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ABSTRACT 

Valuation is not an interesting problem in corporate finance, it is the only problem. Price and value 

are assumed to be the same number in economic theories of equilibrium and perfect capital markets. 

The economic theories of equilibrium asset pricing offer very weak practical suggestions for stock price 

behaviour at the firm level. The fundamental approach to stock price investing operates on the basis 

that price and value are two separate quantities and the stock price is fully determined by its intrinsic 

value. In this research the option-theoretic approach to default modelling is amended to provide an 

alternate view of value.  

Structural models apply an option-theoretic approach inspired by Merton (1974) that uses equity 

market and financial statement data in order to determine default probabilities. Default probabilities 

obtainable from the reduced form class of models provides the basis for extending the Merton model 

to estimate the firms value from market observable credit spreads. The probability of default is then 

a known constant provided from the reduced form model. The Merton model is reformulated with 

equity or firm value being used as the subject of the formula. The re-appropriated Merton model then 

provides a unique estimate of the firm's value based on current market information. The expected 

return on equity is then estimated from market credit spreads using individual capital structure and 

traded equity information.  

In this research it was found that historic estimates of return are poor predictors of future return at 

the firm level. The structural models provide good forecasts of return in some instances although have 

many challenges in implementation. The use of statistical learning methods was found to greatly 

improve predictions of future equity return movements using both debt and equity predictor 

variables, including unique predictor variables constructed from the structural models of the firm.  
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OPSOMMING 

Waardering is nie ‘n interessante probleem in korporatiewe finansies nie, dit is die enigeste problem. 

Prys en waarde word gesien as dieselfde getal in ekonomiese teorieë rakende ewewig en perfekte 

kapitale markte. The ekonomiese teorieë rakende die ewewig van bate pryse, verskaf baie swak 

praktiese voorstelle vir die gedrag van aandeel pryse op besigheidsvlak. Die fundametele uitkyk 

rondom beleggings in die aandele mark is gebou op die fundament dat prys en waarde twee 

verskillende bedrae is en dat die aandeel prys ten volle bepaal word deur sy intrensieke waarde. In 

hierdie navorsing word die opsie-teoretiese benadering tot wanbetaling modellering aangepas om ‘n 

alternatiewe benadering vir waarde te kry.  

  

Gestruktureerde modelle gebruik ‘n opsie-teoretiese metode geïnspireer deur Merton (1974) wat 

gebruik maak van data wat bestaan uit ekwiteit en finansiële state om wanbetaling waarskynlikhede 

te bereken. Wanbetaling waarskynlikhede verkry van die verminderde klas van modelle, bied ‘n basis 

om die Merton model uit te brei om ‘n firma se waarde te voorspel vanaf markverwante krediet 

premies. Die waarskynlikheid van wanbetaling is dan ‘n konstante wat gekry word vanaf die 

verminderde model. Die Merton model word dan verander sodat die ekwiteit of firma se waarde 

gebruik word as die inset van die formule. Hierdie model gee dan ‘n unieke voorspelling van die firma 

se waarde gebasseer op huidige mark inligting. Die verwagte opbrengs op ekwiteit word dan bepaal 

deur die mark se krediet premies, gebasseer op individuele kapitaal strukture en ekwiteit informasie. 

  

In hierdie navorsing was dit gevind dat historiese skattings van opbrengs swak voorspellings van die 

toekomstige opbrengs op ‘n firma vlak is. Die gestruktureerde modelle bied goeie vooruiskattings van 

opbrengs in sekere gevalle, maar het baie probleme met implimentering. Deur gebruik te maak van 

statistiese metodes is dit gevind dat vooruitskattings van toekoms opbrengs drasties verbeter 

wanneer beide skuld en ekwiteit, asook unieke veranderlikes wat opgestel word deur gebruik te maak 

van die gestruktureerde modelle van die firma, gebruik word. 
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1 INTRODUCTION 

“As recently as a generation ago, finance theory was still little more than a collection of anecdotes, 

rules of thumb, and manipulations of accounting data. The most sophisticated tool of analysis was 

discounted value and the central intellectual controversy centred on whether to use present value or 

internal rate of return to rank corporate investments. The subsequent evolution from this conceptual 

potpourri to a rigorous economic theory subjected to scientific empirical examination was, of course, 

the work of many, but most observers would agree that Arrow, Debreu, Lintner, Markowitz, Miller, 

Modigliani, Samuelson, Sharpe, and Tobin were the early pioneers in this transformation” (Robert 

Merton, 1990). 

1.1 PRELUDE 

For the modern connoisseurs of uncertainty and quantitative methods, it may be challenging to 

understand what finance was like before modern portfolio theory. Risk and return are such 

fundamental concepts of finance courses that it is hard to imagine a time where these concepts were 

once a theoretical novelty (Varian, 1993). A brief chronological review of the development of models 

around asset pricing in capital markets reveals some of the great insights provided by brilliant theories 

and theorists in the last century. 

Modigliani and Miller (1958) suggest that under perfect capital market conditions the valuation of a 

company should be independent of capital structure, such as debt to equity ratios. Sharpe, Lintner, 

and Treynor (1964), in their capital asset pricing model (CAPM), propose that expected return is 

singularly related to non-diversifiable risk associated with the market portfolio. Ross and Roll (1976) 

introduce arbitrage pricing theory, opining that arbitrage trading by smart money would eliminate 

price deviation from fundamentals caused by irrational investors. Kahneman and Tversky (1979) 

develop behavioural finance establishing a behaviour basis for market inefficiencies. More recently 

Fama and French (1993) observe the importance of more than one priced risk factor.  

Existing theories about the behaviour of capital markets share a common denominator, they all 

provide a theoretical construct of how the world should work. The purpose of formulating a 

theoretical construct is not complete realism, rather a framework from which meaningful inference 

or prediction can be made (James, Witten, Hastie and Tibshirani, 2015). Many of the original engineers 

of these brilliant theories willingly acknowledge that the theories are based on an array of implausible 

assumptions. Iconoclastically, the oversimplification achieved in many of these theories are touted as 

their brilliance as opposed to their demise.  
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Arnott (2004) theorizes that the sheer brilliance of these theories blinds us to their limitations, adding 

that to accept theories as facts we often accommodate the assumptions as facts. The limitations of 

existing theories in finance has not gone unnoticed, with some expressing their dissatisfaction more 

assertively than others. George Soros, one of the most powerful and profitable modern investors, goes 

as far as saying “existing theories about the behaviour of stock prices are remarkably inadequate. They 

are of so little value to the practitioner that I am not even fully familiar with them. The fact that I could 

get by without them speaks for itself” (Soros, 1987).  

The Alchemy of Finance written by George Soros in 1987 has been described as somewhat of a 

revolutionary book. Mr Soros puts forth his theory of reflexivity in the stock market as well as 

highlights the severe limitations of preceding theory. Mr Soros’s theory of reflexivity in the book has 

been described as the first modern non-technical effort to describe the dynamics of the path between 

points of extreme valuation and equilibrium in the market place.  

1.2 REFLEXIVITY IN THE STOCK MARKET 

There is a beautiful synchronicity present in the taxonomy of investment styles, theories of stock price 

behaviour, and beliefs regarding the degree of efficiency in the market. Theories of stock price 

behaviour are characterised by the three broad classes of investment management styles, namely: 

passive, technical and fundamental. Technical analysis operates under the weak form of market 

efficiency and suggests that the past experience is relevant in predicting the future. The random walk 

hypothesis operates under the assumption of an efficient market, and that prices quickly incorporate 

all information leaving no economic profit opportunities in the market (Elton et al., 2011). The random 

walk or efficient market hypothesis (EMH) is often the reason spouted for investing in many passive 

funds. 

The fundamentalist approach along with the EMH bares the bulk of criticism from Soros (1987). The 

performance of well renowned successful investors such as Warren Buffet and Soros is often cited as 

sufficient anecdotal evidence to refute the random walk hypothesis. The fundamentalist view of stock 

price behaviour is an out of equilibrium model, where the price and intrinsic value of a stock are two 

distinctly separate quantities. The price of a stock is assumed to revert towards the intrinsic value in 

line with equilibrium fair market price of the firm. The classic or fundamentalist asset pricing theories 

stress that asset prices are determined by the intrinsic value only. In other words asset prices are 

completely determined by expected future cash flows and the risk premium for bearing the risk 

(Mpofu et al., 2013).  
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The key insight or scathing criticism of the fundamentalist approach by Soros lies around the 

assumption that the market cannot influence the price. The classic economic theory of pricing under 

the perfect competition paradigm shares the analogue of a unilateral relationship between price and 

value. The shared axiomatic beliefs in the market pricing mechanism is no accident here since the 

fundamentalist view of stock price behaviour is derived from economic theories of pricing in perfect 

competition. Soros (1987) so aptly points out that the omission of the reflexive relationship between 

price and value is much more glaring in stock markets than in others. 

Stock market valuations of the firm’s equity have a direct way of influencing the underlying values. 

The issue and repurchase of shares by a company or corporate transactions such as mergers and 

acquisitions directly translate to influences on the underlying value. There are other more subtle ways 

in which share prices may influence the underlying value, such as credit rating, consumer acceptance 

and management credibility to name a few. Granting the manner in which equity prices impact these 

factors is subtle. There is nothing subtle about the magnitude to which these factors impact equity 

prices. The influence of these factors on stock prices is of course well recognized, it is the influence of 

stock prices on these factors that is so strangely ignored by the fundamentalist approach (Soros, 1987).  

1.3 CAPITAL STRUCTURE AND RISK & RETURN 

The influence of the capital structure of the firm on underlying value or stock price returns have been 

assumed away in the macroeconomic theorists endeavour to provide a generalized theory of market 

pricing mechanisms in the utopic setting. The influence and importance of the firm’s capital structure 

on risk and return has not been forgotten in other fields of academic financial theory and practice.  

The DuPont model expression for the measure of a firms return on equity (ROE) suggest that a firms 

ROE depends on operating efficiency; asset use efficiency and financial leverage. The firms ROE can 

then be expressed as the return on assets (ROA) times the equity multiplier (Mpofu et al., 2013). To 

simplify further the DuPont model provides that 𝑅𝑂𝐸 = 𝑅𝑂𝐴 × 𝐸𝑀 in notation terms. The equity 

multiplier is simply the portion of the firm’s assets financed by equity, capturing the use of financial 

leverage in the ROE. The DuPont model decomposition illustrates the reflexive nature between capital 

structure, ROE and the market price of a firm’s equity.  

The relationship between leverage and equity risk is well documented within market risk literature 

and behavioural finance. The asymmetric generalized auto regressive conditional heteroscedastic (A-

GARCH) and GJR GARCH are models for conditional volatility designed to incorporate the ‘leverage 

effect’ within equity returns (Sui et al., 2011). The leverage effect describes the asymmetric response 

of investors to increases and decreases in equity prices. For a decrease in equity stock prices the 
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volatility of the equity price escalates more than for an equivalent increase in equity prices, since 

investors are loss averse ceteris paribus. The increased financial leverage resulting from decreased 

equity prices, in conjunction with more volatile equity prices ultimately increases the risk on equity 

(Alexander, 2008). The leverage effect further substantiate that capital structure plays a significant 

role in the risk and return on equity. 

The banking or lending institutions devote a considerable amount of time and resources to the 

assessment and quantification of the firm’s capital structure and risk and return. According to Zaik et 

al. (1996), Bankers Trust developed the risk-adjusted return on capital (RAROC) methodology in the 

late 1970s with the intent to measure the risk of a bank’s credit portfolio and the amount of equity 

capital required to limit the bank to a specified probability of loss. The risk measure within the RAROC 

framework moves away from a market-driven definition of risk to a measure of risk that is firm specific. 

Crouhy et al. (1999) contends that the underlying premise of the risk-adjusted return on capital 

(RAROC) approach is that it is possible to construct a risk-adjusted rate of return measure such that it 

can be compared with a firm’s cost of equity capital. The implicit assumption is that the RAROC 

measure adjusts the risk of a business relative to that of a firm’s equity. The RAROC framework by 

Bankers Trust has long acknowledged the impact of capital structure on risk and return at the firm 

level.  

1.4 RESEARCH PROPOSITION 

The property of reflexivity in stock prices, DuPont’s partition of the firms ROE, the ‘leverage effect’ 

and RAROC framework all corroborate that at the security level, the capital structure (price of debt 

and equity) have large influences on firm specific risk and return. If both of these are traded in the 

market, can the values of debt and equity be used to predict stock price behaviour? The more 

pertinent question undoubtedly is how to make use of market variables of debt and equity to capture 

forward looking expectations around the value of individual firms? The pricing of credit derivatives for 

individual firms may yield some insight in this regard. 

In a recent study by Bai and Wu (2016), the researchers observed that firm fundamentals are able to 

adequately explain cross-sectional variation in credit default swap (CDS) spreads. It is then a tenable 

assumption that discrepancy in CDS or credit spreads may adequately describe variations in firm 

fundamental values. Defining credit spreads from the premiums of single-name Credit Default Swaps 

(CDSs) instead of bond yields compared to some benchmark would give a more accurate measure of 

counterparty credit risk (CCR), but CDS data is complex and not readily available (Gregory, 2012). CDS 

spreads are arguably the purest market instrument from which to define the markets view of riskiness 
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of a firm’s debt, although sadly in the South African context these instruments are virtually non-

existent.  

Vassalou and Xing (2004) is  the  first  study  that  uses  Merton’s  (1974)  option  pricing  model  to  

compute default measures for individual firms and assess the effect of default risk on equity returns. 

The undertaking by Vassalou and Xing (2004) provides the inspiration for exploring the use of default 

risk in linking the firm’s capital structure and equity returns. There are essentially three broad 

classifications for default modelling approaches as summarized by Trujillo and Martin (2005): the first 

is the historical approach where probabilities of default are estimated from statistical models applied 

to series of historic data and/or credit ratings. The second class consists of the reduced form models 

where probabilities of default are derived from a market observable credit spreads. Last being the 

structural model paradigm under which default is modelled using an option theoretic approach.  

The last alternative is the basis for so-called structural models, which will constitute a major area of 

focus within this research. The theoretical inspiration for the series of structural models is that of 

Merton (1974). The basis of the structural approach is that the debt and equity of a firm can be 

regarded as contingent claims on the firm’s assets. The value of the debt and equity of a firm thus 

depends on the value of its assets as well as the forward-looking expectation surrounding the value of 

those assets. While scrutinizing the assumption of the RAROC framework, Crouhy et al. (1999) 

demonstrates that the Merton (1974) contingent claims framework can be used to describe the 

relationship between capital structure, expected return and the probability of default.  

The above points culminate in giving rise to the first proposition explored within this research-is it 

possible to use structural models of default to capture forward looking expectations of return for 

individual firms? More concretely, the proposition is to explore the use of structural models to link 

market observable credit spreads and forward looking expectations of equity returns. Tackling the 

broader topic of risk and return under the structural model approach is more appropriately left for 

the possibility of PhD research.  

1.5 RESEARCH DESIGN / CHAPTER OVERVIEW 

The research paper has both quantitative and qualitative aspects. The qualitative aspect is the review 

of the various models and methods for predicting stock price returns. The research focus of the paper 

is more specifically on the use of structural models in the prediction of stock price returns. Chapter 1 

served as an introduction discussing the background/rationale as well as the context and need for the 

research. 
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Chapter 2 of the research paper contains an outline of the literature that is relevant to the theories of 

stock price behaviour and theories of firm valuation. The literary review presented briefly covers the 

theoretical development of the various methods available for estimating the probability of default. 

Furthermore, the proposed use of the Merton (1974) model to link market default probabilities and 

unique firm valuations and expected return will be discussed comprehensively.  

Chapter 3 describes the methodology followed within the research to test whether structural models 

of default can be used to provide estimates of the firm value and expected return on the stock price. 

The methodology narrates fully how predictors of firm returns are created under different theories as 

well as how the usefulness of these predictors is evaluated. The methodology elucidates the process 

under which the validation of stock return predictions is performed in an analogous manner to credit 

risk model validation.  

Chapter 4 follows by reviewing the results obtained by following the methodology and theory set out 

in the previous chapters. The Merton model predictors of expected return are evaluated against those 

from the CAPM model for five firms traded on the Johannesburg stock exchange (JSE). The predictors 

of firm return are evaluated on how well they predict the class (positive or negative) of future excess 

returns. The forward excess returns are also defined for a variety of time horizons under which the 

return is earned and further evaluated in terms of class predictive capability through the passage of 

time. The comparison and return class predictions from different models and theories provide an 

indication of whether structural models of default yield decent predictors of stock price returns.  

A summary of the overall results and outcomes of the research, along with the overall conclusions 

drawn from this research are presented lastly in Chapter 5. This also includes the scope and limitations 

of the investigation along with recommendations for further research. 
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2 ACADEMIC LITERATURE REVIEW  

 “If I have seen further it is by standing on the shoulders of Giants” Sir Isaac Newton (1676) 

The academic review of the relevant literature concerning the theories of stock price behaviour and 

firm valuation is recapitulated at the necessary level of granularity. The review of modern portfolio 

theory reveals the model pedagogies for stock price behaviour in equilibrium models. Within the 

review of these models special effort is made to highlight the distinction between the brilliance of 

theory and the limitations encountered in practical implementation. Thereafter the fundamental 

approach to firm valuation and stock price behaviour is examined in detail, disbursing special 

consideration to highlight the distinction between the price and intrinsic value of the company’s 

equity.  

The literary review presented briefly covers the theoretical development of the various methods 

available for estimating the probability of default. A discussion of the theoretical and conceptual basis 

behind the structural models as well as the implementation of structural models is included. 

Moreover, the proposed use of the Merton (1974) model to link market default probabilities with 

unique firm valuations and expected return is discoursed in prodigious detail. Further theoretical 

substantiations for the contingent claims approach to firm valuation are weaved into to the arguments 

covering the mathematical specification of the suggested framework.  

2.1 MODERN PORTFOLIO THEORY 

The portfolio selection problem stated in classical economic terms is the problem of selecting the 

portfolio that maximizes the expected utility of an individual’s end-of-period wealth (Ross, 2009). 

Since future asset returns are unknown it is the expected asset returns that should be used in the 

portfolio selection problem. However to maximize the expected return for a portfolio of stocks then, 

an investor should purchase the single stock with the highest expected return. Markowitz (1952) 

formulation of portfolio optimization leads quickly to the fundamental point that riskiness of a stock 

should not be measured by the variance of the stock in isolation, but also by covariance. 

2.1.1 Markowitz portfolio selection 

The Markowitz efficient frontier, developed in 1952, laid the foundations for modern portfolio theory 

for portfolio selection. The efficient portfolios (combination of securities) are defined as the set of 

portfolios with returns that are maximized for a given level of risk based on mean-variance 

construction (Elton, Gruber, Brown & Goetzmann, 2011). While Markowitz provided the insight for 
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diversification in portfolio selection, it is the measures of risk and return that are the most contentious 

parts of the framework.  

The exact definition of risk is quite a contentious issue as no single definition of risk will be sufficient 

under all scenarios. Broad definitions of risk allow for interpretations of risk as the uncertainty 

surrounding achievement of the expected outcome. The definition of risk according to the oxford 

dictionary defines risk as a situation involving exposure to danger or to expose someone or something 

to danger, harm, or loss. It is necessary to distinguish between financial and non-financial risks in the 

risk and rewards conundrum. This is since no rational person can expected to yield benefit from 

additional exposure to non-financial or pure risk. 

The definition of risk in the investment setting should thus analogously imply the possibility of loss. 

Risk Metrics confirms the intuitive rationale, defining risk as the explicit possibility of loss. A more 

comprehensive definition of financial risk is provided by Mpofu, De Beer, Myhnardt and Nortje (2013), 

financial risk can be described as the probability of experiencing an event that has a negative financial 

implication, thus a loss. The semantics of risk provide that rewards for taking on risk in the investment 

context, should be seen as the reward gained for exposure to possible financial losses.  

