speak-

ing, chewing, and swallowing’ [23]. Sutradhar too finds confidence in the ‘natural-looking’

shapes suggested by topologically optimized designs: ‘the optimization software came up with

solutions akin to those proffered by evolution’, which, although a ‘surprise at first’, ‘gave us

confidence too’, for, ‘whatever approach we were taking seemed to be making sense’ [23].

In August 2016, the University of Pittsburgh received a $350 000 research grant to de-

velop models for a topology optimization framework which can mitigate the distortions and

stresses inherent in current additive manufacturing processes [24, 25]. This is a major chal-

lenge, according to Dr. To, lead researcher of the project: ‘optimizing the design to compensate

for residual distortion, residual stress, and post-machining requirements can take days or even

months’ [24, 25]. The team at the University of Pittsburgh are looking to create ‘new, fast

computational methods for better additive manufacturing’. ‘The technology developed will sig-

nificantly shorten the design phase during new [additive manufacturing] product development,
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which will potentially lead to wider adoption of additive manufacturing by the manufacturing

base in the US’ [25]. Reportedly, since 2014, funding for additive manufacturing related re-

search received by the University of Pittsburgh’s Swanson School of Engineering totals about

$7 million [24]. In the fall-out of the latest economic crisis, some forecasts value the 3D print-

ing market at $40 billion by 2020, and some predict further growth into the $12 trillion global

manufacturing industry [24]. Norsk Titanium, a company which specialises in aerospace-grade

titanium structures, are looking to invest $1 billion in factories with large-scale 3D printing

capabilities [24]. In July 2016, Alcoa, a major company in the metals industry, opened a $60

million 3D printing plant in Pittsburgh [26]. Norsk plan to have a similar facility operational,

in New York, by the end of 2017 [27].

∗ ∗ ∗

The complex, ‘natural-looking’ geometries produced by topology optimization procedures

almost invariably necessitate additive manufacturing processes. Some of the geometries shown

here—e.g. the ‘widgets’ in Figure 1.2b, and the ‘Light Rider’ in Figure 1.3a—are clearly not

manufacturable with traditional production processes. (The wheel upright mentioned earlier

is a notable exception, hence the accolade [18].) That is, advances in additive manufacturing

techniques—e.g. modelling of residual distortions, stresses, and machining requirements—has

the potential to fully exploit topology optimization techniques, and vice versa. Constraints that

preserve the conventional manufacturability of the design—‘shape controls’, for example, in

SolidThinking’s Inspire—take the form of a limit on local geometric variations, leading to tra-

ditional, truss-like designs. Jaideep Bangal, SolidThinking’s senior application engineer, warns

that ‘today we are going backwards’, ‘we are making very organic designs without these con-

trols that are just 3D printable’ [28]. There is however a trade-off between geometric optimiza-

tion on the one hand, and the increased complexity and cost of manufacture on the other. Bruce

Jenkins, president of Ora Research, a research and advisory services firm, advocates a system-

level approach to optimization, writing that ‘optimization technology offers great benefit when

used early in product development to optimize the functional systems’, which are, ‘created and

refined before geometry definition begins’ [29].

(a) The Light Rider [17]. (b) Cauliflower [30].

Figure 1.3: Natural-looking designs.

The notion that a ‘natural-looking’ design necessarily points the way to an ‘optimal’ design

should be approached with utmost caution. It is fair to say that many a complex geometry may

invoke connotations with structures found in nature—the patterns described by fractals [30],
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for example. Natural structures, like the cauliflower shown in Figure 1.3b, exhibit self-similar

patterns of complexity on various length scales. Topology optimization may come up with

‘natural-looking’ designs, but this is predominantly due to the allowance of relatively detailed

geometric variations. The observation that the geometries arrived at by topology optimization

procedures often resemble natural structures is pertinent indeed, but for a different reason: it

confirms that the associated differential equations—the equations of elasticity, in this case—are

able to capture the character of the physical laws which govern the connectivity, interrelation

and arrangement of the constituent parts of the structure. Moreover, the imposition of ‘con-

ventional manufacturability constraints’—like ‘shape controls’; or ‘slope constraints’, see Fig-

ure 1.4—which may result in an optimal design in terms of the entire supply and manufacture

chain, work by explicitly suppressing small-scale geometric variations. That is, considering a

broader scope of optimization, ‘more optimal’ designs may look ‘less natural’.

Figure 1.4: Geometric variations.

The raison d’être for topology optimization—and the motivation behind the pursuit of reli-

able and efficient methods—is its potential to produce components and structures which have

improved performance characteristics and which consume resources more efficiently. In large-

scale production environments, material and cost savings are paramount. In bespoke produc-

tion environments, the objective is often defined in terms of the performance characteristics of

the design, which may include material and weight savings. Nevertheless, as we have seen,

topology optimization is typically used subsequent to the definition of the functional systems,

therefore only marginal gains may be realised in a fairly narrow design scope. Moreover, espe-

cially with recent CAD integration—software used quite late in most design methodologies—

topology optimization may act merely as ‘translator’ between the designer and the manufactur-

ing process, confining the scope for optimization.

Taking a step back, it is perhaps prudent to keep in mind that a specialised procedure like

topology optimization—which is often confined to a fairly narrow design scope—may inad-

vertently provide a semblance of ‘sustainability’ to industries and resources—the automotive

industry, for example, and fossil fuels—which will have to be replaced, sooner or later, with

fundamentally different and ‘unconventional’ alternatives. In ‘The beginning of infinity’ [31],

David Deutsch, a quantum physicist, notes that sustain is an interestingly ambiguous word: on

the one hand it can mean providing someone with what they need, but on the other hand it

can also mean preventing something from changing; these are opposite meanings, for the sup-

pression of change is seldom what human beings actually need. Deutsch warns that ‘preven-

tion and delaying tactics’—specialised techniques, confined to a narrow design scope, aiming

at marginal, accumulative improvements—‘are useful’, ‘but they can be no more than a minor

part of a viable strategy for the future’, for, ‘problems are inevitable, and sooner or later survival

will depend on being able to cope when prevention and delaying tactics have failed.’ Deutsch

adds that

For this we need a large and vibrant research community, interested in explanation

and problem-solving. We need the wealth to fund it, and the technological capacity

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 7

to implement what it discovers.

Undoubtedly, the marriage of topology optimization and additive manufacturing techniques

will shape the machines and the structures of the future, but these algorithmic procedures should

never be allowed to curb—or indeed, be proported to replace—the imaginative capacity of the

design-engineer.

Outline

The form of this dissertation permits a somewhat unconventional introduction: Chapters 2 to

6, which form the body of the dissertation, are each a close reproduction of a self-contained

research-paper. At the time of writing, some have seen publication, while others are still under

review.

As the name suggests, a direct approach to structural topology optimization sets out to

establish the alternative ‘direct’ (‘simultaneous analysis and design’; SAND) formulation of

the structural topology optimization problem—particularly, from a conventional sequential ap-

proximate optimization (SAO) point of view. Chapter 2 is an investigation into the relationship

between the traditional ‘reduced’ (‘nested analysis and design’; NAND) SAO setting—in clas-

sical minimum compliance design—and the SAO-SAND (SEASAND) equivalent. Chapter 3

serves to investigate the extent to which traditional techniques of enforced convergence and

termination may be transplanted into the SEASAND method. Chapter 4 considers design-set

restriction techniques, and how these manifest in the SAND setting. In Chapter 5 the issue

of local stress constraints—and the infamous ‘stress singularity problem’—is taken up, and in

Chapter 6 the large-scale potential of the SEASAND method is put on trial. Chapter 7 closes

with suggested topics for future research.

It should be mentioned that some of the work presented herein builds upon topics that have

been touched on in the author’s Master’s thesis [32].
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Chapter 2

On sequential approximate simultaneous

analysis and design in classical topology

optimization

This chapter is a reproduction of a paper entitled ‘On Sequential approximate simultaneous

analysis and design in classical topology optimization’ [33]. The paper is co-authored by Prof.

Albert A. Groenwold of the Department of Mechanical and Mechatronic Engineering at the

University of Stellenbosch, South Africa.

2.1 Abstract

We study the SAND (simultaneous analysis and design) formulation of the ‘classical’ topology

optimization problem subject to linear constraints on material density variables. Based on a

dual method in theory, and a primal-dual method in practice, we propose a separable and strictly

convex quadratic Lagrange-Newton subproblem for use in sequential approximate optimization

(SAO) of the SAND formulated classical topology design problem.

The SAND problem is characterised by a large number of nonlinear equality constraints (the

equations of equilibrium) which are linearized in the approximate convex subproblems. The

availability of cheap second-order information is exploited in a Lagrange-Newton sequential

quadratic programming (SQP)-like framework. In the spirit of efficient structural optimization

methods the quadratic terms are restricted to the diagonal of the Hessian matrix; the subprob-

lems have minimal storage requirements, are easy to solve, and positive definiteness of the

diagonal Hessian matrix is trivially enforced.

Theoretical considerations reveal that the dual statement of the proposed subproblem for

SAND minimum compliance design agrees with the ever-popular optimality criterion (OC)

method—which is a NAND (nested analysis and design) formulation. This relates, in turn, to

the known equivalence between rudimentary dual SAO algorithms based on reciprocal (and

exponential) intervening variables and the OC method.

8
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2.2 Introduction

In the Elements of Structural Optimization [3] Haftka, Gürdal and Kamat relate the follow-

ing historical perspective: ‘During the seventies people who worked in the field of structural

optimization were divided into two distinct and somewhat belligerent camps’; the mathemat-

ical programming camp, who ‘believed in employing the general methods of nonlinear pro-

gramming’, ‘decried the lack of generality of optimality criteria methods’, while the optimality

criteria camp, ‘sneered at the inefficiency of the general mathematical programming approach’.

Since that time common computational capabilities and the efficiency of sequential con-

vex programming (SCP) and sequential approximate optimization (SAO) methods have in-

creased. Originally SCP and SAO algorithms—e.g CONLIN [34, 35] and its generalisation,

the ‘method of moving asymptotes’ (MMA) [36]—were based on an efficient dual statement

due to Fleury [37]. The dual statement—the dual of Falk [38], a specialised version of the

Lagrange dual—is in general invokable if a programming problem is strictly convex1 and sep-

arable. It is widely intuited though that dual methods are too slow if a large number of active

constraints are present—see e.g. Fleury’s [40] exposition on ‘computational time issues’—and

although pure dual methods are successfully applied to large scale problem instances—see e.g.

SAOi [41] in Reference [42] and the MMA in Reference [43]—primal-dual interior-point meth-

ods have recently emerged as a superior choice. See for example the recent benchmarking study

by Rojas-Labanda and Stolpe [44]. Primal-dual interior-point methods can handle a large num-

ber of active constraints by exploiting the sparsity of the Karush-Kuhn-Tucker (KKT) system of

equations and separable (sparse) curvature approximations too may be exploited in a superior

way [45]. This has led the mathematical programming camp to a general Lagrange-Newton

diagonal quadratic programming (QP) framework, in turn reminiscent of sequential quadratic

programming (SQP) methods. See also Reference [46] for additional information.

Optimality criterion (OC) methods have an equally rich history in structural optimization.

OC methods are especially popular in ‘classical’ (minimum compliance) topology design (con-

strained by a single linear constraint on volume). The OC method used mostly is due to

Bendsøe [47], culminating in the well-known Matlab implementations by Sigmund and co-

workers [10, 12]. When more than a single constraint is present however, OC methods are

considered impractical and SAO methods are typically resorted to.

Fleury [37] has demonstrated, using reciprocal intervening variables to represent the sizing

design variables, that dual SAO algorithms and OC methods are closely related in structural

weight minimization [37]. In the Elements of Structural Optimization Haftka, Gürdal and Ka-

mat [3] continue with an overview of the contributions by Fleury and others in relating OC and

SAO methods for the minimum weight optimization problem. For minimum compliance de-

sign, Bendsøe and Sigmund [2] note that the OC method and the MMA ‘in essence involves the

same kind of computations’—it has since been demonstrated that an arbitrary choice of heuris-

tic damping parameter in the OC method is identical to a rudimentary SAO subproblem with

exponential intervening variables [48]. Exponential intervening variables in turn generalise the

reciprocal case, which is identical to the OC method with the popular choice of 0.5 for the

numerical damping factor [48].

In structural optimization it is customary to formulate the mathematical programming prob-

1The convexity requirement may actually be relaxed, sometimes [39].
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lem in a ‘nested analysis and design’ (NAND) setting. The OC method, for example, is a NAND

formulation. SAO methods, it can also be said, have predominantly had a ‘NAND view’ (a con-

sequence no doubt of traditional ‘simulation-based’ optimization). NAND formulations are

characterised by finite element (FE) function calls which relate design and state variables (or

the ‘simulation’ part of the problem). In effect then the state variables are removed from the op-

timization problem by a procedure equivalent to the direct substitution of the equilibrium equa-

tions. This is especially prohibitive if higher-order derivatives (i.e. curvature information) is

desired, which, in turn, led to the practice of employing intervening variables in the NAND set-

ting, where curvature approximations based on intervening are much cheaper to calculate than

having to conduct exact analyses. In the alternative ‘simultaneous analysis and design’ (SAND)

setting the equations of equilibrium are constraints in the optimization problem, typically in the

form of nonlinear equality constraints, and although the mathematical programming problem

is much larger (in number of variables and constraints) and more complex than the equivalent

NAND case, all gradient information is readily available in the form of simple, sparse, easy to

calculate, partial derivatives. See Arora and Wang [49] for a monograph on the subject, and the

‘state space’ Newton method proposed by Evgrafov [50] in the context of Stokes flow problems.

Haftka [51] was amongst the first to study the SAND approach in structural optimiza-

tion. He solved the problem with a penalty function formulation and a conjugate gradient

method, demonstrating that preconditioning with an element-by-element approximate inverse

of the stiffness matrix may improve convergence. Bendsøe, Ben-Tal and Haftka [52] studied

and compared the SAND approach to a displacements-only formulation. Allowing for zero

cross-sectional areas they demonstrate that the SAND approach avoids the nondifferentiability

problem associated with singularity of the global stiffness matrix. Sankaranarayanan, Haftka

and Kapania [53] studied the SAND minimum weight problem subject to stress and displace-

ments constraints. They compare the penalty function approach to an augmented Lagrangian

formulation and progressive elimination of members with small cross-sectional areas, reporting

substantial computational savings.

More recently Rojas-Labanda and Stolpe [44] studied the SAND formulation of the topol-

ogy optimization problem as part of a thorough benchmarking study. The study consists of a

large set of test problems spanning minimum compliance, minimum volume and mechanism

design problems, subject to ‘simple’ constraints. The SAND problems are solved with either

primal-dual interior-point methods or a sequential quadratic programming (SQP) approach—

due to the availability of cheap second-order information, the exact Hessian matrix could be

used. The study demonstrates that the exact second-order information improves ‘final objective

function values’ and that the formulation is ‘reliable and robust’. However, inferior computa-

tion times are achieved when solving the SAND formulated problems, compared to the NAND

equivalents. Reportedly some SAND problems had to be removed from the test set due to time

and memory limitations—undoubtedly the calculation and storage of the full Hessian matrix

contributed to this.

Herein we propose a separable and strictly convex Lagrange-Newton quadratic subproblem

for SAND based minimum compliance design. Partly based on the findings by Rojas-Labanda

and Stolpe [44], we argue that the full Hessian matrix is, in general, prohibitively expensive

in computational storage requirements. Moreover, positive definiteness of a diagonal Hessian

matrix is easily enforced and the consequential sparsity of the KKT linear system of equations—
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the equations on which most of the computation time is spent [45]—can be exploited by primal-

dual interior-point methods, continuing where separable dual methods left off.

In the spirit of the historical perspective cited above, we consider a relatively inefficient

but rigorous mathematical programming formulation of a structural optimization problem. It

is thought that the SAO-SAND approach (or ‘SEASAND’, as we like to say) may one day

form part of a very large scale structural optimization methodology, or rather, at this point in

time there are tantalizing reasons to suggest so. Therefore, herein we attempt to elucidate, for

posterity, the workings of an SAO method applied to the SAND formulated problem, at the

limit of common computational capabilities.

2.3 Topology optimization

Consider the ‘classical’ topology optimization problem [2]. The goal is to find the material

distribution which minimizes the compliance of a predefined design domain. The amount of

material is limited on the upper bound by a single linear volume constraint. It is assumed that

the design domain is discretized with the finite element (FE) method. Each element is assigned

a design variable ti which represents the amount of material in the element. The vector of

material (density) variables is denoted by t ∈ R
e, with e the number of elements. The vector

of nodal displacements is denoted by u ∈ R
d, with d the number of degrees of freedom. The

SAND formulation of the problem has a vector of primal optimization variables x composed

of x = (t,u) ∈ Rn=e+d. Topological features are introduced with the solid isotropic material

with penalization (SIMP) method, independently proposed by Bendsøe [54] and Rozvany and

Zhou [55]. The SAND problem is expressed as

min
x

f0(u) = rTu

subject to [K(t)]u− r = 0 (2.1)

f1(t) = 1
T t− ν̄ ≤ 0

0 ≤ t ≤ 1

where K(t) represents the d× d globally assembled finite element stiffness matrix

[K(t)] =
e
∑

i=1

(ti)
p[Ki] , (2.2)

with p > 1 the SIMP parameter (as is customary, we use p = 3 throughout). The prescribed

limit on the volume fraction of the domain is denoted by ν̄. It is assumed that the FE’s are

equally sized. It is also assumed that the loads r are design independent.

The Lagrangian L of the SAND problem (2.1) can be expressed as

L(t,u,v, z) =
{[

rTu− vT [[K(t)]u− r] + z
(

1
T t− ν̄

)]

: 0 ≤ t ≤ 1
}

, (2.3)

with v ∈ R
d the vector of Lagrangian multipliers associated with the equations of equilibrium

and z the single multiplier associated the volume constraint. The negative in front of the ‘strain

energy density-like’ term is standard—see e.g. Bendsøe and Sigmund’s derivation of the OC
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method [2] (pg.10)—and, importantly, it is inconsequential to the sign of the sensitivity infor-

mation of L with respect to the primal variables x. More on this in Section 2.7. The complete

vector of dual variables is formed by λ = (v, z) ∈ Rm=d+1. For now we consider displacement

variables u unbounded.

Under fairly mild assumptions the discretized topology design problem has a nonempty

feasible set [56]. Moreover, the feasible set of the relaxed and penalized problem is nonempty

if the volume limit is enforced in the form of an equality constraint [56].

In reality discrete (‘black-and-white’) solutions are sought—i.e. ti ∈ [0, 1], ∀ i—from an

algorithmic point of view however the discrete programming problem is rather cumbersome—

see e.g Wood [42]. The idea behind SIMP is that the penalty parameter p > 1 drives each

material density variable ti towards either 0 or 1, but because the problem is continuous, effi-

cient gradient-based optimization methods can be used. However, since the discrete problem is

intractable, the relaxed and penalised problem is intractable too; the penalization strategy itself

introduces many local minima. In the SAND setting the nonconvexity of the problem is ex-

pected to be even worse, since it manifests in the form of the nonlinear equality constraints—the

equations of equilibrium in the SAND problem (2.1)—which may only be satisfied at conver-

gence.

There is in fact a number of difficulties which could potentially plague the relaxed and penal-

ized problem (in either NAND or SAND form) [57]. In addition to multimodality (more severe

in the SAND setting), the optimal solution is dependent on the mesh discretization and might

exhibit an artificial (numerical) stiffening phenomena known as ‘checkerboarding’. These are

typically negated with restriction methods and higher order elements [57]. Popular approaches

are based on the idea of a ‘density filter’—for details see the well-known Matlab codes by

Sigmund and co-workers [10, 12]—and although Bourdin [58] proved the method to be math-

ematically sound (i.e. not heuristic), it works by coupling large groups of density variables,

which could be expensive in the SAND setting [59]. A density filter is used in the SAND set-

ting by for example Rojas-Labanda and Stolpe [44]. Herein, in order to restrict the design set in

a fairly simple (and ‘sparse’) way, local slope constraints as per Petersson [60] are resorted to.

Slope constraints restrict the solution set by limiting local density variations. This is enforced

by imposing linear constraints on the material density variables such that

fj(t) =th − ti ≤ µπ ,

fj+1(t) =ti − th ≤ µπ , (2.4)

where h and i denote neighbouring elements, for j = 1, 2, . . . , b, and b the number of inter

element boundaries. The prescribed slope constraints parameter is µ and π is a mesh size

parameter, proportional to the size of the elements. Slope constraints restrict the solution set by

imposing a minimum length scale on the design domain via a limit on local density variations.

For µ constant the optimal solution is mesh independent, see Petersson [60] for details.

Restriction methods go some way in mitigating multimodality, but additional measures are

required to gain any insight whatsoever in the relative optimality of a stationary point. It is

sometimes argued that the problem should first be solved with no penalization—i.e. p = 1—

alleviating the prevalence of local minima, after which the penalization parameter is gradually

increased. Although this has been implemented successfully in practice—by Petersson [60] no

less—a measure of ‘confidence’ can not be attached to the potential global optimality of a local
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minimum. To this end multistart methods can be used, see e.g. Bolton et al. [61].

We find it necessary here to draw the readers attention to the zero (0) lower bound on ma-

terial density variables t, exactly. This a novel property of the SAND formulated problem,

permitted because the global stiffness matrix is not inverted per se—in the NAND setting a

nonzero lower bound is required to avoid the singularity of the global stiffness matrix. In the

SAND setting however, it turns out, this is inconsequential. Note that this is the case even

though linear independence constraint qualification (LICQ) can not be expected to hold at a

local minimizer of the SAND problem (2.1).

2.4 Optimality criterion (OC) methods

The well-known OC method is an expression of the necessary conditions of optimality—the

KKT conditions—see e.g. Haftka, Gürdal and Kamat [3] and Bendsøe and Sigmund [2]. Let

us elaborate on this for a while. The key to generate extremely efficient computational update

schemes, writes Bendsøe and Sigmund [2], ‘is to devise iterative methods which, for a previ-

ously computed design and its associated displacements, updates the design variables at each

point (or rather at each element of a finite element discretization) independently from the up-

dates at the other points, based on the necessary conditions of optimality’. One such condition

is the equations of equilibrium, ‘considered part of a function call’; for a previously computed

design t{k}, the displacements u are obtained by

u = [K(t{k})]−1r , (2.5)

making the OC method a NAND formulation. The NAND problem is expressed as

min
t

f0(t) = uT [K(t{k})]u

subject to f1(t) = 1
T t− ν̄ ≤ 0 (2.6)

0 < tmin ≤ t ≤ 1

with displacement variables u a function of the material density variables t—i.e. x = (t) ∈
Rn=e and λ = (z) ∈ R1. The objective function f0 is modified as per the adjoint method

for calculating sensitivity derivatives [2]. In ‘classical’ minimum compliance design subject to

a single linear volume constraint the derivatives of the compliance objective f0 reduce to the

particularity simple form

∂f0
∂ti

(t{k}) = −p(t{k}i )p−1uT [Ki]u , (2.7)

where u is obtained directly from (2.5) for a given t{k}. In general the adjoint method requires

additional computations.

Another modification is the imposition of a nonzero lower bound tmin to prevent singularity

in the FE function call (2.5).

For (2.6) the OC updating scheme takes on the following form

ti =











t
{k}
i Bη

i if ť
{k}
i < t

{k}
i Bη

i < t̂
{k}
i

ť
{k}
i if t

{k}
i Bη

i ≤ ť
{k}
i

t̂
{k}
i if t

{k}
i Bη

i ≥ t̂
{k}
i

(2.8)
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for i = 1, 2, . . . , n, and

ť
{k}
i ← max(t

{k}
i − δ, tmin) , (2.9)

t̂
{k}
i ← min(t

{k}
i + δ, 1) , (2.10)

with δ > 0 a prescribed move limit. The numerical damping factor η < 1 is introduced to

overcome oscillatory behaviour, diminishing the sensitivity of ti with respect to Bi, for i =
1, 2, . . . , n. In Reference [48] it is demonstrated that the updating scheme (2.8) is identical to

the use of a dual SAO procedure with exponential intervening variables—the common practice

of η = 0.5 is in turn identical to reciprocal intervening variables.

The Bi are found via

Bi = −
(

λ
∂f1
∂ti

)−1(
∂f0
∂ti

)

(2.11)

with λ ≥ 0 the Lagrangian multiplier (although the equality does not hold if the constraint

is active and binding). The multiplier is typically found using a simple bisectioning strategy,

enforcing adherence of t to the volume constraint f1. If the elements contribute equally to the

volume of the topology, as is the case herein, (2.11) reduces to

Bi =
p(t

{k}
i )p−1

λ
uT [Ki]u . (2.12)

This completes the presentation of the simple and efficient OC method for minimum com-

pliance topology design subject to a single linear volume constraint. We reiterative that the

OC method is a NAND formulation, characterised by the function call (2.5) in every iteration

k. For additional implementation details the reader is referred to the cited literature and the

well-known Matlab implementations [10, 12].

2.5 Sequential approximate optimization (SAO)

SAO is characterised by the construction of inexpensive analytical approximation functions

f̃
{k}
α (x), α = 0, 1, . . . ,m to the objective f0(x) and constraint functions fj(x), j = 1, 2, . . . ,m

at successive iteration points x{k}, k = 1, 2, 3, . . . . Together the approximations f̃
{k}
α (x), α =

0, 1, . . . ,m form an approximate subproblem P [k]. The specific form of each approximation

f̃
{k}
α (x) is determined by the consequential solubility of the subproblem P [k]. In structural

optimization it is customary to use strictly convex and separable approximations, see e.g. the

CONLIN algorithm [34, 35] and MMA [36]. The resulting subproblems (which are strictly

convex and separable) are amenable to highly efficient dual statements when the number of

constraints m is far less than the number of design variables n. When the number of constraints

are relatively large, the performance of Lagrange-Newton diagonal quadratic subproblems in

combination with primal-dual interior-point subsolvers is considered superior [46].

2.5.1 Function approximation

The simplest approximation is the linear Taylor series expansion

f̃ {k}
α (x) = fα(x

{k}) +∇fTα (x{k})(x− x{k}) , (2.13)
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although of course, the success of SAO methods depend a great deal on the quality of the

approximations. In the NAND problem (2.6) it is considered too costly to calculate higher-order

derivatives, and motivated by the reciprocal-like functional dependency imposed by the FE

function call (2.5), it has become standard practice to employ reciprocal intervening variables

yi =
1

ti
, i = 1, 2, . . . , n . (2.14)

In terms of the optimization variables ti of the NAND problem (2.6), the reciprocal approxima-

tion is written as

f̃Rα(t) = fα(t
{k}) +

n
∑

i=1

(

∂fα
∂ti

(t{k})

)

(

t
{k}
i

ti

)

(ti − t{k}i ) . (2.15)

Exponential intervening variables yi = taii are a generalization of reciprocal intervening

variables (2.14). The unknown exponents ai may be estimated with any number of strategies,

see e.g. Fadel et al. [62] and the work on incomplete series expansions [63] and ‘approximated

approximations’ [64]. For ai = −1 the reciprocal case is recovered, identical to the popular

choice of η = 0.5 in the OC update (2.8)—the exponential case is, in turn, equivalent to an

adaptive numerical damping factor η. See Reference [48] for details.

Beyond the linear approximation (2.13), efficient and flexible approximations may be de-

rived in terms of the above mentioned incomplete series expansions [63] and ‘approximated

approximations’ approach [64]. Consider the general diagonal quadratic approximation [65] in

terms of general design variables x

f̃ {k}
α (x) = fα(x

{k}) +∇fTα (x{k})(x− x{k}) +
1

2

n
∑

i=1

c{k}αi
(xi − x{k}i )2 , (2.16)

where the second-order terms c
{k}
αi , i = 1, 2, . . . , n are restricted to the diagonal Hessian terms—

lending the approximation (2.16) separability. Linear functions may be represented exactly by

setting cαi
= 0, i = 1, 2, . . . , n. The second partial derivatives to, for example, the reciprocal

approximation (2.15) (which implies a NAND context) with respect to ti at t{k} are obtained as

∂2f̃Rα
∂t2i

(t{k}) = − 2

t
{k}
i

(

∂fα
∂ti

(t{k})

)

, (2.17)

clearly then, if (2.16) is constructed with

c{k}αi
= − 2

t
{k}
i

(

∂fα
∂ti

(t{k})

)

, (2.18)

the second-order Taylor series approximation to the reciprocal approximation at point t{k} is

obtained. Innumerable approximation strategies may be derived in this way [63]. The diagonal

quadratic approximation (2.16) may in general be rather inaccurate with respect to the original

function, capturing only the behaviour of the function in the immediate vicinity of t{k}—see

e.g. the illustration of the reciprocal approximation (2.15) in Reference [65]. However, in SAO
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methods it is standard practice to employ move limits anyway, and globally convergent methods

typically rely on a measure of the accuracy of the approximations to adjust the trust region, like

the Pareto-like filter algorithm by Fletcher et al. [66], or ‘conservatism’ [67] due to Svanberg.

Due to the availability of cheap second-order information in the SAND setting, one may as

well, for example, use analytical second-order derivatives with respect to direct variables when

approximating the functions of the SAND problem (2.1):

c{k}αi
=
∂2fα
∂x2i

(x{k}), (2.19)

for all functions α = 0, 1, . . . ,m and with respect to all variables i = 1, 2, . . . , n. More

sophisticated problem specific approximations, based e.g. on historical information, or perhaps

sophisticated intervening variables, or a combinations of these, may turn out to be superior.

Especially considering that the SAND problem (2.1) is actually linear in displacement variables

u.

2.5.2 Convexity, feasibility and constraint qualification of the approxi-

mate subproblem

We restrict ourselves to strictly convex subproblems, as is customary. This implies that subprob-

lem P [k] is naturally formulated as Lagrange-Newton quadratic program (QP) in the SAND set-

ting; the nonlinear equality constraints made up by the equations of equilibrium are linearised

for the subproblem to be convex in the first place23. On the other hand, because quadratic in-

equality constraints describe a convex feasible region if one feasible point exists, and if P [k]
contains only nonlinear inequality constraints (like in common NAND formulations), then the

subproblem may take the form of a quadratic program with quadratic constraints (QCQP), sol-

uble either by pure dual methods, see e.g. Reference [46], or in the form of a second-order cone

program (SOCP) [68].