The problem with interchanging volatility and risk is that volatility is a measure of deviation from the 

desired outcome, in this case the expected portfolio or securities return. Volatility is an appropriate 

measure of risk where risk may be viewed as the uncertainty surrounding achieving the expected 

outcome. Moreover, volatility is only an adequate description of the possibility of loss in the case of 

normally distributed portfolio returns (Dowd, 2005).  

Additionally, the measure of volatility is based on historical information, arguably providing a limited 

indication of future risk to the return achievable by security or portfolio. The standard measure of 

volatility does not distinguish between calculating historical volatility and estimating future volatility 

(Alexander, 2008). Historical mean-variance optimization similarly forecasts expected return as the 

historical return.  

Herein lies the fundamental limitation of mean-variance portfolio construction in the portfolio 

selection problem. The mean-variance constructed efficient frontier does not distinguish between 

estimating past mean-variance structures and forecasting future mean covariance structures. This 

leads to the necessary distinction around the use of the mean-variance constructed efficient frontier 

in portfolio selection problems. Mean-variance efficient frontiers are more appropriately used for 

evaluating past portfolio performance as opposed to selecting a portfolio that will be most efficient at 

the end of period.  
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Mean-risk models are the ubiquitously used approach in portfolio selection in practice (AlHalaseh, 

Islam and Bakar, 2016). In the portfolio selection problem it is the future asset returns that are 

unknown, utility maximization thus requires estimates of expected asset returns for the optimal 

solution. The mean variance construction only provides a wholesome solution to portfolio selection 

problems where markets are perfectly efficient and future returns are not predictable. 

Correctly estimating or forecasting asset returns and risks is self-evidently imperatively reliant on the 

specification for the statistical model which generates the portfolio or asset returns. Forecasting 

equity returns provides the basis for correctly solving the portfolio selection problem in markets of 

varying degrees of efficiency.  

2.1.2 Capital asset pricing model 

Asset pricing theories and models such as the Capital Asset Pricing Model (CAPM) are extensions of 

mean-variance portfolio optimization problems. These set of models make use of historical mean-

covariance structures to estimate the expected return and risk of securities portfolios or individual 

assets. The CAPM extends the efficient portfolio idea by relating the expected or required return of 

an asset to its relative exposure to systemic risk. In this sense additional financial rewards are only 

received for taking on additional exposure to systemic market risk. The exposure to systemic market 

risk is captured through historical mean covariance structures in the following way. 

𝑅𝑖 = 𝑅𝑓 + 𝛽(𝑅𝑚 − 𝑅𝑓)         (2.1.1) 

Hence, the required rate of return on an asset, 𝑅𝑖 is estimated from its riskiness relative to the market, 

determined by historical covariance structures (Elton et al., 2011). The CAPM is appealing since it 

captures both risk and return through a single parameter 𝛽. The key insight of the CAPM is that the 

equilibrium value of an asset depends on how it co-varies with other assets, not on its risk as a stand-

alone investment (Varian, 1993).  

For stock pricing the CAPM estimates the required rate of return of an asset as part of a well-diversified 

portfolio in a well-functioning securities market. The CAPM and the performance measures that stem 

therefrom are generally used to analyse past performance. Any insights investors hope to gleam into 

future performance is largely contingent on beta and the expected return on the market. Beta is often 

thought of in a forward-looking sense, yet it is based on historical price movements and predictability 

is limited. An important concept to remember is that beta quantifies the degree to which a portfolios 

returns are influenced by the same factors that influence the market return; the portfolio returns are 

not actually caused by the market (Kidd, 2011).  
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In an explanation of the ‘High Risk, Low Return Puzzle’ by Frazzini and Pedersen (2014), zero-beta long 

short portfolios are constructed to empirically evaluate the risk return relationship suggested by the 

CAPM. The beta-neutral portfolios consistently provided excess returns well above the zero which is 

what the standard CAPM suggests the strategy should earn. The behavioural economists’ school of 

thought explains the high risk low return puzzle by introducing heterogeneous beliefs, short-sales and 

leverage constraints. The behavioural finance model then argues that high beta stocks are more 

sensitive to disagreement and are more likely to have binding short-sales constraints, ultimately 

yielding over inflated prices for high beta stocks.  

The work of Ang et al. (2006) along with Baker, Bradley and Wurgler (2011) also provide that risk 

measured using return volatility yields the same outcome as evidenced in the infamous ‘High Risk, 

Low Return Puzzle’. Empirically both volatility and beta are shown to be limited descriptions of the 

risk and return relationship in the investment context. The failure of the CAPM model to empirically 

generalize suggests that the model provides useful insight into the evaluation of past performance 

portfolio performance but rather fragile practical suggestions for explaining stock price behaviour at 

the security level.  

2.1.3 Arbitrage pricing theory 

Ross (1976) and Roll (1977) criticize the CAPM and suggest a multifactor approach called the Arbitrage 

Pricing Model. Fama and French (1993) suggested the three-factor model that considers beta, size and 

book-to-market as risk factors for describing the risk premium. Arbitrage Pricing Theory (APT) provides 

extensions of the CAPM by allowing for more than one factor to describe the expected return. APT 

models estimate the expected return of an asset or portfolio by multiple regression. Advantageously, 

this allows for the incorporation of exogenous factors that may describe asset returns. Most notably, 

traditional asset pricing theories and models have an additional weakness in the sense that they are 

only accurate descriptions of risk and return where ordinary regression assumptions hold. 

It is widely observed that asset returns are not normally distributed, a key assumption of ordinary 

linear regression Alexander (2008). Additionally, volatility is not a comprehensive measure of 

dispersion for non-normally distributed random variables, let alone the best measure of risk. 

Curiously, Elton et al. (2011) contends that, empirically, APT and multi-factor models produce more 

reasonable explanations of variations in portfolio returns relative to the single index factor model of 

the CAPM. Once again there is a critical distinction necessary in the real world application of these 

models. The models as formulated offer an explanation of past asset returns and do not forecast the 

future asset return in its generic formulation except under perfect market conditions.  
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The incorporation of a distinction between historic estimates and forecasts for asset returns would 

require a recognition of non-stationarity in price series. Mandelbrot (1966) clarifies that so little is 

known of non-stationary time series that accepting non-stationarity amounts to giving up any hope of 

performing a worthwhile statistical analysis. The lack of inclusion of a distinction between past and 

future estimates in the equilibrium models are conceivably more for the ease of model formulation as 

opposed to accurately describing the complex nature of reality. The second proposition underscored 

in this research is that measures of historic mean-variance are not good predictors of future return at 

individual firm level. 

2.2 VALUATION MODELS 

''If we do not recognize the fundamental difference that exists between price and value, then we are 

doomed. Historically this distinction did not really matter in corporate finance because the two, price 

and value, were supposed to be the same, to remain equal forever. Who has been telling us that? These 

people do not live in New York; they live in Chicago. The Chicago School of Economics has been telling 

us for a century that price and value are identical, i.e. that they are the same number'' – Sylvain Raynes 

– The subprime Crisis & Ratings: PRMIA Meeting Notes 2007. 

Sylvain Raynes highlights the essential difference between the price of equity and the value of equity, 

the distinction between the two so often blurred with economic theories about market efficiency. If 

price and value are the same number it implies there is no such thing as a good deal or a bad deal, 

there are only fair deals. The deliberation provided in this next segment paints a clearer picture of the 

fuzzy link between equilibrium models of asset pricing, concepts of price and value, and the translation 

into theories of stock price behaviour.   

2.2.1 Miller Modigliani theory 

The insight of Modigliani and Miller (1958), referred to hereafter as the MM theory, showed that 

under the assumption of frictionless markets and perfect completion, that debt and equity are perfect 

substitutes in the absence of taxes. Thus, under perfect competition conditions a firm cannot increase 

its value by changing its capital structure since this would create arbitrage opportunities for investors 

of the firm’s debt and equity. 

The MM theorem is a consequence of value additivity; a portfolio of assets must be worth the sum of 

the values of the assets that make it up. Initially the proposition of value additivity appears to be at 

odds with the insights about diversification. An asset should be worth more combined in a portfolio 

with other assets than it is standing alone due to diversification benefits. Most critically the point is 

that asset values in a well-function securities market already reflect the value achievable by portfolio 
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optimization. The principal of value additivity is even more fundamental than the CAPM since it relies 

solely on no arbitrage considerations (Varian, 1993).  

2.2.2 Discounted future cash flow 

The discounted future cash flow (DCF) approach to value was introduced by John Burr Williams (1938) 

in his book The Theory of Investment Value. Williams argued that the value of a stock should be the 

present value of its dividends, a novel theory for its time. By extension, the intrinsic value of a firm is 

determined as the expected present value of future cash flows streams discounted at the weighted 

average cost of capital (WACC), represented in Equation 2.2 The WACC is comprised of the cost of 

debt and the cost of equity, where the cost of equity is usually determined by the CAPM. The 

mathematical expression for intrinsic value or price helps discern the critical insights from different 

theories of stock price behaviour and value.  

𝑃𝑉 = ∑
𝐶𝐹𝑖

(1+𝑊𝐴𝐶𝐶)𝑖
𝑛
𝑖=1            (2.2) 

In the fundamentalist view, if markets are perfectly efficient then the intrinsic value will equal the 

price since all future cash flows and developments are correctly discounted by the market. The MM 

theory states that under no-arbitrage considerations the mix of debt to equity should not influence 

the discount rate in the valuation of the firm in Equation 2.2. The nomenclature of required rate of 

return or expected return in the CAPM framework is easily understood in lieu of the above two points. 

In equilibrium, the price is equal to value and the discount rate is independent of capital structure. 

Thus much like a bond is traded at par value when the yield to maturity (YTM) is equal to the coupon 

rate, the expected return on equity or required rate of return on equity is the discount rate that 

correctly equivocates price and value in equilibrium.  

The theories of asset pricing models in equilibrium offer little with regards to explanations of stock 

price behaviour at the security level. In the fundamentalist approach to stock price behaviour as Soros 

calls it, the price and intrinsic value are distinctly separate quantities and the market is not always in 

equilibrium rather continuously moving towards equilibrium. In the fundamentalist approach to stock 

price behaviour, stock prices are assumed to be fully determined by the firm’s intrinsic value. 

Moreover, the market will always tend towards equilibrium and stock prices should tend towards their 

intrinsic values. The rate at which stock prices are assumed to tend towards its intrinsic value, reveals 

the belief held regarding the degree to which markets are thought to efficient.  

The use of WACC as the appropriate discount rate in the fundamentalist approach is a movement 

away from equilibrium conditions where valuation is independent of capital structure as found within 

the MM theorem. Interestingly then the disposition from equilibrium price and value allows the capital 
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structure to enter into determinations of value through the WACC, however the disposition from 

equilibrium has not allowed for the influence of price on value. The lack of acknowledgement of a 

reflexive relationship between price and value seems a bit absurd, if a firm’s capital structure contains 

part of its own traded equity then equity prices are a natural influence on WACC.  

The maintenance of a one-way relationship between price and value - even where the critical 

conditions for this relationship are assumed not to be present - is an ideological inconsistency within 

the fundamentalist approach to stock market investing. The DCF approach is a central tool for the 

pricing of financial contracts and instruments throughout quantitative finance. However this 

fundamentalist approach of value, fitted to modeling stock price behaviour is still sorely 

dissatisfactory. The estimation of future cash flows to a firm are highly subjective along with the 

appropriate discount rate and cash flow timings. There is also very little empirical evidence to support 

the hypothesis that share price moves towards intrinsic value (Soros, 1987).  

The DCF approach to asset pricing does not lend itself well to the portfolio selection problem. The 

major disadvantage of the DCF valuation models is that risk is not an explicit parameter of the model. 

Valuation models may provide good means to estimate the expected return on a security, however 

these models fail to provide any intuitive means to measure risk associated with the expected 

outcome (Mpofu et al., 2013).  

2.2.3 The subjective theory of value 

The notion of subjective value and the theory of greater fools provides an alternate view to value. The 

subject theory of value is the idea that the value of the firm is not inherent and instead worth the 

amount market participants are willing to pay. The subjective view of value is a movement away from 

the notion of an intrinsic value. The subjectivity contained within value offers a suggestion for the lack 

of empirical evidence to support the claim that asset prices move towards their intrinsic values over 

time.  

The theory of greater fools simply states that there will always be a “greater fool” in the market who 

will be ready to pay a price based on a higher valuation for an already overvalued security. The greater 

fool theory approach to investing focuses on determining the likelihood that the investment can be 

resold for a higher price instead of trying to accurately discern the intrinsic value of the investment in 

the firm. The greater fool theory is not really designed to provide investors with a trading strategy 

based on finding tools. The greater fool theory is articulated in a manner that aids explanations 

surrounding the formations of speculative bubbles in markets.   
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2.3 STRUCTURAL MODELS OF DEFAULT PROBABILITY 

The next section introduces the structural models of default of the firm. The cross-over from modern 

portfolio theory and stock price behaviour to credit risk modeling may appear very tangential at first 

glance. The reader is encouraged to bear in mind that the default model pedagogies may reveal a 

different paradigm for estimating value from increased market observable information. The exact 

suggestions for the re-appropriation of the structural model framework is deferred to the penultimate 

section of the literature review.  

2.3.1 Merton (1974) model 

In 1974, Robert Merton introduced a new option-theoretic approach to credit risk modelling and 

measurement based on ideas and formulations that were implicit in the Black and Scholes (1973) 

option-theoretic framework. The firm value in the context of the Merton (1974) model is the economic 

value of the total assets of the firm. As with all structural models, the Merton model begins with a 

specification of a stochastic process for the firm value. The Merton model assumes that the firm value 

follows a geometric Brownian motion: 

d𝑉𝑡 =  𝜇𝑉𝑡d𝑡 +  𝜎𝑉𝑡d𝑊𝑡         (2.3.1) 

Where, 𝑉𝑡 is the firm value at time 𝑡, 𝜇 is the drift of the firm value, and 𝜎 is the volatility of the firm 

value. The second assumption of the Merton model is that the capital structure of the firm consists 

solely of equity and debt. Furthermore, the debt is assumed to be a single issue of zero-coupon form 

where the face value of the debt is denoted by 𝐹 and the maturity date is 𝑇.   

To complete the model, further assumptions regarding the conditions that trigger default and the 

costs incurred in the event of default are required. The Merton (1974) model assumes that default 

can only occur at time 𝑇 when the debt becomes due and no covenants can trigger default before 

time 𝑇. Furthermore, debt holders are assumed to have absolute priority over equity holders in the 

event of default and there are no frictional market costs associated with liquidation in the event of 

default.  

Under these assumptions Merton (1974) shows that holding the risky debt of the firm is equivalent to 

holding a portfolio consisting of a long position in default risk free bond paying 𝐹 at time 𝑇 and short 

a put on the firm’s assets with strike 𝐹 and maturity 𝑇. The following decomposition follows naturally: 

𝐷𝑡 = 𝐵 − 𝑃        (2.3.2) 

Where  𝐷𝑡 represents the value of risky debt, 𝐵 is the value of riskless debt and 𝑃 is the value of the 

put on the firm’s assets. This decomposition importantly shows that the spread on the risky debt is 
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completely determined by the value of the put, 𝑃 (Smit, Swart and Van Niekerk, 2003). The value of 

the put can be determined using the Black-Scholes formula since all the conditions of Black-Scholes 

have been met in the assumptions. Merton (1974) expresses the value of the put slightly differently 

to the standard Black-Scholes formula: 

𝐵 = 𝐹𝑒−𝑟(𝑇−𝑡)   Value of riskless debt.     (2.3.3) 

𝑃 = 𝑒−𝑟(𝑇−𝑡) 𝐹. 𝑁(−𝑑 + 𝜎√𝑇 − 𝑡) − 𝑉𝑡𝑁(−𝑑)    Merton put formula.   (2.3.4) 

Where: 

𝑑 =  
1

𝜎√𝑇−𝑡
 [ln(1

𝐿 ⁄ ) + 
1

2
𝜎2 (𝑇 − 𝑡)]        (2.3.5) 

𝐿 =  
𝑒−𝑟(𝑇−𝑡) 𝐹

𝑉𝑡
     Leverage ratio of the firm     (2.3.6) 

Simplified expressions for the risky value of debt then include: 

𝐷𝑡 =  𝑒−𝑟(𝑇−𝑡) 𝐹. 𝑁(𝑑 − 𝜎√𝑇 − 𝑡) + 𝑉𝑡𝑁(−𝑑)       (2.3.7) 

𝐷𝑡 = 𝑉𝑡 − 𝐸𝑡    Accounting value      (2.3.8) 

The firm’s equity price is represented by 𝐸𝑡 and In addition 𝑁( . ) is the standard cumulative normal 

distribution function. The risk-neutral probability of default is easily extracted as the probability 

that 𝑉𝑡 < 𝐹. From Black-Scholes formula, this is simply the probability that the put 𝑃 finishes ‘in the 

money’. Smit et al. (2003) show that the risk-neutral probability of default is given by: 

𝑁( −𝑑 +  𝜎√𝑇 − 𝑡 )          (2.3.9) 

The actual or real-world probability is given similarly as the probability that 𝑉𝑡 < 𝐹.  However, the 

process for the firm value has drift 𝜇 as opposed to drift in the risk-neutral world where the risk-free 

rate, 𝑟 is the drift of the firm value process. The actual probability of default will typically be less than 

risk-neutral probabilities since 𝜇 > 𝑟  usually. The higher risk-neutral default probability can be 

interpreted as comprising of actual default probability and a premium for uncertainty of timing and 

magnitude of the default (Sundaran and Das, 2010).   

Another useful feature of the Merton (1974) model is that is allows for estimation of expected 

recovery rates in the risk-neutral setting. Under the Merton framework, Smit et al. (2003) provide the 

following closed form expression for the expected recovery rate: 

1

𝐷
𝐸𝑇[𝑉𝑇| 𝑉𝑇 < 𝐷] =   𝑒−𝑟(𝑇−𝑡) (

𝑉𝑇

𝐷
) (

𝑁(−𝑑)

𝑁( −𝑑+ 𝜎√𝑇−𝑡 )
)        (2.3.10) 
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This feature is extremely useful since both CDS spreads and bonds prices require an estimate of the 

recovery rate to estimate default probabilities. Although the model is theoretically very appealing, 

since it provides a simplistic model for the credit spread along with default probability and recovery 

rates, the model encounters a number of major challenges in practical implementation. The first of 

these challenges is that both the firm value  𝑉𝑡 and its volatility 𝜎 are unobservable in the market. 

Wang and Suo (2006) argue that in the Merton model, the firm’s equity is treated as a European call 

option on the firm’s assets and hence the firm value and volatility should satisfy the following set of 

simultaneous equations:  

𝐸𝑇[𝑉𝑇 , 𝜎] = 𝑉𝑇 𝑁(𝑑) − 𝑒−𝑟(𝑇−𝑡) 𝐷 𝑁(𝑑 − 𝜎√𝑇 − 𝑡 )     (2.3.11) 

𝜎𝐸 = 𝜎𝑉𝑇
𝑁(𝑑)

𝐸𝑇
          (2.3.12) 

The relationship between the equity and asset volatility only holds instantaneously and the algorithm 

forces stochastic variables to be constant, where in practice the hedge ratio and leverage ratio are not 

stable enough to provide meaningful estimates (Holman et.al, 2011). Crosbie and Bohn (2003) 

illustrate that the procedure biases the probability of default in exactly the wrong direction as 

increased leveraging will drive down asset volatility and under predict default. 

Vassalou and Xing (2004) describe a more complex iterative procedure to solve for the asset volatility. 

Alternatively, Duan (1994) describes an intricate maximum likelihood approach based on observed 

market equity or bond prices in order to solve the unknown parameters relating to the firms value 

and volatility. A distinct advantage of the maximum likelihood approach is that it directly provides an 

estimate of the real-world drift parameter {𝜇}  of the unobserved asset value process under the 

physical probability measure (Wang and Suo, 2006).  