In the drive to solve problems with more and more active constraints, the SAO community

has somewhat inadvertently arrived at methods that may be applicable to SAND formulated

problems. Lagrange-Newton QPs are considered attractive anyway for problems with a large

number of constraints [46]. The QP subproblems are characterised by the linearisation of all

the constraint functions, with constraint curvature information retained as part of the diagonal

quadratic objective function f̃
{k}
0 (x) of the subproblem. The approximate objective function

f̃
{k}
0 (x) is thus viewed as an approximation of the Lagrangian and the SAO method may be

termed a diagonal SQP type algorithm [46]. Hence, the general Lagrange-Newton subproblem

2Feasibility is of course assumed too. It turns out that this is a reasonable assumption in SAND minimum

compliance design subject to a single linear volume constraint.
3Nonconvex QP’s—that is QP subproblems with negative definite Hessians—may be used too, but the under-

lying theory, and the numerical routines, are typically quite involved [39].
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PQP [k] for the SAND problem (2.1) can be expressed as

min
x

f̃
{k}
0 (x) = f0(x

{k}) +∇fT0 (x{k})(x− x{k}) +
1

2
(x− x{k})TQ{k}(x− x{k})

subject to f̃
{k}
j (x) = fj(x

{k}) +∇fTj (x{k})(x− x{k}) [=,≤] 0 , j = 1, 2, . . . ,m (2.20)

x̌
{k}
i ≤ xi − x{k}i ≤ x̂

{k}
i , i = 1, 2, . . . , n

and

x̌
{k}
i ← max(x

{k}
i − δ(xi,max − xi,min), xi,min) , (2.21)

x̂
{k}
i ← min(x

{k}
i + δ(xi,max − xi,min), xi,max) , (2.22)

for i = 1, 2, . . . , n, with xi,min and xi,max the lower and upper bounds on variable i as per the

global problem (2.1).

We have resorted to some nonstandard notation, for the sake of brevity, to denote both

equality and inequality constraints—i.e. [=,≤].
The Hessian matrix Q{k} of the approximate objective f̃

{k}
0 (x) contains only diagonal ele-

ments, constructed according to

Q
{k}
ii = c

{k}
0i

+
m
∑

j=1

λ
{k}
j c

{k}
ji
, i = 1, 2, . . . , n , (2.23)

where it is standard practice to retain the Lagrangian multiplier estimates from the previous

iterate—i.e. λ{k} = λ{k−1}⋆.

We will return shortly to the calculation of diagonal Hessian terms (2.23), first however,

feasibility and constraint qualification (CQ) of subproblem PQP [k] deserves a word. Because

‘technological’ or ‘behavioural’ constraints typically take the form of limited quantities, and

due to the prevalence of the NAND formulation, structural optimization and SAO literature is

typically concerned with subproblems constrained only by inequalities—i.e. only [≤] in PQP [k].
Importantly, inequality constraints can readily be relaxed if the feasible set of PQP [k] happens to

be empty. Therefore, since problem PQP [k] possesses only (affine) linear constraints, Abadie’s

CQ (or ‘regularity’) is trivially satisfied. This is not the case for the general PQP [k]—i.e. [=,≤]
in PQP [k]. Although Abadie’s CQ holds4, feasibility of PQP [k] is not readily attainable. A

range of strategies exist to deal with infeasible instances of PQP [k]: e.g. a simple backtracking

strategy in conjunction with a trust region approach—see Fletcher et al. [66]—or the ‘feasibility

subproblem’ due to Burke and Han [69]—see also Shen et al. [70]. Herein, in an attempt to

restrict ourselves to the topic at hand, we employ the former. In the future we hope to implement

the latter.

Therefore, assuming feasibility and in turn CQ, we only require positive definiteness of

Q{k} to end up with a strictly convex subproblem PQP [k]. Because Q{k} is diagonal—the

4Linear independence CQ is not necessary for Abadie’s CQ. Indeed, with a zero lower bound on the material

density variables (tmin = 0) linear independence CQ can not be expected hold at a local minimizer of the SAND

problem (2.1).
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approximate objective function f̃
{k}
0 (x) is separable—this boils down to

Q
{k}
ii = c

{k}
0i

+
m
∑

j=1

λ
{k}
j c

{k}
ji
≥ 0, i = 1, 2, . . . , n . (2.24)

The positive definite requirement (2.24) may be enforced, for example, by modifying the indi-

vidual contributions of the approximate objective and constraint functions

c
{k}
0i
←max(ǫ0 > 0, c

{k}
0i

), i = 1, 2, . . . , n,

c
{k}
ji
←max(0, c

{k}
ji

), i = 1, 2, . . . , n, (2.25)

and j = 1, 2, . . . ,m, or, on the other hand, by direct modification of the accumulated diagonal

Hessian terms

Q
{k}
ii = max

(

ǫ > 0, c
{k}
0i

+
m
∑

j=1

λ
{k}
j c

{k}
ji

)

, i = 1, 2, . . . , n . (2.26)

In SAO parlance (2.25) is referred to as the convex strategy, and (2.26) is referred to as the non-

convex strategy—see Reference [71]—although of course both lead to a strictly convex PQP [k],
the strategy in (2.26) could possibly retain some nonconvex curvature information. In addition,

(2.26) is identical to (2.25) if the curvature terms c
{k}
0i

and c
{k}
ji

are respectively strictly positive

and positive anyway. Moreover, numerical experiments in Reference [71] suggest that the non-

convex strategy (2.26) may have a notable computational advantage for problems characterised

by nonconvex objective and/or constraint functions.

For reasons that will become clear in Section 2.7, we propose an additional strategy to

enforce the positive definite requirement (2.24). The new strategy is referred to as the absolutely

nonconvex strategy, obtained if (2.26) is modified with an absolute value operator

Q
{k}
ii = max

(

ǫ > 0,

∣

∣

∣

∣

∣

c
{k}
0i

+
m
∑

j=1

λ
{k}
j c

{k}
ji

∣

∣

∣

∣

∣

)

, i = 1, 2, . . . , n . (2.27)

Clear to see is that the absolutely nonconvex strategy (2.27) could possibly retain severely non-

convex curvature information, which would have been discarded otherwise. This is actually

not as far fetched as it may initially seem; (2.27) is similar to a common strategy in quasi-

Newton methods of function minimization where second-order curvature information is modi-

fied to maintain the ‘direction of descent’ [72]. Interestingly, in both CONLIN [34, 35] and the

MMA [36], the sign of the approximate curvature terms are controlled with a conditional (‘if’)

statement. What is more, standard practice when using exponential (and reciprocal) intervening

variables in problems that are not self-adjoint is the introduction of an absolute value operator

in the approximate curvature equation, see e.g. Reference [65].

The cheap availability of second-order information in the SAND setting makes it rather

tempting to employ the full approximate Hessian matrix instead, as Rojas-Labanda and Stolpe [44]

have done. The advantages of using only separable (diagonal) second-order information, how-

ever, is clear: positive-definiteness of Q{k} is easily enforced, Q{k} has minimal storage require-

ments and, last but not least, the consequential sparsity of the KKT linear system is amenable

to highly efficient primal-dual interior-point methods of continuous programming [45].
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2.6 A dual statement for QP based ‘classical’ SAND topology

design

For the sake of completeness we recite first the derivation of Falk’s dual formulation [38] for the

general subproblem P [k]. The section is closed with the dual statement of subproblem PQP [K]
in the notation of the ‘classical’ SAND minimum compliance topology design problem (2.1).

The potential efficiency of the dual statement hinges on both strict convexity and separa-

bility of the primal approximate subproblem P [k]. These two properties mean that the saddle

point (x⋆,λ⋆) of the approximate Lagrangian L{k} may conveniently be found using the Falk

dual [37, 38]:

max
λ

min
x
{L{k}(x,λ) : x̌ ≤ x ≤ x̂} = max

λ
γ(λ) (2.28)

since the bound constraints represent a closed and bounded set—see Falk [38] for details. The

dual function γ(λ) can be expressed as

γ(λ) = min
x

{[

f̃
{k}
0 (x) +

m
∑

j=1

λj f̃
{k}
j (x)

]

: x̌ ≤ x ≤ x̂

}

. (2.29)

If the primal approximate subproblem PQP [k] is separable, the minimization problem (2.29)

reduces to n one-dimensional minimizations, which, in turn, relate primal and dual variables

x⋆ = x(λ) : x̌ ≤ x⋆ ≤ x̂ . (2.30)

If the minimization problem (2.29) is strictly convex, the stationary conditions

∂f̃ {k}

∂xi
+

m
∑

j=1

λj
∂f̃

{k}
j

∂xi
= 0, i = 1, 2, . . . , n (2.31)

yield simple analytical relationships which relate the primal and dual variables in relation

(2.30). The saddle point (x⋆,λ⋆) is then found by maximising the dual function γ(λ)—an m-

dimensional minimization/maximization problem subject to simple bound constraints—which

constitutes the raison d’être for the efficiency of pure dual methods for problems with a small

number of constraints.

In terms of the ‘classical’ SAND topology design problem (2.1) the analytical relationships

(2.30) can be expressed as

ti(v, z) =
∏

ti

(

t
{k}
i +

p(t
{k}
i )p−1vT [Ki]u

{k} − z
Q

{k}
ti

)

, i = 1, 2, . . . , n , (2.32)

u(v) =
∏

v

(

u{k} + [Q{k}
u ]−1

[

[K(t{k})]v − r
]

)

. (2.33)

The Hessian matrix Q{k} is split into two instances Q
{k}
(·) , denoting the diagonal Hessian

terms with respect to t and u respectively. Separability implies that the matrix inversions in

relation (2.32) and (2.33) are trivially computed.
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The
∏

(·)(·) operator represents the projection onto the bounds of the material density vari-

able i [ť
{k}
i , t̂

{k}
i ] and the vectors of displacement variable bounds [ǔ{k}, û{k}] respectively. Here

bounds on the displacement variables [ǔ{k}, û{k}] are introduced in order to define the Falk dual,

although in practice these can be chosen arbitrarily large.

2.7 The relation between OC and SEASAND methods

Let us now investigate the differences and similarities between the OC method and SAO-SAND

based on the Lagrange-Newton diagonal QP subproblem PQP [k], in ‘classical’ minimum com-

pliance topology design.

2.7.1 Equivalence

The dual update (2.32) of material density variables t reveals a similarity with the OC update

(2.8) in ‘classical’ topology design. Consider first the OC update (2.8); because of the nonzero

lower bound on material density variables tmin in the NAND problem (2.6) the elemental stiff-

ness matrices [Ki] are positive definite, thus the following inequality can be derived

p(t
{k}
i )p−1u{k},T [Ki]u

{k} > 0 , (2.34)

for i = 1, 2, . . . , n. Substitution of (2.34) in (2.7) reveals that the derivative of the compli-

ance objective ∂f0
∂ti

in the NAND problem (2.6) is negative always—i.e. ∂f0
∂ti

< 0. Bendsøe and

Sigmund [2] put it thus: ‘physical intuition is confirmed’, ‘additional material in any element

decreases compliance, that is, makes the structure stiffer’. Substitution of (2.34) in (2.12) re-

veals the mechanism of the OC method: the amount of material in element i is increased if

the ‘strain energy density-like term’ p(t
{k}
i )p−1u{k},T [Ki]u

{k} is greater than the Lagrangian

multiplier λ = z—the dual variable related to the volume constraint f1, the only constraint in

the NAND problem (2.6)—and decreased if the strain energy term is less than λ.

On the other hand, consider the material density dual update (2.32) in the SAND problem

(2.1). Clearly the material in element i is increased if

p(t
{k}
i )p−1vT [Ki]u

{k} > z , (2.35)

and decreased if

p(t
{k}
i )p−1vT [Ki]u

{k} < z . (2.36)

In this case the ‘strain energy density-like term’ is a function of both displacement fields: the

primal displacement variables u and the Lagrangian multipliers v of the equations of equilib-

rium. In the OC method v is the vector of adjoint variables and v = u{k} in every iteration

k—i.e. the NAND problem (2.6) is self-adjoint.

Now, consider the stationary conditions which describe a saddle point of the Lagrangian L,

as defined in equation (2.3)—i.e. the Lagrangian of the SAND problem (2.1). The stationary

condition with respect to u yields

∂L
∂u

(t⋆,u⋆,v⋆, z⋆) = −[[K(t⋆)]v⋆ − r] = 0 , (2.37)
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and, with respect to v, yields

∂L
∂v

(t⋆,u⋆,v⋆, z⋆) = [K(t⋆)]u⋆ − r = 0 . (2.38)

Note that if the Lagrangian L is defined with a positive ‘strain energy density-like’ term, then

the ‘virtual’ load vector r in (2.37) changes sign, in turn, the ‘virtual’ displacement vector v has

to change sign, negating the sign change with respect to the complete ‘strain energy density-

like’ term. The ‘real’ displacement vector u has to satisfy the ‘real’ equations of equilibrium in

(2.38), regardless.

If every variable in the displacement vector u{k} remains unbounded for all k (v is un-

bounded) , then a (feasible) local minimizer (t⋆,u⋆) will satisfy (2.37) and (2.38). In practice

this is achieved simply by setting the displacement variable bounds [ǔ, û] at sufficiently large

values, dependent on the scaling of the problem. Therefore, because the elemental stiffness

matrices [Ki] are positive semidefinite (in SAND), at or close to a local minimum (t⋆,u⋆) the

‘strain energy density-like’ term in the material density dual update (2.32) is

p(t
{k}
i )p−1v⋆,T [Ki]u

{k} ≥ 0 , (2.39)

similar to the ‘strain energy density-like’ in the sensitivity of compliance objective f0 (2.34) in

the NAND problem (2.6). Next we derive the sign of the separable curvature information, using

the relation in (2.39).

2.7.2 Separable curvature information

Consider the diagonal second derivative of the Lagrangian L defined in (2.3) with respect to ti,
evaluated at a (feasible) local minimum (t⋆,u⋆):

∂2L
∂t2i

(t⋆,u⋆,v⋆, z⋆) = −p(p− 1)(t⋆i )
p−2v⋆,T [Ki]u

⋆ ≤ 0 . (2.40)

In conjunction with the relation in (2.39) one can see that the separable curvature with respect

to a material variable ti > 0 is negative at or close to a local minimum (t⋆,u⋆) of the SAND

problem (2.1). Thus, the diagonal second-order information of the Lagrangian (2.3) is concave

with respect to t at (and when approaching) a local minimizer (t⋆,u⋆) of the SAND problem

(2.1).

We do the same for the compliance objective f0 in the NAND problem (2.6). The second-

order derivative of the compliance objective f0 at tk can expressed as

∂2f0
∂t2i

(t{k}) = −p(p− 1)(t
{k}
i )p−2u{k},T [Ki]u

{k} < 0 , (2.41)

which, in light of the positive definiteness of [Ki] in NAND, shows that the curvature of f0
is concave too with respect to direct variables t. The substitution of reciprocal intervening

variables (2.14) effectively convexifies the curvature information, specifically in the self-adjoint

case—i.e. ‘classical’ NAND topology design subject to a single volume constraint. To illustrate
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this, consider the substitution of equation (2.7) in the quadratic approximation to the reciprocal

approximation (2.18), this yields

c
{k}
0i

= − 2

t
{k}
i

(

∂f0(t
{k})

∂ti

)

= 2p(t
{k}
i )p−2u{k},T [Ki]u

{k} , (2.42)

because the elemental stiffness matrix [Ki] is positive definite in the NAND setting, the curva-

ture quantity in (2.42) is strictly positive too.

See also the recently published ‘discussion’ by Evgrafov [73].

In the SAND setting the relation expressed in (2.40) is somewhat catastrophic—keep in

mind that we plan to use analytical direct second-order derivatives in the Lagrange-Newton QP

subproblem PQP [k]. That is, since the problem is linear in displacement variables u, using e.g.

the nonconvex strategy (2.26) in order to enforce positive definiteness of Q{k}, at or close to

a local minimum (t⋆,u⋆) it can be guaranteed that all the diagonal elements in Q{k} will be

replaced with the strict convexity parameter ǫ. In effect then little or no second-order informa-

tion actually enters PQP [k], especially when the algorithm is close to a local minimum, where it

might, in fact, be needed most. This is the motivation behind the proposed absolutely nonconvex

strategy (2.27).

How can this be though? Should one not expect positive (convex) curvature at or close to

a local minimum of a problem—this is in fact a sufficient condition for a local minimum—

sufficient yes, but not necessary. Lets throw away the volume constraint f1 and consider a hy-

pothetical material, permitted to take on values of infinite density ti → ±∞, for i = 1, 2, . . . , e.
The Lagrangian of this problem can be expressed as

L(t,u,v, z) = rTu− vT [[K(t)]u− r] , (2.43)

the first derivative of (2.43) with respect to ti is

∂L
∂ti

= −p(t{k}i )p−1vT [Ki]u . (2.44)

Except for the trivial case where one or both of the displacement vectors (u or v) have all

zero entries—i.e. an unloaded structure r = 0—the Lagrangian (2.44) has a single stationary

point with respect to ti, at ti = 0. That is, no stationary points exist for ti 6= 0. The Lagrangian

(2.43) may be equated to total potential energy of the structure; the sum of virtual work and the

stored elastic energy rTu. The structure is in equilibrium if the internal virtual work and the

external virtual work is equal for an arbitrary virtual displacement v—the stationary conditions

of (2.43) with respect to v is the equilibrium equation. In order to minimize the compliance of

the structure, we require the total potential energy (2.44) to be stationary with respect to the real

displacements u, the virtual displacements v, and minimized with respect to ti; (2.44) tells us

that, in the direction of positively infinite density ti → ∞, the total potential energy—the La-

grangian (2.43)—may be minimized ad infinitum. In addition, for a SIMP density penalization

of p > 2, the derivative of the total potential energy (2.44) changes exponentially relative to ti,
hence its concavity.

In the actual problem (2.1) local minima are constrained by the volume limit f1 and the

bounds on t, hence the actual Lagrangian, as defined in (2.3), need not be convex with respect

to t at a local minimum.
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2.7.3 Numerical damping

The manner in which positive definiteness is enforced—viz. convex (2.25), nonconvex (2.26)

or absolutely nonconvex (2.27)—seemingly trivializes the quantities that end up in the Hessian

Q{k} of the subproblem PQP [k]. If, for example, the absolutely nonconvex strategy is used,

then the quantities in Q{k} may bear little resemblance to the actual curvature of the Lagrangian

(2.3). Moreover, the SAND problem (2.1) is linear in displacement variables u. Therefore, due

to the strict convexity requirement, Q{k}
ui

= ǫ for i = 1, 2, . . . , d and all k = 1, 2, 3, . . ..
One can however imagine that, for relatively large values of the strict convexity parameter

ǫ, oscillatory behaviour may be ‘damped’ to some extent, similar to the effect of the numerical

damping factor η in the OC update (2.8). Let us elaborate on this. The damping factor dimin-

ishes the sensitivity of t{k+1} with respect to the ‘strain energy density-like’ term (2.34). One

can see that the diagonal Hessian terms Q
{k}
ii , i = 1, 2, . . . , n has the same effect in the dual

updates (2.32) and (2.33). In material density variables the strict convexity parameter ǫ together

with the strategy used to enforce positive definiteness of Q{k} has the effect of an ‘adaptive

damping factor’, similar to the equivalence demonstrated pertaining to exponential intervening

variables and an ‘adaptive numerical damping factor’ in the NAND setting [48]. This is also

the reason why negative definite curvature information (i.e. nonconvex QP’s) is not expected

to yield good algorithmic convergence properties, since the updates in the design variables will

not be ‘damped’ by the curvature information (the minimum of the subproblem will often be on

the variable bounds), but this should be tested in the future.

Various strategies exist to determine the unknown exponents ai of the exponential approx-

imation in the NAND setting. Similarly, in the SAND setting, innumerable strategies can be

devised to enforce positive definiteness of the Hessian matrix Q{k} of subproblem PQP [k], or

to estimate the curvature terms c
{k}
ji

, i = 1, 2, . . . , n and j = 0, 1, 2, . . . ,m in the first place.

As already pointed about, historical information (previously visited points) might be usable in

order to capture and incorporate off-diagonal interactions in the diagonal terms, possibly yield-

ing more appropriate curvature approximations (especially with respect to the displacement

variables u).

2.7.4 Additional constraints

From a computational point of view, due to inherent sparsity and the fact that gradient informa-

tion is simple to calculate, the inclusion of additional constraints in the SAND problem (2.1) is

fairly inconsequential. However, displacement-based constraints—which are the type of con-

straints which require additional FE function calls (2.5) in the NAND problem (2.6)—affects

the relations pertaining to the ‘strain energy density-like’ term (2.39). In the future we hope to

investigate constraints of this form—specifically local stress constraints.

On the other hand, density-based constraints—i.e. dependent on only t—can be incorpo-

rated without substantially affecting the relations derived above, especially if these are linear.

For illustrative purposes, consider the inclusion of a single slope constraint (2.4), limiting the

difference between, say, t1 and t2—i.e. t1 − t2 ≤ µπ. It is clear that only the stationary condi-

tions with respect to t1 and t2 are effected. For example, the dual update (2.32) for variable t1
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is modified to

t1(v, z, s) =
∏

t1

(

t
{k}
1 +

p(t
{k}
1 )p−1vT [K1]u

{k} − z − s
Q

{k}
t1

)

, (2.45)

with s the Lagrangian multiplier of the slope constraint—the Lagrangian (2.3) and hence the

dual function (2.29) are modified too to arrive at (2.45). In this case the ‘strain energy density-

like’ term (2.39) has to be greater than z + s for material in element 1 to be increased. For

example, for both the volume constraint and the slope constraint inactive—i.e. z = 0 and

s = 0—one can see the algorithm will increase the amount of material in element 1, in turn,

reducing the compliance of the structure. Innumerable constraints of this form can be included

in the SAND problem (2.1) without affecting the substance of the arguments outlined above.

OC methods have mostly been developed for problems with a single constraint. SAO sub-

problems on the other hand easily provide for any number of additional constraints. In the

NAND setting density-based constraints do not require additional FE functions calls (2.5), but a

multidimensional maximization/minimization procedure is required to determine the Lagrange

multipliers λ. A suitable example is conjugate gradient methods, as used in CONLIN [34, 35]

and the MMA [36].

2.8 Numerical demonstrations and experiments

Here various properties of the Lagrange-Newton diagonal quadratic subproblem PQP [k] is

investigated in SAO of the SAND problem (2.1). Because PQP [k] is convex, the solution

method—e.g. dual vs. primal-dual—is inconsequential in terms of the convergence proper-

ties of the algorithm.

2.8.1 Diagonal curvature information and numerical damping

In order to demonstrate the assertions made in Section 2.7, we consider first a small and simple

test problem; ‘classical’ minimum compliance design of the rectangular design domain l1 ×
l2 depicted in Figure 2.1; F is a load distributed over l3, the stiffness E of solid material is

unity and the amount of material is limited to a fraction ν̄ = 0.5 of the design domain. The

test problem is often referred to in terms of the expected result; a 2-bar truss. The domain is

discretized with 30 × 10 square Q8 finite elements. In this form the SAND problem (2.1) has

n = e + d = 300 + 1962 = 2262 design variables and m = d + 1 = 1963 constraints. The

equivalent NAND problem would have n = e = 300 design variables and a single constraint,

but one additional d × d linear system is solved in each iteration. The displacement variables

on the clamped-in boundary are fixed at 0 (derivatives with respect to these are zeroed too).

A rudimentary SAO procedure (iterations accepted unconditionally) based on the Lagrange-

Newton diagonal quadratic subproblem PQP [k] is applied to the SAND problem (2.1). Material

density variables t are limited between and including 0 and 1. Displacement variables u are

bounded at ±1 × 106. The move limit δ is set at 0.2 and applied as per (2.21) and (2.22); in

displacement variables u this translates to a move limit of 0.2×(1×106−(−1×106)) = 1×105,

which has no effect. Material density variables are initialized with t
{0}
i = ν̄, for i = 1, 2, . . . , e
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l1

l2

F

l3

E = 1 ν = 0.3 F = 10 l3 = 0.5

l1 = 3 l2 = 1

Figure 2.1: Rectangular design domain (The 2-bar truss design problem).

and displacement variables with u
{0}
i = 0 for i = 1, 2, . . . , d. The strict convexity parameter

is set ǫ = 1× 10−6 and all curvature terms are obtained as analytical partial derivatives (2.19).

The algorithm is terminated if either the Euclidean norm

∆{k} =
∥

∥x{k}⋆ − x{k}
∥

∥ ≤ 1× 10−3 , (2.46)

or at a prescribed maximum number of iterations.

First we run the algorithm with the nonconvex strategy (2.26) to enforce positive definiteness

of the diagonal Hessian matrix Q{k}. In general the nonconvex strategy is expected to work well

for problems characterised by nonconvex functions [71]. In this case however, the algorithm

fails to satisfy the convergence tolerance and is terminated after 99 iterations. In Table 2.1 the

statistics of iterations 95-99 are summarised; Θ{k} is the maximum constraint violation, d
{k}
0

and d
{k}
1 are the number of material density variables on the lower (0) and upper (1) bound

respectively, ∆{k} is calculated as per (2.46) and H{k} is the diagonal matrix of analytical

curvature terms before the nonconvex strategy (2.26) is imposed, in other words

H
{k}
ii =

∂2f0
∂x2i

(x{k}) +
m
∑

j=1

λ
{k}
j

∂2fj
∂x2i

(x{k}), i = 1, 2, . . . , n . (2.47)

Table 2.1: Oscillation of rudimentary SAO with ǫ = 1× 10−6 and the nonconvex strategy.

k f0(u
{k}) Θ{k} d

{k}
0 d

{k}
1 ∆{k} max (H{k}) min (H{k})

. . . . . . . . . . . . . . . . . . . . . . . .
95 9.683D+1 4.165D-2 149 146 1.256D+0 0.000D+0 -1.052D+1

96 9.683D+1 2.982D-2 149 148 1.256D+0 0.000D+0 -1.051D+1

97 9.683D+1 4.165D-2 149 146 1.256D+0 0.000D+0 -1.049D+1

98 9.683D+1 2.982D-2 149 148 1.256D+0 0.000D+0 -1.046D+1

99 9.683D+1 4.165D-2 149 146 1.256D+0 0.000D+0 -1.044D+1

The statistics in Table 2.1 confirm some of our suspicions. First, the analytical diagonal

curvature terms are indeed negative close to a local minimum5. Consequently, the subproblem

5First-order accuracy of PQP [k] with respect to the SAND problem (2.1) permits us to assume that the algo-

rithm is close to a local minimum.
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PQP [k] has diagonal Hessian terms Q
{k}
ii = ǫ, i = 1, 2, . . . , n, for k = . . . , 95, 96, 97, 98, 99.

We can report that positive curvature information last entered PQP [k] in iteration number 10.

The lack of curvature in PQP [k] seemingly results in oscillatory behaviour close to the local

minimum, evidenced by the values of Θ{k}, d
{k}
1 and ∆{k}. The design t{k} in iteration 99 is

actually slightly asymmetric, as seen by close inspection of Figure 2.2a.

The same runs are conducted with the convex (2.25) and absolutely nonconvex (2.27) strate-

gies to enforce positive definiteness of the diagonal Hessian matrix Q{k}, yielding the designs

depicted in Figure 2.2b and Figure 2.2c. Statistics at termination are summarised in Table 2.2.

Note that in this case the actual subproblem curvatures Q{k} are given. We see that very large

curvature terms enter PQP [k] if the convex strategy is used, prohibiting the algorithm from mak-

ing almost any progress whatsoever. With the absolutely nonconvex strategy on the other hand,

the algorithm terminates successfully after 19 iterations; seemingly artificially ‘convexified’

second-order information may aid convergence.

(a) (b) (c)

Figure 2.2: Topologies generated for the 2-bar truss design problem; rudimentary SAO with

ǫ = 1× 10−6 and the (a) nonconvex strategy (b) convex strategy and (c) absolutely nonconvex

strategy.

Table 2.2: Final iteration of rudimentary SAO with ǫ = 1× 10−6 and the (b) convex strategy

and (c) absolutely nonconvex strategy.

k f0(u
{k}) Θ{k} d

{k}
0 d

{k}
1 ∆{k} max (Q{k}) min (Q{k})

(b) 99 4.527D+2 1.506D-5 4 0 4.227D-1 2.236D+5 1.000D-6

(c) 19 9.633D+1 3.200D-11 150 150 3.740D-4 1.044D+1 1.000D-6

We repeat all three runs but with the strict convexity parameter set at ǫ = 1× 10−3. (Up to

now we had ǫ = 1× 10−6.) The results are summarised in Table 2.3. As expected, little change

is observed with regard to the poor convergence properties of the convex strategy. However, for

ǫ = 1 × 10−3 the SAO algorithm with the nonconvex strategy not only converges, but outper-

forms the absolutely nonconvex variant—although the number of ‘black-and-white’ elements

are fewer.

These experiments confirm some of the assertions made in Section 2.7. First, the analytical

diagonal curvature information of the Lagrangian (2.3) is negative (concave) close to and at a

local minimum of the SAND problem (2.1). And second, the strict convexity parameter and

the positive definiteness strategy play the role of the numerical damping factor η used in the

OC update (2.8), which, in turn, is equivalent to strategies pertaining to exponential intervening

variables in SAO and the NAND setting [48].
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Table 2.3: Final iteration of rudimentary SAO with ǫ = 1× 10−3 and the (a) nonconvex

strategy (b) convex strategy and (c) absolutely nonconvex strategy.

k f0(u
{k}) Θ{k} d

{k}
0 d

{k}
1 ∆{k} max (Q{k}) min (Q{k})

(a) 33 9.633D+1 6.371D-8 123 149 6.413D-4 8.278D-3 1.000D-3

(b) 99 4.529D+2 1.116D-4 4 0 8.033D+1 2.227D+5 1.000D-3

(c) 80 9.634D+1 1.597D-8 149 144 6.630D-4 1.077D+1 1.000D-3

It is quite difficult to definitively suggest an optimal combination of ǫ and positive definite-

ness strategy in general—alas, this is the nature of heuristic procedures. However, based on the

data in Table 2.3, it is fair to say that the convex approximation strategy (2.25) does not lead to

good convergence properties. And although the the value of ǫ is dependent on the scaling of the

problem, since we are approximating some zero terms in the diagonal Hessian matrix—the sep-

arable curvatures with respect to displacement variables u—with nonzero values ǫ, it is natural

to choose ǫ as small as possible. Seemingly a smaller value of ǫ leads to solutions with greater

‘black-and-white’ fractions.

2.8.2 The Messerschmitt-Bölkow-Blohm (MBB) beam

Next, in order to suss out the convergence and computational properties of the positive defi-

niteness strategies and the subproblem PQP [k], we consider a large scale instance of the well-

known MBB design domain depicted in Figure 2.3; F is a point load of unity, the stiffness E
of solid material is scaled to 100—to facilitate comparisons with other works, for example Pe-

tersson [60], the objective function value herein is reported as 100 × f0(u{k}). The amount of

material is limited to a fraction ν̄ = 0.5 of the design domain. The domain is discretized with

150×50 square Q8 finite elements. The discretization is for half the beam, due to symmetry. In

this form the SAND problem (2.1) has n = e+ d = 7 500 + 45 802 = 53 302 design variables

and m = d + 1 = 45 803 constraints. The NAND problem will have n = e = 7 500 design

variables, a single constraint, but a d× d linear system is solved in each iteration.

l1

l2

F

E = 100 ν = 0.3 F = 1
l1 = 6 l2 = 1

Figure 2.3: The MBB beam design domain.

First the rudimentary SAO algorithm (iterations accepted unconditionally), based on the

Lagrange-Newton diagonal quadratic subproblem PQP [k], is applied to the SAND problem

(2.1). Again, material density variables t are limited between and including 0 and 1. Displace-

ment variables u are bounded at ±1 × 106. The move limit δ is retained at 0.2. As before,
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material density variables are initialized with t
{0}
i = ν̄, for i = 1, 2, . . . , e and displacement

variables with u
{0}
i = 0 for i = 1, 2, . . . , d. The strict convexity parameter is set ǫ = 1 × 10−6

and all curvature terms are obtained as analytical partial derivatives (2.19). The algorithm is

terminated if ∆{k} ≤ 1 × 10−2. In the light of the results above, we test only the nonconvex

(2.26) and absolutely nonconvex (2.27) strategies to enforce positive definiteness of the diago-

nal Hessian matrix Q{k}. The results are depicted in Figure 2.4. The SAO procedure with the

nonconvex strategy encounters a infeasible subproblem in iteration number 10, terminating the

algorithm. The variant with the absolutely nonconvex strategy satisfies the convergence criteria

after 54 iterations.

(a) k = 10, f0(u
{k}) = -3502.6, Θ{k} = 1.1D+1,

d
{k}
0 = 1197, d

{k}
1 = 1875.

(b) k = 54, f0(u
{k}) = 203.4, Θ{k} = 9.6D-7,

d
{k}
0 = 3743, d

{k}
1 = 3683.

Figure 2.4: Topologies generated for the MBB design problem; rudimentary SAO with the (a)

nonconvex strategy and (b) absolutely nonconvex strategy.

In order to deal with potential infeasibility of subproblem PQP [k], evidently because too

much material is removed from the design domain in areas required to connect the load to the

fixing position, we employ the convergent ‘trust region filter’ algorithm by Fletcher et al. [66].

A simpler version of the algorithm can be found in Reference [74]. The idea is that the fea-

sibility of the sequence of points x{k}, k = 1, 2, 3, . . . may be maintained, to some extent, by

the conditional acceptance of iterates, pending the satisfaction of descent and feasibility mea-

sures [66, 74]. The various parameters are set at values in agreement with those suggested in

Reference [66]—details can be found in Reference [75]. In the event of an infeasible sub-

problem PQP [k], which may occur nevertheless, a simple restoration procedure is activated;

the current point xk is included in the ‘filter’, the trust region is enlarged by setting the move

limit to δ = 1 and the algorithm is restored to the previous (feasible) subproblem PQP [k − 1].
Fletcher et al. [66] employ a more sophisticated restoration procedure—see also Shen et al. [70]

for another example.

The move limit is initialised with δ = 1. The results of the convergent SAO method with

the nonconvex and absolutely nonconvex strategies are depicted in Figure 2.5. The total number

of subproblems PQP [k] the computational platform was tasked with is denoted by P ; a measure

of total computational effort, although the time actually spent in solving the subproblems has

to be taken into account too, as we do below. In this case both versions of the SAO procedure

converges to a feasible local minimum. The absolutely nonconvex variant did so with less

computational effort, although of course; different local minima are found.

In an attempt to mitigate the severe multimodality of the problem linear slope constraints

(2.4) as per Petersson [60]6 are imposed. For the 150 × 50 discretization the number of inter

element boundaries is b = 14 800, equating to 29 600 additional constraints. Therefore, the

6Petersson [60] considered the NAND problem, solved with MMA, and used continuation on p to approach the

global minimum. It is thought that the NAND problem is not as multimodal as the SAND equivalent.
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(a) k = 133, P=274,

f0(u
{k}) = 210.9, Θ{k} = 2.3D-7,

d
{k}
0 = 3741, d

{k}
1 = 3686.

(b) k = 74, P=136,

f0(u
{k}) = 202.7, Θ{k} = 8.3D-7,

d
{k}
0 = 3735, d

{k}
1 = 3619

Figure 2.5: Topologies generated for the MBB design problem; convergent SAO with the (a)

nonconvex strategy and (b) absolutely nonconvex strategy.

slope constrained SAND problem—i.e. problem (2.1) with b additional constraints (2.4)—has

n = e+d = 7500+45802 = 53302 design variables andm = d+b+1 = 75403 constraints—

which is, it should be said, a fairly large optimization problem (in NAND n = e = 7 500 and

m = b + 1 = 14 801). The slope constraint value is set at µπ = 30
150

, which corresponds to

c = 30 in Petersson’s notation [60]. The algorithm is terminated if ∆{k} ≤ 1 × 10−1. The

results are depicted in Figure 2.6. Again, the absolutely nonconvex variant converged to a local

minimum with less computational effort, although again; different local minima are obtained.

(a) k = 248, P=507,

f0(u
{k}) = 214.5, Θ{k} = 3.7D-6,

d
{k}
0 = 2873, d

{k}
1 = 2688.

(b) k = 127, P=241,

f0(u
{k}) = 217.4, Θ{k} = 6.2D-6,

d
{k}
0 = 2529, d

{k}
1 = 2434

Figure 2.6: Topologies generated for the slope constrained MBB design problem with

µπ = 30
150

; convergent SAO with the (a) nonconvex strategy and (b) absolutely nonconvex

strategy.

In order to facilitate a fair comparison between the nonconvex and absolutely nonconvex

positive definiteness strategies, we employ a multistart procedure with random initial designs

0 ≤ t
{0}
i ≤ 1, for i = 1, 2, . . . , d. We do not randomize the initial displacement vector u{0}—

numerical experiments indicate that the scope of the local minima actually found is not ex-

panded a great deal with random starts in u, partly because the starting position is often severely

infeasible and hence untenable. A total of 200 slope constrained SAND problems (2.1) are ini-

tialized with every element in every instance of t{0} randomized. The random number generator

is seeded with the system clock each time a new instance of the problem is initialized. We can

report that an interesting variety of local minima (topologies) are obtained, a detailed presenta-

tion of which is, alas, beyond the scope of this paper.

The convergent SAO algorithm is used on all 200 problem instances. One hundred are

run with nonconvex variant and one hundred with the absolutely nonconvex variant. The sub-

problems are solved with the GUROBI Barrier QP optimizer [76]—a primal-dual interior-point

method. Computational capabilities are provided by the Rhasatsha HPC [77]. The solution with

the lowest objective function value f0(u
{k}) is depicted in Figure 2.7. The objective function

value f0(u
{k}) and the topology is in agreement with those presented by Petersson [60]. In-
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Figure 2.7: Optimal topology generated with convergent SAO of the slope constrained MBB

design problem with µ = 30 and 200 random starts 0 ≤ t{k} ≤ 1: k = 286, P=600, f0(u
{k}) =

212.7, Θ{k} = 5.3D-5,

d
{k}
0 = 2765, d

{k}
1 = 2652

cidentally, it was the absolutely nonconvex variant which found this specific local minimum,

but we may draw no conclusion from that pertaining to the relative performance of the positive

definiteness strategies.

Table 2.4: Multistart statistics; 100 runs each.

Strategy P T ζ† ζθ ζ⋆

nonconvex 36407 263 6 56 1

absolutely nonconvex 33375 123 9 20 3

We may however draw some conclusions from the statistics in Table 2.4; P is again the total

numbers of subproblems the computational platform is tasked with, T is the estimated total

CPU time in hours, ζ† is the number of untenable problem initializations, ζθ is the number of

infeasible terminations7 and ζ⋆ is the number of times the best known topology—as depicted

in Figure 2.7—is found. First, the number of untenable starting positions ζ† serves to suggest

that the two variants of the algorithm were tested on equal footing with respect to the random

starting points t{0}. Second, the SAO variant with the absolutely nonconvex strategy tasked the

computational platform with fewer subproblems, but only marginally so. More pertinent is the

gulf between the total CPU times T 8. This suggests that the subproblems PQP [k] generated by

the absolutely nonconvex strategy are much ‘easier’ to solve (in a numerical sense).

In terms of convergence properties, the number of infeasible terminations ζθ suggests that

the SAO variant with the nonconvex strategy performs worse in terms of maintaining the fea-

sibility of the sequence of iterates x{k}, k = 1, 2, 3, . . .. This finding is in line with that

of Haftka [51], who demonstrated that a penalty function formulation preconditioned by an

element-by-element approximate inverse of the stiffness matrix may lead to good convergence

properties. This is undoubtedly also the reason for the large difference in total CPU times, as-

suming that the relative feasibility of an iterate x{k} with respect to problem (2.1) equates to an

‘easier’ subproblem PQP [k]—a reasonable proposition.

The nonconvex variant converged to the best known local minimum only once—likely the

global minimum; in terms of a Bayesian multistart measure [61] a confidence in excess of 95%

7Keep in mind that even with a sophisticated restoration procedure the filter trust region algorithm [66],

although it is referred to as ‘convergent’, is, practically speaking, only guaranteed to terminate—see also Ul-

brich [78].
8This quantity is of course dependent on the total load on the computational platform during the experiment,

which we can report was sufficiently constant.
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may be associated with the potential global optimality of the solution depicted in Figure 2.7,

specific of course to the parameters of the problem—whereas the absolutely nonconvex variant

did so 3 times.

Although not reported here, the computational properties achieved by disregarding all second-

order information and simply stating and solving the subproblem P [k] as a linear program (LP)

is substantially inferior to the results reported above. We tested GUROBI’s primal simplex, dual

simplex and Barrier optimizers for the LP case [76]. Again, it seems as though the approximate

diagonal Hessian terms may be beneficial in terms of preconditioning the subproblem PQP [k],
as argued by Haftka [51]. In terms of convergence properties, using a LP in P [k] is roughly the

same as using PQP [k] with the nonconvex positive definiteness strategy, which does not seem

beneficial.

2.9 Concluding remarks

We have developed a strictly convex and separable Lagrange-Newton quadratic subproblem

for SAND ‘classical’ topology design. The subproblem is characterised by the sparsity of the

diagonal Hessian matrix and the ease with which positive definiteness is enforced, permitting

a multitude of approximation strategies. In the SAND setting, retaining direct variables, it

seems natural to use exact separable curvature terms in the diagonal quadratic approximation

functions, although any form of curvature approximation is accounted for. Our investigations

reveal that the separable curvature of the Lagrangian is concave close to and at a local minimum

of the SAND topology design problem. It turns out that in traditional NAND formulations

this is dealt with by using reciprocal intervening variables. Herein we simply ‘convexify’ the

diagonal second-order terms. Numerical demonstrations agree with the theoretical results and

suggest that artificial convexification of the approximate Lagrangian may aid computational and

convergence properties of a SAO algorithm applied to the ‘classical’ SAND topology design

problem. In the future alternative approximate subproblems—which may include off-diagonal

Hessian terms, or which may be formulated and solved as nonconvex QP subproblems—should

be studied and tested.

The methodology presented herein may form a platform on which tailored approximation

strategies for SAND topology optimization problems can be developed. The important thing

is that sensitivity information in the SAND setting takes the form of simple, sparse, easy to

calculate, partial derivatives. This suggests that efficient solutions methods should be pursued

in view of large scale topology design problem with many active constraints.
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Chapter 3

On filtered “conservatism” in direct

topology design

This chapter is the full-length version of a paper presented at the Sixth Internation Conference

on Structural Engineering, Mechanics and Computation (SEMC 2016) hosted by the University

of Cape Town from the 5th to the 9th of September 2016, in Cape Town, South Africa. The

conference paper is entitled ‘On filtered “conservatism” in direct topology design’ [75]. It is

co-authored by Prof. Albert A. Groenwold of the Department of Mechanical and Mechatronic

Engineering at the University of Stellenbosch, South Africa.

3.1 Abstract

This is a preliminary study into convergence and termination of a sequential approximate op-

timization algorithm based on convex diagonal quadratic subproblems in direct topology op-

timization. The direct problem is characterised by a large number of nonlinear equality con-

straints, hence the method forms part of a general large-scale nonlinear programming paradigm.

In structural optimization globally convergent algorithms based on separable and conservative

approximations are popular due to minimal storage requirements and minimal function evalua-

tions, in addition to the fact that a trust-region need not be reduced to effect global convergence.

However, these methods are restricted to inequality constrained problems. It is demonstrated

that the convergence and termination properties that follow from the filtered acceptance of it-

erates in a trust-region framework can be effected in general nonlinear programming by con-

ditionally increasing the curvature (“conservatism”) of the approximate subproblems, without

reducing the trust-region, or even, by neglecting the trust-region all-together. A large-scale

instance of the direct formulated slope constrained MBB design problem is considered for nu-

merical experimentation.

3.2 Introduction

Gradient-based sequential approximate optimization (SAO) methods based on convex and sep-

arable approximations are recognised as efficient methods for large-scale nonlinear program-

32
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ming. Algorithms in this class are also known as sequential convex programming (SCP) meth-

ods. These algorithms appear often in structural optimization and, in particular, the subfield

known as topology optimization. Originally SAO methods were based on the exploitation of

efficient dual methods, permissible due to the separability of the approximations [37, 38]. To-

day however it is recognised that primal-dual methods are superior to pure dual methods in

maintaining the sparsity of the Karush-Kuhn-Tucker (KKT) system of equations, especially for,

unlike pure dual methods, problems with a large number of constraints [40, 45, 71, 79].

Distinguished algorithms in this class include CONLIN [34, 35], the method of moving

asymptotes (MMA) [36], followed by SCPIP [45] and SAOi [41,80]. SAO methods in topology

design (and structural optimization in general) are typically based on subproblems constructed

from truncated linear Taylor series expansions, but, in order to model the nonlinear response

of the structure, reciprocal-like intervening variables are used. In Reference [65] it is demon-

strated that separable approximation functions with intervening variables can be replaced with

simple diagonal quadratic Taylor series expansions; the form of the resulting subproblem is in-

dependent of the specific form of the approximations, the subproblems are easily convexified

and conservatism is easily controlled [63, 74].

The effective use of reciprocal-like approximations is well established in traditional topol-

ogy design and structural optimization in general [2,3,10,12,81], but the pertinence of reciprocal-

like approximations is restricted to the pervasive reduced (nested analysis and design; NAND)

formulation of the problem. See Reference [49] for alternative formulations in structural op-

timization. In the direct (simultaneous analysis and design; SAND) formulation of the prob-

lem, see e.g References [51, 53, 82], the equilibrium condition forms a set of nonlinear equal-

ity constraints—necessitating general, nonconvex, nonlinear programming techniques—but all

sensitivity derivatives reduce to simple partial derivatives, second-order information is compu-

tationally cheap to obtain and the use of intervening variables seem somewhat redundant. That

is, the direct formulation of the problem can be solved with techniques that use the exact, full

Hessian matrix [44], although the convexity and computational benefits that derive from using

only separable curvature information is clear [33, 45, 71]. Moreover, the dual SAO method in

direct topology design can be reconciled with the traditional reduced OC approach [33], sim-

ilar to the equivalence demonstrated in the reduced setting with exponential (and reciprocal)

intervening variables [48].

In rudimentary form, with each iterate accepted unconditionally, these algorithms are not

guaranteed to converge. Zillober adds a line search to MMA in order to guarantee convergence

to a suitable solution, but this necessitates the definition of a tricky merit function [83, 84].

A ‘minimalistic approach’, the aim of which ‘is to interfere as little as possible with the se-

quential quadratic programming iteration but to do enough to give a bias towards conver-

gence’ is preferred [85]. One strategy is to cast the algorithm in a trust-region SQP-filter al-

gorithm [66, 86, 87]. The filter1 replaces the merit function as a measure of the suitability of

a given iterate, adjusting the trust-region accordingly. We denote this the filtered trust-region

approach [74]. Importantly, this approach makes provision for nonlinear equality constraints.

Along a different line, an efficient and robust class of convergent methods can be found in

Svanberg’s conservative approximation framework (or ‘conservative convex separable approx-

imations’; CCSA) [67]. The CCSA method works by requiring that the approximation func-

1Not to be confused with the filters used in topology optimization to effect existence of solutions [58].
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tions (objective and constraints) have greater values than the actual functions at the solution of

a given subproblem, if not, the curvatures of the approximations are increased—strict conser-

vatism—this technique ensures that the optimal solution of the subproblem is a feasible solution

of the original problem with lower objective value than the previous iterate. Moreover, conver-

gence in CCSA methods is maintained if feasible descent steps are excepted unconditionally—

relaxed conservatism [80]—and the method is reconcilable with the filter approach mentioned

above—filtered conservatism—in order to amalgamate the salient features of both strategies;

chief among which is that the trust-region need not be reduced to effect convergence [74].

The CCSA method can only solve inequality constrained problems though. In fact, the CCSA

framework was specifically developed for structural optimization problems in reduced form,

for these typically contain only inequality constraints (evidenced too by the use of reciprocal

approximations).

Herein we derive and test an approach that emulates the advantages of CCSA, but for general

nonlinear programming; for problems that may contain nonlinear equality constraints. The

strategy is denoted filtered “conservatism”—note the use of scare quotes—because the notion

of a conservative approximation is not applicable to equality constraints.

We consider a general nonlinear mathematical programming problemMP written in stan-

dard negative-null form:

min
x

f0(x)

subject to fj(x) = 0 , j ∈ mE , (3.1)

fj(x) ≤ 0 , j ∈ mI ,

x ∈ C ,

where f0 is a real valued scalar objective function, fj , j ∈ mE is the set of inequality constraint

functions and fj , j ∈ mI the set of equality constraint functions, all of which may be nonlinear

and/or nonconvex2. All functions fj are typically assumed to be twice continuously differen-

tiable. The domain of the problem is a closed and bounded subdomain of Rn, imposed in the

form of box constraints:

C = {x ∈ Rn | x̌ ≤ x ≤ x̂} , (3.2)

where x̌ = [x̌1, x̌2, . . . , x̌n] and x̂ = [x̂1, x̂2, . . . , x̂n]; with x̌i and x̂i the lower and upper bounds

on each design variable xi, i = 1, 2, . . . , n.

We do not consider a relaxed version of the problem in order to ensure feasibility, as done by

Svanberg [67]. It is assumed thatMP has at least one feasible solution x⋆ at which constraint

qualification (CQ) holds. This is a fairly mild assumption in direct topology optimization; the

issue is rather the existence of too many solutions, see e.g Reference [59].

2If mE = ∅ it is understood that the problem is only inequality constrained.
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3.3 Sequential approximate optimization

The generalized diagonal quadratic approximation [65] is used to construct a subproblemQPksub

in iteration k:

min
sk∈Rn

qk0(s
k) = f0(x

k) +∇fk0 s
k + sT

ck

2
sk

subject to qkj (s
k) = fkj +∇fkj s

k = 0 , j ∈ mE , (3.3)

qkj (s
k) = fkj +∇fkj s

k ≤ 0 , j ∈ mI ,

xk+1 = (sk + xk) ∈ C .

The matrix ck is understood to contain the n diagonal elements of the Hessian matrix of the

approximate Lagrangian. The Lagrange multipliers at the solution of subproblem are unknown,

hence the multipliers at the previous solution point are used:

ck = ck0 +
m
∑

j=1

λkjc
k
j . (3.4)

In order to ensure strict convexity (assuming feasibility) of QPksub a small positive lower

bound α is enforced on the elements of the diagonal Hessian matrix; in addition, nonconvex

curvature information is retained [33, 71]:

cii
k ← max(|ciik|, α) i = 1, 2, . . . , n . (3.5)

Herein exact second-order derivatives of the objective and constraint functions form the

curvature terms:

ckj,ii =
∂2fkj
∂x2i

i = 1, 2, . . . , n , j = 0, 1, . . . ,m . (3.6)

It is assumed that QPksub is feasible. The solution may in fact be nonunique—singular—

but nevertheless attainable by dual and primal-dual methods [33, 88]. If the solution-step sk

accepted unconditionally the algorithm is referred to as rudimentary—Algorithm 1.

3.4 Convergence and termination

3.4.1 Conservatism

Guaranteed convergence and termination by strict and relaxed conservatism holds whenMP
has only inequality constraints: mE = ∅. To inflict strict conservatism Step 4 in Algorithm 1 is

replaced with Algorithm 23. The definition of a curvature multiplier χ > 1 is required too. Un-

der reasonable assumptions it is always possible to construct conservative approximations [67].

3For the sake of brevity, since Algorithms 2 and 3 are only for the purpose of illustration, the curvature terms are

increased indiscriminately if any single approximation is not conservative. In practice this is done more judiciously,

see e.g. Reference [67] and [74].
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Algorithm 1 (rudimentary SAO)

Step 0: Initialization

Parameters: x̌ ∈ C, x̂ ∈ C, x0 ∈ C, α > 0, ǫ > 0, kmax > 0.

ConstructMP0
sub.

for k = 0 : kmax do

Step 1: Solve QPksub → sk, λk.

Step 2: Set xk+1 ← xk + sk.

Step 3: Construct QPk+1
sub .

Step 4: Null

Step 5: Check for termination

if ‖sk‖ < ǫ then

Terminate.

end if

end for

Algorithm 2 (substitution; strict conservatism)

Step 0: Initialization

Parameters: . . . , χ > 1.

. . .
Step 4: Test for conservatism

if qkj (x
k+1) ≥ fk+1

j ∀ j ∈ mI then

Continue.

else

ck ← χck.

Return to 1.

end if

Enforced convergence based on relaxed conservatism is attained if Step 4 in Algorithm 2 is

substituted with Algorithm 3. (The only difference is that a feasible descent step is accepted

unconditionally.) It is argued that the convergence proofs of CCSA methods rely solely on fea-

sible descent steps, guaranteed by the conservatism of the approximations [80]. The maximum

constraint violation at the new solution point xk+1 is denoted by Θk+1.

Algorithm 3 (substitution; relaxed conservatism)

Step 4: Test for feasible descent or conservatism

if fk+1
0 < fk0 and Θk+1 ≤ 0 then

Continue.

else if qkj (x
k+1) ≥ fk+1

j ∀ j ∈ mI then

Continue.

else

ck ← χck.

Return to 1.

end if

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. ON FILTERED “CONSERVATISM” IN DIRECT TOPOLOGY DESIGN 37

Even though ck is viewed as the diagonal elements of the approximate Lagrangian in its

construction (3.4), from the point of view of the subproblem ck is an approximate objective

curvature. The step sk to the stationary point of the approximate objective function qk0 , with

inflated curvature χck, can be written as

sk = −χ[ck]−1
∇fk0 , (3.7)

and by taking the Euclidean norm on both sides, a measure of the step size is attained:

‖sk‖ = ‖∇fk0 ‖
χ‖ck‖ . (3.8)

That is, the curvature inflation χck might effect a step sk of reduced size—dependent on

the feasible set ofQPksub. It is via this mechanism that an attempt is made to generate a feasible

descent step in relaxed conservatism.

3.4.2 Filtered trust-region

It is customary to rather control the size of the generated step ‖sk‖ with a trust-region—known

as ‘restricted step methods’ [89]—delimiting a ‘trusted’ neighbourhood ∆k around the current

iteration point xk. This takes the form of a proportional move-limit 0 < δk ≤ 1 on the design

variables:

∆k = {xk+1 ∈ C|sk ≤ δk(x̂− x̌)} , (3.9)

with the resulting subproblem—wherein sk ∈ ∆k is imposed—denoted by QPk∆.

In order to guarantee convergence and termination the trust-region is combined with a Pareto

front (or ‘filter’) of the objective function value f0 and the maximum constraint violation Θ; the

filter consists of the list of pairs

Fk ⊂ {(Θh, fh0 ) : h = 1, 2, . . . , k} , (3.10)

and using a ‘slanting envelope test’ [66, 85], if either

Θk+1 ≤ βΘh or fk+1
0 + γΘk+1 ≤ fh0 (3.11)

for all h = 1, 2, . . . , k, the pair (Θk+1, fk+1
0 ) is deemed acceptable to the filter. The envelope

parameters are constant and restricted to 0 < γ < 1 and β = 1− γ. In addition, the new iterate

has to pass one of two descent conditions:

ρk :=
fk0 − fk+1

0

qk0(0)− qk0(sk)
> η , (3.12)

or

qk0(0)− qk0(sk) := σk ≤ κ(Θk)ψ , (3.13)

with constants 0 < η < 1, 0 < κ < 1 and ψ > 1, for the algorithm to progress to k + 1.

The filtered trust-region variant of the algorithm is depicted with the sequence of steps in

Algorithm 4, which replace Step 4 in Algorithm 2 or 3. Before we assumed feasibility of
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eachQPksub, with the introduction of the trust-region region however—subproblemQPk∆—this

assumption becomes unreasonable. Therefore, a rudimentary back-tracking strategy is activated

if an infeasible subproblem is encountered (Step 4.0); the pair (Θk, fk0 ) is added to Fk, the

trust-region is expanded to the original feasible domain ∆k ← C and the algorithm is restored

to the last iterate xg which gave rise to a feasible subproblem. The definition of the additional

parameters γ, η, κ, ψ, δmin and φ are required too, but χ is redundant.

Algorithm 4 (modifications; filtered trust-region)

Step 0: Initialization

Parameters: . . . , 0 < γ < 1 (β = 1 − γ), 0 < η < 1, 0 < κ < 1, ψ > 1, δmin > 0 (δ0 = 1;

∆0 = C) and φ > 0 (✘✘✘✘χ > 0).

. . .
Step 4.0: If QPk∆ is inconsistent

Add (Θk, fk0 ) to Fk, δk ← δ0 (∆k ← C), xk ← xg.

Return to 1.

Step 4.1: Test for acceptability, relative descent and feasible descent

if Θk+1 ≤ βΘh or fk+1
0 + γΘk+1 ≤ fh0 ∀ h = 1, 2, . . . , k then

if ρk > η or σk < κ(Θk)ψ then

Continue.

else

δk ← δk/φ, terminate if δk < δmin.

Return to 1.

end if

else

δk ← δk/φ, terminate if δk < δmin.

Return to 1.

end if

Step 4.2: Update the trust-region and conditionally update the filter

δk+1 ← φδk, xg ← xk.

if σk < κ(Θk)ψ then

Add (Θk+1, fk+1
0 ) to Fk+1.

end if

Continue.

Fletcher and co-workers prove a number of lemmas which demonstrate and guarantee the

mechanism by which the filtered trust-region approach produces a sequence of convergent it-

erates; under reasonable assumptions the algorithm will either terminate because the restora-

tion procedure fails—a more sophisticated strategy is used in Reference [66]—or converge

to a stationary (KKT) point of MP , or accumulate at a feasible point which fails to satisfy

Mangasarian-Fromowitz CQ [78].
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3.4.3 Filtered “conservatism”

Finally the filtered conservatism variant of the algorithm can be introduced; Algorithm 4 is

modified as per Algorithm 5. Filtered “conservatism” is of course closely related to the filtered

conservatism approach devised in Reference [74]. In the latter (which is restricted to inequality

constrained problems) convergence and termination follows due to a combination of lemmas in

Reference [66] and [67]. It has to be assumed however that conservatism has the same effect as

a trust-region in generating points that are acceptable to the filter—a reasonable proposition.

Algorithm 5 (substitutions; filtered “conservative”)

Parameters: . . . , χ > 0 and cmax > 0 (��δ0 , ��δk , ✟✟✟δmin , ✚✚∆0 , ✚✚∆k and ✁✁φ).

. . .
Replace all QPk∆ with QPksub.

Replace all δk ← δk/φ with ck ← χck.

Replace all δk ← φδk with ck ← ck/χ.

Replace all δk < δmin with ‖ck‖ > cmax

Due to the presence of nonlinear equality constraints inMP , only the lemmas of the filtered

trust-region approach [66] can be relied upon to guarantee convergence and termination. It is

assumed that increasing the curvature of QPksub can generate iterates acceptable to the filter, a

reasonable proposition, especially light of relation (3.8). That is, inflated curvature χck may

reduce the size of the solution step sk, much like a trust-region. (Although, the advantages that

may be derived from the backtracking strategy in Step 4.0, possibly induced by the trust-region,

is lost.) Moreover, the intuition that filtered “conservatism” can generate acceptable steps is not

far-fetched: using the Cauchy-Swartz inequality, one may write of the approximate objective

function that

|qk0(0)− qk0(sk)| ≤ ‖∇fk0 ‖‖sk‖+
1

2
‖ck‖‖sk‖2 , (3.14)

substitution of the relation in (3.8) in (3.14) yields

|qk0(0)− qk0(sk)| ≤
‖∇fk0 ‖2
χ‖ck‖ +

1

2

‖∇fk0 ‖2
χ2‖ck‖ , (3.15)

which shows that either condition (3.12) or (3.13) may eventually be satisfied for ck large

enough, much like the original filtered conservatism approach for inequality constrained prob-

lems. Note that guaranteed satisfaction of either condition (3.12) or condition (3.13) guarantees

eventual continuation to xk+1, which, in conjunction with the filter and the associated assump-

tions, guarantees convergence and termination.

3.5 Numerical experiments

The MBB version of the direct topology design problem is considered—see e.g. Reference [33]

for a definition of the problem—discretised with 120 × 40 material density variables t =
[t1, t2, . . . , t4800]. With the addition of slope constraints, required to suppress numerical instabil-

ities [60], the direct formulated problem has 34242 design variables, 29442 equality constraints
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and 18881 inequality constraints. Material density variables t are bounded above at 1 and below

at 0 exactly. Displacement variables u are limited to ±1× 106. The vector of design variables

is x = [u, t]. Computations are performed on Stellenbosch University’s Rhasatsha HPC [77].