The second major issue encountered with implementing the Merton (1974) model is that the capital 

structure assumption is too simplistic. In practice, capital structures consist of many issues of debt 

outstanding, with varied coupons, maturities and subordination structures (Sundaran and Das, 2010). 

In order to simplify reality, Delianedis and Geske (1998) suggest a zero-coupon bond that has an 

equivalent duration of the existing structure replacing the capital structure. An alternative in the 

popular Moody’s KMV vendor model is to use the aggregate of short term and long-term liabilities to 

estimate the face value of the zero-coupon debt 𝐹.  

2.3.2 KMV proprietary model 

One on the most notable implementation of a structural credit risk measurement model is the 

Moody’s KMV (MKMV), Trujillo & Martin (2005) summarizes the MKMV approach in four stages: 
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(i) Calculate a default boundary. 

(ii) Estimate asset value and volatility. 

(iii) Calculate the Distance to Default (DD). 

(iv) Map DD into Expected Default Frequency (EDF). 

2.3.2.1 Parameter estimation 

In the first stage, the capital structure is collapsed into a single debt issue or default boundary 

calculated as the sum of the short-term liabilities and a fraction of the longer-term liabilities. In the 

second stage, the asset value and volatility are backed out from observed equity value, volatility and 

capital structures. The KMV estimation process that is implemented can be outlined as: 

1. Let, {𝐸𝑡}𝑡=0
𝑛  be a time series of equally spaced observed equity prices.  

 𝐸𝑡 = 𝐵𝑆(𝑉𝑡, 𝜎, ′𝐶𝑎𝑙𝑙′) . 

2. Express 𝑉𝑡 = 𝐵𝑆−1(𝐸𝑡 , 𝜎, ′𝐶𝑎𝑙𝑙′) . 

 Begin with a guess for 𝜎𝑣. 

 Obtain {𝑉𝑡(𝜎𝑣)}𝑡=0
𝑛  , time series of asset values. 

3. Determine Series of continuously compounded asset returns.   

𝑟𝑡+1 = log (
 𝑉𝑡+1̂

𝑉𝑡̂
)   

4. 𝜎𝑣
2:  Sample variance of implied asset returns.  

5. Update initial guess of 𝜎𝑣 and reiterate several times until convergence is achieved.  

 Asset value is then most recent asset value in  {𝑉𝑡(𝜎𝑣)}𝑡=0
𝑛  in the final iteration. 

 Volatility of assets is then taken as 𝜎𝑣 for which convergence is achieved.    

2.3.2.2 Distance-to-Default (DD) 

In the third stage the MKMV approach moves away from the Merton approach and defines the 

‘distance to default’ (DD) as the number of standard deviations the firm value has to move make 

before the firm is in default (Hayne, 2004). The MKMV approach defines the distance to default δ in a 

simplified manner as shown by Crosbie and Bohn (2003): 

𝛿 =  
𝑉𝑡 − 𝐷

𝜎𝑉𝑡
 

Sundaran and Das (2010) illustrate that normalizing the distance in this fashion allows for 

comparability between firms of how far the firm is from default even though the firms may differ 

substantially in other ways.  The final stage uses the estimated ‘DD’ to determine an ‘expected default 

frequency’ (EDF) from a proprietary default database, which represents the likelihood of the given 

firm defaulting over the specified horizon (Hayne, 2004). The MKMV practioner model thus uses a 
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blend of market and historical data in a structural framework to estimate the probability of default for 

a given firm.  

Another priopertery model of great use is the Bloomberg issuer risk model.  According to Bloomberg 

(2012) the issuer risk model provides an independent assesment of credit health, using market and 

fundamental data with innovative quantitative models. The bloomberg issuer risk model provides one 

and five year  default probabilities along with implied CDS spreads. In this research paper, the 

Bloomberg issuer risk model is assumed to provide reasonable and consistent estimates for default 

probabilities and can thus be used as stable benchmark for market view of the firms default risk.  

2.3.3 Delianedis & Geske (1998) model 

The challenge of applying the contingent claims model of the firm in the case of increased capital 

structure complexity can be addressed in one of two ways. Either simplifying the firm’s capital 

structure to fit within the existing model framework, or extending the theoretical framework. 

Sundaran and Das (2010) recommend that extending the theoretical structure of the model to 

incorporate more complex debt structures is the more academically appreciated approach to the 

undertaking.   

Delianedis and Geske (1998) (DG) provide extensions of the Merton model, which allows for more 

complex capital structures. These models allow for multiple debt issues of varying coupons, maturities 

and seniority or subordination (Chen, 2013). In the simplest extension of the Merton Model, DG (1998) 

allow for two tranches of zero-coupon debt in the firm’s debt structure with face values 𝐹1 and 𝐹2 and 

maturities 𝑇1 and 𝑇2 respectively where 𝑇1  <  𝑇2.   Since there are now two dates at which equity 

holders may choose to default the DG model thus involves a compound option pricing approach 

(Sundaran and Das, 2010).  

Delianedis and Geske (1998) further illustrate that at the first maturity date 𝑇1, the firm is solvent if: 

𝑉𝑇1
> 𝐹1 + 𝐵2,𝑇1

          (2.3.12) 

Where, 𝑉𝑇1
is the value of the firm’s assets at 𝑇1, 𝐹1 is the face value of the first tranche of debt at 𝑇1 

and 𝐵2,𝑇1
 is the value of the second tranche at 𝑇1. If the firm is solvent, the Delianedis and Geske 

(1998) model then assumes that the first tranche of debt will be refinanced with equity. The model 

may be implemented under the assumption that refinancing is not allowed however, this adversely 

affects the second tranche of debt and is less realistic (Sundaran and Das, 2010).   
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The condition for solvency provided by Delianedis and Geske (1998) defines a critical cut-off value 𝑉∗, 

for the value of the firm at 𝑇1, which is equivalent to the strike price of the first option in a compound 

option. The critical cut-off value or strike price of the first option is given by: 

𝑉∗ = 𝐹1 + 𝐵2,𝑇1
      𝐵2,𝑇1

:  Market Value of Risky Debt at 𝑇1  

⇒ 𝑉∗ = 𝐹1 + 𝑉∗ − 𝐵𝑆(𝑉∗, 𝜎𝑣, 𝑟, 𝑇2 , 𝐾2,′ 𝐶𝑎𝑙𝑙′)  

⇒ 𝐹1 = 𝐵𝑆(𝑉∗, 𝜎𝑣 , 𝑟, 𝑇2 , 𝐾2,′ 𝐶𝑎𝑙𝑙′)   

In the DG model it can be shown the holders of equity are now the holders of a compound call option 

on the assets of the firms as follows: 

𝐸𝑡 = 𝐶𝑂(𝑉𝑡, 𝜎𝑣. 𝑟. 𝑇1, 𝑇2, 𝑣∗, 𝐹2,′ 𝐶𝑎𝑙𝑙′, ′𝐶𝑎𝑙𝑙′)   

Where 𝐶𝑂 denotes the compound option. The analytical price, at time 𝑡, for the compound call on call 

option is given by Hull (2012) as, 

𝐸𝑡 = 𝑉𝑡𝑁2(𝑎1, 𝑏1, 𝜌) − 𝐹2𝑒−𝑟(𝑇2−𝑡) 𝑁2(𝑎2, 𝑏2, 𝜌) − 𝐹1𝑒−𝑟(𝑇1−𝑡) 𝑁(1 − 𝑎2)  

Where, 

𝑎1 =
log(

𝑉𝑡
𝑉∗)+(𝑟−𝑞+

1

2
𝜎𝑣

2)(𝑇1−𝑡)

𝜎𝑣√𝑇1−𝑡
    𝑎2 = 𝑎1 − 𝜎𝑣√𝑇1 − 𝑡 

𝑏1 =
log(

𝑉𝑡
𝐹2

)+(𝑟−𝑞+
1

2
𝜎𝑣

2)(𝑇2−𝑡)

𝜎𝑣√𝑇2−𝑡
     𝑏2 = 𝑏2 − 𝜎𝑣√𝑇2 − 𝑡 

The value of the combined tranches of risky debt in present value terms is, 

𝐷𝑡 = 𝑉𝑡 − 𝐸𝑡    

𝐷𝑡 = 𝑉𝑡[1 − 𝑁2(𝑎1, 𝑏1, 𝜌)] + 𝐹2𝑒−𝑟(𝑇2−𝑡) 𝑁2(𝑎2, 𝑏2, 𝜌) + 𝐹1𝑒−𝑟(𝑇1−𝑡) 𝑁(1 − 𝑎2)  

The set of unobservable parameters  {𝑉∗, 𝑉𝑡, 𝜎𝑣} are solved from the following set of simultaneous 

equations.  

𝐹1 = 𝐵𝑆(𝑉∗, 𝜎𝑣, 𝑟, 𝑇2 − 𝑇1, 𝐾2,′ 𝐶𝑎𝑙𝑙′)        (2.3.13) 

𝐸𝑡 = 𝐶𝑂(𝑉𝑡, 𝜎𝑣. 𝑟. 𝑇1, 𝑇2, 𝑣∗, 𝐹2,′ 𝐶𝑎𝑙𝑙′, ′𝐶𝑎𝑙𝑙′)       (2.3.14) 

𝜎𝐸 =
𝑉𝑡

𝐸𝑡
×

𝜕𝐸𝑡

𝜕𝑉𝑡
× 𝜎𝑣  

 𝜎𝐸𝐸𝑡 = 𝑒−𝑞𝑇2𝑁2(𝑎1, 𝑏1, 𝜌) 𝑉𝑡𝜎𝑣         (2.3.15) 
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From the compound option model, Delianedis and Geske (1998) provide three risk-neutral 

probabilities as follows: 

risk neutral short run PD = 1 − 𝑁(a2)  

risk neutral long run PD = 1 − 
𝑁2[𝑎2;𝑏2,𝜌]

𝑁(𝑎2)
   

risk neutral total PD = 1 − 𝑁2[𝑎2; 𝑏2; 𝜌]  

The short run default probability represents the probability of default at 𝑇1 . The total default 

probability represents the probability of the firm defaulting at either 𝑇1 or 𝑇2. The long-term default 

probability is the probability of default at 𝑇2 conditional on not having defaulted at 𝑇1 and is thus also 

refered to as the forward default probability (Chen, 2013). 

The DG model has the appealing feature of being able to simultaneously capture  short-term and long-

term default characteristics of the firm. Sundaran and Das (2010) argue that there are many firms with 

poor quality yet, conditional on survival of initial financial difficulty, have reasonable longer term 

financial prospects and that the forward default probability of the DG model is likely to reflect these 

key features.  

Although the model appears to be a relatively simply extension of the Merton framework, 

considerable additional complexity arises in solving for the unobservable parameters of process for 

value of the firm. The procedure for estimating these unobservable parameters is subject to the same 

weaknesses as with the case of Merton. The equity and asset volatility relationship is still 

instantaneous as described by Crosbie and Bohn (2003), additionally there is the added complexity of 

a third unobservable variable 𝑉∗, the cut-off value, in the estimation procedure. 

2.4 STRUCTURAL MODELS OF FIRM VALUE AND EXPECTED RETURN 

“… Options are specialized and relatively unimportant financial securities …” – Robert Merton Nobel 

Prize winner for work on option pricing – in 1974 seminal paper on option pricing. 

Vassalou and Xing (2004) is  the  first  study  that  uses  Merton’s  (1974)  option  pricing  model  to  

computed default measures for individual firms and assess the effect of default risk on equity returns. 

The formulation proposed here is significantly different in terms of exploring the possibility of applying 

Merton (1974) models to capture forward looking expectations of return for individual stocks from 

traded debt and equity.  
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2.4.1 Structural models of firm asset value  

Using the contingent claims framework of Merton (1974), Crouhy et al. (1999) considers a business 

that is financed in such a way that the expected rate of return on equity equals some pre-specified 

value. The authors show that while it is possible to pick a capital structure so as to achieve a required 

rate of return on equity, the probability of default will change as the volatility of the rate of return on 

the firm's assets changes. Crouhy et al. (1999) further show that while it is possible to pick a capital 

structure so that the probability of default equals some pre-specified level, the expected rate of return 

on equity will change as the volatility of the rate of return on the firm's assets changes. 

The insights of Crouhy et al. (1999) demonstrate how the contingent claims framework can be used 

to describe the relationship between default, capital structure and the expected rate of return. 

Presupposing the Merton model or structural class of models accurately describes the default risk 

associated with a firm's listed debt, an easy extension of logic would suggest then that the process of 

the firm's value must be reasonably described within the model framework. Where the 

Merton/structural model framework accurately encompasses default risk, the methodology provides 

a unique frame work for firm valuation.  

Alternatively the maximum likelihood methodology, outlined in Duane (1994), provides the additional 

benefit of an explicit estimate of 𝜇 (The growth rate of firm value). The drift rate 𝜇 in a GBM also 

serves as the expected growth rate for the process, suggesting that maximum likelihood estimate of 

𝜇 can be adjusted to be a reasonable proxy for the expected return to be earned on the equity security. 

The asset returns can be leveraged in order to provide an estimate of the return on equity from the 

DuPont analysis 𝑅𝑂𝐸 = 𝑅𝑂𝐴 × 𝐸𝑀. 

The assumption that the Merton model accurately describes default risk on corporate debt is far from 

realistic and there is no evidence to suggest that this should automatically be the case. Fortunately, 

this far reaching assumption is easily circumnavigated within the Merton model framework. Opposed 

to Crouhy et al (1999) framework the probability of default is now an exogenous variable describing 

relationship between capital structure and expected return. 

Default probabilities obtainable from the reduced form class of models provides the basis for 

extending the Merton model to estimate the firms value from market observable credit spreads. The 

probability of default is then a known constant provided from the reduced form model. The Merton 

model can then be reformulated with equity or firm value being used as the subject of the formula. 

Once again the Merton model provides a unique estimate of the firm's value based on current market 

information. The expected return on equity is then estimated from market credit spreads using 

individual capital structure and traded equity information.  
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2.4.2 Default probabilities from credit spreads 

Under the assumption that the yield spread on the corporate bond is only owing to the compensation 

for the possibility of default, Hull (2012) shows that the hazard rate or default intensity can be 

estimated from bond prices as follows: 

𝜆̅ =  
𝑠

1−𝑅
         (2.4.1) 

Where, s the yield is spread of the corporate bond over similar risk free bond and 𝑅 is the expected 

recovery rate. The assumption is far from realistic as in practice many other factors contribute to the 

credit spread such as liquidity, embedded options and tax treatments of the instrument (Huang and 

Huang, 2003). 

A key determinant of default probabilities from bond prices is the meaning of the risk-free rate or risk 

free bond against which the credit or yield spread is determined. Duffee (1996) notes that the treasury 

rate is lower than similar very low credit risk rates for a variety of factors and that the treasury rate 

no longer provided a suitable proxy for the risk-free rate. The tendency of treasury rates to be lower 

than other rates has led many market participants to regard the swap rate as an improved proxy for 

the risk-free rate (Hull, 2012).  

The Credit Default Swap (CDS) market provides a manner in which the benchmark risk-free rate used 

by participants in credit markets can be estimated. CDS are considered less influenced by non-default 

factors and thus able to provide a good proxy of the risk-free rate when analysing default risk (Wang, 

2006). The other key variable in determining default probabilities from bond prices is the expected 

recovery rate. The expected recovery rate for a bond is usually expressed as the bond’s market value 

shortly after defaulting, as a percentage of its face value (Hull, 2012: 523). The expected recovery rate 

is thus the percentage of the original investment that an investor expects to receive in the event of 

default.  

There are varieties of factors that influence the expected recovery rate for a bond however. Fons 

(1994) argues that the chief determinant of the expected recovery rate is the bond’s seniority within 

the capital structure of the firm. Moody’s estimates the recovery rates of bonds by seniority, based 

on bond prices one month after default. The estimation of default probabilities from bond prices and 

yield spreads thus requires some form of a subjective or historical estimate for the expected recovery 

rate. 

In most studies surrounding the extracting of default probabilities from bond prices and credit 

spreads, such as the works of Jarrow and Turnbull (1995) along with Duffie and Singleton (1999), only 

plain vanilla bonds are considered in the study. Inferring default probabilities from bonds with 
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embedded options or floating rates become significantly more complex. Estimating default 

probabilities for a firm from the bonds it has issued, becomes problematic for firms that issue a variety 

of types of bonds in addition to the plain vanilla type bonds. 

Another difficulty encountered by this approach is the inability to easily separate the portion of the 

credit spread owing to default and the part owing to the rate of recovery. Furthermore, the findings 

of Elton et al. (2001) along with Delianedis and Geske (2001) indicate that default risk only accounts 

for a small proportion of the yield spread and that the greater part of the credit spread can be 

attributed to fiscal and systematic risk effects. This is consistent with the reasoning for the significant 

difference between actual default probabilities and risk-neutral default probabilities described in the 

previous section.   

2.4.3 Credit implied equity values 

Whether the probability of default is estimated from CDS spreads or bond prices, an estimate of the 

recovery rate is also required. Credit spreads are also affected by additional factors such as tax 

differences, liquidity and recovery rates (Hayne, 2004). The insights from reduced form models of 

default suggest that the translation of credit spreads to default probabilities may induce information 

losses or require additional assumptions. Thus proposed that firm value can also be solved directly 

from observed credit spread on debt in the structural model framework since this requires no 

assumption of the recovery rate and includes the possibility of capturing the creditors’ view of the 

firm’s intrinsic asset value. 

Consider the same simplifying assumptions as presented in the Merton framework of the previous 

section. The mathematical ontology of unique estimates of firm value in this framework is now finally 

presented. The notation remains much the same as before however it is now shown that for an 

observable probability of default or credit spread the structural model can provide an alternative 

methodology to firm valuation. 

2.4.3.1 Discount 

Within this research paper the risk-neutral approach to reverse engineering firm valuations from 

default or credit spreads is labelled as the ‘Discount’ approach. Consider first the case of a market 

observable default probability for the single outstanding debt issue of the firm. The exogenous default 

probability then provides an alternate set of simultaneous equations in order to solve for the 

parameters of the hidden firm asset value process. The firm asset value and volatility  {𝑉𝑡, 𝜎𝑉} may 

now be solved from the following system of equations: 

𝑃𝐷 = 𝑁(−𝑑 + 𝜎√𝑇 − 𝑡)         (1) 
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𝜎𝐸 = 𝜎𝑉𝑇
𝑁(𝑑)

𝐸𝑇
           (2) 

The term 𝑃𝐷  represents the external estimate of the firms default probability in the system of 

equations above. Instead of using the probability of default, the Merton model also defines the credit 

spread or spread over the risk-free rate on corporate debt as: 

𝐷𝑡 = 𝐹𝑒−(𝑟+𝑆)∗(𝑇−𝑡)  

𝑆 = −
log (

𝐷𝑡
𝐹

)

𝑇
− 𝑟  

The alternate expression for the value of risky debt suggests how risky debt is priced in terms of asset 

value and volatility.  

𝐷𝑡 = 𝑉𝑡 − 𝐸𝑡 = 𝑉𝑡 − 𝐵𝑆𝐶𝑎𝑙𝑙(𝑉𝑡, 𝐹, 𝜎𝑉 , 𝑟, 𝑇)   

In the Merton framework value is always preserved as evidenced in the equation above. The hidden 

asset value process parameters {𝑉𝑡, 𝜎𝑉} may now be solved for in the following system of equations 

when using exogenous credit spreads.  

𝐶𝑆 = 𝑆            (1) 

𝜎𝐸 = 𝜎𝑉𝑇
𝑁(𝑑)

𝐸𝑇
           (2) 

The variable 𝐶𝑆 in the system above represents the exogenous or market observable credit spread 

and 𝑆 is the measure of the credit spread in the structural model framework as outlaid above. Then 

the value of equity is the value of a call option on the asset of the firm with strike price equal to the 

face value of outstanding debt.   