First the algorithms are initialized with an uniform material distribution t0 = 0.5; results

are collated in Figure 3.1; l is the number of ‘Return to 1’ instances (inner iterations). The rudi-

mentary algorithm failed to terminate. The “conservative” version of the algorithm compares

well to the trust-region approach, especially considering that no trust-region is employed in

the former, but a major difficulty in topology optimization is illustrated; due to the presence of

many local minima the solutions are severely dependent on algorithmic parameters and barely

comparable. To negate this effect 200 problem instances are initialized with a random material

distribution. Each material density variable is initialized with a random value between 0.1 and

0.9. Only the convergent versions of the algorithms are tested; 100 problems each. The best so-

lution is depicted in Figure 3.2 with statistics given in Table 3.1. In this case the “conservative”

algorithm is more expensive (but the starting position is of course different for each algorith-

mic instance). Overall statistics are summarised in Table 3.2; K and L are the total number of

outer and inner iterations (K+L is thus the total computational effort); ζ⋆0 indicates the number

of times the optimal topology is found and ζ†Θ is the number of infeasible terminations. The

“conservative” version of the algorithm converged to the optimal topology more often with

less computational effort.

(a) Rudimentary: k=999, l=0, f⋆0 =9763.2 Θ⋆=3D+4

(b) Filt. trust-region: k=120, l=123, f⋆0 =219.87, Θ⋆=3D-7

(c) Filt.“conservatism”: k=143, l=133, f⋆0=221.26, θ⋆=7D-6

Figure 3.1: Topologies generated for the MBB design problem; t0 = 0.5.
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Figure 3.2: Optimal topology generated for 200 random initial material distributions;

0.1 ≤ t0 ≤ 0.9.

Table 3.1: Multistart statistics; optimal topologies.

Algorithm k l f ⋆0 Θ⋆

Filt. trust-region 149 68 217.91 1D-6

Filt.“conservatism”: 248 138 218.11 2D-5

Table 3.2: Multistart statistics; 100 runs each.

Algorithm K L K + L ζ⋆0 ζ†Θ
Filt. trust-region 15018 10406 25424 4 2

Filt. “conservatism” 14629 7570 22199 12 2

3.6 Concluding remarks

It is not prudent, given that the test set is rather small (and confined to a single test problem),

to attempt far-reaching conclusions. However, it is fair to say that “conservatism” in general

nonlinear programming appears to be viable notion. Moreover, the abolishment of the trust-

region seems to encourage the algorithm to reach the globally optimal solution, for the entire

design domain is available in each approximate subproblem. Recommended future work in-

cludes a study of the locally superlinear convergent version of the SQP-filter method devised in

Reference [78].
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Chapter 4

On design-set restriction in SAND

topology optimization

This chapter is a reproduction of a paper which, at the time of writing, is under review for

publication [59]. The paper is co-authored by Prof. Albert A. Groenwold of the Department of

Mechanical and Mechatronic Engineering at the University of Stellenbosch, South Africa.

4.1 Abstract

We study design-set restriction—i.e. existence of solutions, mesh-dependence, local minima,

and manufacturability—in the alternative SAND (‘simultaneous analysis and design’, or ‘di-

rect’) formulation of the classical SIMP minimum compliance topology optimization prob-

lem. Straightforward computational considerations pertaining to common restriction methods

suggest that so-called ‘slope constraints’—point-wise bounds on the gradient of the material

distribution function—are able to control the complexity of design with minimal (additional)

computational requirements. A standard finite element procedure is used and the SAND opti-

mization problem—a large-scale, general, nonlinear mathematical program—is solved with a

conventional sequential approximate optimization (SAO) method based on strictly convex and

separable approximate subproblems. A random multistart strategy and a simple relaxation pro-

cedure suggests that manufacturable, ‘probably’ globally optimal, 0-1 designs may be obtained

in a reasonable amount of computation time.

4.2 Introduction

Brought about by the sophistication of modern primal-dual sequential convex programming

(SCP) routines, on top of a general increase in common computational capabilities, the ‘si-

multaneous analysis and design’ (SAND, or ‘direct’) formulation of the topology optimization

problem has recently emerged as a tenable alternative—see for example References [33,44,88].

The SAND approach is characterised by doing away with the external ‘simulation’ phase—

i.e. numerical solution of the finite element (FE) discretized equilibrium equation—carried out

fully in every algorithmic iteration in the conventional ‘nested analysis and design’ (NAND,

42
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or ‘reduced’) approach. In the SAND setting the FE equations form a set of nonlinear equal-

ity constraints—in an ‘unified’ optimization problem—which are only fully satisfied at con-

vergence of the SAND optimization routine. The interested reader is referred to Arora and

Wang [49] for a monograph on alternative formulations in structural optimization, and the com-

prehensive benchmark study by Rojas-Labanda and Stolpe [44]. Reference is also made to the

work by Haftka et al. [51, 53, 90], that of Bendsøe et al. [52], and Wang and Jasbir [91].

In classical minimum compliance topology optimization, sequential approximate optimiza-

tion (SAO) of the SAND problem can be interpreted in the light of the ubiquitous optimality cri-

teria (OC) approach [33], similar to the equivalence demonstrated between the OC method and

traditional dual SAO of the NAND problem [48]. SAO based on efficient, diagonal quadratic ap-

proximate subproblems [65] encompass and generalise the popular dual SCP alternatives based

on intervening variables—like e.g. CONLIN [34, 35] and the MMA [36]. However, in the

SAND setting traditional convex approximation techniques—based on intervening variables—

seem somewhat redundant, in part due to the cheap availability of analytical second-order sen-

sitivity information, and in part due to the concavity of the separable Lagrangian—necessitating

counter-intuitive techniques in the enforcement of strict convexity on the approximate sub-

problems [33]. Moreover, the SAND approach may turn out to be especially suited to local

stress-constrained problems—in fact, problems with local displacement-based constraints in

general—for the typically dense and computationally expensive sensitivity derivatives associ-

ated with the adjoint analysis in NAND, reduce to simple, easy to calculate, sparse, partial

derivatives in the SAND formulation [88].

A very important topic that has not been sufficiently addressed in the literature thus far

is how to deal with the compounded issues of nonexistence of solutions1, mesh-dependence,

manufacturability, and the typically severe multimodality2 of the optimization problem in the

unconventional SAND setting. We attempt to address these issues here.

In Section 4.3 the classical topology optimization problem is introduced. In Section 4.4

popular techniques devised to remedy or mitigate the above-mentioned issues—pertaining to

restriction of the design set—are recited and analysed with a view to the SAND setting. Sec-

tion 4.5 is a description of the preferred numerical method, Section 4.6 chronicles a series of

numerical demonstrations and experiments, and Section 4.7 concludes.

4.3 Classical topology optimization

A solution to the classical minimum compliance topology optimization problem is a domain

Ωm, a subdomain of a predefined design domain Ω in R2 or R3. Material is either present

or absent at each and every spatial position x ∈ Ω. The subdomain Ωm denotes the pres-

ence of material and defines the structural connectivity and shape which minimizes the compli-

ance objective—Ωm is thus the geometry of the stiffest structure achievable with a predefined

volume, a fraction ν̄ of the design domain Ω. The derivation of the problem is fairly well-

known—see for example the canonical work by Bendsøe and Sigmund [2]—but is repeated

here to facilitate the introduction of pertinent concepts, notation conventions, and to emphasise

1The imposition of a minimum length scale; which relates to manufacturability.
2Nonconvexity; many local minima.
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the similarity between the original problem statement and the SAND formulation.

In structural optimization the subdomain Ωm is occupied by an elastic body. The internal

virtual work a(u, v) of the elastic body, subject to an equilibrium displacement u and a kine-

matically admissible virtual displacement v, is written in the energy bilinear form

a(u, v) =

∫

Ω

Eijkl(x)ǫij(u)ǫkl(v)dΩ (4.1)

with the strains ǫ linearized according to

ǫij =
1

2

(

∂ui
∂xj

+
∂uj
∂xi

)

. (4.2)

The stiffness tensor Eijkl(x) is a function of a continuous spatial position x ∈ Ω and may be

written as

Eijkl(x) =

{

E0
ijkl if x ∈ Ωm

0 if x ∈ Ω\Ωm

(4.3)

with E0
ijkl the stiffness tensor of a predefined (solid) isotropic material.

The topology may also be defined in terms of a ‘material distribution function’3 ρ(x), which

has a value of 1 if x ∈ Ωm and 0 elsewhere. Formally, (4.3) is replaced with

Eijkl(x) = ρ(x)E0
ijkl with ρ(x) =

{

1 if x ∈ Ωm

0 if x ∈ Ω\Ωm
(4.4)

which, in turn, yields the classical 0-1 minimum compliance topology optimization problem:

• The 0-1 topology optimization problem Pd

min
u,ρ

l(u)

subject to a(u, v) = l(v) ∀ v ∈ U (4.5)
∫

Ω

ρ(x) dΩ ≤ ν̄

ρ(x) = 0 or 1 ∀ x ∈ Ω

The compliance objective is

l(u) =

∫

Ω

rudΩ +

∫

ΓT

tuds (4.6)

with r the body forces and t the surface tractions applied to the boundary of the domain ΓT . The

virtual compliance of the structure is denoted by l(v), a function of the kinematically admissible

virtual displacement field v ∈ U .

3The material distribution function is often referred to as a ‘density’ distribution function since the discrete

requirement on ρ(x) is typically relaxed to permit the use of efficient gradient-based optimization methods, as we

do herein.
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The 0-1 (discrete) problem Pd lacks solutions in general: for a constant amount of material

ν̄ the stiffness of the structure can be improved ad infinitum by arranging the material in finer

and finer topological features. Put differently, between any two spatial positions there are an

infinite number of points where material can either be present or absent, and thus, there an

infinite number of ways a constant amount of material can be arranged. This is related to the

absence of a minimum length scale and the design set is said to lack closedness, resulting in the

nonexistence of solutions—the interested reader is referred to Sigmund and Petersson [57] for

an exposition of the subject.

In computational implementations, wherein a solution to problem Pd is sought by numer-

ical means, the domain Ω is invariably discretized with a FE-type procedure. Each element is

assigned a design variable ρi which represents the amount of material in the element. The vector

of material (density) variables is denoted by ρ ∈ Re, with e the number of elements. The vector

of nodal displacements is denoted by u ∈ Rd, with d the number of degrees of freedom. The

SAND formulation of the problem has a vector of primal optimization variables x composed of

both (ρ,u) ∈ Rn=e+d:

• The FE discretized 0-1 topology optimization problem Pd

min
u,ρ

f0(u) = rTu

subject to [K(ρ)]u− r = 0 (4.7)

f1(ρ) = 1
Tρ− ν̄ ≤ 0

ρi ∈ [0, 1] for i = 1, 2, . . . , e

The FE discreitization itself introduces a minimum length scale, but the nonexistence issue

then manifests as the problem of mesh-dependence, for, as theory predicts, finer topological

features form part of the optimum design for progressively finer FE discretizations. That is, not

only is the optimal solution quantitatively different for different FE discretizations, but worse,

the integrity of the FE model and manufacturability of the design might be comprised if the

structural features are too detailed.

To avoid computationally expensive integer programming techniques, and, in turn, permit

the use of efficient gradient-based optimization methods, it is customary to relax the discrete

requirement on the material distribution function ρ(x). ‘Grey’ material 0 < ρ(x) < 1 may then

be interpreted as equivalent to a material ‘thickness’ in a ‘variable thickness sheet’-type (VTS)

problem [2], or, alternatively, in terms of a composite microstructure [92]4. In general however,

0-1 designs should be sought. To this end the predominant technique is SIMP, independently

proposed by Bendsøe [54] and Rozvany and Zhou [55]. SIMP is designed to approximate the

original discrete behaviour of the material distribution function with a continuously differen-

tiable equivalent. Therefore, the relation in (4.4) is replaced with

Eijkl(x) = ρ(x)pE0
ijkl , 0 ≤ ρ(x) ≤ 1 (4.8)

with p the SIMP penalization parameter. For p > 1 material of intermediate ‘density’ is penal-

ized via the artificial material law expressed in (4.8), degrading the structural efficiency of low

4Relaxation of the discrete requirement on ρ(x) results in the existence of solutions too [57].
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‘density’ regions ρ(x)≪ 1, and, because these regions are uneconomical in the presence of the

volume constraint, the material distribution ρ(x) is driven to approximately 0 and 1 [93]. The

interested reader is referred to Bendsøe and Sigmund [94] for a overview of material interpo-

lation schemes in topology optimization. The classical SIMP minimum compliance topology

optimization problem may be expressed as:

• The SIMP topology optimization problem Pc

min
u,ρ

l(u)

subject to a(u, v) = l(v) ∀ v ∈ U (4.9)

Eijkl(x) = ρ(x)pE0
ijkl

∫

Ω

ρ(x) dx ≤ ν̄

0 ≤ ρ(x) ≤ 1 ∀ x ∈ Ω

Here the subscript in Pc indicates the continuous material–energy relation expressed in (4.8),

as opposed to the discrete relation in (4.4). The associated FE discretized problem may be

written as:

• The FE discretized SIMP topology optimization problem Pc

min
u,ρ

f0(u) = rTu

subject to

e
∑

i=1

(ρi)
p[Ki]u− r = 0 (4.10)

f1(ρ) = 1
Tρ− ν̄ ≤ 0

0 ≤ ρi ≤ 1 , i = 1, 2, . . . , e

with
∑e

i=1(ρi)
p[Ki] the d×d globally assembled, SIMP modified stiffness matrix [K(ρ)]. The

feasible set of Pc is nonempty under fairly mild assumptions [56].

Before we move on to popular restriction methods and the manifestation of these in the

SAND setting, we wish to emphasise that, in problem Pc, the FE equilibrium equation is part of

the optimization problem in the form of a set of nonlinear equality constraints—similar to the

material–energy equilibrium relation in Pc (and Pd for that matter). Moreover, computation-

ally speaking, because the FE discretized equilibrium equation [K(ρ)]u = r is not solved per

se—the global stiffness matrix [K(ρ)], which may be singular, is not ‘inverted’—material vari-

ables ρ are permitted to take on a value of zero exactly in order to represent void subdomains

Ω\Ωm. In the NAND setting material variables ρ are typically limited to a small nonzero value

on the lower bound to avoid singularity of the global stiffness matrix [K(ρ)]. (Low density

elements may be removed from the FE equations, but this requires fairly involved algorithmic

procedures [95, 96].)
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4.4 Restriction methods

Restriction methods limit the set of admissible designs, which lacks closedness otherwise, by

imposing an extra constraint (or multiple constraints, or similar) on either Pd or Pc
5. These

techniques are devised to limit the maximum oscillation of ρ(x) with respect to x. If the restric-

tion method enforces sufficient closedness on the set of admissible designs, solutions are said to

exist and mesh-independence (of the global optimum) is ensured. Herein, for the sake of brevity,

but without the loss of generality, restriction methods are studied in 2D—as is customary.

4.4.1 Perimeter control

A bound on the perimeter of the subdomain Ωm restricts the design set by limiting the com-

plexity of the topology—‘the number of holes that can appear’ [2]. Existence of solutions and

FE convergence is ensured for both problems Pd and Pc [97]. A useful side effect of the con-

tinuous material–energy relation (4.8) in Pc is the differentiability of ρ(x) with respect to x.

Hence, the perimeter constraint (and other restriction methods) may be expressed and formu-

lated in terms of the gradient of the material distribution function ρ(x). In 2-D, the perimeter

constraint may be expressed as an upper bound on the total variation of ρ(x):

TV (ρ) =

∫

R2

||∇ρ|| dx ≤ ¯TV . (4.11)

For an element wise constant FE discretization, the total variation may be calculated as the

summation of the jumps in amount of material over each and every inter element boundary

TV (ρ) =
b
∑

k=1

lk

(
√

(ρi(k) − ρj(k))2 + ǫ2 − ǫ
)

(4.12)

with lk the associated elemental length, b the number of inter element boundaries, and ρi(k)
and ρj(k) the elements which share inter element boundary number k. The parameter ǫ is a

small positive number required in order for (4.12) to be differentiable. The global nature of the

constraint has the severe drawback that the gradient of the material distribution function ρ(x)
is not limited on a local scale. Therefore, fine structural features—e.g. very thin bars—may

form part of the optimal topology and the manufacturability of the design might be compro-

mised. Moreover, Bendsøe and Sigmund [2] report that the perimeter constraint can be quite

difficult to approximate in an SAO solution procedure and may cause oscillatory algorithmic

behaviour [98].

In Section 4.6 the perimeter measure defined in (4.12) is used to quantify the complexity of

the calculated topologies—with ǫ = 0, since (4.12) is not differentiated—but the requirement of

an additional heuristic parameter, reported algorithmic issues, and, most importantly, the lack

of control over minimum member size, permits us to neglect design set restriction via perimeter

control in the SAND setting.

5Sigmund and Petersson [57] warn that ‘restriction’ methods devised in terms of the FE discretized problems

Pd or Pc, which ‘generally has solutions since it is posed in finite dimension’, is ‘dubious’, since ‘one simply

produces pictures that people want to see’.
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4.4.2 Filtering methods

Filtering methods form the predominant class of restriction methods in SIMP based NAND

topology optimization. The method is succinctly demonstrated in the well-known TopOpt Mat-

lab codes [10,12,14]. Two options are available; either filtering of the sensitivity information or

filtering of the density distribution itself—the first is employed in Reference [10] and the sec-

ond is incorporated in Reference [12]. Rojas-Labanda and Stolpe [44] present rare and notable

test cases of density filtering applied to the SAND formulated problem. The interested reader

can also refer to Sigmund [99] for a novel class of filtering methods based on image processing

techniques.

First, lets discuss density filtering—the subsection is closed with sensitivity filtering. Bour-

din [58] provides a proof of existence of solutions and FE convergence for the SIMP based

problem Pc. Density filtering is defined as a modification to the SIMP material–energy rela-

tion in (4.8) with a convolution product

Eijkl(x) = ((ρ ⋆ K)(x))pE0
ijkl (4.13)

with

(ρ ⋆ K)(x) =

∫

Ω
ρ(y)K(x− y)dy
∫

Ω
K(y)dy

(4.14)

and K the convolution kernel, for example

K(x− y) =
{

1− ||x−y||
η

if ||x− y|| ≤ η

0 otherwise
(4.15)

and η the filter radius. That is, the density (and stiffness) of the structure at position x is

dependent on a weighted average of all the densities within the filter radius η. For an element

wise constant FE discretization, the density filter transforms the original density of element i,
ρi, to

ρ̃i =

∑

j∈Ni
Hijρj

∑

j∈Ni
Hij

(4.16)

with Ni the set of elements for which the center-to-center distance between element i and ele-

ment j, C(i, j), is less than the predefined filter radius η. The weight factor Hij may be defined

as, for example

Hji = max(0, η − C(i, j)) . (4.17)

The density filter has the effect that the original densities ρi loose their physical meaning [99],

and, because of the modification to the stiffness tensor, a modification to the associated sensi-

tivity information is required too.

Density filtering requires no additional constraint functions and is therefore presented as

a computationally efficient restriction method—in e.g. Reference [2]—but this advantage is,

seemingly, confined to the NAND formulation. In order to demonstrate this, consider a standard

ex × ey FE discretization. For the sake of argument, 10 000 Q4 FE’s are used with ex = ey =
100. The constraint Jacobian matrix of problem Pc will have 20 403 rows—20 402 equilibrium

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4. ON DESIGN-SET RESTRICTION IN SAND 49

constraints6 and 1 volume constraint—and 30 402 columns—20 402 displacement variables

u and 10 000 material variables ρ. In this form, the Jacobian matrix has 452 404 nonzero

entries—the matrix is approximately 0.06% filled. (The well-known and freely available Matlab

codes [10, 12, 14] may be used to generate these numbers.)

Density filtering works by coupling the material variables ρj , ∀j ∈ Ni—those elements

within the filter radius η—to element i. Because this coupling is ‘filtered’ through a weighted

average (4.16) of all the elements in the filter radius η, fine structural features are weakened and

removed, reducing the complexity of the design. The extent of this coupling can be approx-

imated with a square of er × er elements, with typically er ≪ ex and er ≪ ey. First, each

equilibrium constraint is a function of 4 material variables7 ρi. Second, if density filtering is

imposed, each material variable ρi is a function of e2r − 1 neighbouring8 material variables ρj ,
∀j ∈ Ni. That is, the addition of roughly 4(e2r−1) nonzero terms in each equilibrium constraint

is necessitated. For example, if a filter radius of er = 5 is used, about 4×24×20402 = 1958592
additional nonzero terms9 will be present in the constraint Jacobian matrix—the modified ma-

trix is approximately 0.39% filled—that is almost a sixfold increase in computational storage

requirements. For er = 10 (the filter radius is often set to about 10% of the design domain) the

Jacobian matrix is 1.38% filled—about 20 times the original value.

Rojas-Labanda and Stolpe [44], who solve and compare a host of simply-constrained, den-

sity filtered NAND and SAND problems, concluded that the computational requirements asso-

ciated with the SAND formulation is its main drawback—reportedly some SAND problems had

to be removed from the test set due to time and memory limitations—seemingly the additional

nonzero terms associated with design set restriction by density filtering (in conjunction with the

calculation and storage of the full Hessian matrix, in some cases [44]) contributed to this. In

NAND density filtering is computationally cheap, since it is applied directly between design

iterations [10, 12, 14].

Sensitivity filtering, on the other hand, is closely related to density filtering, and equivalent

to the compliance minimization of nonlocal elasticity problems [100]. The method can be jus-

tified with extensive ‘computational experience’ in the NAND setting [2], but it ‘suffers’ due

to its lack of mathematical rigour [100]. In the NAND setting the method works by modifying

the sensitivity derivatives of the compliance objective function f0(u(ρ))—in NAND the dis-

placement vector u is a function of the material variables ρ. In the SAND setting however, the

requirement that first-order accuracy be abandoned is somewhat dubious—since, unlike density

filtering, the global stiffness matrix [K(ρ)], which forms part of the constraint Jacobian matrix,

is not modified too. It is therefore fair to say that sensitivity filtering is somewhat unjustifiable

in the SAND setting.

4.4.3 Slope constraints

In Reference [60] Petersson and Sigmund introduce a restriction method which takes the form

of local gradient constraints—so-called ‘slope constraints’. Like filtering methods, the method

6In 3D, with ez = 100, for example, this number is 3 090 903.
7In 3D this number is 6.
8In 3D, this is e3r − 1.
9In 3D, with ez = 100, this number is 2 299 631 832.
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presupposes that the discrete requirement on the material distribution function ρ(x) is relaxed—

i.e. (4.8). Design set restriction is achieved by enforcing a point-wise bound on local density

variations, in 2-D, this can be written as
∣

∣

∣

∣

∂ρ(x)

∂xi

∣

∣

∣

∣

≤ µ (i = 1, 2) . (4.18)

For a constant FE discretization and a mesh size parameter π, proportional to the size of the

FE’s, (4.18) may be written as

−µπ ≤ ρi(k) − ρj(k) ≤ µπ k = 1, 2, . . . , b (4.19)

with ρi(k) and ρj(k) the elements which share inter element boundary number k. If slope con-

straints are imposed on Pc, existence of solutions and FE convergence is ensured [60]. More-

over, the slope constraints (4.19) are linear and should be dealt with easily by a standard SAO

procedure. In Reference [60] it is demonstrated that slope constraints provide a well-defined

minimum length scale, lending intuitive control over the manufacturability of the design—more

sophisticated manufacturing constraints, which provide for casting and extrusion processes, for

example, take on a similar form [101]. However, design-set restriction with slope constraints

requires the imposition of a large number of additional constraints. Petersson and Sigmund [60]

report ‘computational cost is extremely high’ and that ‘the increase in computational time lies

between a factor of 100 and 1000 compared to compliance problems without slope constraints’.

Bendsøe and Sigmund [2] too deems the method ‘too slow for practical design problems’. In

both cases the optimization problem is stated and solved in a NAND setting.

The character of the SAND problem, however—computationally speaking—is somewhat

different. Consider the same ex×ey Q4 FE mesh from before. The FE mesh has about 4×ey×ex
inter element boundaries, hence 8 × ey × ex additional constraints are required in order to

enforce the slope relations10 in (4.19). Clearly, each constraint contributes two nonzero terms

to the constraint Jacobian matrix. For ex = ey = 100, 80 000 additional (linear) inequality

constraints are necessitated—of which many may be inactive. This equates to the addition of

160 000 nonzero entries in the constraint Jacobian matrix—compared to millions of additional

terms in the density filtering example outlined above11. Moreover, the number of additional

nonzero terms is not dependent on the severity of the restriction—only adjacent elements are

coupled—and similar relationships are demonstrable inR3.

The slope relation (4.18) may also take the form of a single global constraint, typically based

on some norm [102], for example

‖∇ρ(x)‖ ≤ µ̄ . (4.20)

For an element-wise constant FE discretization, in 2D, (4.20) may be written as

1√
2

ex−1
∑

i=1

ey−1
∑

j=1

[

(ρi+1,j − ρi,j)2 + (ρi+1,j+1 − ρi,j+1)
2

+(ρi,j+1 − ρi,j)2 + (ρi+1,j+1 − ρi+1,j)
2

]
1

2

≤ µ̄

(4.21)

10In 3D, for an ex × ey × ez = 100 mesh, about 12× ey × ex × ez additional constraints are required.
11In 3D, for ez = 100, about 24 000 000 additional nonzero terms are required—in the equivalent density

filtered case, this number is 2 299 631 832!
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with (i, j) a single position in the FE grid ex×ey. Existence of solutions may be proved, but it is

apparently quite difficult to relate the limiting value µ̄ to the complexity of the design [2, 102].

Moreover, closer inspection reveals that, although only a single additional constraint is required,

the number of additional nonzero terms in the constraint Jacobian matrix is of roughly the same

order as the local slope constrained case (4.19). (Interestingly, considering the form of (4.12),

restriction via perimeter control leads to roughly the same amount of additional nonzero terms.)

4.4.4 ‘Grey’ material and local minima

In summary, the choice of restriction method in the SAND setting turns out to be rather straight-

forward. Perimeter control does not enforce a minimum length scale on the design domain

and thus manufacturability might be compromised. Density filtering necessitates the coupling

of large groups of material variables in order to control the complexity of the design—in the

SAND setting this leads to a substantial increase in the computational storage requirements.

Slope constraints, on the other hand, enforce the same effect by coupling only adjacent ma-

terial variables. Moreover, it is fairly simple to modify slope constraints to account for more

sophisticated manufacturing considerations [101].

Two issues remain: the imposition of slope constraints presupposes a continuous material–

energy relation—e.g. SIMP in Pc—hence purely 0-1 designs can not be obtained, and secondly,

the SAND problem is severely multimodal12. Thus, from a pragmatic point of view, mesh-

independence may only be achieved with a global optimization strategy. Sigmund and Peters-

son [57] highlight the multimodality of the problem (nonconvexity; many local minima) as one

of the ‘numerical instabilities’ in topology optimization. In Reference [60] the same authors

implement a continuation procedure on the SIMP penalisation (for p = 1, P s
c is the VTS prob-

lem, which is convex) in order to approach the global optimum of the problem. The idea behind

continuation methods is to gradually change the problem from convex (having a single optimal

topology) to the original (nonconvex) problem, for which a solution is actually sought.

In the NAND setting continuation on the SIMP parameter p seems to work well. In SAND

however, continuation on pmanifests as a gradual alteration of the feasible region of P s
c , specif-

ically the feasible region described by the equilibrium constraints. Formally, convergence may

not be demonstrable, for, as Stolpe and Svanberg [103] have shown, the trajectory of the global

optimal topology may be discontinuous even for continuously increasing penalization. There-

fore, we implement a random multistart strategy to cope with the multimodality of the problem.

The idea is that multiple instances of the problem can be solved, each initialized with a random

material distribution 0 ≤ ρi ≤ 1, i = 1, 2, . . . , e, the topology found with the best objective

function value f0(u) may then be compared to all the other topologies, if the ‘best known’

topology was found multiple times—assuming the algorithm is just as likely to find the global

minimum as any local minimum—a measure of confidence may be associated with the global

optimality of the best known solution [61]—hence, a ‘probably’ globally optimal design. To

address the prevalence of grey material, the algorithm may be initialized at the suspected global

optimum, and by applying a continuation strategy to the slope constraint parameter µ, a globally

optimal, 0-1 design may be obtained.

12The NAND problem is multimodal too, but seemingly less so.
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4.5 The numerical method

Sequential approximate optimization (SAO) as solution strategy for general nonlinear pro-

gramming involves the construction of inexpensive analytical approximation functions f̃
{k}
j (x),

j = 0, 1, . . . ,m to the objective f0(x) and constraint functions fj(x), j = 1, 2, . . . ,m at succes-

sive iteration points x{k}, k = 1, 2, 3, . . .. Together the approximations f̃
{k}
j (x), j = 0, 1, . . . ,m

form an approximate subproblem P [k]. The form of the approximations f̃
{k}
j (x) are determined

by the consequential solubility of the subproblem. In structural optimization it is customary to

use strictly convex and separable approximations, as for example in CONLIN [34, 35] and the

MMA [36]. The resulting subproblems are amenable to highly efficient dual methods when the

number of constraints m are far less than the number of design variables n. When the num-

ber of constraints are relatively large, the performance of Lagrange-Newton diagonal quadratic

subproblems in combination with primal-dual interior-point subsolvers are considered supe-

rior [33, 45, 46].