𝐸𝑇 = 𝐵𝑆𝐶𝑎𝑙𝑙(𝑉𝑇 , 𝐹, σV, 𝑟, 𝑇) 

The value of the call option can then be regarded as the bond holder’s view of the fundamental value 

of the assets of the firm. The expected return is then determined as discount or the premium at which 

the equity value 𝐸 is traded in the market relative to the debt implied value of 𝐸𝑇.  

𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡 =
𝐸𝑇 − 𝐸

𝐸
 

The implicit assumption here is that the stock price will move towards the debt implied value of the 

firm. In the evaluation of the 2008 credit crisis, Hong and Sraer (2013) demonstrate that debt bubbles 

are quiet, high price comes with low volume. Further they illustrate that there is less scope for 

disagreement around the belief of the fundamental value of debt contracts. This would suggest that 
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the market price of risk contained within debt prices may reveal a less noisy view of the value of the 

assets owned by the firm.  

There is another reason to believe that the debt holder’s valuation of the firm’s asset may be more 

reasonable. In the structural models of default debt holders are assumed to hold absolute priority in 

the event of default. In the event of liquidation the debt holder’s valuation of the assets is reasonably 

assumed to provide a decent proxy for the market value of the assets of the firm.  

2.4.3.2 Return on Equity (ROE) 

The methodology can be extended further when assuming that the external default probability or 

credit spread is a real-world measure and not a risk-neutral one. Within this research paper the risk-

neutral approach to reverse engineering firm valuations from default or credit spreads is labelled as 

the ‘ROE’ approach. The expected drift rate on the asset value, 𝜇 can then also be estimated as part 

of the hidden asset value process of the firm. The firm’s real-world hidden asset value process 

parameters {𝑉𝑡, σ𝑉 , 𝜇} can be estimated from the following system of equations: 

𝑃𝐷 = 𝑁(−𝑑 + 𝜎√𝑇 − 𝑡) | 𝐶𝑆 = 𝑆         (1) 

𝜎𝐸 = 𝜎𝑉𝑇
𝑁(𝑑)

𝐸𝑇
           (2) 

𝐸𝑇 = 𝐵𝑆𝐶𝑎𝑙𝑙(𝑉𝑇 , 𝐹, σV, 𝜇, 𝑇)        (3) 

The excess asset drift (EAD) is the defined as the asset drift rate above the risk free rate.  

𝐸𝐴𝐷 = 𝜇 − 𝑟 

This provides an estimate of the excess returns expected to be earned on the assets of the firm for a 

given PD/CS and traded share price. The asset returns can be leveraged to provide an estimate of the 

expected return on equity (ROE) as per the DuPont analysis. DuPont analysis provides that 𝑅𝑂𝐸 =

𝑅𝑂𝐴 ∗ 𝐸𝑀 where EM is the equity multiplier, the proportion of assets financed through equity.  

𝑅𝑂𝐸 = 𝐸𝐴𝐷 ∗ (
𝑉

𝐸
)    

The 𝑅𝑂𝐸 variable as defined above is not the same as traditional measures of return on equity in the 

accounting framework. Rather the shorthand for an estimate of the excess return above the risk free 

rate to be earned by the firm in the structural model re-appropriation.   

The Delianedis & Geske (1998) model could also be used to estimate the value of the firm under more 

complex debt structures. The KMV re-iterative procedure for estimating the hidden asset value 
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process of the firm can also be employed to a time series of credit spread observations to avoid the 

pitfalls of the simultaneous equations process.  

2.5 SUMMARY  

The preceding literature review comprehensively demonstrated that theories of asset pricing in 

equilibrium offer applications to portfolio performance evaluation but little application towards 

performance prediction at the security level. In the economists models of equilibrium the 

incorporation of predictability in asset prices is assumed away on the basis that prices perfectly 

incorporate all future developments of the firm. A bastard child of the efficient market hypothesis is 

the Utopic notion that the price of equity and value of equity are the same.  

The fundamental approach to theories of stock price behaviour claim that price and value are two 

distinctly separate quantities. It is assumed further that the price of equity is determined completely 

by its underlying fundamentals. However there is a much more complex reflexive relationship 

between price and value that is exploited in the market. The greater fool approach to investing offers 

explanations on the formations of speculative bubbles in markets but provides few tools for a 

measured investment strategy.  

The structural approach proposes that the price and risk on traded debt can be used in conjunction 

with traded equity prices to uniquely determine the value of equity or the expected return of a 

security. The basis for the structural approach in fact rests on challenging the CAPM assumption that 

equity returns are independent of the firm’s capital structure. Empirically it is well documented that 

the CAPM fails to describe risk and return in the investment context, which suggests that the 

assumptions of the model are not realistic.  

There are significant differences between the company valuation methodologies in the discounted 

cash flow approach and the valuation methodology proposed here. The firm valuation under the 

Merton approach is arguably less subjective than discounting estimated expected future cash flows at 

the WACC. This is since the equity valuation under the structural model is implied from traded financial 

instrument prices as opposed to subjective estimates of companies’ future earnings.  

The formation of debt and equity bubbles advocated that there is less scope for disagreement 

concerning the fundamental value of debt contracts. This suggests that the debt holder’s value of the 

assets is less noisy than the view of intrinsic value inferred from the holders of equity. Furthermore 

the debt holder’s valuation of the firm’s assets can reasonably be thought of as the minimum value of 

the assets in the event of firm liquidation. The subsequent chapter outlines the methodology followed 

in order to estimate expected returns for South African firms using the CAPM and Merton models. 
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3 RESEARCH METHODOLOGY 

“Complete realism is clearly unattainable, and the question whether a theory is realistic enough can 

only be settled only by seeing whether it yields predictions that are good enough for the purpose in 

hand or that are better than predictions from alternative theories.” (Friedman, 1953). 

The insight provided by Friedman sets the background for the manner in which the research moves 

forward to evaluate whether structural models of equity valuations implied from market credit 

spreads can be used to predict returns on a stock. Discussed in detail will be the methodology 

regarding the estimation of the inputs required for each model’s calculation of expected return. With 

specific reference to the theory of the models provided in the previous chapter.  

3.1 TARGET VARIABLE AND FIRM SELECTION 

In order to implement the structural model approach it is necessary that the firms have traded debt 

and equity in the market for which historical data may be obtained. In the South African context there 

is a shortage of firms for which historical data of credit spreads on traded bonds can be found. Owing 

to limitations and costliness of data in this regard, the following five companies have historical market 

data for both debt and equity: 

Table 3.1.1 Sample of firms included 

Abbreviation Company Sector 

GRF Group Five Limited Construction 

INL Investec Ltd Asset Management 

BVC Bidvest Group Group Company 

CAPITEC Capitec Retail Banking 

ABSA ABSA Group Limited Financial Services 

 

The movement in stock price or the return earned on the stock is the variable of interest to be 

predicted for these five firms. In this research experiment the target variable is chosen as the log 

return in excess of the risk-free rate earned by the stock over some length of time. Note that dividends 

are not accounted for in this measure of return and that the use of five companies is not ideal. 

However, the experimentation and analysis performed using data from these five companies may 

provide preliminary insight into whether the approach merits further pursuit.   

The excess return is chosen as the measure of return to be predicted for in line with performance 

attribution or returns models often being formulated with the excess return above the risk-free rate 

as the dependent variable. Additionally the excess returns above the spread are already somewhat 

built in with two of the predictor variables. Firstly the CAPM regression is performed as a regression 
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of excess equity returns against excess returns on the market over the risk-free rate, and secondly the 

credit spreads data set is already recorded as the spread above companion bond.  

In the fundamentalist approach to stock price behaviour it is assumed that the stock price will tend 

towards its intrinsic value. However there is no specification of the length of time the market 

correction in price is expected to take. The excess return is thus defined for six separate time horizons 

in order to evaluate the predictions of expected return from various models. The aim is to evaluate 

predictive capabilities for 1 year, 6 months, 3 months, 1 month, 1 week, and 1 day excess returns 

above risk-free rate for the five stocks found above. 

The terms ‘return’ and ‘excess returns above the risk-free rate’ are used interchangeably in the 

research paper for ease of readability. The next sections in the methodology resolves further the exact 

manner in which estimates of expected return shall be constructed. Presented thereafter is the 

fashion in which the performance of return estimates are measured and evaluated.  

3.2 PREDICTOR VARIABLES 

The usefulness of the predictors of expected return is better settled by which theory provides better 

predictions (Friedman, 1952). The discounted cash flow approach does not provide a means for 

creating daily view of expected return and requires more subjective estimates that cannot be inferred 

from market variables. The CAPM and estimates of expected returns from the Merton model are the 

primary predictors of return that shall be put to the sword in this research.    

3.2.1 CAPM predictors 

The CAPM model is used to produce estimates for the expected return on the firm for the five chosen 

firms by estimating the functional form of the equation below. Equation 3.2.1 represents the model 

form of the CAPM that is used to provide an estimate of the excess return to be earned on the firm. 

Equation 3.2.2 specifies the form of the statistical model used to estimate the parameters of the 

CAPM.   

𝐸(𝑅) − 𝑅𝑓 = 𝛼 + 𝛽(𝑅𝑀 − 𝑅𝑓)    CAPM equation    (3.2.1) 

𝑌̂ = 𝛼̂ + 𝛽̂(𝑅𝑀 − 𝑅𝑓)    Statistical estimation    (3.2.2) 

3.2.1.1 Excess return on market 

The proxy for the risk-free rate is taken as the 1-year swap rate less ten basis points. Hull (2012) 

provides that many regard the swap rate as a better proxy for the risk-free rate than the treasury rate. 

The JSE Top40 is assumed to provide a reasonable proxy for the market index in South Africa. The 

Stellenbosch University  https://scholar.sun.ac.za



48 
 

excess return on the market is defined as the excess log return on the market index above the proxy 

for the risk-free rate.  

3.2.1.2 Alpha and Beta 

The alpha and beta coefficients in the CAPM model are estimated by regressing the daily excess log 

returns of the stock against the daily excess log returns over the preceding 400 day period. The daily 

log returns are used since they come closest to satisfying the independent identically distributed 

random variable assumptions required for ordinary linear regression. Kidd (2011) provides that betas 

estimated from more recent data may be more relevant in predicting future returns.  

3.2.1.3 Summary of CAPM estimators.  

The estimates of alpha and beta obtained from the regression of daily log return are then scaled by 

using the average period market excess return to produce the CAPM estimates of the required rate of 

return for the firm over different horizons. The lag window used in the average excess return on the 

market calculation is determined by the time horizon for which it is a predictor or measure. The beta 

estimates do not change for any of the CAPM estimators where as other variables are scaled or defined 

differently in order to produced estimates or return over different time horizons.  

Table 3.2.1 Summary of CAPM predictors 

 

Consider the CAPM estimate of the 1-year excess return on the firm’s equity (CAPM_1YER). The 

estimate of alpha and beta are obtained from the regression of daily log returns. The estimate of alpha 

is multiplied by the assumed 252 trading days in the year to provide an estimate of yearly return. The 

estimate of beta does not change but the estimate of the excess return on the market is taken as the 

average 1-year excess return observed in the market over the preceding year. Table 3.2.1 above 

summarizes the scaling of estimated parameters for creating estimates of expected return under the 

CAPM framework. 
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3.2.2 Merton model expected return 

In order to create estimates of expected return for the firm under the structural approach there are a 

large number of modeling decisions required in order to allow the firm to be describable under the 

simple contingent framework as laid out in section 2.3 and 2.4. The summary of the input 

requirements and simplifications used in order to produces estimates of expected return in the 

Merton framework is outlined below.  

3.2.2.1 Estimating parameters of firm value process 

The estimates of the firm value process {𝑉𝑡, 𝜎𝑣 , 𝜇}  are estimated from the sets of simultaneous 

equations as outlined in section 2.4.3. The method makes use of the Newton Raphson algorithm to 

solve the non-linear simultaneous equations. The method requires initial guesses for the firm value 

𝑉𝑇 and volatility 𝜎, the Newton Raphson method is very sensitive to these initial guesses. Crosbie and 

Bohn (2003) propose the following initial values for solving the system:  

𝑉𝑇 = 𝐸𝑇 + 𝐹𝑇           (3.2.3) 

𝜎𝑉 = 𝜎𝐸
𝐸𝑇

𝐸𝑇+𝐹𝑇
          (3.2.4) 

In the case where there is an additional parameter {𝜇} the risk-free rate in the model is used as the 

initial starting guess for this parameter. Alternatively to using these system of equations, the re-

iterative approach as found within the KMV methodology may be employed, however this proves 

challenging where no solution can be found to solve for parameters that match observed credit 

spreads or probabilities of default.  

3.2.2.2 Capital structure of the firm 

The outstanding debt of the firm is required to be compressed into single outstanding issue of a zero 

coupon bond. In this instance it is assumed that the time to maturity of outstanding debt is 5 years 

and that the face value of the firm’s debt is captured by the total debt per share. The total debt per 

share is downloaded from Bloomberg and created as a daily series. The total debt per share is updated 

quarterly with the quarterly financial statements, although these are not the most reliable estimates. 

The lack of market observable amount of debt per share could be approximated by using the market 

capitalized value of the firm’s outstanding bonds. However historical bond price series data is 

expensive in the South African case and is left as a suggestion for further research.  

The assumption of the time to maturity of five years also seems a reasonable approximation for 

duration and average maturity on the debt on the firm’s balance sheet. Figure 3.2.1 illustrates the 

default profile of the Merton model framework, graphically displaying the contour profiles of default 

probabilities generated under different combinations of leverage, asset volatility and time to maturity 
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in the model framework. The graphic illustrates that under the 5 year time to maturity there is a far 

larger available set of unique solutions for asset value and volatility to match observed probabilities 

of default. This seen by the larger area under the curve corresponding to the five year maturity. The 

of the 5-year time to maturity on outstanding debt aids the likelihood of being able to solve for unique 

parameters of the firms asset value process in the simultaneous equation set up. 

Alternatively to simplifying the debt structure into a single-zero coupon issue, the Delianedis and 

Geske model provides an alternative as shown in section 2.3.3 of the literature review. The Geske 

model is computationally expensive with bivariate normal distribution function and probability 

density function uses. Chen (2013) adds that there is the additional hassle of estimating the implied 

strike price. Moreover, the Geske model requires an intricate knowledge of the debt structure of the 

firm to produce two tranches of debt. The compound option model is not employed here as the aim 

is to minimize the required specialist assumptions regarding the firm. The increased use of specialist 

assumptions around the capital structure of each firm is a suggestion for areas of improvement in 

practical applications of the approach. 

Figure 3.2.1 Merton model default profile 

 

3.2.2.3 Market value of equity and equity volatility 

The firms market value of equity is taken as the close of day price as per Bloomberg (2018). The firms 

daily share price is recorded for each day where there is also an observation available for the credit 

spread on market traded debt. The market value of equity is taken as the value of a single share as 

opposed to market cap value. This is since solving non-linear simultaneous equations, required in the 

estimation procedures of firm value and volatility, prove to be computationally more efficient when 

per share values are used.  
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Crouhy et al (1999) demonstrate that while it is possible to pick a capital structure so that the 

probability of default equals some pre-specified level, the expected rate of return on equity will 

change as the volatility of the rate of return on the firm's assets changes. For this reason the estimate 

of the volatility of the firm’s equity is quite important and however unfortunately not traded in the 

market. 

The volatility of the firm’s equity returns is estimated in three different fashions. Bloomberg provides 

the first measure of volatility in the 360D standard deviation. The volatility of equity returns is also 

estimated using a GARCH (1, 1) fit to the time-series of daily log returns. The GARCH (1,1) model is a 

mean reversion model and assumes that volatility is pulled back to its long-term average at a certain 

rate. The GARCH (1,1) model does not suffer from ‘Ghost Feature’ problems in volatility estimation 

and, hence, is expected to act as a reliable estimate for volatility of equity for the firm (Alexander, 

2008).  

In the long term volatility created predictor, the volatility is taken as the volatility predicted 100 days 

forward. Anything more than 30 days is appropriate of long term unconditional volatility estimate. We 

also include the GARCH (1, 1)  predicted 1-day ahead as a model for the firm’s estimated future 

volatility. Estimates of volatility are then annualized to be used as inputs in the structural model 

framework.  

3.2.2.4 Risk-free rate 

The swap rate less 10 basis points is used as the proxy for the risk-free rate. This is consistent with 

the proxy used for the risk-free rate in the CAPM determination of excess returns for the firm.  

3.2.2.5 Probability of default 

The probability of default used as the market input in the structural models matches the time to 

maturity on the simplified debt structure. The Bloomberg proprietary model for default provides the 

daily time-series for the 5-year probability of default. The Bloomberg probability of default 

advantageously requires no assumptions regarding the expected recovery rate on the bond issue in 

order to obtain an estimate for default. Bloomberg is ubiquitously used by most investors so much so 

that the information from Bloomberg can be regarded as publicly available information. 

3.2.2.6 Credit spread 

The credit spread is taken as the traded yield above the bond’s companion bond. The credit spreads 

were obtained from Inet Bridge courtesy of Mr Carel van der Merwe. The Credit Spread is also 

assumed to be the 5-year spread. Where there is more than one outstanding bond for the firm in 
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question, the credit spread is then determined as the market capitalized weighted credit spreads from 

the bonds market capitalization values.  

3.2.2.7 Summary of predictor variables created 

The predictor variables are named such that each term in the label describes methodology and inputs 

of the estimator. The prefix describes the method of structural model predictor, the middle letters 

denote the estimate of equity volatility uses and the suffix denotes the debt market variable used. For 

example the ‘ROE_360D_BB’ estimate is constructed from the ROE method, using the 360 day 

standard deviation as the volatility, and finally the Bloomberg probability of default is used as the debt 

market variable.  

Table 3.2.2 Summary of explanation of structural model predictors created: predictor label describes the predictor 

methodology. The prefix describes the method, middle letters denote the estimate of equity volatility and the suffix narrates 

the debt market variable used in the reverse engineering. 

 

In Table 3.2.2 the acronyms of created predictor variables as they will be seen in the results are shown. 

The highlighted cells illustrate the method, assumptions and inputs used in each of the predictor 

variables as identifiable by the created label. 
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r:

BB 5Y PD

MC Spread

Discount_360D_BB

Discount_360D_CS

Discount_LTVol_BB
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Discount_GARCH_BB

Discount_GARCH_CS

ROE_360D_BB

ROE_360D_CS
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ROE_LTVol_CS

ROE_GARCH_BB
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Predictor Variable

Summary of Predictor Variates Created under Structural Approach
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PX_LAST close of day trading price
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Discount ROE
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GARCH(1,1) 

n=100
GARCH(1,1) 
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3.3 MODELING PROCESS 

“It is a mistake to use, as some journalists and some economists do, statistics without logic, but the 

reverse does not hold: It Is not a mistake to use logic without statistics.” Taleb (2004).  

It is not incorrect to follow the rational and logic and then determine the quantification of the 

hypothesis. However it is incorrect to follow a modeling process without rational upon which 

hypothesis are falsely generated on the basis of explaining random predictive capabilities instead of 

meaningful causality in prediction. The basis for the use of statistical models and methods is carefully 

motivated here.  

3.3.1 Statistical learning methods 

The CAPM is not a direct estimate of the expected return of the firm on a stand-alone basis. The CAPM 

provides the expected return when the stock is part of a well-diversified portfolio in an efficient well-

functioning securities market. In order to forecast the expected return on the stock, forecasts of beta 

and forecasts of the excess return on the market would be required (Kidd, 2011). The expected rate 

of return or required rate of return from the CAPM is only a forecast of future return where markets 

are perfectly efficient and future stock prices cannot be predicted under the EMH setting. The point is 

that in the EMH setting there is no need to distinguish past from future performance. Structural 

models also have a large number of simplifying assumptions in the framework, under which the 

estimates produced may be considered direct estimates of expected return.  