The general diagonal quadratic approximation [65] is used to construct the objective and

constraint function approximations f̃
{k}
j (x), j = 0, 1, . . . ,m. The approximate constraint

functions f̃
{k}
j (x), j = 1, 2, . . . ,m are linearised before entering P [k], resulting in a diago-

nal quadratic program (QP)—constraint curvature information retained as part of the diago-

nal quadratic objective function f̃
{k}
0 (x). The approximate objective function f̃

{k}
0 (x) is thus

viewed as an approximation of the Lagrangian and the SAO method may be termed a diagonal

Lagrange-Newton sequential quadratic programming algorithm [46]. The Lagrange-Newton

QP subproblem may be expressed as:

• The QP subproblem P [k]

min
x

f̃
{k}
0 (x) = f0(x

{k}) +∇fT0 (x{k})(x− x{k}) +
1

2
(x− x{k})TQ{k}(x− x{k})

subject to f̃
{k}
j (x) = fj(x

{k}) +∇fTj (x{k})(x− x{k}) [=,≤] 0 , j = 1, 2, . . . ,m

(4.22)

x̌
{k}
i ≤ xi − x{k}i ≤ x̂

{k}
i , i = 1, 2, . . . , n

with the subproblem variable bounds calculated according to

x̌
{k}
i ← max(x

{k}
i − δ(xi,max − xi,min), xi,min) (4.23)

x̂
{k}
i ← min(x

{k}
i + δ(xi,max − xi,min), xi,max) (4.24)

for i = 1, 2, . . . , n, with xi,min and xi,max the lower and upper bounds on variable i respec-

tively. We have resorted to some nonstandard notation to denote both equality and inequality

constraints—i.e. [=,≤].
The move limit is denoted by δ. Some numerical experiments in Section 4.6 are done with

a fixed move limit—a standard value of 0.1 is used—in other experiments convergence and

termination is enforced with an adaptive move limit as per the convergent trust-region algorithm

due to Fletcher et al. [66].
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The Hessian matrix Q{k} of the approximate objective f̃
{k}
0 (x) is restricted to the diagonal

entries—necessitating minimal storage requirements—and constructed according to

Q
{k}
ii = c

{k}
0i

+
m
∑

j=1

λ
{k}
j c

{k}
ji
, i = 1, 2, . . . , n (4.25)

with the curvature terms ci,j obtained as analytic, second-order partial derivatives of the objec-

tive f0(x) and the constraint functions fj(x), j = 1, 2, . . . ,m—second-order information is

trivially computed in the SAND setting. The Lagrangian multiplier estimates from the previous

iterate are retained—i.e. λ{k} = λ{k−1}⋆. Assuming feasibility and constraint qualification,

which turn out to be fairly mild assumptions in the SAND setting [33,88], the only requirement

is that Q
{k}
ii > 0 ∀ i for the subproblem P [k] to be strictly convex. Herein the diagonal Hessian

terms are constructed according to

Q
{k}
ii = max

(

γ > 0,

∣

∣

∣

∣

∣

c
{k}
0i

+
m
∑

j=1

λ
{k}
j c

{k}
ji

∣

∣

∣

∣

∣

)

(4.26)

with γ a small positive number which ensures strict convexity—a standard value of 1 × 10−6

is used throughout. If the full Hessian matrix is used—like Rojas-Labanda and Stolpe [44]

have done—computational storage requirements may become substantial and the enforcement

of positive definiteness on the Hessian matrix (i.e. strict convexity) is non-trivial.

4.6 Numerical demonstrations and experiments

Based on the arguments presented in Section 4.4, we choose to furnish the SAND formulation

of the SIMP topology optimization problem Pc with slope constraints:

• The slope constrained SIMP topology optimization problem Ps
c

min
u,ρ

l(u)

subject to a(u, v) = l(v) ∀ v ∈ U (4.27)

Eijkl(x) = ρ(x)pE0
ijkl

∫

Ω

ρ(x) dx ≤ ν̄
∣

∣

∣

∣

∂ρ(x)

∂xi

∣

∣

∣

∣

≤ µ (i = 1, 2)

0 ≤ ρ(x) ≤ 1 ∀ x ∈ Ω

The FE discretized version of the problem is written as:

• The FE discretized, slope constrained SIMP topology optimization problem P s
c
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min
u,ρ

f0(u) = rTu

subject to

e
∑

i=1

(ρi)
p[Ki]u− r = 0 (4.28)

f1(ρ) = 1
Tρ− ν̄ ≤ 0

ρi(k) − ρj(k) ≤ µπ , k = 1, 2, . . . , b

ρj(k) − ρi(k) ≤ µπ , k = 1, 2, . . . , b

0 ≤ ρi ≤ 1 , i = 1, 2, . . . , e

The stiffness design of the well-known MBB beam is considered for numerical experiment.

The design domain is depicted in Figure 4.1; F is a point load of unity, the Possion ratio ν is

set to 0.3 and the Young’s modulus E is scaled to 100—to facilitate comparisons with other

works, for example Reference [60], the objective function values f0(u) are premultiplied with

100. The amount of material is limited to a fraction ν̄ = 0.5 of the design domain. The domain

is discretized with ex × ey square Q8 finite elements13. The discretization is for half the beam,

due to symmetry. The slope constraint mesh size parameter π is set to 1/ex. Material variables

ρ are limited to 0 (exactly) and 1 on the lower and upper bound respectively. Displacement

variables u are bounded at ±1 × 106. SIMP penalisation of p = 3 is used throughout. The

foregoing SAO procedure is employed and the subproblems P [k] are solved with the GUROBI

Barrier QP optimizer [76]. Computational capabilities are provided by the Rhasatsha HPC [77].

l1

l2

F

E = 100 ν = 0.3 F = 1
l1 = 6 l2 = 1

Figure 4.1: The MBB beam design domain

4.6.1 Storage and computational requirements

Consider the four mesh discretizations summarised in Table 4.1. In each case, the total number

of elements is denoted by e = ex × ey, b is the number of inter element boundaries, n is the

number of optimization variables x = (ρ,u) ∈ Rn=e+d, m is the total number of constraints

and Jnz is the number of nonzero entries in the constraint Jacobian matrix. The move limit is

fixed at δ = 0.1 and the problems are initialized at u = 0 and ρ = 0.5. The number of iterations

13We have found that the slope constraints have to be very restrictive in order to suppress checkerboards when

Q4’s are used.
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required to achieve a convergence tolerance in terms of the Euclidean norm ‖x{k+1}−x{k}‖ ≤
1× 10−1 is denoted by k, T is the CPU time in seconds and Tk is the average time per iteration.

The generated topologies are depicted in Figure 4.2. The largest constraint violation is denoted

by Θ(u,ρ), Φ(ρ) is the solid-void fraction and TV (ρ) is a measure of the complexity of the

design—the ‘total variation’— calculated as per (4.11) with ǫ = 0.

Table 4.1: Storage and computational properties.

Unrestricted problem Pc
Fig. e b n m Jnz k T Tk
4.2a 2700 5280 19282 16683 557344 42 136 3.24

4.2b 4800 9440 34242 29443 989124 48 299 6.23

4.2c 7500 14800 53302 45803 1543904 50 526 10.52

4.2d 10800 21360 76562 65763 2221684 46 759 16.50

Slope constrained problem P s
c

Fig. e b n m Jnz k T Tk
4.3a 2700 5280 19282 27243 (1.63) 578464 (1.04) 155 311 3.93 (1.21)

4.3b 4800 9440 34242 48323 (1.64) 1026884 (1.04) 168 1380 8.21 (1.32)

4.3c 7500 14800 53302 75403 (1.65) 1603104 (1.04) 222 3075 13.85 (1.32)

4.3d 10800 21360 76562 108483 (1.65) 2307124 (1.04) 272 5846 21.49 (1.30)

(a) e = 90 · 30 = 2700: f0(u) = 205.77,

Θ(u,ρ) = 1.9E-04, Φ(ρ) = .98, TV (ρ) = 18.76.

(b) e = 120 · 40 = 4800: f0(u) = 205.54,

Θ(u,ρ) = 5.1E-06, Φ(ρ) = .99, TV (ρ) = 19.65.

(c) e = 150 · 50 = 7500: f0(u) = 205.55,

Θ(u,ρ) = 1.9E-04, Φ(ρ) = .99, TV (ρ) = 21.50.

(d) e = 180 · 60 = 10800: f0(u) = 205.33,

Θ(u,ρ) = 1.1E-04, Φ(ρ) = .99, TV (ρ) = 19.55.

Figure 4.2: Solutions to the unrestricted problem Pc.

In the bottom half of Table 4.1 the storage and computational requirements of the slope

constrained problem P s
c is reported. The slope parameter µ is set to 20. Incidentally, for this set

of parameters, the same minimum is approached in each case (as can be seen in Figure 4.3). In

Table 4.1 The numbers in brackets are multiplication factors, denoting the relative increase vs.

the unrestricted problem Pc. We see that the number of constraintsm is increased by about 60%,

although the additional nonzero terms in the constraint Jacobian matrix Jnz is barely noticeable.

The subproblems are indeed larger and more complex, and solved with more difficulty—in the

sense that the computation time per iteration Tk is increased—but this is at most a difference

of about 30%. Due perhaps to the prevalence of ‘grey’ material and the fixed move-limit δ =
0.1, the algorithm requires a substantial number of iterations to achieve convergence. (It is
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suspected that the convergence properties may be improved with more sophisticated second-

order approximation schemes.) Petersson and Sigmund’s algorithm [60] requires ‘as many as

300 iterations to convergence’ (the convergence tolerance is not reported), but this is attributed,

in part, to the continuation strategy on SIMP penalization p. Clearly though, in the SAND

setting, the computational requirements are not increased by a factor of 100 to 1000 relative

to the unrestricted case. Moreover, the storage and computational requirements for this set of

test problems suggest that the algorithm scales in polynomial time—storage requirements scale

linearly and average times per iteration Tk scale to roughly O(n1.2).

(a) e = 90 · 30 = 2700: f0(u) = 225.95,

Θ(u,ρ) = 5.15E-05, Φ(ρ) = .62, TV (ρ) = 11.46.

(b) e = 120 · 40 = 4800: f0(u) = 226.36,

Θ(u,ρ) = 9.4E-06, Φ(ρ) = .62, TV (ρ) = 11.57.

(c) e = 150 · 50 = 7500: f0(u) = 226.30,

Θ(u,ρ) = 4.1E-04, Φ(ρ) = .61, TV (ρ) = 11.49.

(d) e = 180 · 60 = 10800: f0(u) = 226.65,

Θ(u,ρ) = 2.2E-05, Φ(ρ) = .62, TV (ρ) = 11.55.

Figure 4.3: Solutions to the restricted problem P s
c with µ = 20.

4.6.2 ‘Probably’ globally optimal designs

In both the NAND and SAND setting, small variations in algorithmic parameters (and starting

positions) may result in convergence to different local minima. (It is suspected that the issue of

local minima is more severe in the SAND setting.) For example, consider the slope constrained

problem P s
c with p = 3 and µ = 20—exactly the same problem as considered in Section 4.6.1—

using different starting positions, the algorithm may converge to the topologies depicted in

Figure 4.4. For higher values of µ, which allows for increased complexity in the optimum

design—thus, an increased number of topologies are feasible—it is quite difficult to reliably

find the suspected global optimum. To remedy this, the random multistart strategy outlined in

Section 4.4.4 is employed. Because the algorithm may struggle to maintain feasibility from a

random starting position, convergence and termination is enforced with an adaptive move-limit

δ, as per the convergent trust-region algorithm due to Fletcher et al. [66].

(a) e = 90 · 30 = 2700: f0(u) = 228.51,

Θ(u,ρ) = 1.2E-05, Φ(ρ) = .58, TV (ρ) = 13.01.

(b) e = 120 · 40 = 4800: f0(u) = 229.39,

Θ(u,ρ) = 2.0E-06, Φ(ρ) = .57, TV (ρ) = 13.44.

Figure 4.4: Suboptimal solutions to the restricted problem P s
c with µ = 20
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Table 4.2 is a summary of the data obtained from a total of 4600 experiments—i.e. ran-

domly initialized instances of P s
c —for 4 mesh discretizations and a range of slope parameters

µ. (These experiments may of course be run in parallel.) The number of experiments per mesh

size ex × ey and for a specific slope parameter µ is denoted by ζ0, ζ⋆ is the number of times

the algorithm converged to the best known solution—measured in terms of the absolute dif-

ference in objective function values |f best
0 − f0(u)| ≤ 0.1—the total number of subproblems

the computational platform is tasked with is denoted by P , and TP is the average CPU time

required to solve a subproblem (in seconds)14. The optimum topology associated with each set

of parameters is depicted in Figures 4.5 through 4.10.

Table 4.2: Multistart statistics; mesh-independnce

Figure ex · ey = e µπ f0(u) ζ0 ζ⋆ P TP

4.5a 90 · 30 = 2700 20/90 = 0.22 225.71 200 7 32890 7

4.6a 90 · 30 = 2700 30/90 = 0.33 212.51 200 1 42284 6

4.7a 90 · 30 = 2700 35/90 = 0.39 210.19 300 2 55792 4

4.10a 90 · 30 = 2700 55/90 = 0.61 202.12 300 2 71699 6

4.5b 120 · 40 = 4800 20/120 = 0.17 225.70 200 11 44329 14

4.6b 120 · 40 = 4800 30/120 = 0.25 212.90 200 1 52154 9

4.8a 120 · 40 = 4800 40/120 = 0.33 206.93 300 2 83887 11

4.9a 120 · 40 = 4800 45/120 = 0.38 204.81 300 2 73373 8

4.10b 120 · 40 = 4800 55/120 = 0.46 201.61 300 4 61261 10

4.5c 150 · 50 = 7500 20/150 = 0.13 226.21 200 23 65368 15

4.6c 150 · 50 = 7500 30/150 = 0.20 213.05 200 2 69326 20

4.8b 150 · 50 = 7500 40/150 = 0.27 207.34 300 5 87028 19

4.9b 150 · 50 = 7500 45/150 = 0.30 204.92 300 2 83248 17

4.10c 150 · 50 = 7500 55/150 = 0.37 201.63 300 4 93178 19

4.5d 180 · 60 = 10800 20/180 = 0.11 226.51 200 12 80533 37

4.6d 180 · 60 = 10800 30/180 = 0.17 213.13 200 2 78983 20

4.7b 180 · 60 = 10800 35/180 = 0.19 210.21 300 2 94569 29

4.10d 180 · 60 = 10800 55/180 = 0.31 201.41 300 1 85894 29

A number of observations may be made from the data reported in Table 4.2, and by inspec-

tion of Figures 4.5 to 4.10. First, as expected, more complex and more efficient topologies—

characterised by an increased number of members—are available for less restrictive values of

the slope parameter µ—as can be seen from the objective function value f0(u) and perimeter

measure TV (ρ) of the best-known solution in each case. However, there is a trade-off, because

an increased number of topologies are available for less restrictive values of µ, the frequency

with which the best-known solution is found, diminishes: for µ = 20, the best-known solution

is obtained, on average, about 13 times out of 200; for µ = 30, the frequency is once or twice

for every 200 experiments. For larger values of µ, more experiments are required to gain con-

fidence in the suspected global optimality of the best-known solution, for µ = 35, 40, 45 and

14Here we refer to ‘subproblems’ rather than ‘iterations’, because the convergent trust-region algorithm [66]

involves ‘inner iterations’.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4. ON DESIGN-SET RESTRICTION IN SAND 58

(a) e = 90 · 30 = 2700: f0(u) = 225.71,

Θ(u,ρ) = 7.2E-06, Φ(ρ) = .62, TV (ρ) = 11.40.

(b) e = 120 · 40 = 4800: f0(u) = 225.70,

Θ(u,ρ) = 1.7E-06, Φ(ρ) = .64, TV (ρ) = 11.34.

(c) e = 150 · 50 = 7500: f0(u) = 226.21,

Θ(u,ρ) = 1.2E-05, Φ(ρ) = .61, TV (ρ) = 11.43.

(d) e = 180 · 60 = 10800: f0(u) = 226.51,

Θ(u,ρ) = 2.3E-06, Φ(ρ) = .62, TV (ρ) = 11.49.

Figure 4.5: Probably globally optimal solutions to the restricted problem P s
c with µ = 20.

(a) e = 90 · 30 = 2700: f0(u) = 212.51,

Θ(u,ρ) = 8.8E-05, Φ(ρ) = .75, TV (ρ) = 14.11.

(b) e = 120 · 40 = 4800: f0(u) = 212.90,

Θ(u,ρ) = 6.1E-06, Φ(ρ) = .73, TV (ρ) = 14.14.

(c) e = 150 · 50 = 7500: f0(u) = 213.05,

Θ(u,ρ) = 9.0E-05, Φ(ρ) = .72, TV (ρ) = 14.42.

(d) e = 180 · 60 = 10800: f0(u) = 213.13,

Θ(u,ρ) = 2.0E-05, Φ(ρ) = .72, TV (ρ) = 14.12.

Figure 4.6: Probably globally optimal solutions to the restricted problem P s
c with µ = 30.

(a) e = 90 · 30 = 2700: f0(u) = 210.19,

Θ(u,ρ) = 1.4E-04, Φ(ρ) = .75, TV (ρ) = 14.83.

(b) e = 180 · 60 = 10800: f0(u) = 210.21,

Θ(u,ρ) = 1.5E-05, Φ(ρ) = .72, TV (ρ) = 15.22.

Figure 4.7: Probably globally optimal solutions to the restricted problem P s
c with µ = 35.

55, 300 experiments are conducted. As per the methodology presented in Reference [61], 2

successful runs out of 300 equate to a confidence measure of about 87%, 3 out of 300 is about

94%, and 4 out of 300 is about 97%.

Figures 4.5 through 4.10 illustrate how the suspected optimal topology changes relative to

the slope parameter µ. The topological layouts correspond well with those reported in Refer-

ence [60]. Moreover, as expected, ‘grey’ material is less prevalent for less restrictive values of

µ (since ‘grey’ material is uneconomical in the presence of the volume constraint).
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(a) e = 120 · 40 = 4800: f0(u) = 206.93,

Θ(u,ρ) = 9.5E-06, Φ(ρ) = .77, TV (ρ) = 16.78.

(b) e = 150 · 50 = 7500: f0(u) = 207.34,

Θ(u,ρ) = 1.2E-04, Φ(ρ) = .75, TV (ρ) = 16.78.

Figure 4.8: Probably globally optimal solutions to the restricted problem P s
c with µ = 40.

(a) e = 120 · 40 = 4800: f0(u) = 204.81,

Θ(u,ρ) = 4.6E-05, Φ(ρ) = .77, TV (ρ) = 17.18.

(b) e = 150 · 50 = 7500: f0(u) = 204.92,

Θ(u,ρ) = 1.3E-04, Φ(ρ) = .76, TV (ρ) = 16.90.

Figure 4.9: Probably globally optimal solutions to the restricted problem P s
c with µ = 45.

(a) e = 90 · 30 = 2700: f0(u) = 202.12,

Θ(u,ρ) = 2.0E-03, Φ(ρ) = .83, TV (ρ) = 18.71.

(b) e = 120 · 40 = 4800: f0(u) = 201.61,

Θ(ρ) = 1.3E-04, Φ(ρ) = .78, TV (ρ) = 19.05.

(c) e = 150 · 50 = 7500: f0(u) = 201.63,

Θ(u,ρ) = 1.8E-05, Φ(ρ) = .80, TV (ρ) = 18.68.

(d) e = 180 · 60 = 10800: f0(u) = 201.41,

Θ(u,ρ) = 4.5E-05, Φ(ρ) = .78, TV (ρ) = 19.04.

Figure 4.10: Probably globally optimal solutions to the restricted problem P s
c with µ = 55.

4.6.3 ‘Probably’ globally optimal 0-1 designs

To reduce the prevalence of ‘grey’ material, the slope parameter µ may be relaxed with a con-

tinuation strategy. To this end, the algorithm is initialized with a ‘probably’ globally optimal

solution to P s
c (for some value of µ), and the slope parameter is increased by 1.1µ if the update

in the optimization variables satisfy the convergence tolerance ‖x{k+1} − x{k}‖ ≤ 1 × 10−1.

Once µπ ≥ 1 (and problem Pc is actually solved) the algorithm is allowed to terminate.

Initializing the algorithm with some of the restricted global optima presented in the pre-

ceding section, and following the continuation strategy outlined above, the designs depicted

in Figures 4.11 to 4.13 are generated. As expected, the objective function f0(u) values and

solid-void fractions Φ(ρ) are much improved, while the perimeter TV (ρ)—a measure of the

complexity of the design—remains constant, roughly, in terms of the restricted vs. unrestricted

designs.
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(a) e = 90 · 30 = 2700: f0(u) = 195.62, k = 153,

Θ(u,ρ) = 8.4E-05, Φ(ρ) = .99, TV (ρ) = 11.73.

(b) e = 120 · 40 = 4800: f0(u) = 196.11, k = 202,

Θ(u,ρ) = 1.0E-06, Φ(ρ) = .93, TV (ρ) = 11.95.

(c) e = 150 · 50 = 7500: f0(u) = 194.89, k = 233,

Θ(u,ρ) = 3.0E-04, Φ(ρ) = .98, TV (ρ) = 12.27.

(d) e = 180 · 60 = 10800: f0(u) = 194.80, k =

229,

Θ(u,ρ) = 8.1E-06, Φ(ρ) = .94, TV (ρ) = 12.29.

Figure 4.11: Probably globally optimal, approximately 0-1 solutions to the unrestricted

problem Pc, for an initial slope parameter µ = 20.

(a) e = 90 · 30 = 2700: f0(u) = 193.25, k = 117,

Θ(u,ρ) = 1.2E-05, Φ(ρ) = .89, TV (ρ) = 14.64.

(b) e = 120 · 40 = 4800: f0(u) = 192.31, k = 200,

Θ(u,ρ) = 5.7E-07, Φ(ρ) = .92, TV (ρ) = 15.03.

(c) e = 150 · 50 = 7500: f0(u) = 190.69, k = 213,

Θ(u,ρ) = 7.2E-04, Φ(ρ) = .99, TV (ρ) = 15.38.

(d) e = 180 · 60 = 10800: f0(u) = 190.71, k =

268,

Θ(u,ρ) = 5.3E-04, Φ(ρ) = .99, TV (ρ) = 15.35.

Figure 4.12: Probably globally optimal, approximately 0-1 solutions to the unrestricted

problem Pc, for an initial slope parameter µ = 30.

(a) e = 90 · 30 = 2700: f0(u) = 191.87, k = 59

Θ(u,ρ) = 6.0E-04, Φ(ρ) = .86, TV (ρ) = 18.79.

(b) e = 120 · 40 = 4800: f0(u) = 189.85, k = 134

Θ(u,ρ) = 7.6E-04, Φ(ρ) = .89, TV (ρ) = 19.46.

(c) e = 150 · 50 = 7500: f0(u) = 189.84, k = 116

Θ(u,ρ) = 6.6E-07, Φ(ρ) = .91, TV (ρ) = 19.24.

(d) e = 180 ·60 = 10800: f0(u) = 188.01, k = 203

Θ(u,ρ) = 1.8E-04, Φ(ρ) = .98, TV (ρ) = 19.62.

Figure 4.13: Probably globally optimal, approximately 0-1 solutions to the unrestricted

problem Pc, for an initial slope parameter µ = 55.
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4.7 Conclusion

Based on straightforward computational considerations, it is argued that the SAND topology

optimization problem should be equipped with so-called ‘slope constraints’ in order to ensure

existence of solutions, mesh-independence, and manufacturability of the design. Density fil-

tering techniques, which are very popular and successful in the traditional NAND setting, may

be unnecessarily expensive in storage and computational requirements in the unconventional

SAND setting. Moreover, computational storage requirements of the slope constrained SAND

problem scale linearly with problem size, and using an efficient (sparse) sequential approximate

optimization method, computation times too may scale favourably.

It is demonstrated that a random multistart strategy may be used to cope with the multi-

modality of the SAND optimization problem—and thereby demonstrate mesh-independence.

The multistart technique allows one to associate a measure of confidence with the suspected

global optimality of the best-known solution—hence a ‘probably’ globally optimal solution is

obtained. Moreover, the slope constraints may be relaxed with a continuation strategy to arrive

at manufacturable, ‘probably’ globally optimal, 0-1 design in a reasonable amount of computa-

tion time.
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Chapter 5

Local stress– and slope-constrained SAND

topology optimization

This chapter is a reproduction of a paper entitled ‘Local stress- and slope-constrained SAND

topology optimization’ [88]. The paper is co-authored by Prof. Albert A. Groenwold of the

Department of Mechanical and Mechatronic Engineering at the University of Stellenbosch,

South Africa.

5.1 Abstract

We study the alternative ‘simultaneous analysis and design’ (SAND) formulation of the local

stress- and slope-constrained topology design problem. It is demonstrated that a standard trust-

region Lagrange-Newton sequential quadratic programming (SQP)-type algorithm—based, in

this case, on strictly convex and separable approximate subproblems—may converge to singular

optima of the local stress-constrained problem without having to resort to relaxation or pertur-

bation techniques. Moreover, due to the negation of the sensitivity analyses—in SAND the

density and displacement variables are independent—and the immense sparsity of the SAND

problem, solutions to large-scale problem instances may be obtained in a reasonable amount of

computation time.

5.2 Introduction

Topology optimization is an algorithmic approach to a pervasive engineering problem: the dis-

tribution of a limited resource to an optimal end. In classical topology design of structures the

goal is to determine the least compliant material distribution given a limited amount of material.

In general however the least compliant material distribution is not the strongest material dis-

tribution: the structural topology of minimum weight (lightest) which can support the applied

loads. In order to support the applied loads the topology has to prevent material failure—

typically the end of the elastic regime—at each and every point in the structure. This may be

achieved with local stress constraints. Bendsøe and Sigmund [2] have noted that ‘imposing

stress constraints on topology optimization problems is an extremely important topic’, and that

62
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‘the best way to solve stress constrained problems has probably yet to be suggested’ (2003).

The interested reader can refer to Duysinx et al. [104] for ‘why stress constraints are so impor-

tant’ and Pereira et al. [105], for example, to view comparative experiments with compliance

and strength objectives.

In principle the topology design problem is a mixed integer program (material is either

present or absent, solid or void, 1 or 0, at each and every spatial position). In the 0-1 for-

mulation stress constraints are well-defined, and although notable progress has been made by

Stolpe et al. [106–108] in terms of the problem formulation and numerical techniques, the

highly combinatorial nature of the problem seems to prohibit reasonable computation times. In

order to avoid expensive integer programming techniques, and in turn permit the use of effi-

cient gradient-based optimization methods, it is customary to relax the discrete requirement on

the material variables and implement an intermediate material stiffness interpolation—typically

SIMP [54, 55]. Material variables are then interpreted as material ‘density’ variables which de-

note the amount of material present at each and every spatial position. If stress constraints are

to be physically consistent, the limited stress quantity should mimic that of a porous, composite

microstructure: local stresses are finite and nonzero as material is removed to the point of zero

density; or the ‘coherency condition’ due to Duysinx and Bendsøe [109].

Duysinx and Bendsøe [109] effectively generalized stress-constrained topology design of

truss-like structures to the continuum (or ‘bidimensional’) setting—based in turn on the ma-

terial distribution problem due to Bendsøe [54]. It is demonstrated that the stress singularity

problem—the problem of ‘singular optima’, traditionally observed in the context of truss struc-

tures [110–114]—transpires in the continuum setting too [109]. The issue is that stress is un-

defined at spatial positions where no material is present (‘zero density’ or ‘void material’) and

the indeterminant (undefined) stresses might exceed the stress limit at suitable optima. In other

words, the stress constraint function is discontinuous: stress constraints have to be ‘switched

off’ as material is removed to the point of zero density to permit void stresses to exceed the

stress limit. The effect is that standard, gradient-based optimization methods typically converge

to unsuitable local minima characterised by fully stressed low density ‘membranes’ in between

structural elements. It is typically said that suitable (singular) optima are located in ‘degenerate

subdomains’ of ‘zero measure’—or ‘jelly-fish like’ feasible domains [114]—where standard

constraint qualifications (CQ’s) do not hold. To remedy the singularity problem it is customary

to relax (perturb) stress constraints, opening up the feasible domain in order for gradient-based

optimization algorithms to reach suitable optima. The predominant techniques are known as

ǫ-relaxation [113] (typically accompanied by a continuation strategy) and qp-relaxation [115]

(a relaxation of the coherency condition itself).

Stolpe and Svanberg [116] have demonstrated that by using a ‘disaggregated’ formulation—

which is related to ‘direct’, ‘simultaneous analysis and design’ (SAND) [49, 91] and ‘displace-

ment-based’ formulations [52]—gradient-based optimization methods may find ‘singular op-

tima’ without having to resort to perturbation techniques. Recently studies dedicated to the

formulation of stress constraints as ‘vanishing constraints’ in the SAND setting—wherein zero

density material is permitted because the singularity of the global stiffness matrix does not arise

as an issue—have appeared too, detailing an ǫ-like relaxation method, specific CQ’s, and op-

timality conditions for mathematical programs with vanishing constraints (MPVC) [117–119].

These findings form the first motivation for the SAND local stress-constrained formulation
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presented herein—the possibility to do away with cumbersome relaxation and continuation

strategies—the second motivation is related to the inherent large-scale nature of the local stress-

constrained topology design problem.

In spite of efficient gradient-based optimization techniques, the local stress-constrained

SIMP topology design problem is characterised by a massive computational burden. In order to

limit stresses on a local scale, a stress constraint has to be imposed at each and every spatial posi-

tion. Alternatively one may resort to global, aggregated or regional stress constraints [120–122],

but material failure is a local phenomenon, and it is often difficult to guarantee that all the local

stresses will be limited to the critical value. The computational burden related to the ‘local na-

ture’ of stress-constrained topology design is one of two main issues identified by Duysinx and

Bendsøe [109]—the other is the coherency requirement—and since that time published numer-

ical experiments have progressively increased in size, with authors making use of a wide range

of strategies and procedures to reduce the computational burden and improve the quality of the

solutions. Pereira et al. [105], for example, employed an efficient three-node Lagrangian finite

element (FE) mesh discretization and an augmented Lagrangian solution procedure. Bruggi

and Venini [123] devised a mixed FE approach and Parı́s et al. [124] were able to solve large-

scale problems—about 10 000 Q8 FE’s—using parallel computation techniques. Bruggi and

Duysinx [43] too have considered discretizations in the order of 10 000 FE’s. Other recent de-

velopments include the level set method by Emmendoerfer and Fancello [125] and the so-called

‘damage approach’ by Verbart et al. [126].

Each and every large-scale study cited above is based on the ‘reduced’, ‘nested analysis

and design’ (NAND) or ‘conventional’ formulation of the problem, as it is referred to by Arora

and Wang [49,91]. In the NAND formulation nodal displacement (state) variables are removed

from the optimization problem by a procedure equivalent to the analytic substitution of the FE

equilibrium equation. In common computational implementations, this manifests as an inde-

pendent (nested) numerical procedure devoted to the solution of the FE system—the ‘structural

analysis phase’ or ‘FE simulation call’. In local stress-constrained problems this causes a dense

coupling between displacement variables and material density variables, necessitating multiple

(computationally expensive) sensitivity analyses in the nested algorithm. The sensitivity anal-

ysis is typically achieved with the adjoint variable method [2]. Bruggi and Duysinx [43] note

that, in spite of the imposition of an extra compliance constraint devised in order to reduce the

number of active stress constraints, the ‘level of reduction might not be be enough to provide an

efficient methodology for such kind of problems (mainly due to the cost of the adjoint analysis)’

[our emphasis]. In fact, more than a decade prior, Duysinx and Bendsøe [109] concluded that

‘new implementations’ dedicated to ‘very large-scale problems’ should be pursued.