The CAPM theory as well Merton’s theory of the firm are theories that describe perfect worlds and 

should be adjusted accordingly when being implemented in vastly more complex reality. The proposal 

is to then account for this uncertainty by introducing a statistical learning method to see how well the 

structural model variables and CAPM variables can be used as a predictor of the direction of future 

excess returns. More generally the statistical learning method framework provides that an observed 

quantitative response Y is related to 𝑝 potential predictors through some relationship of the general 

form: 

𝑌 = 𝑓(𝑋) + 𝜀             (3.3.1) 

Here 𝑓 is some fixed but unknown function of the predictor variables {𝑋1, . . . , 𝑋𝑝} and 𝑓 represents 

the systematic information that the predictors provide about the response variable. If prediction is 

the chief concern of employing a statistical learning method, the exact form of the relationship 

between the response variable and predictor is not of much concern provided that it yields accurate 

predictions for 𝑌 (James et al., 2015).  
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3.3.2 Further revision of target variable 

The CAPM predictor already estimates the excess return for the share in nominal terms. This means 

that it is possible to measure the realized future returns against the CAPM predictions and find a mean 

squared error (MSE) as well as correlation between the predictions made and actual returns realized. 

However, MSE and correlation are average measures that are not readily comparable and do not easily 

lend to meaningful interpretation in the characterization of prediction performance. The MSE 

measures provides no indication of the types of errors made, under or over prediction etc. 

In the Merton model of the firm the debt structure and time to maturity on outstanding debt has been 

estimated rather loosely in the procedure. These predictors are more appropriately thought of as 

being relative indicators of future performance as opposed to absolute nominal predictors. The excess 

return is further classified into a dichotomous stratification of positive and negative excess returns. 

Furthermore splitting the performance into an easy categorization of up and down allows for 

extended analogy of credit risk methodologies in the forecasting of future equity excess returns.  

The response variable or target variable is now a categorical one, shifting the problem into the 

classification setting as opposed to regression problems in the statistical modeling framework. The 

classification of excess returns split around zero is reduction of the return vector into a directional 

focused component. If the predictors and learning methods provide good forecasts of direction of 

future returns then question can be extended further towards quantification of magnitude of future 

stock returns. It is interesting to note that with enough classes the approach is analogous to predicting 

quantitative nominal excess returns. Since it is the excess returns that are stratified into two classes 

there is actually still a nominal component even though we have moved to a categorical space.  

Predicting exact future asset returns is so difficult that many economic theorists have explained it 

away with the EMH or random walk hypothesis. The classifications of future excess returns into 

categories of up and down for negative and positive would assumedly be easier to predict than the 

exact nominal amount. Ideally the classification of excess return brackets would correspond to 

decision making frameworks for asset managers. The choice of predicting the class of returns is 

assumed to lend itself well to practical applications for investors. Suggestion for further research is 

then the considerations of the extension of classes. Ideally, investment strategies should like to 

consider three classes to predict when individual firms will make: big losses, big gains or average 

returns in relation to the risk-free rate.  

3.3.3 Link function 

Depending on whether the ultimate goal is prediction, inference, or a combination of the two, 

different methods for estimating 𝑓  may be appropriate. Linear models allow for relatively simple 
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interpretable inference but may not yield as accurate predictions as some other approaches (James 

et al., 2015). The research question does not include an exact specification or interest in the form of 

the relationship between the predictors of return and the return. Considerations of the exact nature 

of the relationship to adjust for uncertainty in the models is beyond the scope of this research and 

runs the risk of requiring the generation of a false hypothesis to explain.   

The primary aim is to assess how well the predictor variables can be used to predict the direction of 

future excess stock returns. In this setting, it might be expected that using the most flexible learning 

method will yield the most accurate predictions at the expense of interpretability. However, James et 

al. (2015) provides that more flexible methods suffer from over fitting and may actually produce less 

accurate predictions than those from more inflexible statistical learning methods. There is no free 

lunch in statistics: no one method dominates all others over all possible data sets. In this research 

experiment the elementary non-parametric and parametric models for classification problems will be 

employed.  

3.3.3.1 Logistic regression 

Logistic regression may be viewed as an extension of ordinary linear regression to adjust for the case 

where the response variable of interest may be categorical, as opposed to continuous in the ordinary 

linear regression case (James et al., 2015). The model is constructed upon the same assumptions as 

ordinary linear regression, although the response is not directly predicted. The response is instead 

modeled as the probability of belonging to a particular category.  

According to Baesens, Rosch and Scheule (2016), simple logistic regression considers a binary 

categorical response variable. The logistical function is used to transform continuous response 

predictions into probabilities of belonging to a particular category, often referred to as the ‘link’ 

function in this setting. Ubiquitous applications of binary logistic classification approaches include 

fraud detection, Target Marketing and Credit Scoring to name a few.  In the credit scoring environment 

the relevant binary target is usually whether the case (loan) defaulted or not.  

Linear Discriminant Analysis (LDA) and classification trees, are popular statistical alternatives to 

categorical classification prediction. James et al. (2015) notes that, curiously the LDA procedure 

produces the same classifications as ordinary linear regression used to predict a binary response. In 

this research only the logistic regression approach is considered for parametric approaches, although 

it is worth noting the available alternatives.  

Furthermore, Patetta (2010) provides that traditional inference can be important in predictive 

modeling as well. The traditional linear regression model assumptions must hold for any valid 
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inference to be made from the logistical regression procedure. Although, in practice this is often not 

the case and the discovery of structure is informal and exploratory. This is since the validity of 

predictive models is preferably assessed by empirical performance and the ability to generalize.  James 

et al. provides the following formula used to predict novel cases within the logistic regression 

framework.  

𝑃(𝑋) =  
𝑒𝛽0+𝛽1𝑋1+⋯+βp𝑋𝑝

1+𝑒𝛽0+𝛽1𝑋1+⋯+βp𝑋𝑝
         (3.3.2) 

log (
𝑝(𝑋)

1−𝑝(𝑋)
) = 𝛽0 + 𝛽1𝑋1+ . . . +𝛽𝑝𝑋𝑝        (3.3.3) 

Where 𝑋 =  (𝑋1, . . . , 𝑋𝑝) are 𝑝 potential predictors. The model can also be represented in linear form 

to calculate what is commonly termed ‘the Log Odds’ ratio and is expressed as in Equation 3.3.3. 

Maximum Likelihood Estimation (MLE) is used to estimate the coefficients in Equation 3.3.2 using the 

chosen 𝑝  predictors or explanatory variables. The coefficients can also be estimated using least 

squares, although James et al. (2015) notes that the use of MLE produces more desirable statistical 

properties of the estimators. 

3.3.3.2 K-Nearest Neighbours (KNN) 

The K-nearest neighbours (KNN) classifier is a non-parametric statistical learning method. The non-

parametric approach makes no assumption regarding the distribution or shape of 𝑓. James et al. 

(2015) adds that these methods have the benefit of the potential to accurately fit a wider range of 

possible shapes for 𝑓.  

Given a positive integer 𝐾 and a test observation 𝑥0, the KNN classifier first identifies the 𝐾 points in 

the training data that are closest to 𝑥0, represented by 𝜂0. It then estimates the conditional probability 

for class 𝑗 as the fraction of points in 𝜂0 whose response values equal 𝑗: 

𝑃(𝑌 = 𝑗|𝑋 = 𝑥0) =  
1

𝐾
∑ 𝐼(𝑦𝑖 = 𝑗)𝑖∈𝜂0

.        (3.3.4) 

Finally, KNN applies Bayes rule and classifies the test observation 𝑥0  to the class with the largest 

probability. Despite the fact that it KNN is a very naïve approach it can offend produce classifiers that 

are surprisingly close to the optimal Bayes classifier.  

The choice of 𝐾 on the number of nearest neighbours in the KNN approach has a drastic effect on the 

KNN classifier obtained. The choice of neighbours is directly correlated with the flexibility of the 

decision boundary estimated in the KNN approach. In both the regression and classification settings, 

correctly choosing or identifying the level of flexibility is critical to the success of any learning models. 
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In this research experiment arbitrary low and high values of K are used in the KNN approach in order 

to find the appropriate level of flexibility.  

3.3.4 Performance evaluation 

Theory of the CAPM does not highlight important difference between explaining variation in past 

returns and predicting future returns in the implementation of the CAPM. The predictors are firstly 

evaluated by how well they perform as stand-alone predictors of the direction of excess return on the 

stock. In this since the estimates of expected return from the Merton and CAPM model are treated as 

pure forecasts of future return.  

3.3.4.1 Training data & test prediction set 

The predictors are then employed in a statistical learning model to evaluate how well they may be 

used to forecast the direction of future excess returns on the stock. Furthermore an initial training 

period and then a predict one and update process is employed. This is done for the excess return as 

measured and defined over the six different time horizons.  

For the majority of the firms an initial training set of 1500 days is used. This is perhaps not the most 

accurate description of the out of sample model diagnostics procedure. This is since predictions are 

made for observation 1501 in the set and then updated until the end of the sample period. They key 

is that if a prediction is being made for the excess return to be achieved 1-year from observation 1501, 

then only (1501 − 252) observations can have labelled outcomes for the training of such a model. 

That is, if we are standing at observation 1500 we cannot know what the excess yearly return was for 

any observation after (1500-252) in the sample set.    

The models should be validated on the out of sample model diagnostics or backtesting procedures as 

Alexander (2008) defines. The models should not be evaluated on the training error or ability to fit the 

data that was used in the construction of the estimation of model fit. Model validation using measures 

from the fitted training sample is parallel to staring in the mirror to catch yourself blink.  

3.3.4.2 Test prediction performance measures 

Once the out-of-sample test predictions have been made the question still remains on how to best 

assess the performance of the models. One of the reasons given for moving from the regression 

setting to the classification setting in the statistical problem setting is that performance measures 

from categorical predictions provide more granularity in the characterization of prediction 

performance. James et al. (2015) provides that the confusion matrix describes the performance 

measurements for binary classification problems. The confusion matrix in Figure 3.3.1 illustrates the 

basis for performance measurements in the binary classification problem setting.  
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Figure 3.3.1 Confusion matrix: classification prediction performance measures 

 

There are numerous metrics that can be spawned from the confusion matrix to evaluate the 

performance of test predictions. However the following measures will be included in this research: 

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
          (3.3.5) 

𝐹𝑁𝑅 =
𝐹𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
          (3.3.6) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
         (3.3.7) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
          (3.3.8) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
              (3.3.9) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
         (3.3.10) 

The false negative rate (FNR) and false positive rates (FPR) provide the measures of the types of 

classification errors made by the model in the test prediction set. Accuracy is the simplest scoring 

measure which simply calculates the proportion of correctly classified instances. Patetta (2010) 

contends that accuracy should not be the primary measure of interest where the test sample is 

dominated by a majority class. Sensitivity is also called recall and captures the proportion of actual 

positives which are correctly identified as positives by the classifier.  

Specificity relates to the classifiers ability to identify negative results. Similar to recall specificity 

captures the proportion of actual negatives which are correctly identified as negatives by the classifier. 

The precision measure indicates the proportion of positive predictions made by the classifier which 

were in fact correct. No single performance measure will identify the best classifier model for all 

possible purposes. The prediction performance of a model should be judged by evaluating a 

combination of these measures in order to assess the appropriate usefulness of predictions.  
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3.4 SUMMARY OF RESEARCH METHODOLOGY 

Figure 3.4.1 graphically illustrates the research methodology process and provides a comprehensive 

overview of the thinking process in the research. The R-code used for the methods and models 

discussed in presented in Appendix F. The results obtained from applying the outlined methodology 

and procedures along with the concurrent analysis of these results are presented in the next chapter. 

Figure 3.4.1 Summary of research methodology 
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4 FINDINGS AND OBSERVATIONS 

“In God we trust, all others must bring data.” William E. Deming (1900-1993) 

As so concisely summarized by Deming, the only way to truly evaluate whether CAPM estimates or 

Merton model estimates of return can be used to predict excess returns, is to put the theory to the 

test. The results for predicting the direction of the excess return for the five stocks over the test 

samples is now presented.  

4.1 ABSA GROUP LTD RESULTS 

The results of predicting the direction of the excess log returns for Absa Group Ltd., hereafter referred 

to as Absa, is now presented in full detail. The market variable inputs along with the created predictors 

of excess return are first discussed briefly before moving to the results of class prediction.   

4.1.1 Target and predictor variables 

4.1.1.1 Input variables 

Figure 4.1.1 captures the debt and equity characteristics for Absa over the period of 2008 to 2017. 

From the figure it is clear that the total debt per share is only updated quarterly in line with only being 

observable on publication of financial statement data. The highlight here is the amount of leverage 

being employed by Absa, the debt per share far exceeds the traded price of equity per share. Given 

Absa’s large use of debt, priori expectations provide that debt should be a good determinant of future 

performance.  

Figure 4.1.1 Absa market and firm input variables 

 

Stellenbosch University  https://scholar.sun.ac.za



61 
 

4.1.1.2 Structural model predictor variables 

Figure 4.1.2 graphically illustrates the predictors created under the structural approach for Absa over 

the period of 2008-2017. The large spikes in the graphics illustrates where the simultaneous equations 

used in the procedure were unable to solve for a unique value in the algorithm. The ‘Discount’ 

variables and the ‘ROE’ variables are on the opposite sides of zero, barring the unsolved points. This 

is since in the Merton framework, value is always preserved when estimating firm value from the 

observed credit spread. The weakness of preservation of value in the estimation procedure is the 

primary reason for evaluating these predictors in relative terms. Interestingly the graphic illustrates 

that the firm values implied from the probabilities of default do not necessarily share this crux.  

Figure 4.1.2 Absa structural model predictor variables 

 

Table 4.1.1 confirms the number of data points where no unique solution was found in the sample set 

for Absa. The reader is referred to Appendix A for the graphical analysis of the estimates of volatility 

for the Absa stock price over the period. The highly erratic nature of the volatility estimates from the 

GARCH models are confirmed by the number of points in the data set where these inputs could not 

be used to solve for unique firm asset value process parameters. The exact shape of the return 

estimates is far better examined in conjunction with the actual returns being estimated.  

Table 4.1.1 Absa convergence to solution in simultaneous equations: 1-convergence satisfied; 2-solution is uncertain; 3-no 
better solution found than starting point; 7 Jacobian is unusable.  

 

1 2 3 4 5 6 7 8 9 10

TermCD Discount_360D_BB 2245 41 59 0 0 0 0 0 0 0

TermCD Discount_LTVol_BB 2260 48 37 0 0 0 0 0 0 0

TermCD Discount_GARCH_BB 2274 38 33 0 0 0 0 0 0 0

TermCD ROE_360D_BB 2345 0 0 0 0 0 0 0 0 0

TermCD ROE_LTVol_BB 2345 0 0 0 0 0 0 0 0 0

TermCD ROE_GARCH_BB 2269 64 12 0 0 0 0 0 0 0

TermCD Discount_360D_CS 2324 2 19 0 0 0 0 0 0 0

TermCD Discount_LTVol_CS 2319 2 24 0 0 0 0 0 0 0

TermCD Discount_GARCH_CS 2314 6 25 0 0 0 0 0 0 0

TermCD ROE_360D_CS 2345 0 0 0 0 0 0 0 0 0

TermCD ROE_LTVol_CS 2345 0 0 0 0 0 0 0 0 0

TermCD ROE_GARCH_CS 2345 0 0 0 0 0 0 0 0 0

ABSA TermCD Check
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4.1.1.3 Realized forward excess log returns 

Figure 4.1.3 illustrates the time-series of realized forward excess log returns defined over different 

horizons. The forward nature of the returns means that the 1-year excess return (𝐸𝑅_1𝑌) plotted at 

2016 is interpreted as the excess return that is realized in one-year from that date.  

The short term horizon excess returns are extremely noisy and it would appear extremely difficult to 

predict. This is in line with investor theory expectations that fluctuations in the short run are noisy but 

prices are driven to their equilibrium value over the longer period. The logic also provides that using 

issues of debt assumed to mature in 5 years implies that equity valuations under these views would 

also correct over the longer time horizon as opposed to instantaneously in the market.  

The three and six month excess returns along with the 1-year excess returns for Absa are much further 

from white noise. Additionally they display the ideal property of fluctuating around zero, this means 

that predictive performance evaluated on prediction of direction (up or down) does yield some insight 

into discriminatory power of different variables and approaches.  

Figure 4.1.3 Absa realized forward excess log returns over varying time horizons 

 

4.1.2 Univariate prediction performance 

Here, the set of predictions where each estimate or predictor of excess return is used in isolation is 

covered in the analysis presented. The analysis begins by considering how well the predictors perform 

as classifiers of future return without the implementation of a statistical learning method.  
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4.1.2.1 Indicator 

The indicator analysis is essentially a classification function with a constant boundary of zero. If the 

predictor variable is a good estimate of nominal excess return then should also be able to forecast 

direction of excess log return using a fixed boundary of zero.  

This applies more to CAPM than it does the other variables, since under the use of CAPM it is argued 

that past asset returns are a good indication of future asset returns in an efficient market and thus an 

acceptable manner in which to solve the portfolio selection problem. Table 4.1.2 provides the 

performance of predictors the class or direction of future excess returns on the Absa stock. The 

indicator function requires no training data since the predictor variables are not used in a statistical 

learning method.  

However, the results found in Table 4.1.2 correspond to predictions from after 1500 days in the 

sample set for each of the predictors – this is for comparability with predictions from the employment 

of statistical learning methods. There are 845 days for which predictions are made when using 1500 

observations for the training data. Appendix A provides the full set of results for the indicator 

performance measures. The CAPM excess return predicts the direction of the future excess return for 

the Absa share only 40% of the time. This is not surprising since the CAPM model is validated on the 

basis of how well it explains past variations in the returns.   

Table 4.1.2 Absa accuracy of expected return estimates evaluated as stand-alone predictors of future equity return class. 
(Class predictions are made using constant boundary of zero on the return estimate) 

 

The indicator results clearly reaffirm that the past return is not necessarily a good predictor of future 

returns. The Figure 4.1.4 below illustrates the CAPM estimates of 1-year and 6-month excess returns 

against the 1-year and 6-month excess returns actually realized on the Absa stock. Examining the full 

sample set it becomes unambiguous that CAPM employed in its current fashion is an explanation of 
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past returns and not a predictor of future asset returns. This is clearly visible by shifting the returns 

forward to where they are actually realized, or shifting CAPM backwards to show that CAPM co-

integrates very well on historic return series.  

Figure 4.1.4 Absa CAPM estimated return and forward realized excess returns over entire sample 

 

In the test sample of 845 days we see that the CAPM required rate of return is in fact a dismal indicator 

of the future excess return. In relative terms the ROE predictor created from the Bloomberg 5-year 

default probability does provide a much better indication or predictor of future returns. Figure 4.1.5 

illustrates that the ROE_360D_BB predictor of expected return and the forward 1-year and 6-months 

realized excess returns on the Absa stock form 2014-2017. In this particular sample space the predictor 

appears to do a relatively amazing job in forecasting the direction of excess returns one year into the 

future.  

Figure 4.1.5 Absa 1-year and 6-months excess log returns with ROE_360D_BB predictor from the period 2014- 2017.  
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Although the initial presumption was that the structural model variables would fare better as relative 

indicators, the ROE variable appears to track the direction of the future 6 month excess return 

sufficiently. Especially in the period up until 2015, almost a very good nominal forecast of future 

return. The preservation of value for predictors of return created from credit spreads does not allow 

for predictors under that measure to change direction. The fact that estimates created from default 

probabilities track the future performance of the firm so well in bot direction is a bit surprising but 

also undoubtedly a win.  

Figure 4.1.6 illustrates how well the predictor is able to correctly classify the direction of future excess 

return on the stock over the 6 month horizon. It is interesting to see that when the ROE_360D_BB 

estimate is negative the ABSA share return is almost always negative, this is evidenced by the clear 

left quadrant in Figure 4.1.6. The majority of classification errors are around zero and the far right end 

scale of the ROE_360D_BB predictor variable.   

Figure 4.1.6 Absa: scatterplot of 6M forward excess returns vs. ROE_360D_BB predictor 

 

The discriminatory power of the predictor variable constructed from the Merton framework show 

promising signs for the ability of these predictors to accurately make predictions around the future 

excess return on the Absa share price.  