The alternative SAND formulation may turn out to be a tenable alternative for large-scale

stress-constrained topology design. Wang and Arora [91] recognized and demonstrated this in

the context of massive truss structures. They note that ‘SAND represents a fundamental shift in

the way analysis and design problems are currently treated’ [91]. The main reason for this is that

the FE system is part of a unified SAND optimization problem in the form of a set of nonlinear

equality constraints. That is, material density variables and nodal displacement variables are

independent, hence all gradient information reduces to easy to calculate (and typically sparse)

partial derivatives. Furthermore, as mentioned above, in the SAND setting stress constraints

may be formulated as vanishing constraints, and because a lower bound of exactly zero is per-
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mitted on the material density variables, singular optima may be converged to without having to

resort to relaxation or perturbation techniques. The work presented here is based on our previous

efforts in the context of classical topology design: in Reference [33] the equivalences between

sequential approximate optimization (SAO) in the SAND setting and conventional NAND SAO

are demonstrated; in Reference [59] the compounded issues of existence of solutions, mesh

dependency and local minima are addressed in the SAND setting.

It is not our intention to argue that the SAND formulation is definitively superior to the

conventional NAND formulation—for one, SAND problems are more complex, and charac-

terised by a larger number of optimization variables and constraints, which includes a large set

of nonlinear equality constraints. However, it will be disingenuous to ignore some theoretical

considerations and numerical results which suggest that the SAND setting may be inherently

more suitable to local stress-constrained topology design, simply because it is characterised by

the alleviation of the immense computational burden associated with the sensitivity analyses, in

addition to the negation of the stress singularity problem. The rest of the paper reads as follows:

in Section 5.3.1 the minimum weight problem subject to local stress constraints is defined, in

Section 5.3.2 the infamous stress singularity problem is recited, followed by a summary of rel-

evant CQ’s in Section 5.3.3, and a simple complexity analysis in Section 5.3.4, in Section 5.4

the preferred numerical method is outlined, Section 5.5 chronicles a range of numerical demon-

strations and experiments, and Section 5.6 concludes.

5.3 The problem of minimum weight subject to local stress

constraints

5.3.1 Problem formulation

Herein the original (SAND-like) formulation of the SIMP minimum weight problem subject

to local stress constraints—Problem PS (below)—is considered. Slope constraints [60]

are introduced to ensure existence of solutions and mesh-independence of the FE discretized

problem—Problem PS (further below). For a constant FE discretization and a mesh size pa-

rameter π, proportional to the size of the FE’s, the slope parameter µ controls the complexity

of the design [59, 60]. The predefined design domain is denoted by Ω, x is the spatial posi-

tion and ρ(x) is the material distribution function. The equilibrium condition is shown here

in the energy bilinear form a(u, v) = l(v). For an equilibrium displacement u and an arbi-

trary, kinematically admissible virtual displacement v, a(u, v) is the internal virtual work; l(v)
is the virtual compliance. The local stress measure is denoted by σ(u, ρ) and σ̄ is the stress

limit. As is customary, the SIMP [54, 55] proportional stiffness model ρ(x)pE0
ijkl is employed:

E0
ijkl is the stiffness tensor of a given (solid) isotropic material and p is the SIMP exponent.
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� The SIMP minimum weight problem subject to local stress- and slope constraints PS :

min
u,ρ

∫

Ω

ρ(x) dx

subject to a(u, v) = l(v) ∀ v ∈ U (5.1)

σ(u, ρ) ≤ σ̄

Eijkl(x) = ρ(x)pE0
ijkl

∣

∣

∣

∣

∂ρ(x)

∂xi

∣

∣

∣

∣

≤ µ (i = 1, 2)

0 ≤ ρ(x) ≤ 1 ∀ x ∈ Ω

� The FE discretized, SIMP minimum weight problem subject to local stress- and slope

constraints PS :

min
u,ρ

e
∑

i=1

ρi
e

subject to [K(ρ)]u− r = 0 (5.2)

ρi

[

σi(u)

σ̄
− 1

]

≤ 0 i = 1, 2, . . . , e

ρi(k) − ρj(k) ≤ µπ k = 1, 2, . . . , b

ρj(k) − ρi(k) ≤ µπ k = 1, 2, . . . , b

0 ≤ ρi ≤ 1 i = 1, 2, . . . , e

The design domain is discretized with e FE’s with b the number of inter element boundaries.

Each FE is assigned a material density variable ρi and a stress measure σi(u), i = 1, 2, . . . , e.
The ρi(k) and ρj(k) represent the elements which share inter element boundary number k for

k = 1, 2, . . . , b. The vector of material density variables is denoted by ρ ∈ R
e. The vector of

nodal displacements is u ∈ R
d, where d is the number of degrees of freedom. The globally

assembled, SIMP modified stiffness matrix [K(ρ)] =
∑e

i=1(ρi)
p[Ki] has dimension d× d.

The vector of primal optimization variables is (u,ρ) ∈ R
n=d+e. Problem PS has m =

d+ e+2b constraints, of which d are (nonlinear) equality constraints: [K(ρ)]u− r = 0 ∈ R
d.

5.3.2 The stress singularity problem

A singularity is a point where a mathematical object is ill-defined, or fails to be well-behaved in

a particular way. Structural stress is undefined in ‘void’ material—material with ‘zero density’

ρi = 0. Therefore, the stress constraint on element i may only be imposed if ρi > 0. In other

words, one may write the local stress constraint in conditional form

σi(u)

σ̄
− 1 ≤ 0 if ρi > 0 . (5.3)
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That is, σi(u) can take on any value if ρi = 0. The same effect is achieved—but with nicer

properties since a derivative with respect to ρi is introduced—if the local stress constraint (5.3)

is rather formulated as a ‘vanishing constraint’ [117–119]

ρi

[

σi(u)

σ̄
− 1

]

≤ 0 . (5.4)

Constraint (5.4) is reminiscent of a ‘force constraint’-like formulation typically found in

the context of truss structures [111], for continuum structures the additional ρi term is grouped

with a larger class of ‘quality functions’ [112]. Cheng and Guo study trusses and show that the

discontinuity of the stress constraint function (5.4) at ρi = 0 gives rise to degenerate ‘jellyfish-

like’ feasible subdomains [114]. As mentioned earlier, Duysinx and Bendsøe [109] demonstrate

that local stress is finite and nonzero in the continuum setting for ρi → 0, giving rise to the same

issue.

Material density variables in NAND-based topology design formulations typically have to

be limited to a small, nonzero value ρi ≥ ρmin > 0, i = 1, 2, . . . , e, in order to to avoid the sin-

gularity of the global stiffness matrix [K(ρ)]. Therefore, the feasible region of the local stress

constraint (5.4) at ρi = 0, albeit degenerate, is not part of the feasible domain of the NAND

formulated problem. To remedy this the stress constraint (5.4) may be relaxed (perturbed) with

a parameter dependent on the density lower bound ρmin. The ǫ-relaxation approach [113] pro-

poses the following modification

ρi

[

σi(u)

σ̄
− 1

]

≤ ǫ with ǫ2 = ρmin . (5.5)

This approach is also employed by Duysinx and Bendsøe [109]1. The perturbation of the stress

constraint opens up the feasible domain, permitting general-purpose optimization algorithms to

reach suitable solutions. Typically a continuation strategy is employed so that a solution to the

original, unperturbed problem (or a problem of close resemblance) may be obtained2. A similar

relaxation technique devised for purely vanishing constraints (5.5) (i.e. ρmin = 0) can be found

in References [118, 119]. The authors demonstrate convergence of the sequence of stationary

points of the perturbed problems to a suitable stationary point of the original problem, however,

numerical demonstrations rely on judicious choices of the relaxation parameter.

An alternative perturbation technique due to Bruggi [115] is employed in the consideration

of large-scale problem instances in Reference [43]. The formulation tackles the discontinuity

of the stress constraint function by relaxing the coherency condition [109]. The stress limit σ̄ is

in fact also interpolated with SIMP power-law ρqi σ̄

ρp−qi

σi(u)

σ̄
− 1 ≤ 0 . (5.7)

1In the NAND setting the nonzero lower bound on material density variables ρmin allows for a reformulation of

the stress constraint function which suites the use of popular reciprocal intervening variables:

σi(u)

σ̄
− ǫ

ρi
− 1 ≤ 0 . (5.6)

If zero density material is permitted ρmin = 0 this formulation is of course untenable (due to the division by zero).

Moreover, the use of intervening variables seems somewhat misplaced in the SAND setting [33].
2Stolpe and Svanberg [127] show that ǫ continuation may be problematic in the presence of many local minima.
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The coherency condition is satisfied if q = p [109]. The ‘qp-approach’ [115] works by setting

q < p. Thus, the first term in (5.7) is zero at zero density ρi = 0. Bruggi [115] notes that

the formulation is not physically consistent and purely a mathematical manipulation of the

problem. Nevertheless, the method can be assimilated with an adaptive ǫ-relaxation approach,

stress constraints on full density elements are not perturbed and with appropriate initialization

and continuation of q the method is shown to have good convergence properties. We hope to

test various stress constraint formulations in the SAND setting in future, herein however we

limit our investigation to the preperturbed—and physically consistent—vanishing local stress

constraint (5.4).

5.3.3 Constraint qualification

As per References [117, 118], let x⋆ = (u⋆,ρ⋆) be a feasible point of PS , and define the index

sets of nonzero and zero material density elements:

I+ ={i = 1, 2, . . . , e | ρ⋆i > 0} (5.8)

I0 ={i = 1, 2, . . . , e | ρ⋆i = 0} . (5.9)

The set of nonzero elements I+ can be partitioned into subsets of active and feasible local stress

constraints:

I+0 ={i = 1, 2, . . . , e | ρ⋆i > 0, [σi(u)/σ̄ − 1] = 0} (5.10)

I+− ={i = 1, 2, . . . , e | ρ⋆i > 0, [σi(u)/σ̄ − 1] < 0} . (5.11)

and similarly, the set of void elements I0 can be partitioned into subsets of infeasible, active and

feasible local stress constraints:

I0+ ={i = 1, 2, . . . , e | ρ⋆i = 0, [σi(u)/σ̄ − 1] > 0} (5.12)

I00 ={i = 1, 2, . . . , e | ρ⋆i = 0, [σi(u)/σ̄ − 1] = 0} (5.13)

I0− ={i = 1, 2, . . . , e | ρ⋆i = 0, [σi(u)/σ̄ − 1] < 0}. (5.14)

Achtziger and Kanzow [117] show that if I0 6= ∅, then x⋆ violates linear independence

constraint qualification (LICQ). Furthermore, if I00 ∪ I0+ 6= ∅ then x⋆ violates Mangasarian-

Fromovitz constraint qualification (MFCQ). In other words, LICQ only has a change to hold if

no void material is present, whereas MFCQ might only hold if all the local stress constraints

which belong to void material elements are feasible (inactive)—which is unlikely given nature

of the stress-constrained problem. The authors go on to show that specialised forms of Adabie

CQ, MFCQ and LICQ can be expected to hold in many practical situations. In particular, if x⋆

is a local minimum of problem PS , then the particular gradients

∂

∂(u,ρ)
([K(ρ⋆)]u⋆) (5.15)

∂

∂ρi
ρ⋆i i ∈ I0 (5.16)

∂

∂u
[σi(u)/σ̄ − 1] i ∈ I00 ∪ I+0 (5.17)
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have to be linearly independent for a tailored version of Adabie CQ to hold3. The second vector

(5.16) and third set of vectors (5.17) are linearly independent (trivially) due to the simple form

of the quality function in the vanishing constraint (5.4), and the fact that no two local stress

constraints (5.4) are dependent on the same subset of the displacement vector u. Furthermore,

it turns out that the gradients of the FE equation (5.15) may be linearly dependent without

violating CQ [33, 119]. In general the conditions stated above are simply that ‘the gradients

of all the active constraints are linearly independent’ [117]. (It seems as though ‘vanished’

equilibrium constraints may be viewed as ‘inactive’ constraints too [33].) Vanishing stress

constraints (5.4) are deemed inactive if ρi = 0, even though the value of the constraint—

i.e. zero exactly—would cause its selection in a standard active set strategy. Achtziger and

Kanzow [117] note that this is a ‘natural modification of the standard LICQ assumption’.

5.3.4 Computational complexity

Consider the NAND setting. In every iteration the FE system

[K(ρ)]u = r (5.18)

is solved to obtain the displacement vector u ∈ R
d. Say we have at our disposal a solver which

requiresO(nφ) operations to solve a linear system with n unknowns. That is,O(dφ) operations

are required in every iteration in the NAND setting in order to obtain the displacements u ∈ R
d

for a given topological design ρ.

Assume that the sensitivity analysis is done with a standard adjoint variable method [2,109].

Assume also that an active set strategy is employed. In the stress-constrained problem the

number of active constraints will typically be a portion of the number of elements in the FE

mesh: say χe with 0 < χ ≤ 1. To obtain the sensitivity derivatives an additional χeO(dφ)
operations are required—one additional load case per active stress constraint [2, 109]. The

number of elements e are related to the number of degrees of freedom d by a constant factor ψ.

Therefore, the total computational complexity per iteration in the NAND setting is at least

TNAND(e) = O((ψe)φ) + χeO((ψe)φ) . (5.19)

Neglecting all but the higher order terms, equation (5.19) reduces to

TNAND(e) = O(eφ+1) . (5.20)

For example, say we have an exceptionally efficient linear system solver with practical scal-

ing properties of O(e1). The structural analysis phase of the NAND formulated local stress-

constrained problem will then require at least O(e2) operations, and although the optimization

phase itself is typically quite cheap in the NAND setting, the overall computational complexity

will be that of which ever procedure dominates. In practice the computational complexity of a

NAND algorithm may be closer to O(e3) [40, 42]. This is rather problematic with regard to the

large-scale nature of the local stress-constrained topology design problem—especially in the

limit of FE discretization.

3This is presented as Corollary 2 in Reference [117] and Definition 3.1 (MPVC-LICQ) in Reference [119].
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In the SAND setting the ‘computational kernel’ is formed by the Karush-Kuhn-Tucker

(KKT) primal-dual linear system itself, see for example Reference [33]. The KKT system

of the local stress- and slope-constrained problem has at most n+m = 2d+2e+2b unknowns.

The number of inter element boundaries b is proportional to the number of elements e by ω,

and like above, the number of degrees of freedom is d = ψe. That is, a linear system with

n+m = 2ψe+2e+2ωe unknowns is constructed and solved in every iteration. Neglecting all

but the higher order terms, the number of operations of a SAND algorithm could scale to

TSAND(e) = O(eφ) . (5.21)

Hence, even though the SAND problem is larger and more complex than the equivalent NAND

problem, the base complexity of the ‘computational kernel’ may be preserved in the overarching

SAO algorithm. Compare this to the NAND setting wherein the sensitivity analyses necessarily

cause an exponential increase in algorithmic complexity relative to problem size—cf. equation

(5.20).

It is of course rather difficult to compare NAND and SAND solution procedures on an equal

footing4. A rigorous and considered benchmark study—like that due to Wang and Arora [91] in

the context of truss structures, or Rojas-Labanda and Stolpe [44] in the context of simply con-

strained problems—requires a substantial research effort and a fair amount of computational

resources. (We hope to devote some of our attention to this in the future.) In the following

section a numerical method is outlined which has its roots in conventional NAND-based struc-

tural optimization—based on strictly convex and separable approximate subproblems—see for

example Reference [33]. A benchmark study should of course include an evaluation of the

relative performances of readily available algorithms like IPOPT, SNOPT, KNITRO and SQP+.

5.4 The numerical method

Sequential approximate optimization (SAO) as solution strategy for general nonlinear pro-

gramming involves the construction of inexpensive analytical approximation functions f̃
{k}
j (x),

j = 0, 1, . . . ,m to the objective f0(x) and constraint functions fj(x), j = 1, 2, . . . ,m at succes-

sive iteration points x{k}, k = 1, 2, 3, . . .. Together the approximations f̃
{k}
j (x), j = 0, 1, . . . ,m

form an approximate subproblem P [k]. The form of the approximations f̃
{k}
j (x) are determined

by the consequential solubility of the subproblem. In structural optimization it is customary to

use strictly convex and separable approximations, as for example in CONLIN [34, 35] and

the MMA [36]. The resulting subproblems are amenable to highly efficient dual statements

when the number of constraints m is far less than the number of design variables n. When

the number of constraints is relatively large, the performance of Lagrange-Newton diagonal

4For example, which restriction methods should be used in the respective settings—e.g. density filtering or

slope constraints? How should the stress constraints be formulated—e.g. vanishing, ǫ-relaxed (maybe a modified

reciprocal form) or qp-relaxed? Should the density variables in the SAND formulation be restricted with a nonzero

lower bound too—like the NAND formulation—in order for the comparison to be valid? These considerations are

only a few within the scope of the problem formulation, even more tricky is deciding on and implementing com-

parable numerical routines for each: the SAND optimization, the NAND optimization and the NAND structural

analyses, and finally taking into account all the algorithmic parameters.
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quadratic subproblems in combination with primal-dual interior-point subsolvers is considered

superior [33, 45, 46].

The general diagonal quadratic approximation [65] is used to construct the objective and

constraint function approximations f̃
{k}
j (x), j = 0, 1, . . . ,m. The approximate constraint func-

tions f̃
{k}
j (x), j = 1, 2, . . . ,m are then linearised, giving P [k] the form of a diagonal quadratic

program (QP). The constraint curvature information is retained as part of the diagonal quadratic

objective function f̃
{k}
0 (x). The approximate objective function f̃

{k}
0 (x) is viewed as an approx-

imation of the Lagrangian and the SAO method may be termed a diagonal Lagrange-Newton

SQP-like algorithm [46]. The Lagrange-Newton subproblem may be expressed as

� The QP subproblem P [k] :

min
x

f̃
{k}
0 (x) = f0(x

{k}) +∇fT0 (x{k})(x− x{k}) +
1

2
(x− x{k})TQ{k}(x− x{k})

subject to f̃
{k}
j (x) = fj(x

{k}) +∇fTj (x{k})(x− x{k}) [=,≤] 0 , j = 1, 2, . . . ,m

(5.22)

x̌
{k}
i ≤ xi − x{k}i ≤ x̂

{k}
i , i = 1, 2, . . . , n

and

x̌
{k}
i ← max(x

{k}
i − δ(xi,max − xi,min), xi,min) (5.23)

x̂
{k}
i ← min(x

{k}
i + δ(xi,max − xi,min), xi,max) (5.24)

for i = 1, 2, . . . , n, with xi,min and xi,max the lower and upper bounds on variable i. For the

sake of brevity we have resorted to some nonstandard notation—i.e. ‘[=,≤]’—to denote both

equality and inequality constraints.

The move limit is denoted by 0 < δ < 1 and manifests via the subproblem variable bounds

(5.23) and (5.24). Convergence and termination is enforced with an adaptive move limit strat-

egy, as per the convergent trust-region algorithm due to Fletcher et al. [66]. If subproblem P [k]
is infeasible, the point x{k} is included in the filter list, the algorithm is backtracked to the

previous feasible subproblem, and the move limit is expanded to the maximum value δ = 1.

Numerical experience indicates this is a viable ‘restoration procedure’ in SAND topology de-

sign; intuitively, subproblem P [k] is typically infeasible if too much material is removed in

P [k − 1] and/or if the move limit is too restrictive. Backtracking the algorithm means that the

said material might be replaced, the inclusion of the infeasible subproblem (point) in the filter-

list forces the algorithm to find a point with less severe constraint violations, and the expanded

move limit may cause the availability of such a point in the first place—e.g. ρi = 0, or some

large displacement variables in u—which might have been outside the subproblem variable

bounds for δ << 1. In Section 5.5 the performance of this procedure is tested in a random

multistart framework.

The Hessian matrix Q{k} of the approximate objective f̃
{k}
0 (x) contains only diagonal

elements—which have minimal storage requirements—constructed according to

Q
{k}
ii = c

{k}
0i

+
m
∑

j=1

λ
{k}
j c

{k}
ji
, i = 1, 2, . . . , n . (5.25)
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The curvature terms c
{k}
ji

, j = 1, 2, . . . ,m, i = 0, 1, . . . , n are obtained as analytic, second-

order partial derivatives of the objective f0(x) and constraint functions fj(x), j = 1, 2, . . . ,m
respectively

c
{k}
ji

=
∂2fj(x

{k})

∂x2i
(5.26)

for all functions j = 0, 1, . . . ,m and with respect to all variables i = 1, 2, . . . , n. In the con-

struction of (5.25) the Lagrangian multiplier estimates from the previous iterate are retained—

i.e. λ{k} = λ{k−1}⋆. Assuming feasibility and CQ, it is only required that Q
{k}
ii > 0, for

i = 1, 2, . . . , n, for the subproblem P [k] to be strictly convex—if the Hessian is nondiagonal

this is more involved. Herein the diagonal Hessian is constructed according to

Q
{k}
ii = max

(

α > 0,

∣

∣

∣

∣

∣

c
{k}
0i

+
m
∑

j=1

λ
{k}
j c

{k}
ji

∣

∣

∣

∣

∣

)

, i = 1, 2, . . . , n (5.27)

with α a small positive number which ensures strict convexity—a standard value of 1× 10−6 is

used throughout. See Reference [33] for details. It should be noted here that the approximation

strategy as per (5.27) with analytical curvature terms (5.26) is one of many possible approxima-

tion strategies in stress-constrained SAND topology optimization, and there thus seems to be

plenty of scope for future work on second-order approximation strategies (which may include

nondiagonal terms).

Subproblem P [k] is first-order accurate with respect to problem PS at every iteration point

x{k} = (uk,ρk). Therefore, (u⋆,ρ⋆) is a solution of problem PS if and only if (u⋆,ρ⋆) =
(uk,ρk) solves P [k]. Since problem P [k] possesses only (affine) linear constraints, Abadie’s

CQ (or ‘regularity’) is trivially satisfied if P [k] is feasible.

Fletcher and co-workers [66] prove a number of lemmas which guarantee the convergence of

the sequence of iterates x{k}, k = 1, 2, 3, . . .. Under reasonable assumptions the algorithm will

either terminate because a feasible subproblem can not be found (the ‘restoration procedure’

fails), or converge to a stationary (KKT) point, or accumulate at a feasible point which fails to

satisfy MFCQ [78].

5.5 Numerical demonstrations and experiments

5.5.1 Two-bar truss topology design

This section is opened with the well-known two-bar truss topology design problem—Figure 5.1—

which, ‘despite its apparent simplicity’, ‘illustrates clearly the difficulties of topology design

with stress constraints’ [109]. First, slope constraints are not enforced, and two rather coarse

mesh discretizations are considered—30 × 10 FE’s and 60 × 20 FE’s. Q8 FE’s and a SIMP

exponent p = 3 are used throughout. The numerical method outlined above is implemented

with ρi,min = 0 and ρi,max = 1 for i = 1, 2, . . . , e, and ui,min = −102 and ui,max = −102 for

i = 1, 2, . . . , d. The problems are initialized at (u0,ρ0) = (0,1) with an initial move limit of

δ0 = 0.2 in each case. The von Mises stress criterion is used for σi(u), evaluated at the centre of

each element. The stress limit is set to σ̄ = 20. The ILOG CPLEX Barrier QP optimizer [128],
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set to use up to 8 parallel threads, is employed as solver of each P [k]. The computational

platform is the Rhasatsha HPC [77].

3

1

F

l3

E = 1 ν = 0.3 F = 10 l3 = 0.5

Figure 5.1: The two-bar truss problem.

Figure 5.2 shows the topologies converged to by the algorithm. The volume fraction objec-

tive is denoted by f0(ρ), the largest constraint violation is denoted by Θ(u,ρ), n0 and n1 are

the number of elements at exactly 0 and 1 respectively; Φ(ρ) is the solid-void fraction. One

can see that it is possible to remove the material membrane, symptomatic of the stress singu-

larity problem [109], without resorting to perturbation or relaxation of the stress constraints.

For the 60× 20 FE mesh—Figure 5.2b—the same effect is observed, but the problem of mesh-

dependency and local minima is encountered. This illustrates a disadvantage of the SAND

formulated problem, which may be more multimodal than the equivalent NAND case.

(a) f0(ρ) = .246, Θ(u,ρ) = 8.0E-07,

n0(ρ) = 216, n1(ρ) = 18, Φ(ρ) = .78.

(b) f0(ρ) = .255, Θ(u,ρ) = 3.0E-04,

n0(ρ) = 860, n1(ρ) = 186, Φ(ρ) = .87.

Figure 5.2: Two-bar truss: material distributions without stress relaxation (300 FE’s and 1200
FE’s).

In Figure 5.3 the respective stress maps are displayed. For the sake of readability all the

von Mises stresses equal to or greater than σ̄ = 20 are coloured red. Blue regions represent von

Mises stresses of 0. The maximum stress max σi(u) is given in the caption of each figure. The

number of active stress constraints, neglecting whether material is present or absent, is given

by mσ. Note that these values are collected with a post-processing routine—vanishing stress

constrains (5.4) with values greater than−10−3 are deemed active, but active constraints are not

identified or selected in any way external to the QP subsolver. In Figure 5.4 the same von Mises

stress maps are given, but with the stresses in void elements ρi = 0 ignored. The maximum

stress in all the nonzero elements ρi > 0 is denoted by maxi∈I+ σi(u). The number of nonvoid-

active stress constraints is given by mσ
+. Together Figures 5.3 and 5.4 illustrate the mechanism

of vanishing stress constraints (5.4): if ρi = 0 the stress criterion σi(u) can take on any value
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without violating the constraint ρi[σi/σ̄ − 1] ≤ 0; if ρi > 0 the stress constraint can only be

satisfied if the stress criterion is feasible with respect to the stress limit σi ≤ σ̄.

(a) maxσi(u) = 126.92, mσ = 272. (b) maxσi(u) = 202.70, mσ = 987.

Figure 5.3: Two-bar truss: von Mises stress σi(u) in each and every element i = 1, 2, . . . e
(300 FE’s and 1200 FE’s).

(a) max
i∈I+

σi(u) = 20.00, mσ
+ = 56. (b) max

i∈I+
σi(u) = 20.00, mσ

+ = 127.

Figure 5.4: Two-bar truss: von Mises stress σi(u) in nonzero elements ρi > 0, i = 1, 2, . . . , e
(300 FE’s and 1200 FE’s).

Figure 5.5 illustrates the iteration histories of the number of active stress constraintsmσ and

the number of nonvoid-active stress constraints mσ
+. One can see that the iteration histories of

nonvoid-active stress constraints (i.e. mσ
+) correspond fairly well to the iteration histories of

active (relaxed) stress constraints in the conventional NAND setting—cf. Figure 13 in Refer-

ence [109] and Figure 4 in Reference [43].
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(a) 300 FE discretization
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mσ

mσ
+

(b) 1200 FE discretization

Figure 5.5: Number of active stress constraints.

Next the computational properties of the SAO algorithm outlined in Section 5.4 and the

local stress- and slope-constrained SAND problem PS is investigated. For this we remain with

the two-bar truss problem, but now slope constrains [60] are imposed to mitigate the problem
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Table 5.1: Large-scale storage and computational requirements

Figs. ex · ey = e n m Jnz mσ mσ
+ k Tk

60 · 20 = 1200 8722 13362 267444 (0.23%) 842 84 76 1.2

5.6a 90 · 30 = 2600 19382 29942 600064 (0.10%) 1820 156 99 3.4

5.6b 120 · 40 = 4800 34242 53122 1065284 (0.06%) 3206 264 140 9.2

5.6c 150 · 50 = 7500 53302 82902 1663104 (0.04%) 4910 379 119 21.3

5.6d 180 · 60 = 10800 76562 119282 2393524 (0.03%) 7055 512 146 28.8

5.6e 210 · 70 = 14700 104022 162262 3256544 (0.02%) 9497 603 174 41.3

5.6f 240 · 80 = 19200 135682 211842 4252164 (0.02%) 12322 777 199 50.9

of mesh-dependency and local minima. The mesh parameter is set to π = 1/ex, with ex the

number of elements in the horizontal direction of the domain. The slope parameter is set at

µ = 20.

The mesh disretization range is summarised in Table 5.1, the largest problem size has 19200

FE’s: n is the total number of optimization variables (e+ d), m the total number of constraints

(d+e+2b) and Jnz is the number of nonzero terms in the constraint Jacobian matrix (the number

in brackets is the percentage filled). The algorithm is terminated if the Euclidean norm of the

step in all the optimization variables (u,ρ) is less than 1: k is the number of iterations to conver-

gence and Tk is the average time per iteration (in seconds). The topologies generated can be seen

in Figure 5.6. In large-scale problem instances numerical difficulties may occur—reported by

the QP solver—which we have found can be mitigated by setting insubstantial material density

variables to zero exactly just before the construction of each subproblem P [k]—here a thresh-

old of ρi < 1 × 10−3 is used, which, in terms of SIMP with p = 3, equates to an insubstantial

equivalent density/stiffness.

The storage requirements of problem PS scale in the linear with respect to the number of

elements e. More surprising however, based on the empirical evidence in Table 5.1, the average

times per iteration Tk scale favourably too—practically linear. A number of runs during various

load levels on the computational platform confirmed the results. Due to the increased number of

iterations required for convergence for larger problem sizes, the total time to convergence scales

slightly worse than average time per iteration Tk. The numerics of the problems is not scaled

in any way in the external algorithm—the subsolver of course has its own preconditioning and

scaling routines.

A potential pitfall of the slope-constrained problem is the necessity of ‘grey’ transition zones

between solid and void regions—resulting in fairly poor solid-void fractions Φ(ρ). To remedy

this, slope constraints may relaxed with a continuation strategy, ending up with an unrestricted

problem PS with πµ ≥ 1. The slope parameter µ is adjusted with 1.1µ if the Euclidean norm

of the step in all the optimization variables (u,ρ) is less than 1. Also, the trust-region filter-list

is cleared. (Effectively then, a new optimization problem PS is embarked upon each time the

convergence condition is satisfied, initialized at a fairly good starting position.) Once πµ ≥ 1,

the algorithm is allowed to terminate. The results of this procedure are displayed in Figure 5.7

and the accompanying nonvoid-active stress maps are given in Figure 5.8. It is clear that fairly

well-defined topologies can be obtained in this way.
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(a) f0(ρ) = .284, Θ(u,ρ) = 5.9E-05,

n0(ρ) = 1664, n1(ρ) = 474, Φ(ρ) = .79.

(b) f0(ρ) = .292, Θ(u,ρ) = 8.5E-04,

n0(ρ) = 2942, n1(ρ) = 926, Φ(ρ) = .81.

(c) f0(ρ) = .299, Θ(u,ρ) = 1.6E-05,

n0(ρ) = 4531, n1(ρ) = 1465, Φ(ρ) = .80.

(d) f0(ρ) = .299, Θ(u,ρ) = 4.9E-05,

n0(ρ) = 6543, n1(ρ) = 2132, Φ(ρ) = .80.

(e) f0(ρ) = .299, Θ(u,ρ) = 9.8E-04,

n0(ρ) = 8894, n1(ρ) = 2927, Φ(ρ) = .80.

(f) f0(ρ) = .303, Θ(u,ρ) = 9.7E-04,

n0(ρ) = 11545, n1(ρ) = 3884, Φ(ρ) = .80.

Figure 5.6: Large-scale two-bar truss design without stress relaxation, µ = 20.

5.5.2 The MBB beam problem

The second experimental problem is the MBB beam—Figure 5.9—a problem well-known for

its severe multimodality. In an attempt to cope with the problem of local minima, a random

multistart procedure is implemented. The idea is that the algorithm may be initialized at any

number of random starting positions, and based on the fitness of the solutions obtained, and

the frequency with which the fittest known solution is converged to, one may hazard a guess—

in terms of a confidence measure—pertaining to the globally optimality of the fittest known

solution [61]. In Reference [59] we implement a similar multistart procedure (and the same

algorithm) to generate ‘probably globally optimal, approximately 0-1’ solutions to the classical

minimum compliance topology design problem.

A 180 × 60 mesh discretization is used—half the beam is modelled, due to symmetry. The

bounds on the displacement variables u are expanded to±103. All the other algorithmic settings

are retained from before.

One hundred instances of problem PS with µ = 18 are initialized, each with a random

material distribution such that 0.5 ≤ ρ0i ≤ 1, i = 1, 2, . . . , e, with every element in ρ0 ran-

dom5. The same is done for random initial material distributions restricted to 0.75 ≤ ρ0i ≤ 1,

5The randomly initialized problems are completely independent, and may therefore be computed in a reason-

able amount of time on a parallel computation platform. Our algorithm, for example, can run 10 batches of 10
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(a) f0(ρ) = .236, Θ(u,ρ) = 2.3E-04,

n0(ρ) = 2030, n1(ρ) = 522, Φ(ρ) = .95.

(b) f0(ρ) = .246, Θ(u,ρ) = 2.4E-03,

n0(ρ) = 3572, n1(ρ) = 1048, Φ(ρ) = .96.

(c) f0(ρ) = .252, Θ(u,ρ) = 2.2E-03,

n0(ρ) = 5531, n1(ρ) = 1718, Φ(ρ) = .97.

(d) f0(ρ) = .252, Θ(u,ρ) = 3.7E-03,

n0(ρ) = 7995, n1(ρ) = 2466, Φ(ρ) = .97.

(e) f0(ρ) = .252, Θ(u,ρ) = 3.0E-03,

n0(ρ) = 10919, n1(ρ) = 3333, Φ(ρ) = .97.

(f) f0(ρ) = .255, Θ(u,ρ) = 4.3E-03,

n0(ρ) = 14213, n1(ρ) = 4509, Φ(ρ) = .98.

Figure 5.7: Large-scale two-bar truss design without stress relaxation, µ continuation.

i = 1, 2, . . . , e. Both cases are repeated with a less restrictive slope parameter µ = 21. The

multistart statistics are summarised in Table 5.2, accompanied by the fittest solution found, in

each case, in Figure 5.10. The number of infeasible terminations are denoted by ζ , P is the

total number of subproblems P [k] the computational platform was tasked with, and TP is the

average time required per subproblem, in seconds.

The average time per subproblem TP is about double that of the equivalently sized two-

bar truss problem. This is probably due the increased difficulty of the subproblems, in part

inherent to the MBB beam problem, but also because feasibility is more difficult to maintain

problems in parallel, which, in this case, requires about 50 hours of wall-time.

Table 5.2: Multistart statistics; 100 runs each.

Fig. µ ζ P TP

5.10a 18 0.75 ≤ ρ0i ≤ 1 4 15357 75

5.10b 21 0.75 ≤ ρ0i ≤ 1 5 16304 82

5.10c 18 0.5 ≤ ρ0i ≤ 1 28 17014 78

5.10d 21 0.5 ≤ ρ0i ≤ 1 27 17116 90
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(a) maxσi(u) = 363.02, max
i∈I+

σi(u) = 20.00,

mσ = 2132. mσ
+ = 102.

(b) maxσi(u) = 373.43, max
i∈I+

σi(u) = 20.00,

mσ = 3684, mσ
+ = 112.

(c) maxσi(u) = 474.94, max
i∈I+

σi(u) = 20.06,

mσ = 5681, mσ
+ = 150.

(d) maxσi(u) = 662.55, max
i∈I+

σi(u) = 20.08,

mσ = 8166, mσ
+ = 171.

(e) maxσi(u) = 828.14, max
i∈I+

σi(u) = 20.01,

mσ = 11117, mσ
+ = 198.

(f) maxσi(u) = 1518.08, max
i∈I+

σi(u) = 20.09,

mσ = 14461, mσ
+ = 248.

Figure 5.8: Large-scale two-bar truss design: von Mises stress σi(u) in nonzero elements

ρi > 0, i = 1, 2, . . . , e, µ continuation

6
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E = 1 ν = 0.3 F = 4 σy = 20

Figure 5.9: The MBB beam problem (stress-constrained minimum weight; load and roller

support distributed over 1/5th of the domain).

from the random starting positions. The number of infeasible terminations ζ are almost 1 in 3

for random initializations between 0.5 ≤ ρi ≤ 1, i = 1, 2, . . . , e. (For 0 ≤ ρi ≤ 1, not shown

here, its about 1 in 2.) In the cases with the less restrictive slope parameter µ = 21, the batch

with the more expansive random initializations (i.e. 0.5 ≤ ρ0i ≤ 1, i = 1, 2, . . . , e) arrived at

a fitter solution—Figure 5.10b vs. Figure 5.10d—with a lower objective function value f0(ρ)
and an improved solid-void fraction Φ(ρ). So, there seems to be a trade-off: an expanded

scope of random initializations may have a better chance of arriving at the global minimum,
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(a) f0(ρ) = .461, Θ(u,ρ) = 3.0E-03,

n0(ρ) = 3440, n1(ρ) = 2349, Φ(ρ) = .54.

(b) f0(ρ) = .447, Θ(u,ρ) = 2.3E-03,

n0(ρ) = 3693, n1(ρ) = 2194, Φ(ρ) = .55.

(c) f0(ρ) = .486, Θ(u,ρ) = 2.0E-03,

n0(ρ) = 3234, n1(ρ) = 2641, Φ(ρ) = .54.

(d) f0(ρ) = .459, Θ(u,ρ) = 4.7E-03,

n0(ρ) = 3096, n1(ρ) = 1929, Φ(ρ) = .47.

Figure 5.10: MBB: material distributions without stress relaxation, µ = 18 and µ = 21.

but the amount of computation time wasted due to infeasible terminations is increased. That is

a major disadvantage of the SAND setting, an infeasible termination contains little-no usable

information since the equilibrium condition is not satisfied.

We hope to, in the future, implement more sophisticated restoration procedures and inves-

tigate more thoroughly the properties of the multistart strategy. For now, these results demon-

strate that a rudimentary trust-region algorithm can cope (to some extent) with the local stress-

and slope-constrained problem PS , without resorting to relaxation or perturbation techniques.

The multistart strategy may therefore be an useful framework in which to test various restora-

tion procedures, constraint formulations, approximation strategies et cetera. That is, one may

be able to evaluate a modification or a perturbation of an algorithmic property or parameter, or a

modification to the problem formulation itself, by comparing the number of infeasible termina-

tions, the frequency with which the best known solution is found (something we do not attempt

here), and the total computational effort required to run a batch of problems. This may also

form part of a rigorous NAND-SAND benchmark study wherein the same multistart strategy is

applied to the NAND problems too, which should reveal the relative multimodality of the two

formulations—it is expected that the NAND case will be less severe.

The slope parameter continuation strategy, as used above in consideration of the two-bar

truss problems, is repeated here. The topologies depicted in Figures 5.10b and 5.10d are used

as starting positions. The results are given in Figures 5.11 and 5.12. Interestingly, the solution

with the lower objective function value f0(ρ) has far fewer nonvoid-active stress constraintsmσ
+,

but a much larger number or ‘standard’ active stress constraints mσ. Moreover, we can report

that the average von Mises stress σi(u) in nonvoid elements ρi > 0 is higher in the topology

with the lower objective value: 12.90 vs. 12.42. This seems to indicate that the topology uses

less material to distribute stress more evenly—material is thus distributed in a superior way.

5.5.3 L-shape beam design

The L-shaped beam (or ‘L-bracket’) is a standard benchmark in topology optimization. The

design domain is depicted in Figure 5.13. The issue is, as noted by Duysinx and Bendsøe [109],

‘not so much the optimization part but more the numerical problem of capturing the theoretically

infinite stress at the inner corner’, and the solution is ‘strongly dependent on the quality of the
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(a) f0(ρ) = .324, Θ(u,ρ) = 4.4E-05,

n0(ρ) = 7215, n1(ρ) = 3310, Φ(ρ) = .97.

(b) f0(ρ) = .329, Θ(u,ρ) = 1.5E-03,

n0(ρ) = 7191, n1(ρ) = 3312, Φ(ρ) = .97.

Figure 5.11: MBB: material distributions without stress relaxation, µ continuation.

(a) maxσi(u) = 675.95, max
i∈I+

σi(u) = 20.00,

mσ = 7291, mσ
+ = 119.

(b) maxσi(u) = 1841.23, max
i∈I+

σi(u) = 20.15,

mσ = 3742, mσ
+ = 646.

Figure 5.12: MBB: von Mises stress σi(u) in nonzero elements ρi > 0, i = 1, 2, . . . , e, µ
continuation.

analysis’. This then seems to be an especially interesting problem in the SAND setting, for, in

SAND, the ‘analysis’ part is united with the ‘optimization’ part, and the equilibrium condition

may only be satisfied at convergence.

6

6

4

4

E = 1 ν = 0.3

σy = 4.5F = 1
F

Figure 5.13: The L-shape beam problem (load distributed over 1/25th of the domain).

The design domain is discretized with 14400 FE’s6. All algorithmic settings are retained

from before. The slope parameter µ is set to 27. One hundred problem instances are initialized

with random material density distributions 0.75 ≤ ρ0i ≤ 1, i = 1, 2, . . . , e. Six infeasible termi-

nations are encountered. The three fittest solutions that were found are depicted in Figure 5.14.

The results correspond well with the topological designs reported in Reference [43].

As mentioned before, the prevalence of ‘grey’ material is problematic. The result of slope

constraint continuation is depicted in Figure 5.15. In Figure 5.16 the entire stress map—void

and nonvoid elements—is depicted for each design; accompanied by the stress maps of nonzero

6The encompassing square domain is actually discretized with 22500 FE’s, but those FE’s in the upper-right

‘void’ region are restricted to 0 on both the lower bound ρi,min = 0 and the upper bound ρi,max = 0. Displacement

boundary conditions are enforced in the same way.
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(a) f0(ρ) = .385, Θ(u,ρ) = 1E-3,

n0(ρ) = 6818, n1(ρ) = 3320,

Φ(ρ) = .70.

(b) f0(ρ) = .390, Θ(u,ρ) = 7E-

4,

n0(ρ) = 6670, n1(ρ) = 3262,

Φ(ρ) = .69.

(c) f0(ρ) = .390, Θ(u,ρ) = 4E-5,

n0(ρ) = 6684, n1(ρ) = 3265,

Φ(ρ) = .69.

Figure 5.14: L-shape beam: material distributions without stress relaxation, µ = 27.

elements ρi > 0, i = 1, 2, . . . , e in Figure 5.17. One can see that the highly stressed inner corner

is problematic in terms of the complete removal of some low density, fully stressed elements

in the vicinity of the inner corner, but also along the main diagonal member. This is somewhat

reminiscent of the original stress singularity problem. Nevertheless, all three solutions are fea-

sible (and may be improved with a tighter convergence tolerance), and although the von Mises

stresses in void elements ρi = 0 far exceed the stress limit of σ̄ = 4.5—see Figure 5.16—-all

the stresses in nonvoid elements ρi > 0 are strictly limited to the critical value—cf. Figure 5.17.

(a) f0(ρ) = .303, Θ(u,ρ) = 2E-4,

n0(ρ) = 9663, n1(ρ) = 4045,

Φ(ρ) = .95.

(b) f0(ρ) = .304, Θ(u,ρ) = 3E-

4,

n0(ρ) = 9698, n1(ρ) = 4033,

Φ(ρ) = .95.

(c) f0(ρ) = .303, Θ(u,ρ) = 8E-4,

n0(ρ) = 9705, n1(ρ) = 4022,

Φ(ρ) = .95.

Figure 5.15: L-shape beam: material distributions without stress relaxation, µ continuation.
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(a) maxσi(u) = 2774.51,

mσ = 10164.

(b) maxσi(u) = 2714.27,

mσ = 10149.

(c) maxσi(u) = 2713.34,

mσ = 10130.

Figure 5.16: L-shape beam: von Mises stress σi(u) in each and every element i = 1, 2, . . . e, µ
continuation.

(a) max
i∈I+

σi(u) = 4.50, mσ
+ = 501. (b) max

i∈I+
σi(u) = 4.50, mσ

+ = 444. (c) max
i∈I+

σi(u) = 4.50, mσ
+ = 432.

Figure 5.17: L-shape beam: von Mises stress σi(u) in nonzero elements ρi > 0,

i = 1, 2, . . . , e, µ continuation.

5.6 Concluding remarks

We have demonstrated that solution methods and problem formulations based on an alternative

SAND formulation of the topology design problem may be worth further investigation. Herein a

local stress- and slope-constrained version of the SAND topology design problem is solved with

a standard SAO solution procedure taken from a conventional structural optimization method-

ology. Beyond known disadvantages of the SAND setting—e.g. very large optimization prob-

lems, CQ, feasibility and convergence issues—it is demonstrated that singular optima may be

converged to without having to resort to relaxation or perturbation techniques. Moreover, due

to the sparsity of the problem the required computational effort is fairly modest. A rudimen-

tary trust-region algorithm can cope with feasibility issues. And finally, the ad-hoc structural

analysis which forms part of the SAND optimization problem seems to be able to capture the

structural responses which characterise standard benchmark problems.
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Wang and Arora [91] make the pertinent point that ‘SAND represents a fundamental shift

in the way analysis and design problems are currently treated’. There is thus fantastic scope

for future work on tailored solution methods in the SAND setting, alternative SAND problem

formulations, the incorporation of more sophisticated finite element formulations, mesh refine-

ment, and rigorous benchmarking in order to enable a fair comparison with conventional NAND

solution procedures.
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Chapter 6

SEASAND: A direct approach to

structural topology design

This chapter is a reproduction of a paper entitled ‘SEASAND: a direct approach to structural

topology design’ [129]. The paper is co-authored by Prof. Albert A. Groenwold of the De-

partment of Mechanical and Mechatronic Engineering at the University of Stellenbosch, South

Africa.

6.1 Abstract

We delineate the union of conventional sequential approximate optimization (SAO) with the ‘di-

rect’ or ‘simultaneous analysis and design’ (SAND) formulation of the local stress-constrained

topology design problem. The finite element equilibrium equations are retained as a set of non-

linear equality constraints and the state variables—i.e., displacements—form part of the overall

set of primal optimization variables. Therefore, the typically complex and expensive sensi-

tivity analyses associated with state-based constraints, simplify to the calculation of simple

partial derivatives. Due to the presence of nonlinear equality constraints, the SAO procedure

(exclusively geared, traditionally, for inequality constrained problems) is extended to a gen-

eral, nonlinear and nonconvex, mathematical programming framework. It is demonstrated that

‘sequential approximate simultaneous analysis and design’ (SEASAND) may offer very large-

scale structural optimization capabilities.

6.2 Introduction

From the outset, we consider an important and difficult problem in structural optimization; the

‘simultaneous analysis and design’ (SAND, or ‘direct’)1 formulation of the minimum weight,

1See for example the contributions by Arora and Wang [49, 91] and Rojas-Labanda and Stolpe [44, 130].

84
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SIMP2, local stress-constrained3 and slope-constrained4 topology optimization problem5 PS:

min
u,ρ

e
∑

i=1

ρi
e

subject to [K(ρ)]u− r = 0 (6.1)

ρ ⋄
[

σ(u)

σ̄
− 1

]

≤ 0

0 ≤ ρ ≤ 1 .

ρi(k) − ρj(k) ≤ µπ , k = 1, 2, . . . , b

ρj(k) − ρi(k) ≤ µπ , k = 1, 2, . . . , b

The design domain is discretized with e finite elements (FE’s), with b inter element bound-

aries. Each FE is assigned a material density variable ρi and a stress measure σi(u), with

i = 1, 2, . . . , e. The ρi(k) and ρj(k) represent the elements which share inter element bound-

ary number k, for k = 1, 2, . . . , b. The vector of material density variables is denoted by

ρ ∈ Re, and the stress vector by σ(u) ∈ Re. The ‘diamond’ symbol (⋄) indicates element-

wise multiplication: ρ ⋄ σ(u) ∈ Re. The vector of nodal displacements is u ∈ Rd, with d
the number of degrees of freedom. The globally assembled SIMP modified stiffness matrix

[K(ρ)] =
∑e

i=1(ρi)
p[Ki] has dimension d × d, with p the SIMP parameter. The vector of

primal optimization variables is denoted by

x =

[

u

ρ

]

∈ Rd . (6.2)

Problem PS has a total of m = d + e + 2b constraints, of which d are nonlinear equality

constraints. The SIMP modified FE discretized equations of equilibrium

[K(ρ)]u = r ∈ Rd (6.3)

form the latter—that is, the ‘structural analysis’ component in conventional formulations and

methods. The vector of nodal forces is denoted by r ∈ Rd.

On the one had, by specifying the slope parameters µπ, slope constraints control the mini-

mum length scale of the design6. The minimum length scale is a macro-scale property, relevant

to reductive manufacturability considerations—e.g. casting, moulding and machining. Lo-

cal stress constraints, on the other hand—which limit elemental stresses σi(u) to a predefined

2The ‘solid isotropic material with penalization’ technique, independently proposed by Bendsøe [54] and Roz-

vany and Zhou [55].
3First studied in the continuum (or ‘bi-dimensional’) setting by Duysinx and Bendsøe [109]. See Reference [88]

and the references therein for details specific to the SAND variant of the problem with ‘vanishing’ stress con-

straints.
4A design-set restriction technique proposed by Petersson [60]. See Reference [59] for details particular to the

SAND setting.
5Singular local minima are feasible and available—material density variables are limited on the lower bound at

zero (0) exactly—and may be converged to using standard gradient-based optimization methods, without having

to resort to relaxation or perturbation techniques [88]—as first demonstrated by Stolpe and Svanberg [116].
6In practice, this should probably be accompanied with a global optimization procedure [59].
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bound σ̄—model and control localized material failure—or ‘strength failure’ [131]—which is,

in general, a micro-scale property [109]. Considering strength failure early in the design phase

is an important topic in its own right [104], but particularly so in view of the relationship be-

tween topology optimization and additive manufacturing processes. From a mathematical pro-

gramming point of view, figuring out an efficient and robust algorithm for problems with basic

local stress constraints is the first step in modelling and controlling for the residual stresses and

strains associated with metal additive manufacturing processes—in the light of a general no-

tion of state-based constraints, it might be possible to easily incorporate the associated thermal

phenomena (see for example Megahed et al. [132]) as well.

More than two decades ago, Haftka, Gürdal and Kamat suggested that the ‘high compu-

tational cost associated with the analysis of many complex real-life problems’, ‘motivates a

focus on optimization techniques that call for minimal interference with the structural analysis

package’, and, ‘require only a small number of structural analysis runs’ [3]. The issue is that,

in conventional ‘nested analysis and design’ (NAND)—the ‘reduced’ formulation—each active

state-based constraint implicates an additional structural analysis run in order to calculate the

associated first-order sensitivity derivatives [88]. In general, the imposition of design-dependent

local state-based constraints may require as many additional structural analysis runs as there are

active elements in the FE mesh [40]. One way to circumvent the computational burden is by

collecting all the constraints in a single aggregated (global) constraint, reducing the size of the

optimization problem, and the cost of the adjoint analysis7 [122, 133]. However, sequential

approximate optimization (SAO) techniques may exhibit unstable numerical behaviour in the

presence of global constraint formulations, typically based on highly nonlinear (and parameter

specific) P-norm or Kreisselmeier-Steinhauser (KS) functions [2, 133].

In SAND—the ‘direct’ formulation—the structural analysis phase is consumed by the opti-

mization algorithm—or indeed, vice versa. The FE equilibrium equations (6.3) are retained as a

set of nonlinear equality constraints, forming part of an unified mathematical program. There-

fore, structural analysis occurs sequentially, and the equilibrium conditions are only satisfied

at convergence of the optimization algorithm—see for example Reference [33]. This is some-

what unconventional, and SAO procedures (specifically in structural optimization) are tradition-

ally not geared—or presented as such—for problems with nonlinear equality constraints. The

eminent ‘method of moving asymptotes’ (MMA) [36], for example, and particularly its con-

vergent counterpart (GC-MMA) [67], are restricted to inequality constrained problems. Tech-

nological and behavioural constraints—the constraints imposed over and above the equilib-

rium constraints—are naturally formulated as one-sided limits on physical quantities; with the

equilibrium constraints effectively removed from the optimization problem in the conventional

NAND approach—hence ‘reduced’—only the inequality constraints remain.

Convergent sequential optimization methods do however exist for general mathematical

programming—i.e., problems with nonlinear inequality and equality constraints. The conver-

gent trust-region algorithm due to Fletcher et al. [66] is one example. (Line searches may also

be used, but not preferred [85].) In SAO, convergent (i.e., terminating) optimization methods

7In terms of explicit local constraints, Bruggi and Duysinx [43] note that, in spite of formulations ostensibly

devised to reduce the number of active stress constraints—see also the ‘Damage approach’ [126]—the ‘level of

reduction might not be be enough to provide an efficient methodology for such kind of problems (mainly due to

the cost of the adjoint analysis)’.
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may be cast in a ‘conditional acceptance of iterates’ framework [74]. Moreover, the mechanism

of “conservatism”—the cornerstone of the convergent MMA [67]—may be demonstrable in the

presence of nonlinear equality constraints [75].

SAO methods are distinguished by the use of reciprocal-like intervening variables in order to

construct accurate and efficient—strictly convex and separable—approximate subproblems—

e.g. the ‘Convex Linearization method’ (CONLIN) [34, 35], the MMA [36], SCP-IP [45] and

SAOi [41]8. In general however, SAO may be described succinctly in a sequential diago-

nal quadratic programming (QP) framework [65], based on incomplete Taylor series expan-

sions [63] and so-called ‘approximated approximations’ [64].

In the conventional NAND setting, reciprocal intervening variables (and the associated ap-

proximations) capture the implicit functional relationship between density (‘design’) variables

ρ and displacement (‘state’) variables u, imposed by the structural analysis step prior to each

design iteration—i.e., the calculation of u for a given ρ via (6.3). Moreover, curvature approx-

imations based on intervening variables circumvent the additional structural analyses that are

required if the subproblems are constructed with exact second-order information. In SAND,

the abovementioned functional relationship does not exist—design ρ and state variables u are

independent optimization variables—and thus it may be said that intervening variables are re-

dundant9. Moreover, exact second-order sensitivity information is readily available in the form

of simple partial derivatives [44].

Sequential quadractic programming (SQP) methods are closely related to SAO methods,

but differ in that the full Hessian matrix—i.e., not diagonal and not separable—is used in the

approximate subproblems. In SAND in particular, due to the cheap availability of second-order

information, QP subproblems with full Hessian matrices seem intuitively attractive—see the

sophisticated second-order SQP method proposed by Rojas-Labanda and Stolpe [130] (and the

associated benchmarking study [44]). In both cases the authors apply the method to NAND

and SAND formulations of simply constrained topology design problems10: the use of ‘exact’

second-order information is shown to improve convergence properties.

SQP methods may however be at a disadvantage in view of large-scale (SAND) structural

optimization11: first, the computational requirements associated with the full Hessian matrix—

i.e., calculation and storage—may be prohibitive in general; and second, ensuring positive-

definiteness of a nondiagonal Hessian matrix—i.e., not separable—requires nontrivial compu-

tational procedures (which are, in general, rather expensive). In SAO, positive-definiteness of

the Hessian matrix (and the convexity of the primal approximate subproblem) is enforced triv-

ially [71], and more importantly, the consequential sparsity of the diagonal QP subproblem is

maintained in the Karush-Kuhn-Tucker (KKT) linear system of equations—the equations on

which most of the computational effort is spent [45, 130]. Indeed, the use of ‘exact’ second-

8The term ‘SAO’ usually implies the use of dual methods for solving the approximate subproblems—

specifically the dual of Falk [38]—but nowadays Lagrange-Newton diagonal quadratic subproblems in combi-

nation with primal-dual interior-point subsolvers is considered superior [33, 45, 46]
9In classical NAND topology design the QP ‘approximated approximations’ approach—based on reciprocal

intervening variables—is equivalent to traditional Optimality Criteria (OC) methods [48]. In Reference [33] this

equivalence is extended to the SAND setting—using direct variables.
10That is, subject to either a volume constraint, or a global compliance constraint—not, however, local, design-

dependent, state-based constraints.
11i.e., with local, design dependent, state-based constraints.
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order information may result in improved convergence properties, but with convergence and

termination enforced anyway in a ‘conditional acceptance of iterates’ framework [74], the speed

with which the subproblems can be constructed and solved might as well take precedent.

In closing this introduction, we wish to highlight a recent contribution by Rong et al. [131].

The authors derive a sophisticated active constraint technique based on quadratic approxima-

tions and the MMA—in a NAND setting. Reportedly, ‘there are 21 empirical [heuristic] param-

eters to be determined’. The numerical experiments are in the order of 5000 elements, and the

the paper contains about 50 equations (some of which are, it is fair to say, quite complicated).

‘Sequential approximate simultaneous analysis and design’ (SEASAND)—as delineated in Sec-

tion 6.3—may point the way to a simpler yet more efficient alternative. Indeed, the numerical

experiments herein—Section 6.4—contains one of the largest local stress-constrained problems

presented in the open literature to date.

6.3 SEASAND

6.3.1 Function approximation

Given a function f(x), a diagonal quadratic approximation [65] based on an incomplete Taylor

series expansion [63], constructed at a fixed point xk, may be written as

qk(sk) = f(xk) + sk,T∇f(xk) +
1

2
sT [Ck]s , (6.4)

with sk = (xk+1 − xk) the relative step, and Ck an appropriate approximate diagonal Hessian

matrix. Herein vectors are column vectors (the elements are arranged row-wise) by default—

e.g., the gradient ∇f(xk) ∈ Rn×1, abbreviated to ∇fk from here-on in.

The diagonal Hessian matrix Ck is denoted by

Ck = Ick ∈ Rn×n , (6.5)

with ck the diagonal entries—or ‘curvatures’—stored in a vector of dimensionRn. At this point,

any number of approximations may be devised [63, 64]. In the past we have, for example, used

analytic (‘exact’) diagonal partial derivatives with respect to Problem PS, see Reference [33]

(there is, of course, no reason for analytic diagonal information to be any good). In SEASAND,

per default, a problem independent approximation is employed: the spherical quadratic approx-

imation

ck = ck1 , (6.6)

as per Snyman and Hay [134]. The spherical quadratic approximation is said to do ‘very well

when applied to extremely ill-conditioned problems’ [134]. Equation (6.6) implies the calcu-

lation (and storage) of a single term ck, obtained by interpolating between the known function

values at the current point (k) and the previous point (k − 1):

ck =
2
[

f(xk−1)− f(xk)− sk−1,T
∇fk

]

sk−1,Tsk−1
. (6.7)
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6.3.2 Primal approximate subproblem

In terms of a general nonlinear mathematical program PNLP, written as

min
x

f0(x)

subject to fj(x) [=,≤] 0, j = 1, 2, . . . ,m (6.8)

x̌ ≤ x ≤ x̂ ,

wherein each fj is either an equality or inequality constraint—i.e., [=,≤]—the spherical quadratic

approximation (6.7) is used to approximate the objective f0 and every constraint function fj ,
j = 1, 2, . . . ,m, similar to the Dynamic-Q optimization method [135]. The primal approximate

subproblem PP[k], at the current point xk, is written as

min
s{k}

qk0(s
k)

subject to qkj (s
k) [=,≤] 0, j = 1, 2, . . . ,m (6.9)

xk+1 = (sk + xk) ∈ ∆k .

The objective approximation is

qk0(s
k) = f0(x

k) +∇fk,T0 sk +
1

2
ck0s

k,Tsk (6.10)

and the constraint approximations are

qkj (s
k) = fj(x

k) +∇fk,Tj sk +
1

2
ckjs

k,Tsk (6.11)

for j = 1, 2 . . . ,m.

It is customary to control the size of the generated step ‖sk‖ with a ‘trust-region’—also

known as ‘restricted step methods’ [89]—delimiting a ‘trusted’ neighbourhood ∆k around the

current iteration point xk. This may take the form of a proportional move-limit 0 < δk < ǫδ ≤
1, such that

∆k = {xk+1 ∈ C | sk ≤ δk(x̂− x̌)} , (6.12)

and C the domain of the global (actual) problem PNLP:

C = {x ∈ Rn | x̌ ≤ x ≤ x̂} , (6.13)

written in terms of the lower x̌ and upper bounds x̂ on each design variable xi, for i =
1, 2, . . . , n, respectively. Numerical experience suggests that, to reduce the frequency with

which infeasible iterates occur, the proportional move-limit δk should be limited to an upper

bound δk ≤ ǫδ less than 1 (e.g. 0.2).