4.1.2.2 K-Nearest Neighbours 

The K-Nearest Neighbours methodology is employed on a training data set of a maximum of 1500 

days. Predictions are made for day 1501 till the end of the sample period. The number of neighbours 

is arbitrarily chosen as 99, so the non-parametric estimation is rather inflexible in this instance. Table 

4.1.3 summarizes the performance of the predictions made using the different constructed predictor 

variables.  
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There are a number of interesting results in the prediction performance using the KNN approach. 

Firstly the ROE_360D_BB variable does worse than when the decision boundary was taken as constant 

around zero. This would suggest that the inflexibility of the large number of neighbours used has a 

poor impact on performance. The performance for the predictors created under the CAPM are 

significantly improved over longer time horizons. The performance of the CAPM predictors is 

improved far more drastically for the 1 year returns versus the 6 month returns. The difference in 

performance improvement might be the impact of how rolling historic average return on the market 

is used in the formulation CAPM predictors.  

Table 4.1.3 Absa KNN (K= 99) test prediction accuracy for returns defined over various time horizons.  

 

Figure 4.1.7 and Figure 4.1.8 both illustrate the poor performance of the K-Nearest Neighbours for 

estimating the relationship between the predictors of return and the actual return achieved by the 

Absa share. The predictor variables are plotted in black in the figures below whereas the excess return 

is plotted in different colours corresponding to the prediction classifications made.   

Figure 4.1.7 Absa KNN (K=99) 1-year return predictions with CAPM predictor variable. The CAPM estimate of return is 
represented by the black line in the figure. The multi-coloured points represent the future 1-year returns, each colour 

representing the prediction performance against the actual realized returns.  
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Figure 4.1.8 Absa KNN (K=99) 6-month return predictions with ROE_360D_BB as predictor variable. The ROE_360D_BB 
estimate of return is represented by the black line in the figure. The multi-coloured points represent the future 6-month 

returns, each colour representing the prediction performance against the actual realized returns  

 

4.1.2.3 Logistical regression 

Table 4.1.4 summarizes the performance of the predictions made using logistic regression to specify 

the relationship between predictors and the actual forward return. The predictor from the CAPM now 

performs quite well for predicting 1-year returns. It is also interesting to note that the performance of 

the ROE_360D_BB variable has drastically deteriorated again, this is indicative of the impact of the 

learning lag or incorrect specification of the functional form of the relationship between the target 

and predictor variables.  

Table 4.1.4 Absa logistic regression prediction performance. Test prediction accuracy for predictions made using logistic 
regression with various predictor variables.  

 

Figure 4.1.9 illustrates the improved nature of 1-year return predictions made using the CAPM 

predictor under the logistical regression link function. The CAPM predictor now correctly predicts the 

direction of future 1-year excess returns around 80% of the time for the 845 days. Figure 4.1.9 clearly 

reveals the impressive predictive capabilities as the prediction accurately captures the change in 

1 Year 6 Months 3 Months 1 Months 1 Week 1 Day 

CAPM 80% 53% 59% 59% 49% 51%

Discount_LTVol_BB 69% 62% 59% 51% 51% 52%

Discount_LTVol_CS 64% 57% 54% 43% 48% 51%

ROE_LTVol_BB 64% 57% 55% 51% 49% 51%

Discount_360D_BB 57% 53% 53% 48% 50% 52%

Discount_GARCH_BB 56% 48% 49% 46% 44% 51%

Discount_360D_CS 52% 47% 50% 43% 45% 51%

ROE_360D_BB 51% 48% 49% 45% 50% 51%

Discount_GARCH_CS 46% 40% 43% 47% 43% 51%

ROE_GARCH_CS 37% 29% 39% 45% 49% 51%

ROE_360D_CS 35% 39% 45% 44% 49% 51%

ROE_GARCH_BB 32% 33% 40% 46% 48% 51%

ROE_LTVol_CS 31% 53% 54% 51% 53% 51%

Stellenbosch University  https://scholar.sun.ac.za



68 
 

direction of future returns to be earned a year out from around 2014. However the model fails to 

correctly predict the positive returns that will be realized in a year from 2016 but does capture a small 

part of the last turn of positive returns as seen by the small dots of purple towards the end of the test 

sample period.  

Figure 4.1.9 Absa logistic regression 1-year return predictions with CAPM predictor variable. . The CAPM estimate of return 
is represented by the black line in the figure. The multi-coloured points represent the future 1-year returns, and the dotted 

line represents the class decision boundary estimated by the logistic regression model. .  

 

4.1.3 Multiple predictor variables 

The results for using multiple predictors as opposed to a single predictor in the statistical learning 

methods for predicting returns on Absa stock price are now presented.  

4.1.3.1 Variable selection 

The variable selection is performed very loosely in the move from a univariate predictor to multiple 

predictors in the statistical learning methods. The variable selection is performed in two different 

manners. The variable selection performed where the AIC is used as the selection criterion is done 

assessing the predictors in the logistic regression framework. The adjusted r-squared, 𝐵𝐼𝐶 and 𝐶𝑝 

measures are constructed under the regular regression setting using the quantitative returns as the 

response variable.  

The variable selection techniques are run using the full set of predictors and the training set of 1500 

days. Table 4.1.5 summarizes the results obtained under the subset selection techniques as well as 

the results obtained by using these predictors over the test sample set of 845 days. The reader is 

referred to the Appendix A for the statistical outputs from the variable selection techniques. The 

results clearly provide that models selected by adjusted r-squared contain an un-parsimonious 

number of predictor variables. Most importantly the predictions from these over-fitted models 

perform rather poorly as expected.     

Stellenbosch University  https://scholar.sun.ac.za



69 
 

Table 4.1.5 Absa predictor variable subset selection. The highlighted cells display the predictor variables included in the 
optimal set under the variable selection criterion. The last three rows display the prediction accuracy for predictions made 

on the test sample set using the chosen set of predictor variables in the logistic regression function.  

 

4.1.3.2 Bivariate prediction performance 

The 1-year, 6 months and 3 months excess returns are concentrated on the rest of the analysis for the 

following reasons: 

 3 months is the minimum time for updates to the financial statements of the firm, although 

quarterly financial statement releases are not the most reliable. Annual financial statements 

published by the firm are expected to provide more consistent estimates of the total debt per 

share. Thus, predictor variables are not responsive enough over short-term horizons. 

 The shorter-term is more influenced by noise and subjectivity and the short-term returns are 

more stochastic as evidenced in Figure 4.1.3.  

 Predictors created from the price/risk on long term debt are more suitable predictors over 

longer horizons. 

The variable selection experiment reveals the difficulty of selecting the optimal combination of 

variables in the statistical learning space. The experiment also highlighted the folly of model validation 

for prediction on measures of goodness of fit to the training data. In the move to the bivariate setting 

the combinations of variables are evaluated by performing out of sample model diagnostics for all 

possible pairs of predictor variables – this is computationally expensive but worthwhile.  

Adjr2 Cp Bic Aic Adjr2 Cp Bic Aic Adjr2 Cp Bic Aic

CAPM

Discount_360D_BB

Discount_LTVol_BB

Discount_GARCH_BB

ROE_360D_BB

ROE_LTVol_BB

ROE_GARCH_BB

Discount_360D_CS

Discount_LTVol_CS

Discount_GARCH_CS

ROE_360D_CS

ROE_LTVol_CS

ROE_GARCH_CS

No. Predictor Variables 13 11 11 9 11 11 10 11 13 5 1 1

1Y Prediction Accuracy 0,63 0,64 0,64 0,58 0,59 0,59 0,54 0,58 0,63 0,46 0,31 0,31

6M Prediction Accuracy 0,38 0,55 0,55 0,50 0,42 0,42 0,37 0,32 0,38 0,58 0,53 0,53

1D Prediction Accuracy 0,54 0,52 0,52 0,53 0,50 0,50 0,50 0,52 0,54 0,53 0,51 0,51

1 Year 6 Months 1 Day

ABSA Variable Selection
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Table 4.1.6 Absa summary of top 1-year return class predictions including pairs of predictors. The abbreviated measures in 
the table include; TSS: test sample size; FPR: False positive rate; False negative rate; CB: Class Balance. IND in the link 

function is the stand-alone class prediction with a constant class decision boundary of zero.  

 

Table 4.1.6 highlights some of the top performing pairs of predictors and single set predictors for the 

1-year excess return on Absa stock price. The victory achieved by adding the credit spread variable to 

the CAPM for the 1-year prediction is not a parsimonious victory. This is since the addition of a second 

variable has not increased performance significantly as well as the loss of sample size for where the 

predictor from credit spread was not able to find a unique solution. The change in sample size impacts 

the data set upon which the functional relationship is estimated. The undesirability of loss in sample 

size and small margin of improvement justify why this is a false victory.  

Table 4.1.7 Absa summary of top 6-month return class predictions including pairs of predictors. The abbreviated measures 
in the table include; TSS: test sample size; FPR: False positive rate; False negative rate; CB: Class Balance. IND in the link 

function is the stand-alone class prediction with a constant class decision boundary of zero. 

 

Once again the pole position found in Table 4.1.7  is not truly accurate on its own. This is because the 

pair of predictors makes 100 less predictions owing to missing data. Surprisingly the constant 

boundary around zero with ROE_360D_BB is the best predictor for the 6 months forward excess log 

Link TSS Accuracy Precision Sensitivity Specificity FPR FNR CB

KNN 99 CAPM_1YER Discount_LTVol_CS 819 80% 99% 47% 100% 0% 20% 37%

Logit CAPM_1YER 845 80% 99% 48% 100% 0% 20% 39%

Logit Discount_LTVol_BB ROE_GARCH_BB 684 77% 93% 8% 100% 0% 23% 25%

Logit CAPM_1YER ROE_GARCH_CS 845 75% 71% 62% 84% 10% 15% 39%

Logit CAPM_1YER ROE_360D_CS 845 75% 68% 66% 80% 12% 13% 39%

Logit CAPM_1YER ROE_GARCH_BB 769 75% 96% 25% 99% 0% 25% 33%

KNN 99 CAPM_1YER Discount_GARCH_CS 814 73% 70% 46% 89% 7% 20% 37%

Logit Discount_360D_BB ROE_LTVol_BB 745 72% 77% 16% 98% 2% 26% 31%

KNN 99 CAPM_1YER Discount_GARCH_BB 774 71% 60% 44% 85% 10% 19% 34%

KNN 99 CAPM_1YER Discount_LTVol_BB 760 71% 92% 10% 100% 0% 29% 32%

Logit Discount_LTVol_BB 760 69% 88% 6% 100% 0% 30% 32%

KNN 99 CAPM_1YER 845 68% 97% 18% 100% 0% 32% 39%

KNN 99 ROE_360D_BB 845 67% 67% 31% 90% 6% 27% 39%

IND ROE_360D_BB 845 67% 54% 100% 46% 33% 0% 39%

IND Discount_GARCH_CS 814 65% 100% 4% 100% 0% 35% 37%

Predictor Variables

Link TSS Accuracy Precision Sensitivity Specificity FPR FNR CB

KNN 99 Discount_360D_BB Discount_360D_CS 745 71% 94% 26% 99% 1% 29% 38%

IND ROE_360D_BB 845 70% 60% 98% 48% 29% 1% 45%

Logit Discount_GARCH_BB Discount_GARCH_CS 773 68% 69% 36% 89% 7% 25% 40%

Logit Discount_LTVol_BB ROE_GARCH_BB 684 68% 71% 2% 100% 0% 32% 33%

KNN 99 Discount_360D_BB 745 67% 75% 22% 95% 3% 30% 38%

IND Discount_360D_BB 745 67% 54% 97% 49% 32% 1% 38%

Logit Discount_LTVol_CS ROE_LTVol_CS 819 63% 66% 28% 89% 6% 31% 43%

Logit ROE_GARCH_BB Discount_LTVol_CS 743 63% 50% 2% 99% 1% 37% 37%

KNN 99 Discount_360D_BB ROE_360D_CS 745 62% 52% 5% 97% 2% 37% 38%

Logit Discount_LTVol_BB 760 62% 71% 2% 100% 0% 38% 39%

KNN 99 CAPM_6MER Discount_360D_BB 745 62% 50% 13% 92% 5% 33% 38%

KNN 99 Discount_360D_BB ROE_LTVol_CS 745 62% 46% 5% 97% 2% 37% 38%

Logit Discount_LTVol_CS 819 57% 50% 1% 99% 1% 42% 43%

KNN 99 CAPM_6MER 845 53% 46% 28% 73% 15% 32% 45%

Predictor Variables
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returns on Absa over the test sample period. The performance of predictor variables from CAPM are 

less dazzling over the 6 month return horizon. This is particularly interesting when considering the 

class balance has not shifted that drastically in the sets of returns to impact performance. The 

indicators good performance with ROE_360D_BB variable indicates that variable can be used as good 

predictor of future excess return, specifying the link function remains a challenge in this area for now. 

4.1.3.3 Predictor variable efficiency 

In this subsection the concept of debt variable efficiency is introduced. Here the analysis is aimed at 

providing an informal evaluation of whether information from market traded debt on Absa was used 

efficiently or beneficially in the prediction of returns on Absa stock. Put more plainly, did converting 

the observed credit spreads or default probabilities into predictors through the structural models aid 

the prediction performance? Or would it have been better to use the raw observed market variables 

in the prediction process? 

The efficiency of the predictor variables created from CAPM is also considered by evaluating the use 

the inputs of the model to directly predict stock prices as opposed to compressing the information 

through the relationships expressed by theories. The efficiency of predictor variables is examined by 

using logistic regression to make return predictions with the raw market data as the set of predictor 

variables.  

Table 4.1.8 Absa predictor variable efficiency in 1-year return class predictions. Table displays test prediction performance 
for:  CS: Credit Spreads; BB: Bloomberg PD; All: all raw market data; BBCS: combination of CS and PD raw market data; 

CAPMCS: combination of credit spread and market index data; CAPMBB: combination of CAPM & Bloomberg PD raw data.  

 

Table 4.1.9 Absa predictor variable efficiency in 6-month return class predictions Table displays test prediction performance 
for:  CS: Credit Spreads; BB: Bloomberg PD; All: all raw market data; BBCS: combination of CS and PD raw market data; 

CAPMCS: combination of credit spread and market index data; CAPMBB: combination of CAPM & Bloomberg PD raw data.  

 

TSS Accuracy Precision Sensitivity Specificity FPR FNR CB

CS 845 66% 90% 15% 99% 1% 33% 39%

BB 845 69% 95% 22% 99% 1% 31% 39%

CAPM 845 50% 36% 34% 61% 24% 26% 39%

ALL 845 51% 40% 54% 49% 31% 18% 39%

BBCS 845 64% 64% 19% 93% 4% 32% 39%

CAPMCS 845 52% 41% 54% 51% 30% 18% 39%

CAPMBB 845 55% 42% 41% 63% 22% 23% 39%

TSS Accuracy Precision Sensitivity Specificity FPR FNR CB

CS 845 61% 70% 23% 92% 5% 34% 45%

BB 845 68% 87% 32% 96% 2% 30% 45%

CAPM 845 55% 50% 37% 70% 17% 28% 45%

ALL 845 55% 50% 54% 56% 24% 21% 45%

BBCS 845 58% 53% 39% 72% 15% 27% 45%

CAPMCS 845 63% 59% 51% 72% 16% 22% 45%

CAPMBB 845 68% 73% 46% 86% 8% 24% 45%
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The models under this approach do not yield significant improvements in prediction performance, 

suggesting that the predictor creation process was beneficial or at least not detractive from the 

information garnered from these market observable variables. Admittedly the informal 

experimentation on predictor variable efficiency provides no insight with regards to what is the 

optimal use of information.  

4.1.4 Varying training and test samples 

The predictive performance has been measured using the starting point of predicting from 

observation 1500 in the sample set. However this choice is arbitrary and performance may vary 

depending on where it is assumed that the test predictions begin in the process. Figure 4.1.10 

illustrates the performance for top predictors and pairs of predictors for the 1-year return on the Absa 

share price for varying starting points of test prediction. The varying of test and training splits allows 

for a stimulating view on how the models and predictors perform over larger test prediction range 

and how performance changes as the model feeds in more training data in the learning method.  

We should reasonably expect that with more training data the statistical learning methods should 

produce more accurate predictions. It is interesting to note that for just about all learning methods 

and predictors there is a dip in performance when the initial training sample size is increased from 

1600-1800 observations. This would suggest that the models are now being trained on test prediction 

observations that were previously well predicted and the remainder of test predictions are not 

predicted as well as those now included in the training sample.  

Figure 4.1.10 Absa 1-year return prediction performance for varying training & test sample sizes. The graphic illustrates the 

test prediction accuracy for the top performing models and sets of predictor variables.  

 

At the 1-year level the predictor from the CAPM appears to provide the best predictions using logistic 

regression as the link function in the statistical learning method as evidenced in Figure 4.1.10.  
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The case for the 6 month excess returns on the Absa stock price is a very different story though. Figure 

4.1.11 illustrates the poor predictive capabilities of the CAPM created predictor variable for the 6-

month excess returns. Furthermore the pairs of ‘Discount’ variables from the Merton model predictors 

appears to perform a reasonable job in predicting the class of future 6 month excess return on the 

stock. 

Figure 4.1.11 Absa 6-month return predictions for varying training and test sample sizes. The graphic illustrates the test 

prediction accuracy for the top performing models and sets of predictor variables. 

 

 

Figure 4.1.12 Absa 6-month return prediction KNN (K=99) with Discount_360D_BB & Discount_360D_CS as predictor 

variables. The graphic displays the time-series plot of the forward 6-month returns on the Absa stock price, the colours in 

the plot indicate the prediction performance for that return observation.  

 
Figure 4.1.12 illustrates the predictions made using the KNN non-parametric approach for the link 

function with 99 neighbours and the Discount_360D_BB and Discount_360D_CS pair of predictor 

variables. The pair of variables fails to predict the positive returns that will be earned in 6 months from 

2016, and capture small elements of the positive return of 2014.  
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Figure 4.1.13 illustrates the predictions made using the Discount_GARCH_BB and Discount_GARCH_CS 

pair of predictor variables under the logistical regression model. The latter combination of debt 

predictor variables accurate predicts the change in 6 month future returns around 2016 however 

performs very poorly in predicting prior returns.  

 

Figure 4.1.13 Absa 6-month return predictions from logistic regression with Discount_GARCH_BB & Discount_GARCH_CS as 

predictor variables. The graphic displays the time-series plot of the forward 6-month returns on the Absa stock price, the 

colours in the plot indicate the prediction performance for that return observation. 
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4.2 INVESTEC GROUP LTD. RESULTS 
The results for Investec Group Ltd. INL hereafter is now presented in detail.  

4.2.1 Predictor and target variables 

A brief discussion regarding the input, predictor and target variable for INL is presented.  

4.2.1.1 Initial input variables 

Figure 4.2.1 illustrates that INL does not use a significant amount of leverage in the company’s capital 

structure. The relationship between the share price and the market is not stable as evidenced by the 

fluctuations in estimates of alpha and beta found in the Appendix B. Furthermore, market rating of 

INL publicly traded debt appears to be well inversely related to share price performance. High spreads 

on corporate debt appears to be well co-integrated with decreasing stock prices and low spreads on 

debt is well correlated with increasing stock prices.  

Figure 4.2.1 INL debt, equity and market input variables 

 

4.2.1.2 Structural model predictor variables 

The harsh large spikes in Figure 4.2.2 again signpost the greatest weakness of the current methodology 

for creating predictors of return under the Merton framework. The weakness of course is that the 

simultaneous equations for estimating the parameters of firms hidden asset value process cannot 

always find unique solutions. Table 4.2.1 confirms that the erratic volatility estimates from the 

𝐺𝐴𝑅𝐶𝐻 (1,1)  forecast of 1-day ahead volatility produces large sets of sample points where the 

algorithm cannot find a unique solution to the simultaneous equations. Most encouragingly for most 

of the structural model predictors created, unique solutions were found for the full sample of 

2748 days. The predictors created from credit spreads display the preservation of value property in 

the Merton framework and consistently lie juxtapose around zero.  
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Figure 4.2.2 INL structural model predictor variables 

 
Table 4.2.1 INL convergence to solution in simultaneous equations for structural model return predictors. 1-convergence 

satisfied; 2-solution is uncertain; 3-no better solution found than starting point; 7 Jacobian is unusable. 