In general, due to the presence of nonlinear equality constraints—which typically describe

nonconvex feasible regions [136]—subproblem PP[k] is nonconvex. Moreoever, feasibility can

not guaranteed in a straightforward manner—compared with, for example, Svanberg’s [67] arti-

ficial variable approach for inequality constrained problems. In Dynamic-Q a penalty method is

used to determine the ‘best possible compromised solution’ of PP[k] if no feasible solution ex-

ists [135]. The version of the algorithm presented herein does not employ a relaxation strategy

or sophisticated restoration procedure—both of which should be considered in future work.
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6.3.3 Quadratic programming and Newton’s Method

Linearising the constraint functions in subproblemPP[k] yields a simple QP subproblem, PQ[k],
which may be written as

min
sk

q̃k0(s
k)

subject to q̃kj (s
k) [=,≤] 0, j = 1, 2, . . . ,m (6.14)

xk+1 = (sk + xk) ∈ ∆k ,

wherein the approximate constraint functions have reduced to linear constraints

q̃kj (s
k) = fj(x

k) +∇fk,Tj sk , (6.15)

and a single curvature term ck is retained in the approximate objective

q̃k0(s
k) = f0(x

k) +∇fk,T0 sk +
1

2
cksk,Tsk . (6.16)

Strict convexity ck > 0 is readily enforced (see below), and feasibility—associated with

a specialized version of ‘linear independence constraints qualification’ (LICQ)—may hold in

many practical situations [33, 88, 117].

Given that constraint functions in PQ[k] are linear, how can the curvature information in

subproblem PP[k] be related to the single curvature approximation ck in PQ[k]? On the one

hand, consider an approximate Lagrangian L̄k(sk,λk+1), corresponding to subproblem PQ[k]:

L̃k(sk,λk+1) =∇fk,T0 sk +
1

2
cksk,Tsk

+ λk+1
[

fk + Jksk
]

, (6.17)

wherein the Jacobian matrix Jk is composed of transposed gradients

Jk =







∇fk,T1

∇fk,T2
...






∈ Rm×n . (6.18)

The vector of Lagrange multipliers associated with the minimizer xk+1 (expressed in terms

of the step sk), is denoted by λk+1 ∈ Rm. For the sake of brevity—here we are concerned with

curvature information—the problem is simplified to an unbounded and equality-constrained

version—whether a variable bound or inequality constraint is active/inactive is dealt with auto-

matically by many modern QP routines, see for example References [33, 88].

The Kuhn-Tucker stationary conditions of the Lagrangian L̃k(sk,λk+1) with respect to the

primal variables sk and dual variables λk+1, may be expressed as

∇xL̃k(sk,λk+1) = ∇f0(s
k) + cksk + Jk,Tλk+1 = 0

∇λL̃k(sk,λk+1) = fk + Jksk = 0 . (6.19)
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That is, the stationary point (sk,λk+1) of (6.17) is a solution to the linear system

[

[cI] [J ]T

[J ] [0]

]k [
sk

λk+1

]

= −
[

∇f0
f

]k

. (6.20)

On the other hand, consider the LagrangianL(x,λ) of the actual (global) nonlinear problem

PNLP—approximated by PP[k], and in turn, PQ[k]—expressed in similar terms

L(x,λ) = f0(x) + λTf(x) , (6.21)

and the associated Kuhn-Tucker stationary conditions

∇xL(x,λ) = ∇f0(x) + J(x)Tλ = 0

∇λL(x,λ) = f(x) = 0 . (6.22)

The equations in (6.22) are a set of n+m nonlinear equations

F (Y ) =

[

∇xL(x,λ)
f(x)

]

= 0 (6.23)

in n+m unknowns

Y =

[

x

λ

]

. (6.24)

According to Newton’s method12, the vector of unknowns Y may be determined in an iter-

ative fashion

Y k+1 = Y k +∆Y , (6.25)

wherein ∆Y is a solution to the linear system

[∇F ]k∆Y = −F (Y k) , (6.26)

alternatively written as

[[

∇
2
xxL

]

[J ]T

[J ] [0]

]k [
sk

λk+1

]

= −
[

∇f0
f

]k

. (6.27)

Except for the full Hessian matrix of the Lagrangian ∇
2
xxLk vs. the spherical diagonal

Hessian matrix ckI , the linear system in (6.27) is exactly the linear system in (6.20). This

suggests that ck should, in some way, mimic or capture the curvature of the Lagrangian

ck = ck0 +
m
∑

j=1

λkj c
k
j , (6.28)

wherein λk is the vector of Lagrange multipliers retained from the stationary point (xk,λk) of

the previous convex (and feasible) subproblem PQ[k− 1]. The multipliers at the solution of the

current subproblem PQ[k], λ
k+1, are of course, unknown.

12We follow the development by Rao [137].
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The equivalence between, on the one hand, Netwon’s Method applied to the stationary con-

ditions of the Lagrangian, and, on the other, a QP-based SAO method for constrained nonlinear

optimization, is consistent with the superiority of the ‘nonconvex’ approximation strategy over

the ‘convex’ variant—see Reference [71]. In short, the ‘nonconvex’ approximation strategy is

defined as

ck ← max(ck, ǫc) , (6.29)

with ǫc typically in order of 10−6. Therefore, although PQ[k] is strictly convex ck > 0, some

‘nonconvex’ curvature information λkj c
k
j < 0 may be ‘retained’ in the curvature summation

(6.28). Compare this with the the ‘convex’ approximation strategy, which dictates that convexity

be enforced on the approximate objective function—ck0 ≥ ǫc—and on each and every constraint

contribution—max(λjc
k
j , 0), for j = 1, 2, . . . , k—in order for the curvature summation (6.28)

to turn out strictly positive13.

By invoking the equivalence between the approximate curvature of the Lagrangian ck and

the ‘numerical damping’ term often found in optimality criteria (OC) methods [33,41]—which

may be extendible to the notion of ‘conservatism’ [67]—an argument can be made for an ‘ab-

solutely nonconvex’ approximation strategy

ck ← max(|ck|, ǫc) . (6.30)

Clearly, the approximation in (6.30) should ‘damp’ any oscillatory behaviour in regions where

the approximate Lagrangian has ‘high curvature’, regardless of sign.

In Section 6.4 numerical experiments are used to test the absolutely nonconvex variant (6.30)

against the original nonconvex approximation strategy (6.29)—and by implication, the asserted

equivalence between approximate curvature ck and ‘numerical damping’. Next, the computa-

tional character of the SEASAND method is portrayed from a theoretical point of view.

6.3.4 Sequential approximate analysis and design

In keeping with classical SAO—based on the dual of Falk [33,38]—the equations in (6.20) may

be separated into the primal stationary conditions

ckIsk + Jk,Tλk+1 = −∇fk0 ∈ Rn (6.31)

and the dual stationary conditions

Jksk = −f ∈ Rm . (6.32)

Equation (6.31) yields a relation between primal and dual variables

sk = − 1

ck
[

Jk,Tλk+1 +∇fk0
]

∈ Rn , (6.33)

which, substituted into (6.32) and rearranged as

JkJk,Tλk+1 = ck[f k − Jk
∇fk0 ] ∈ Rm , (6.34)

13As is customary in SAO literature, the analysis in Reference [71] is restricted to problems with inequality

constraints, viewed in standard negative-null form—the associated Lagrange multipliers are limited to λj ≥ 0, for

j = 1, 2, . . . ,m—hence, ckj retains its sign in ckjλj .
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illustrates that the calculation of a solution to the linear system (6.20) hinges on the ‘computa-

tional kernel’ JkJk,T—as per Fleury [40]. The dual computational kernel JkJk,T is derived for

the purposes of illustration: modern primal-dual methods have increased flexibility in solving

the primal-dual system of equations (6.20), with increased potential to maintain its sparsity [45].

In order to further investigate the computational kernel JkJk,T particular to Problem PS,

consider the slope constraints relaxed µπ > 1 (and thus inactive); the problem has n = d + e
primal variables and an equal number of constraints (dual variables) m = d + e. (Using the

dual of Falk [33, 38], the variable bounds may be neglected in this way.) Conveniently, given

a generic iteration point xk, the Jacobian associated with PQ[k] is a square matrix Jk ∈ Rn×n

(orRm×m). Therefore, the computational kernel, which may be thought of as the ‘inversion’ of

JkJk,T , can be simplified to

[

JkJk,T
]−1

=
[

Jk
]−1 [

Jk,T
]−1

, (6.35)

with the Jacobian matrix Jk, particular to Problem PS with µπ > 1, written as

[

Jk
]

=

[

[K(ρk)] [∇ρK(ρk)uk]
1
σ̄
[∇uρ

k ⋄ σ(uk)] [ 1
σ̄
I(σ(uk)− σ̄1)]

]

. (6.36)

The density gradients ∇ρ of the equilibrium constraints is denoted by

∇ρK(ρk)uk ∈ Rd×e , (6.37)

the displacement (state) gradients ∇u of the local stress constraints is denoted by

1

σ̄
[∇uρ

k ⋄ σ(uk)] ∈ Re×d , (6.38)

and the diagonal matrix composed of the ‘nonvanishing’14 part of the stress constraint vector, is

written as
1

σ̄
I(σ(uk)− σ̄1) ∈ Re×e . (6.39)

If material density variables are limited to nonzero values ρki > 0, for i = 1, 2, . . . , e, the

globally assembled stiffness matrix K(ρ) is nonsingular. In addition, if each and every nonva-

nishing stress constraint is active, then the nonvashining stress constraint vector 1
σ̄
(σ(uk)− σ̄1)

is all zeros: 0 ∈ Re. Using block-inversion (in terms of a ‘partitioned’ matrix) [138], it can be

demonstrated that the ‘inversion’ of [Jk]—by which the calculation of the solution to the linear

system in (6.34) is implied—may be reduced to the ‘inversion’ of the stiffness matrix

[K(ρk)] ∈ Rd×d , (6.40)

and, following that, the ‘inversion’ of the matrix product

[∇uρ
k ⋄ σ(uk)][K(ρk)]−1[∇ρK(ρk)uk] ∈ Re×e . (6.41)

For the sake of argument, assume that the linear system solver tasked with the ‘structural

analysis’—equivalent to, conceptually speaking, the inversion of (6.40)—requires O(dη) op-

erations, with η a constant number η > 1. Assume that the aforementioned solver can be used

14See Reference [117] and Reference [88] for details on vanishing local stress constraints.
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to ‘invert’ (6.41) as well. The number of degrees of freedom d is related by a constant factor

γ to the number of elements e. Thus, the overall computational effort required to solve PQ[k]
may be written as

O((eγ)η) +O(eη) (6.42)

which, in terms of asymptotic complexity, simplifies to

O(eη) . (6.43)

That is, using SEASAND, the QP routine—tasked with solving PQ[k]—conducts the equiva-

lent of a single structural analysis—requiring O(eη) operations—per iteration k. Conventional

NAND algorithms, which require multiple structural analyses prior to every design iteration—

for problems with local state-based constraints—can not scale better than O(eη+1) [88]. As-

sume, for example, the availability of an ideal preconditioning routine and sparse linear system

solver with computational scaling properties close to O(e). Consequently (using this hypothet-

ical linear system solver), an SAO-NAND method can at best scale toO(e2), but the equivalent

SAO-SAND (SEASAND) method could—hypothetically speaking—scale to O(e).
Finally, infeasible instances of PQ[k] may indeed occur [88]—due to, for example, regions

of very low density material (but not yet void) and an insufficiently large bound on u (or a too

restrictive move-limit δk). In the following subsection the SEASAND algorithm is outlined,

which, in basic form, employs a simple backtracking procedure to circumvent, in part, the issue

of infeasible subproblems.

6.3.5 Convergence and termination

In order to enforce convergence (i.e., termination) the trust-region ∆k is combined with a Pareto

front (or ‘filter’) of the objective function value f0 and the maximum constraint violation, de-

noted by Θ. A pseudo-code representation of SEASAND is given in Algorithm (6).

The filter Fk consists of the list of pairs from at most k previously visited points

Fk ⊂ {(Θh, fh0 ) : h = 1, 2, . . . , k} . (6.44)

Using a ‘slanting envelope test’ [66, 85] (Step 5), if either

Θk+1 ≤ ǫFΘ
h or fk+1

0 + (1− ǫF)Θk+1 ≤ fh0 (6.45)

for all h = 1, 2, . . . , k, the pair (Θk+1, fk+1
0 ) is deemed acceptable, and may pass through the

filter. The envelope parameter is constant and restricted to 0 < ǫF < 1. Following that (in Step

5), the new iterate (Θk+1, fk+1
0 ) has to pass one of two conditions: the first is reminiscent of the

‘conservatism’ of the objective function approximation q̃k0 relative to the actual value fk+1
0 at

the new point
∆fk0
∆q̃k0

:=
fk0 − fk+1

0

q̃k0(0)− q̃k0(sk)
> ǫ∆1

, (6.46)

and the second, a feasible-descent-like condition

q̃k0(0)− q̃k0(sk) := ∆q̃k0 ≤ ǫ∆2
(Θk)ǫ∆3 , (6.47)
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Algorithm 6 (SEASAND)

Step 0:

Set problem parameters Set algorithmic parameters

x̌ ∈ C, x̂ ∈ C, x0 ∈ C, xg ← x0 ǫδ, ǫc, ǫF , ǫ∆1
, ǫ∆2

, ǫ∆3
, ∆min, kmax

for k = 0 : kmax do

Step 1:

Construct PQ[k], attempt to solve PQ[k]

Step 2:

If PQ[k] is infeasible, add (Θk, fk0 ) to Fk, δk ← 1, xk ← xg

If k = 0, terminate.

If xk = xk−1, terminate.

Else return to 1

Step 3:

If PQ[k] is feasible, set λk+1 and xk+1 ← xk +∆sk

Step 4:

Construct PQ[k + 1]

Step 5:

Test filter and descent

if Θk+1 ≤ ǫFΘ
h or fk+1

0 + (1− ǫF)Θk+1 ≤ fh0 , for h = 1, 2, . . . , k then

if
∆fk0
∆q̃k0

> ǫ∆1
or ∆q̃k0 < ǫ∆2

(Θk)ǫ∆3 then

Continue

else

δk ← δk/2, return to 1

end if

else

δk ← δk/2, return to 1

end if

Step 6:

Update the trust-region and filter

δk+1 ← min(2δk, ǫδ), x
g ← xk

if ∆q̃k0 < ǫ∆2
(Θk)ǫ∆3 then

add (Θk+1, fk+1
0 ) to Fk+1

end if

Continue

Step 7:

Check for termination

if ‖∆sk‖ < ∆min then

Terminate.

end if

end for
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l1 = 3

l2 = 1

F

l3

E = 1 ν = 0.3 F = 10 l3 = 0.5

Figure 6.1: The two-bar truss problem.

with constants 0 < ǫ∆1
< 1, 0 < ǫ∆2

< 1 and ǫ∆3
> 1. The new iterate (Θk+1, fk+1

0 ) is included

in the filter list Fk+1 and the move-limit δk+1 may be expanded if the feasible-descent-like

condition (6.47) is satisfied (Step 6).

In the case of an infeasible subproblem PQ[k], the backtracking procedure (Step 2) is ac-

tivated: the filter pair (Θk, fk0 ) at the infeasible point k is included in the filter Fk (forcing,

hopefully, a feasible iterate in the next attempt), the move-limit is expanded to δk = 1 (hence

the entire domain C may be traversed), and the algorithm is restored to the last accepted iterate

xg.

The algorithm will either terminate because the backtracking procedure fails to produce

a feasible subproblem PQ[k]—i.e., the rudimentary ‘restoration procedure’ fails—or converge

to a stationary (KKT) point of problem PNLP, or accumulate at a feasible point which fails to

satisfy CQ [66].

The algorithmic parameters are set at the following default values: ǫδ = 0.2, ǫc = 1× 10−6,

ǫF = 1 × 10−7, ǫ∆1
= 0.01, ǫ∆2

= 0.001 and ǫ∆3
= 2. In addition, a convergence tolerance

∆min > 0 and a maximum number of iterations kmax > 0 are specified by the user.

6.4 Numerical experiments

Consider the standard ‘two-bar truss’ design domain—see for example Reference [109]—depicted

in Figure 6.1. We intend to investigate the computational properties of the SEASAND algo-

rithm, and particularly the computational requirements associated with the SAND-based QP

subproblem PQ[k], hence a simple ground-structure will suffice. The interested reader is re-

ferred to the aforementioned literature for additional details on the ground-structure (and local

stress-constrained topology design in general). The von Mises stress measure is used for each

element σi(u), for i = 1, 2, . . . , n, the stress-limit is σ̄ = 20, the slope parameter is set to

µ = 25, and the mesh-size parameter is π = 1
e2

.

It is fair to say that slope constraints are employed specifically in order to suppress the (typ-

ically severe) multimodality of the problem—i.e., the issue of many local minima—increasing

the likelihood that the algorithm will consistently convergence to the same solution given dif-

ferent settings and starting positions, thereby permitting a fair comparison. To this end, con-

sidering more complex design domains, random multistart strategies—see for example Refer-

ences [33, 59, 88]—and Bayesian stopping criteria [61], should probably be resorted to.
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Table 6.1: Large-scale two-bar truss design, nonconvex spherical quadratic approximation;

computational requirements.

e n m Fig. k⋆ P nρ+ mσ
+ T

270×90=24,300 171,542 268,022 6.2a 204 235 6,581 4,195 21,761

300×100=30,000 211,602 330,802 6.2b 222 298 7,965 4,870 44,327

330×110=36,300 255,862 400,182 6.2c 256 420 9,034 5,935 68,739

360×120=43,200 304,322 476,162 6.2d 219 259 11,498 7,808 61,532

390×130=50,700 356,982 558,742 6.2e 267 348 12,832 8,271 104,026

420×140=58,800 413,842 647,922 6.2f 319 522 14,785 9,512 285,612

450×150=67,500 474,902 743,702 6.2g 136† 692 31,782 18,891 564,959

480×160=76,800 540,162 846,082 6.2h 329 388 19,058 12,606 187,074

510×170=86,700 609,622 955,062 6.2i 283 347 21,725 16,847 185,125

540×180=97,200 683,282 1,070,642 6.2j 349 519 24,081 15,848 493,642

570×190=108,300 761,142 1,192,822 6.2k 360 429 26,895 16,871 468,794

The design domain is discretized with e = e1 × e2 (square) Q8 FE’s. In Table 6.1 the

associated number of primal variables n and the total number of constraints m are given for

each e in a range of mesh discretizations—from 24, 300 to 108, 300. The number of degrees of

freedom—i.e., the number of displacement variables and equilibrium constraints—is d = n−e,
and the number of slope constraints (twice the number of interelement boundaries b) is 2b =
m− e− d.

The displacement variables u are bounded to ±1 × 103. Throughout, a starting position of

ρ0 = 1 and u0 = 0 is used. The default algorithmic settings surmised in Section 6.3.5—6 in

total—are retained. The algorithm is deemed to have converged if the Euclidean norm of the

step in primal optimization variables ‖sk‖ ≤ 1, in which case the slope constraint parameter is

increased by 1.1×µ, and the filter-list Fk is cleared—repeated until µπ ≥ 1, at which point the

algorithm is allowed to terminate.

In Table 6.1 the results obtained using the SEASAND method with the nonconvex approx-

imation strategy (6.29) is summarised. The number of iterations required for termination is

k⋆. An iteration k may involve ‘inner iterations’ (see Section 6.3.5), therefore the total number

of subproblems PQ[k] actually solved is given by P . At termination, the number of nonzero

density variables ρi > 0 is nρ+, and the total number of nonzero elements ρi > 0 stressed

equal to or beyond σi(u) ≥ 19 is denoted by mσ
+. The total time to convergence is given by T

(wall-time, in seconds)15. In Figure 6.2 the corresponding topologies are depicted: the objective

function value is f ⋆0 , the maximum constraint violation is Θ⋆, the number of material density

variables equal to zero is nρ0, the total number equal to 1 is nρ1, and the solid-void fraction is Φ⋆.

The algorithm failed to terminate with a feasible subproblem—indicated by the ‘dagger’ (†) in

Table 6.1—only once.

In Table 6.2 the results obtained using the absolutely nonconvex approximation strategy

(6.30) is summarised. The associated designs are depicted in Figure 6.3. In all but one case

15The ILOG CPLEX Barrier QP optimizer [128] is employed as subsolver. The computational platform is the

Rhasatsha HPC [77].
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(a) f⋆0 = .232, Θ⋆ = 3E−3, nρ0
= 17719 , nρ1 = 4681 , Φ⋆ = .89

.

(b) f⋆0 = .231, Θ⋆ = 8E−3, nρ0
= 22035 , nρ1 = 5845 , Φ⋆ = .91

.

(c) f⋆0 = .225, Θ⋆ = 2E−4, nρ0
= 27266 , nρ1 = 7014 , Φ⋆ = .91

.

(d) f⋆0 = .229, Θ⋆ = 1E−3, nρ0 = 31702 , nρ1 =

8090 , Φ⋆ = .89 .

(e) f⋆0 = .226, Θ⋆ = 5E−3, nρ0 = 37868 , nρ1 =

9927 , Φ⋆ = .91 .

(f) f⋆0 = .225, Θ⋆ = 5E−4, nρ0 = 44015 , nρ1 =

11537 , Φ⋆ = .91 .

(g) f⋆0 = .275, Θ⋆ = 7E−3, nρ0 = 35718 , nρ1 =

10152 , Φ⋆ = .66 .

(h) f⋆0 = .223, Θ⋆ = 1E−3, nρ0 = 57742 , nρ1 =

15149 , Φ⋆ = .91 .

(i) f⋆0 = .223, Θ⋆ = 7E−4, nρ0 = 64975 , nρ1 =

15818 , Φ⋆ = .89 .

(j) f⋆0 = .223, Θ⋆ = 3E−3, nρ0 = 73119 , nρ1 =

19364 , Φ⋆ = .91 .

(k) f⋆0 = .224, Θ⋆ = 1E−3, nρ0 = 81405 , nρ1 =

21729 , Φ⋆ = .92 .

Figure 6.2: Large-scale two-bar truss designs; nonconvex spherical quadratic quadratic

approximation.

the absolutely nonconvex variant of the algorithm required fewer iterations k⋆ for convergence,

but, in every case, substantially fewer subproblem evaluations P are required, and hence, a

substantial reduction in total computation time T . This in itself suggests the existence of

‘conservatism’—or a mechanism to this end—in general nonlinear programming: the abso-

lutely nonconvex approximation may result in ‘conservative’ iterates which pass the filter con-

ditions (6.45), the relative-descent condition (6.46) and feasible-descent-like condition (6.47),
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Table 6.2: Large-scale two-bar truss design, absolutely nonconvex spherical quadartic

approximation; computational requirements

e n m Fig. k⋆ P nρ+ mσ
+ T

270×90=24,300 171,542 268,022 6.3a 143 143 7,075 4,070 6,778

300×100=30,000 211,602 330,802 6.3b 168 168 7,701 4,822 15,719

330×110=36,300 255,862 400,182 6.3c 226 226 9,297 5,877 15,652

360×120=43,200 304,322 476,162 6.3d 213 213 10,942 6,800 25,508

390×130=50,700 356,982 558,742 6.3e 246 272 12,814 8,192 62,589

420×140=58,800 413,842 647,922 6.3f 276 276 14,830 9,157 62,078

450×150=67,500 474,902 743,702 6.3g 193 230 16,879 10,758 121,973

480×160=76,800 540,162 846,082 6.3h 247 289 19,109 12,001 124,347

510×170=86,700 609,622 955,062 6.3i 304 333 21,614 13,592 189,391

540×180=97,200 683,282 1,070,642 6.3j 317 334 24,179 15,512 157,465

570×190=108,300 761,142 1,192,822 6.3k 309 324 26,845 17,177 325,272

780×260=202,800 1,423,762 2,232,882 6.4a 389 411 101,645 31,106 617,985

more often.

The absolutely nonconvex (6.30) variant of the algorithm is used to solve one of the largest

problem instances reported in stress-constrained topology design literature to date—depicted in

Figure 6.4a—with more than 200, 000 material density variables (the nonconvex variant failed

to converge). Figure 6.4b is a plot of the stress vector σ(u): for the sake of readability, all the

von Mises stresses σ(u) equal to or greater than σ̄ = 20 are coloured red, blue regions represent

elemental stresses at 0. Figure 6.4c is the same stress plot, but with the stresses σi(u) related to

zero elements ρi = 0 (i.e., ‘vanished’) ignored—the maximum von Mises stress value is 20.74,

and occurs in an element with density ρi = 0.22, the next highest value is 20.005.

Figure 6.5a is a plot of the total computation times from initialization to termination—

included is a polynomial function fitted to the absolutely nonconvex data poins. Figure 6.5b is a

plot of average computation times per subproblem evaluation, for the respective runs—again, a

polynomial is fitted to the absolutely nonconvex data points. Because the slope constraints are

more restrictive for finer mesh discretizations—the slope parameter product (µ)( 1
ex
) is smaller,

initially—more continuation steps, and thus an increased number of iterations, are required

for larger problem sizes. Therefore, the average time per subproblem evaluation provides a

fair indication of the computational scaling properties of the SEASAND method. Crucially,

average times per iteration scale practically the same as for simply-constrained problems [59],

confirming the computational character, as asserted in Section 6.3.4, of the SEASAND method.

6.5 Concluding remarks

Although we have considered a fairly simple design domain—and limited empirical evidence—

in the light of general theoretical considerations, the results suggest that the SEASAND method

may offer very large-scale structural optimization capabilities. For more complex problems with

many local minima, a global optimization procedure—like for example a multistart strategy—
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(a) f⋆0 = .237, Θ⋆ = 2E−3, nρ0
= 17225 , nρ1 = 4846 , Φ⋆ = .89

.

(b) f⋆0 = .227, Θ⋆ = 5E−3, nρ0
= 22299 , nρ1 = 5910 , Φ⋆ = .91

.

(c) f⋆0 = .227, Θ⋆ = 1E−2, nρ0
= 27003 , nρ1 = 7156 , Φ⋆ = .91

.

(d) f⋆0 = .227, Θ⋆ = 4E−3, nρ0 = 32258 , nρ1 =

8575 , Φ⋆ = .91 .

(e) f⋆0 = .226, Θ⋆ = 5E−3, nρ0 = 37886 , nρ1 =

9962 , Φ⋆ = .91 .

(f) f⋆0 = .225, Θ⋆ = 9E−3, nρ0 = 43970 , nρ1 =

11781 , Φ⋆ = .92 .

(g) f⋆0 = .225, Θ⋆ = 3E−3, nρ0 = 50621 , nρ1 =

13472 , Φ⋆ = .92 .

(h) f⋆0 = .224, Θ⋆ = 1E−3, nρ0 = 57691 , nρ1 =

15414 , Φ⋆ = .92 .

(i) f⋆0 = .224, Θ⋆ = 1E−3, nρ0 = 65086 , nρ1 =

17392 , Φ⋆ = .92 .

(j) f⋆0 = .223, Θ⋆ = 3E−3, nρ0 = 73021 , nρ1 =

19393 , Φ⋆ = .91 .

(k) f⋆0 = .223, Θ⋆ = 1E−3, nρ0 = 81455 , nρ1 =

21764 , Φ⋆ = .92 .

Figure 6.3: Large-scale two-bar truss designs; absolutely nonconvex spherical quadratic

approximation.

may be resorted to. To this end, the results presented herein are pertinent nevertheless, particu-

larly due to the highly parallelizable nature of the algorithm. That is, each and every subproblem

can be solved independently, hence, N randomly initialized problem instances may be solved

in roughly the same amount of time that it takes to solve a single problem instance—given, of

course, the availability of N sufficiently sized computational devices.
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(a) f⋆0 = .220, Θ⋆ = 2E−4, nρ0 = 153 729 , nρ1 = 41 226 , Φ⋆ = .92 .

(b) max(σ(u)) = 3200.16 .

(c) max(σ(u)|ρi > 0) = 20.74 .

Figure 6.4: Very large-scale two-bar truss design; absolutely nonconvex spherical quadratic

approximation.
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Figure 6.5: Computation times.
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Chapter 7

Closure and future research

This dissertation illustrated the potential of traditional sequential approximate optimization

(SAO) methods applied to the alternative ‘direct’—or ‘simultaneous analysis and design’ (SAND)

—formulation of the structural topology optimization problem. In Chapter 2 it was demon-

strated that, in classical minimum compliance design, SAO-SAND (SEASAND) methods agree

with conventional SAO-NAND methods—e.g. the ever-popular optimality criteria (OC) ap-

proach, and the equivalent dual-SAO-NAND class of methods based on exponential intervening

variables. In Chapter 3 it was demonstrated that convergence and termination can be enforced

with either a restricted step method, or with a more traditional technique based on ‘conserva-

tive’ approximations. In Chapter 4 it is argued that design-set restriction should be imposed with

point-wise bounds on the material distribution function—with so-called ‘slope constraints’—

while it is demonstrated that the multimodality of the problem, which is suspected of being

more severe in the SAND setting, can be dealt with by a random multistart strategy. In Chapter

5 it is demonstrated that, in the SAND setting, standard gradient-based optimization methods

can converge to the singular minima which characterize the local stress-constrained problem,

and, because the sensitivity analyses associated with local state-based constraints reduce to

simple—and sparse—partial derivatives, solutions to very large-scale problem instances could

be presented in Chapter 6.

This dissertation touches on both the potential and the challenges of the envisaged class of

SEASAND methods. From a mathematical programming point of view, future work could, for

example, consider new and innovative subproblem formulations. This may include noncon-

vex formulations, second-order cone programs (SOCP), and novel second-order approximation

strategies—based on, for example, random sampling, historical information, or off-diagonal

second-order derivatives. Moreover, the implementation of sophisticated restoration proce-

dures may decrease the frequency of unsuccessful (infeasible) terminations, and thereby, in

turn, increase the utility of random multistart strategies—with a view to global optimization.

The notion that global optimization can be achieved a random multistart strategiy in itself re-

quires further investigation—both in terms of the initial (random) material distributions and

the confidence-bound associated with the best known solution. These considerations pertain-

ing to robust convergence and global optimization may be particularly important in view of

more sophisticated and involved structural analysis—e.g. nonlinear—and multi-physics prob-

lem formulations. Alternative finite element formulations can also be investigated, and the
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implementation of mesh-refinement procedures may reduce computation time even further.

From an engineering and manufacturing point of view, it should be investigated to what

extent slope constraints—and design-set restriction in general—can be tailored to the specific

requirements of a given manufacturing process—like for example the geometric requirements

associated with casting. Moreover, the incorporation of transient phenomena and multi-physics

formulations could be crucial to the realisation of (especially metal-based) additive manufac-

turing technologies. Finally, it should be determined to what extent standard structural analysis

packages—i.e. ‘simulation packages’—can be exploited in a SEASAND setting—this may,

in turn, permit a fair comparison between NAND and SAND methods, in terms of practical

implementation and computational effort.
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