 

4.2.1.3 Realized forward excess log returns 
Figure 4.2.3 INL realized forward excess log returns 2008-2017 

 

1 2 3 4 5 6 7 8 9 10

TermCD Discount_360D_BB 2748 0 0 0 0 0 0 0 0 0

TermCD Discount_LTVol_BB 2748 0 0 0 0 0 0 0 0 0

TermCD Discount_GARCH_BB 2738 0 10 0 0 0 0 0 0 0

TermCD ROE_360D_BB 2748 0 0 0 0 0 0 0 0 0

TermCD ROE_LTVol_BB 2748 0 0 0 0 0 0 0 0 0

TermCD ROE_GARCH_BB 2519 179 50 0 0 0 0 0 0 0

TermCD Discount_360D_CS 2604 1 143 0 0 0 0 0 0 0

TermCD Discount_LTVol_CS 2748 0 0 0 0 0 0 0 0 0

TermCD Discount_GARCH_CS 2286 13 449 0 0 0 0 0 0 0

TermCD ROE_360D_CS 2748 0 0 0 0 0 0 0 0 0

TermCD ROE_LTVol_CS 2748 0 0 0 0 0 0 0 0 0

TermCD ROE_GARCH_CS 2748 0 0 0 0 0 0 0 0 0

INL TermCD Check
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The forward looking nature of the returns found in Figure 4.2.3 once again dictate that these should 

be interpreted as the excess log return that will be realized in 𝑛 days from the data at which the point 

is plotted. In other words the 1-year excess log return plotted at 2016 is the excess log return that will 

be realized in 1-year from that date.  

4.2.2 Univariate prediction performance 

The analysis of predictability of the return on the share price for INL begins once again with an 

examination of each predictors stand-along predictive performance of the direction of excess returns 

realized over the next 𝑛 period. The initial training sample size is taken as 1500 in this case so there is 

a maximum test sample set of 1248 observations in the sliding prediction methodology.  

4.2.2.1 Indicator 

The results here are dreadful. The CAPM predictor of expected return only predicts the direction of 

excess returns correctly 43% of the time. Some of the structural model estimates are constrained 

above or below zero and thus more indicative of the class balance as opposed to predictive capabilities 

in this sense.  

Table 4.2.2 INL accuracy of expected return estimates evaluated as stand-alone predictors of future equity return class. 
(Class predictions are made using constant boundary of zero on the return estimate) 

 
 

4.2.2.2 K-Nearest Neighbours 

The full set of prediction results under the KNN methodology can be found in Appendix B. Examining 

the 1-year return predictions in Table 4.2.3 it is evident that the performance of the CAPM predictor 

variables have decreased significantly. The over-flexibility of the KNN classifier boundary in this 

instance lends itself to poor prediction results.  

1 Year 6 Months 3 Months 1 Month 1 Week 1 Day

ROE_GARCH_CS 54% 58% 57% 54% 55% 50%

ROE_360D_CS 54% 57% 57% 54% 55% 50%

ROE_LTVol_CS 54% 57% 57% 54% 55% 50%

ROE_GARCH_BB 48% 42% 43% 47% 46% 50%

Discount_360D_BB 46% 43% 43% 46% 45% 50%

ROE_360D_BB 46% 43% 43% 46% 45% 50%

Discount_LTVol_CS 46% 43% 43% 46% 45% 50%

Discount_LTVol_BB 46% 43% 43% 46% 45% 50%

ROE_LTVol_BB 46% 43% 43% 46% 45% 50%

Discount_GARCH_BB 44% 41% 42% 45% 45% 50%

CAPM 43% 44% 50% 47% 48% 48%

Discount_360D_CS 39% 38% 41% 46% 44% 51%

Discount_GARCH_CS 34% 38% 42% 47% 45% 51%
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Table 4.2.3 INL KNN (K= 5) test prediction accuracy for returns defined over various time horizons. 

 

4.2.2.3 Logistical regression 

The logistical regression approach shows some improvement for the CAPM predictor variables 

however still very poor overall performance. The full set of results for the logistic regression 

predictions can be found in Appendix B.  At this point the predictability of the returns on the INL share 

price seems unlikely.  

Table 4.2.4 INL logistic regression prediction performance. Test prediction accuracy for predictions made using logistic 
regression with various predictor variables. 

 

4.2.3 Multiple predictor variables 

Extension of the application of statistical learning methods to multiple predictor variables.  

4.2.3.1 Variable selection 

Table 4.2.5 once again demonstrates the poor predictive capabilities of un-parsimonious optimal 

groups of predictors chosen from measures of goodness of fit to the training sample data. There is no 

performance that is worth mentioning or elaborating on any further here. The full set of statistical 

results for variable section techniques is found in Appendix B.  

1 Year 6 Months 3 Months 1 Month 1 Week 1 Day

ROE_360D_BB 65% 52% 49% 52% 52% 51%

ROE_360D_CS 64% 58% 55% 48% 53% 48%

ROE_LTVol_CS 54% 46% 55% 52% 49% 49%

ROE_GARCH_CS 54% 49% 51% 49% 46% 49%

Discount_360D_BB 53% 51% 50% 47% 50% 47%

Discount_360D_CS 42% 45% 47% 51% 49% 50%

ROE_GARCH_BB 40% 44% 49% 51% 49% 50%

Discount_GARCH_BB 36% 44% 48% 47% 50% 50%

Discount_GARCH_CS 36% 47% 50% 47% 53% 52%

ROE_LTVol_BB 33% 47% 53% 46% 52% 49%

CAPM 29% 38% 44% 46% 51% 51%

Discount_LTVol_BB 26% 43% 46% 45% 49% 47%

Discount_LTVol_CS 22% 42% 46% 47% 49% 50%

1 Year 6 Months 3 Months 1 Month 1 Week 1 Day

ROE_360D_BB 51% 42% 41% 45% 47% 50%

CAPM 48% 40% 43% 46% 47% 50%

ROE_GARCH_BB 41% 42% 42% 45% 51% 50%

Discount_LTVol_CS 36% 42% 42% 45% 43% 50%

Discount_GARCH_BB 30% 36% 34% 38% 47% 50%

Discount_360D_BB 30% 30% 39% 41% 48% 50%

Discount_GARCH_CS 30% 38% 42% 47% 41% 50%

Discount_LTVol_BB 25% 34% 39% 45% 43% 50%

ROE_LTVol_BB 24% 32% 38% 44% 43% 50%

ROE_360D_CS 24% 40% 44% 46% 50% 50%

Discount_360D_CS 20% 33% 35% 43% 48% 51%

ROE_LTVol_CS 19% 22% 33% 41% 46% 50%

ROE_GARCH_CS 18% 42% 43% 41% 48% 50%
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Table 4.2.5 INL predictor variable subset selection. The highlighted cells display the predictor variables included in the 
optimal set under the variable selection criterion. The last three rows display the prediction accuracy for predictions made 

on the test sample set using the chosen set of predictor variables in the logistic regression function. 

 

4.2.3.2 Bivariate prediction performance 

Table 4.2.6 INL summary of top 1-year return class predictions including pairs of predictors. The abbreviated measures in 
the table include; TSS: test sample size; FPR: False positive rate; False negative rate; CB: Class Balance. IND in the link 

function is the stand-alone class prediction with a constant class decision boundary of zero. 

 
 

The results for the prediction performance on the INL stock price returns have been rather dismal. 

The inclusion of pairs of predictor variables re-invigorates the investigation. The summary of the top 

results for predictors and pairs of predictors under the different link functions for 1-year return 

predictions are displayed in Table 4.2.6. The combination of predictors created from the Bloomberg 

probability of default are able to correctly predict the class of future 1-year returns around 70% of 

the time without loss of any days in the sample set. The predictors generated from CAPM perform 

Adjr2 Cp Bic Aic Adjr2 Cp Bic Aic Adjr2 Cp Bic Aic

CAPM

Discount_360D_BB

Discount_LTVol_BB

Discount_GARCH_BB

ROE_360D_BB

ROE_LTVol_BB

ROE_GARCH_BB

Discount_360D_CS

Discount_LTVol_CS

Discount_GARCH_CS

ROE_360D_CS

ROE_LTVol_CS

ROE_GARCH_CS

No. Predictor Variables 10 10 10 13 12 12 10 11 5 1 1 1

1Y Prediction Accuracy 30% 30% 30% 47% 39% 39% 35% 43% 23% 36% 36% 24%

6M Prediction Accuracy 43% 43% 43% 58% 57% 57% 53% 54% 39% 42% 42% 32%

1D Prediction Accuracy 49% 49% 49% 50% 50% 50% 49% 51% 50% 50% 50% 50%

INL Variable Selection

1 Year 6 Months 1 Day

Link TSS Accuracy Precision Sensitivity Specificity FPR FNR CB

LOGIT ROE_360D_BB Discount_360D_CS 1104 72% 75% 83% 56% 17% 11% 61%

LOGIT Discount_360D_BB ROE_360D_BB 1248 72% 70% 83% 58% 19% 9% 54%

KNN 99 ROE_360D_BB Discount_360D_CS 1104 68% 76% 71% 64% 14% 18% 61%

KNN 5 ROE_360D_BB 1248 65% 64% 83% 43% 26% 9% 54%

KNN 5 ROE_360D_CS 1248 64% 68% 62% 66% 16% 21% 54%

KNN 99 ROE_360D_BB Discount_GARCH_CS 786 63% 72% 73% 43% 19% 18% 66%

LOGIT ROE_360D_BB ROE_360D_CS 1248 56% 56% 87% 19% 37% 7% 54%

LOGIT ROE_360D_BB 1248 51% 54% 68% 30% 32% 18% 54%

LOGIT CAPM_1YER 1248 48% 61% 11% 92% 4% 49% 54%

IND ROE_GARCH_CS 1248 54% 54% 100% 0% 46% 0% 54%

IND ROE_360D_CS 1248 54% 54% 100% 0% 46% 0% 54%

Predictor Variables
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extremely poorly in this instance which suggests that debt pricing plays an important role in returns 

on the INL stock price. In the three and six month returns sets it is evident that while predictive 

performance is poor, debt variables provide the best predictions of future return class. 

4.2.3.3 Variable efficiency 

The results in Table 4.2.7 do not suggest that the transformation of information in predictor creation 

was counterproductive. This segmented admittedly provides no indication of whether this was the 

best possible use of information from the observed market and financial statement variables.  

Table 4.2.7 INL predictor variable efficiency in 1-year return class predictions. Table displays test prediction performance 
for:  CS: Credit Spreads; BB: Bloomberg PD; All: all raw market data; BBCS: combination of CS and PD raw market data; 

CAPMCS: combination of credit spread and market index data; CAPMBB: combination of CAPM & Bloomberg PD raw data. 

 

4.2.4 Varying training and test samples 

The results for varying the training and test samples sizes in the prediction procedure yields some very 

interesting results as shown in Figure 4.2.4. The prediction performance of the CAPM variables and 

debt variables appear to be negatively correlated, suggesting a disconnection between the influence 

of the price of debt and equity on the firm’s returns. The changing influence of predictability over the 

different periods is reflective of the learning capabilities of the statistical models but also suggests 

non-stationarity.  

Figure 4.2.4 INL 1-year return prediction performance for varying training & test sample sizes. The graphic illustrates the 
test prediction accuracy for the top performing models and sets of predictor variables. 

 

TSS Accuracy Precision Sensitivity Specificity FPR FNR CB

CS 1248 52% 100% 12% 100% 0% 48% 54%

BB 1248 26% 24% 16% 39% 28% 46% 54%

CAPM 1248 41% 41% 17% 70% 14% 45% 54%

ALL 1248 21% 20% 16% 27% 34% 46% 54%

BBCS 1248 28% 24% 15% 43% 26% 46% 54%

CAPMCS 1248 46% 51% 16% 82% 8% 46% 54%

CAPMBB 1248 19% 19% 15% 24% 35% 46% 54%
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Figure 4.2.5, Figure 4.2.6 and Figure 4.2.7 further illustrate the nature of the predictions made by the 

top three performing predictor sets as well as provide clear explanations and insights for the shapes 

of the prediction accuracy performance curves found in Figure 4.2.4. Figure 4.2.5 illustrates the 

predictions and returns made using the CAPM predictor variable and logistic regression link function. 

The black line in the figure represents the CAPM estimates of return over the sample and the dotted 

line represents the classifier boundary estimated for test predictions over the sample. The graphic 

clearly illustrates the poor predictions made with smaller amounts of training data but also shows how 

the model correctly predicts the change in classes when using more training data.  

Figure 4.2.5 INL logistic regression 1-year return predictions with CAPM predictor variable. The CAPM estimate of return is 
represented by the black line in the figure. The multi-coloured points represent the future 1-year returns, and the dotted line 

represents the class decision boundary estimated by the logistic regression model. 

 
Figure 4.2.6 INL 1-year return predictions from logistic regression with ROE_360D_BB & Discount_360D_CS as predictor 

variables. The graphic displays the time-series plot of the forward 6-month returns on the INL stock price, the colours in the 
plot indicate the prediction performance for that return observation. 
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Figure 4.2.7 INL 1-year return predictions from logistic regression with ROE_360D_BB & Discount_360D_BB as predictor 
variables. The graphic displays the time-series plot of the forward 6-month returns on the INL stock price, the colours in the 

plot indicate the prediction performance for that return observation. 

 
 

 
The predictions from the pairs of structural models of debt predictors correctly predict the class of 1-

year forward excess returns from 2012-2014. However the impact of the learning lag is very noticeable 

in the prediction performance from these pairs. Figure 4.2.6 also illustrates the impact of the missing 

variables in the sample set from the ‘Discount’ predictor variable constructed from the credit spread 

on the bond.  

 
 
 
 
 
  

Stellenbosch University  https://scholar.sun.ac.za



83 
 

4.3 GROUP FIVE LTD RESULTS 

The results for predicting returns on the Group Five Ltd stock, hereafter GRF, is presented. GRF is a 

construction company and thus its employment of debt in its capital structure is perhaps slightly more 

simplistic than the financial services companies that have just been covered.  

4.3.1 Predictor and target variables 

4.3.1.1 Initial input variables 

The GRF share price shown in the left quadrant of Figure 4.3.1, displays a downward trend in price 

over the sample period. This is noteworthy since the previous share price behaviours to be predicted 

were largely upward moving.  

Figure 4.3.1 GRF debt, equity and market variable time series 

 

4.3.1.2 Structural model predictor variables 

The view of the estimates of return or predictors of return created from the structural model approach 

is once again hindered by the outliers for unsolved values in the case of predictors created from credit 

spreads and estimates created from models with 𝐺𝐴𝑅𝐶𝐻 (1,1) inputs of 1-day volatility forecasts. 

The reader is referred to Appendix C for the estimates of equity volatility as well as estimates of alpha 

and beta over the sample period for GRF.  

The estimates obtained from default probabilities provide both negative and positive estimates. 

Predictors obtained from credit spreads are constrained by the preservation of value in the solving of 

simultaneous equations for the unobservable parameters. The newton Raphson method was able to 

find unique estimates for the unobservable parameters under all but 3 of the variations employed in 

the creation of predictor variables as shown in Table 4.3.1. For most of the predictor variables there 

is fortunately no impact on the sample size due to missing data or observations where the 

methodology could not solve for unique parameters.  
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Figure 4.3.2 GRF structural models of debt predictor variables 

 

Table 4.3.1 GRF convergence to solution in simultaneous equations for structural model return predictors. 1-convergence 
satisfied; 2-solution is uncertain; 3-no better solution found than starting point; 7 Jacobian is unusable. 

 

4.3.1.3 Realized forward excess log return 
Figure 4.3.3 GRF realized forward excess log returns from 2008-2016 

 

1 2 3 4 5 6 7 8 9 10

TermCD Discount_360D_BB 2398 0 0 0 0 0 0 0 0 0

TermCD Discount_LTVol_BB 2398 0 0 0 0 0 0 0 0 0

TermCD Discount_GARCH_BB 2398 0 0 0 0 0 0 0 0 0

TermCD ROE_360D_BB 2398 0 0 0 0 0 0 0 0 0

TermCD ROE_LTVol_BB 2398 0 0 0 0 0 0 0 0 0

TermCD ROE_GARCH_BB 2387 5 6 0 0 0 0 0 0 0

TermCD Discount_360D_CS 2295 0 103 0 0 0 0 0 0 0

TermCD Discount_LTVol_CS 2392 0 6 0 0 0 0 0 0 0

TermCD Discount_GARCH_CS 2307 1 90 0 0 0 0 0 0 0

TermCD ROE_360D_CS 2398 0 0 0 0 0 0 0 0 0

TermCD ROE_LTVol_CS 2398 0 0 0 0 0 0 0 0 0

TermCD ROE_GARCH_CS 2398 0 0 0 0 0 0 0 0 0

GRF TermCD Check
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The short-term excess returns on the stock are very noisy as expected, this is clearly seen in Figure 

4.3.3. Moreover the 1-year and 6-month returns series display both negative and positive returns, 

thus accurately predicting the class of return is a reasonable discriminator of performance.  

4.3.2 Univariate prediction performance 

4.3.2.1 Indicator 

The analysis begins by examining the predictors’ classification accuracy with a constant boundary 

around zero. The drastic difference in performance between the ‘Discount’ and ‘ROE’ predictors 

created from the credit spreads as evidenced in Table 4.3.2, is indicative of the class balance and the 

classic preservation of value constraint in the estimation.  

Table 4.3.2 GRF summary of accuracy of expected return estimates evaluated as stand-alone predictors of future equity 
return class. (Class predictions are made using constant boundary of zero on the return estimate). 

 

The class imbalance in the test prediction set artificially inflates the predictive performance at first 

glance. However what is once again evident is that estimates of return from the CAPM framework are 

very poor predictors of future return. Figure 4.3.4 illustrates the surprisingly good co-integration of 

the ROE_360D_BB created predictor and the 1-year and 6-month forward realized excess return on 

the GRF share. The ‘Discount_LTVol_BB’ predictor variable also performs above expectations as can 

be seen in Figure 4.3.5 and further illustrates that estimates obtained from default probabilities are 

not constrained to a single class as is the case with those created from credit spreads.  

1 Year 6 Months 3 Months 1 Months 1 Week 1 Day 

Discount_LTVol_CS 84% 76% 68% 61% 55% 55%

Discount_360D_CS 83% 76% 69% 62% 55% 55%

Discount_GARCH_CS 82% 75% 67% 63% 55% 55%

ROE_LTVol_BB 80% 64% 52% 51% 52% 53%

Discount_LTVol_BB 80% 64% 52% 51% 52% 53%

Discount_GARCH_BB 73% 69% 58% 58% 55% 53%

ROE_GARCH_BB 73% 69% 59% 58% 55% 53%

ROE_360D_BB 71% 71% 55% 55% 55% 53%

Discount_360D_BB 71% 71% 55% 55% 55% 53%

CAPM 46% 46% 51% 52% 50% 50%

ROE_GARCH_CS 17% 26% 34% 40% 46% 46%

ROE_360D_CS 16% 25% 33% 40% 46% 46%

ROE_LTVol_CS 16% 25% 33% 40% 46% 46%

Stellenbosch University  https://scholar.sun.ac.za



86 
 

Figure 4.3.4 GRF 1-year and 6-months excess log returns with ROE_360D_BB predictor from the period 2014- 2017. 

 
 

Figure 4.3.5 GRF 1-year and 6-months excess log returns with Discount_LTVol_BB predictor from the period 2014- 2017. 

 

4.3.2.2 K-Nearest Neighbours 

Table 4.3.3 GRF KNN (K= 5) test prediction accuracy for all predictor variables for returns defined over various time horizons. 

 

1 Year 6 Months 3 Months 1 Months 1 Week 1 Day 

ROE_360D_BB 68% 62% 48% 50% 51% 48%

Discount_360D_CS 68% 58% 44% 56% 52% 50%

ROE_GARCH_BB 68% 60% 55% 51% 50% 49%

Discount_LTVol_CS 65% 60% 51% 49% 48% 51%

Discount_GARCH_CS 64% 51% 52% 50% 49% 51%

Discount_GARCH_BB 64% 53% 45% 49% 53% 52%

CAPM 62% 61% 51% 48% 53% 50%

Discount_LTVol_BB 60% 49% 44% 47% 50% 48%

Discount_360D_BB 56% 45% 49% 50% 51% 49%

ROE_LTVol_BB 52% 44% 46% 45% 48% 51%

ROE_360D_CS 46% 47% 56% 51% 53% 51%

ROE_LTVol_CS 46% 31% 45% 55% 50% 52%

ROE_GARCH_CS 43% 36% 47% 51% 50% 54%
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The model is trained on a minimum of 1500 observations with a remaining potential maximum 

predictions for 898 observations. The K-Nearest Neighbours method is employed with a choice of 𝐾 =

5 neighbours. This is an arbitrary choice of neighbours although the small number of neighbours is 

expected to produce a relatively flexible model. Table 4.3.3 confirms the counterintuitive point raised 

around poor predictive performance of highly flexible models and over fitting. KNN as a link function 

doesn’t appear to be a great predictor, although CAPM has increased in performance. 

4.3.2.3 Logistic regression 

The results in the Table 4.3.4 show that the predictive capabilities for the CAPM are vastly improved 

with the aid of the logistical regression link function. The full set of results for logistic regression 

prediction in Appendix C reveals that impressively the model correctly predicts future stock returns in 

both directions using only the CAPM predictor variable. 

Table 4.3.4 GRF summary of logistic regression prediction performance. Test prediction accuracy for predictions made using 
logistic regression with various predictor variables. 

 

The successful predictions and capturing of the different classes of future excess returns suggests that 

the logistical regression approach does not struggle to make predictions in the case of class 

imbalances, provided that the predictor variables contain sufficient discriminatory power. The contra 

positive is also true, where logistic regression struggles with a class imbalance in the training and test 

sets, the predictor variables might not provide sufficient powers of discrimination.  

Figure 4.3.6 illustrates the impressive performance made by the logistical regression model 1-year 

return predictions with the CAPM predictor variable. The first impressive feature is that the model 

correctly predicts the first set of negative returns even where the last training point at this time is 

where returns are at an all-time high. The second impressive feature of the predictions made by this 

model is the accurate predictions of the change in return class evidenced around 2016 in the graphic. 

1 Year 6 Months 3 Months 1 Months 1 Week 1 Day 

CAPM 85% 82% 66% 56% 54% 54%

Discount_LTVol_CS 84% 70% 66% 60% 55% 55%

ROE_360D_BB 84% 76% 68% 60% 55% 54%

Discount_360D_BB 84% 76% 68% 60% 55% 54%

ROE_LTVol_BB 84% 75% 68% 60% 55% 54%

ROE_360D_CS 84% 76% 69% 60% 55% 54%

ROE_LTVol_CS 84% 76% 68% 60% 55% 54%

Discount_LTVol_BB 84% 74% 68% 60% 55% 54%

Discount_GARCH_BB 84% 66% 65% 57% 52% 54%

Discount_360D_CS 83% 76% 63% 62% 55% 55%

ROE_GARCH_CS 82% 76% 69% 60% 54% 54%

Discount_GARCH_CS 80% 66% 63% 60% 54% 55%

ROE_GARCH_BB 76% 76% 66% 57% 53% 55%
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Figure 4.3.6 GRF logistic regression 1-year return predictions with CAPM predictor variable. The CAPM estimate of return is 
represented by the black line in the figure. The multi-coloured points represent the future 1-year returns, and the dotted line 

represents the class decision boundary estimated by the logistic regression model. 

 

4.3.3 Multiple predictor variables 

4.3.3.1 Variable selection 

Table 4.3.5 GRF predictor variable subset selection. The highlighted cells display the predictor variables included in the 
optimal set under the variable selection criterion. The last three rows display the prediction accuracy for predictions made 

on the test sample set using the chosen set of predictor variables in the logistic regression function. 

 

Adjr2 Cp Bic Aic Adjr2 Cp Bic Aic Adjr2 Cp Bic Aic

CAPM

Discount_360D_BB

Discount_LTVol_BB

Discount_GARCH_BB

ROE_360D_BB

ROE_LTVol_BB

ROE_GARCH_BB

Discount_360D_CS

Discount_LTVol_CS

Discount_GARCH_CS

ROE_360D_CS

ROE_LTVol_CS

ROE_GARCH_CS

No. Predictor Variables 10 10 7 13 12 10 9 8 8 2 1 4

1Y Prediction Accuracy 65% 65% 76% 65% 66% 66% 69% 68% 62% 83% 82% 80%

6M Prediction Accuracy 58% 58% 61% 60% 59% 58% 59% 71% 54% 75% 76% 73%

1D Prediction Accuracy 54% 54% 54% 54% 54% 55% 54% 54% 53% 54% 54% 54%

GRFVariable Selection

1 Year 6 Months 1 Day
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Table 4.3.5 reiterates the difficulty of variable selection and predictive performance. The large 

numbers of predictors included by the models do not provide more useful predictions than those from 

univariate predictor variable approaches. Highlights the pitfalls of r-squared and model evaluation on 

in-sample model diagnostics. The reader is referred to Appendix C for the full results from variable 

selection techniques. Throughout the research experimentation, the adjusted r-squared criterion 

consistently selects the largest number of variables possible in the optimal subset.  

4.3.3.2 Bivariate predictor performance 

The summary of the top results for predictors and pairs of predictors under the different link functions 

for 1-year return predictions are displayed in Table 4.3.6. The results provide that predictors from 

CAPM perform quite well under the logistical regression approach yet can be improved further with 

the inclusion of created debt variables. The combination of the CAPM and the ROE_360D_BB predictor 

variables provides the most accurate predictions without the loss of sample size.  

Table 4.3.6 GRF summary of top 1-year return class predictions including pairs of predictors. The abbreviated measures in 
the table include; TSS: test sample size; FPR: False positive rate; False negative rate; CB: Class Balance. IND in the link 

function is the stand-alone class prediction with a constant class decision boundary of zero. 

 

The poor performance of the KNN approach illustrates that the choice of neighbours has a large 

bearing on performance and that the choice of neighbours here may not have done justice to the KNN 

approach. Figure 4.3.7 and Figure 4.3.8 demonstrate the impact of the missing data points on the 

training and test predictions under the statistical learning methodology. Figure 4.3.7 clearly highlights 

the impact of the missing observations contained within the ‘Discount_360D_BB’ predictor variable 

as well as the improved prediction accuracy in comparison to predictions in Figure 4.3.6. The 

methodology is constructed in such a way that any combination of variables will have the same 

number of observations in the initial training data set, resulting in varying test prediction sample sets. 

The change in training and test prediction sets is clearly visible when comparing Figure 4.3.8 and Figure 

LINK TSS Accuracy Precision Sensitivity Specificity FPR FNR CB

LOGIT CAPM_1YER Discount_360D_CS 795 94% 78% 91% 95% 4% 2% 18%

LOGIT CAPM_1YER ROE_360D_BB 898 93% 87% 66% 98% 2% 6% 16%

LOGIT CAPM_1YER ROE_GARCH_BB 887 90% 62% 93% 89% 9% 1% 16%

LOGIT CAPM_1YER ROE_360D_CS 898 86% 56% 69% 90% 9% 5% 16%

LOGIT CAPM_1YER ROE_LTVol_CS 898 86% 54% 66% 89% 9% 6% 16%

LOGIT CAPM_1YER 898 85% 52% 96% 83% 14% 1% 16%

LOGIT CAPM_1YER Discount_GARCH_BB 898 85% 52% 96% 83% 15% 1% 16%

LOGIT CAPM_1YER ROE_GARCH_CS 898 84% 51% 90% 83% 14% 2% 16%

LOGIT Discount_LTVol_BB Discount_LTVol_CS 892 84% NaN 0% 100% 0% 16% 16%

LOGIT Discount_LTVol_CS 892 84% NaN 0% 100% 0% 16% 16%

IND Discount_LTVol_CS 892 84% NaN 0% 100% 0% 16% 16%

LOGIT Discount_360D_BB 898 84% NaN 0% 100% 0% 16% 16%

IND Discount_LTVol_BB 898 80% 41% 63% 83% 15% 6% 16%

KNN 5 CAPM_1YER Discount_GARCH_BB 898 72% 29% 50% 76% 20% 8% 16%

KNN 5 Discount_GARCH_BB ROE_GARCH_BB 887 69% 20% 30% 77% 19% 11% 16%

KNN 5 ROE_360D_BB 898 68% 2% 2% 81% 16% 16% 16%

KNN 5 Discount_360D_CS 795 68% 0% 0% 83% 14% 18% 18%

KNN 5 CAPM_1YER Discount_GARCH_CS 807 68% 33% 88% 64% 30% 2% 17%

Predictor Variates
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4.3.7. The impact of missing data observations changing the training and test sample splits should be 

kept in mind when comparing performance of these models. 

Figure 4.3.7 GRF 1-year return predictions from logistic regression with CAPM & Discount_360D_CS as predictor variables. 
The graphic displays the time-series plot of the forward 1-year returns on the GRF stock price, the colours in the plot 

indicate the prediction performance for that return observation. 

 

Figure 4.3.8 GRF 1-year return predictions from logistic regression with CAPM & ROE_360D_BB as predictor variables. The 
graphic displays the time-series plot of the forward 1-year returns on the GRF stock price, the colours in the plot indicate the 

prediction performance for that return observation. 

 

The addition of the ROE_360D_BB predictor variables to the CAPM predictor variable yields significant 

improvements in prediction accuracy for 1-year returns without the loss of any sample size as 

evidenced in Figure 4.3.8. The 6-month return predictions are also aided by the incorporation of 

predictor pairs in the statistical learning model. Table 4.3.7 reaffirms that the addition of structural 

model predictors to the CAPM predictors vastly enhances the predictive accuracy in the 6-month 

future excess log returns. The combination of ‘CAPM’ and ‘ROE_360D_CS’ as predictor variables yields 

prediction accuracy of 85%  for 6-month return predictions over a test sample of 898  days. 

Impressively the model is able to provide accurate predictions for both classes of return despite the 

class imbalance in the 6-month returns sample. Even at the three month return horizon there appears 
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to be some ability to forecast the class of return using the combination of CAPM and structural model 

predictor variables, as evidenced in Table 4.3.8. 

Table 4.3.7 GRF summary of top 6--month return class predictions including pairs of predictors. The abbreviated measures 
in the table include; TSS: test sample size; FPR: False positive rate; False negative rate; CB: Class Balance. IND in the link 

function is the stand-alone class prediction with a constant class decision boundary of zero. 

 

Table 4.3.8 GRF summary of top 3--month return class predictions including pairs of predictors. The abbreviated measures 
in the table include; TSS: test sample size; FPR: False positive rate; False negative rate; CB: Class Balance. IND in the link 

function is the stand-alone class prediction with a constant class decision boundary of zero. 

 

4.3.3.3 Efficiency of predictor variable creation 

The results in Table 4.3.9 and Table 4.3.10 below quickly verify that creating predictor variables aided 

the predictive capabilities in the employment of statistical learning methods. The case for efficient use 

of information in predictor creation is well supported in the case of the prediction accuracy obtained 

for the 6-month returns using created predictors in comparison to raw variables.  

Table 4.3.9 GRF predictor variable efficiency in 1-year return class predictions. Table displays test prediction performance 
for:  CS: Credit Spreads; BB: Bloomberg PD; All: all raw market data; BBCS: combination of CS and PD raw market data; 

CAPMCS: combination of credit spread and market index data; CAPMBB: combination of CAPM & Bloomberg PD raw data. 

 

LINK TSS Accuracy Precision Sensitivity Specificity FPR FNR CB

LOGIT CAPM_6MER ROE_360D_CS 898 85% 71% 64% 91% 7% 9% 25%

LOGIT CAPM_6MER ROE_LTVol_CS 898 84% 68% 64% 90% 7% 9% 25%

LOGIT CAPM_6MER 898 82% 61% 70% 86% 11% 7% 25%

LOGIT CAPM_6MER ROE_LTVol_BB 898 82% 61% 67% 86% 10% 8% 25%

IND Discount_LTVol_CS 892 76% NaN 0% 100% 0% 24% 24%

LOGIT ROE_GARCH_BB 887 76% NaN 0% 100% 0% 24% 24%

IND Discount_360D_BB 898 71% 44% 76% 69% 23% 6% 25%

KNN 5 ROE_360D_BB ROE_360D_CS 898 67% 36% 46% 73% 20% 13% 25%

KNN 5 ROE_360D_BB ROE_LTVol_CS 898 66% 34% 41% 74% 20% 15% 25%

KNN 5 ROE_360D_BB 898 62% 24% 26% 74% 20% 18% 25%

KNN 5 CAPM_6MER 898 61% 16% 15% 76% 19% 21% 25%

Predictor Variates

LINK TSS Accuracy Precision Sensitivity Specificity FPR FNR CB

LOGIT CAPM_3MER ROE_GARCH_BB 887 70% 53% 52% 78% 15% 15% 32%

LOGIT Discount_LTVol_BB ROE_360D_CS 898 69% 72% 6% 99% 1% 31% 33%

LOGIT Discount_LTVol_BB ROE_GARCH_CS 898 69% 82% 5% 100% 0% 31% 33%

LOGIT ROE_360D_CS 898 69% 68% 7% 98% 1% 30% 33%

LOGIT ROE_GARCH_CS 898 69% 75% 5% 99% 1% 31% 33%

IND Discount_360D_CS 795 69% NaN 0% 100% 0% 31% 31%

IND Discount_LTVol_CS 892 68% NaN 0% 100% 0% 32% 32%

LOGIT Discount_360D_BB 898 68% NaN 0% 100% 0% 33% 33%

IND Discount_GARCH_CS 807 67% 0% 0% 98% 1% 32% 32%

KNN 5 CAPM_3MER ROE_LTVol_CS 898 57% 37% 46% 63% 25% 18% 33%

KNN 5 ROE_GARCH_BB ROE_LTVol_CS 887 56% 37% 54% 58% 29% 15% 32%

KNN 5 ROE_360D_CS 898 56% 39% 61% 54% 31% 13% 33%

KNN 5 ROE_GARCH_BB 887 55% 34% 43% 61% 27% 18% 32%

Predictor Variates

TSS Accuracy Precision Sensitivity Specificity FPR FNR CB

CS 898 69% 25% 46% 73% 22% 9% 16%

BB 898 62% 29% 96% 55% 38% 1% 16%

CAPM 898 54% 26% 96% 46% 45% 1% 16%

ALL 898 71% 18% 22% 81% 16% 13% 16%

BBCS 898 74% 31% 46% 80% 17% 9% 16%

CAPMCS 898 72% 21% 27% 81% 16% 12% 16%

CAPMBB 898 77% 41% 95% 73% 23% 1% 16%

Stellenbosch University  https://scholar.sun.ac.za



92 
 

Table 4.3.10 GRF predictor variable efficiency in 6-month return class predictions. Table displays test prediction 
performance for: CS: Credit Spreads; BB: Bloomberg PD; All: all raw market data; BBCS: combination of CS and PD raw 

market data; CAPMCS: combination of credit spread and market index data; CAPMBB: combination of CAPM & Bloomberg 
PD raw data. 

 

4.3.4 Varying training and test samples 

The models and predictor performance were considered for an arbitrary determination of 1500 

observations in the initial training data sample. We see that CAPM and ‘Discount_360D_CS’ as a 

predictor pair consistently provide the most accurate predictions although the impact of missing 

observations makes the outright comparison of model performance challenging.  

Figure 4.3.9 GRF 1-year return prediction performance for varying training & test sample sizes. The graphic illustrates the 
test prediction accuracy for the top performing models and sets of predictor variables. 

 

 

The shapes of the prediction accuracy for varying training and test data splits found in Figure 4.3.9, is 

most easily understood when viewed in conjunction with Figure 4.3.10. Figure 4.3.10 clearly illustrates 

the manner in which the model learns and improves predictions with more training data. The graphic 

clearly illustrates the models challenge to predict the first major series of positive 1-year returns as 

the training sample at this stage has very few labelled cases of positive returns to ‘learn’ the 

relationship from. The learning improvements are evident where the second shift from negative to 

positive 1-year returns is accurately predicted given the increase in information in the training data.  

TSS Accuracy Precision Sensitivity Specificity FPR FNR CB

CS 898 53% 22% 37% 58% 32% 15% 25%

BB 898 55% 30% 61% 53% 35% 10% 25%

CAPM 898 63% 25% 27% 74% 20% 18% 25%

ALL 898 61% 5% 3% 80% 16% 24% 25%

BBCS 898 49% 16% 26% 57% 33% 18% 25%

CAPMCS 898 59% 4% 3% 77% 18% 24% 25%

CAPMBB 898 61% 5% 3% 80% 15% 24% 25%
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Figure 4.3.10 GRF 1-year return predictions from logistic regression with CAPM & Discount_360D_CS as predictor variables. 
The graphic displays the time-series plot of the forward 1-year returns on the GRF stock price, the colours in the plot 

indicate the prediction performance for that return observation. 

 
 

The case for the 6-month return series also reveals an inflection point in prediction performance 

around 1500 observations in the training data set, evidenced in Figure 4.3.11. In this instance the 

combination of CAPM and ‘ROE_360D_CS’ consistently yields the most accurate predictions without 

and loss of observations. The fact that no observations were lost means that the predictions from 

CAPM and the combination of CAPM and ‘ROE_360D_CS’ are being measured over the same test and 

training data and may be directly compared. The improvement in predictive performance with the 

inclusion of structural model predictors in addition to CAPM is irrefutable for the 6-month returns of 

GRF.  

Figure 4.3.11 GRF 6-months return prediction performance for varying training & test sample sizes. The graphic illustrates 
the test prediction accuracy for the top performing models and sets of predictor variables. 
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Figure 4.3.12 GRF 6-months return predictions from logistic regression with CAPM & ROE_360D_BB as predictor variables. 
The graphic displays the time-series plot of the forward 6-month returns on the GRF stock price, the colours in the plot 

indicate the prediction performance for that return observation. 

 

The impressive nature of the predictions made for the 6-month returns are highlighted in Figure 

4.3.12. The perfect prediction of the change in class of returns around 2011 going into 2012 in the 

figure is a real highlight for adding weight to the evidence that debt and capital structure can be used 

to predict future stock returns.   
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4.4 BIDVEST GROUP LTD. RESULTS 
Modelling for Bidvest Co., referred to here after as BVC.  

4.4.1 Predictor and target variables 

4.4.1.1 Input variables 

In Figure 4.4.1 illustrated below, the traded equity value and the financial statement debt per share 

of BVC are found in the top left graphic. The share price and market index appear to be well co-

integrated although estimates of alpha and beta vary significantly over time as seen in Appendix D. 

The market capitalized (MC) spread also drops off around 2014 identifying a period where no data is 

available for publicly traded corporate bonds on BVC. Fortunately, Bloomberg estimates of five-year 

default probabilities are available for all days in the sample period.  

Figure 4.4.1 Bidvest Co Market and Firm debt and equity time series 

 

4.4.1.2 Realized forward excess log return  

Figure 4.4.2 BVC realized forward excess log returns 2008-2017 
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The excess log return series displayed in Figure 4.4.2 match the growth of the share price as seen in 

Figure 4.4.1. The 1-year, 6-month and 3-month return series then consist of a majority of positive 

return class observations. The evaluation of performance on class prediction does not lend itself well 

to discriminating between model performances when the sample consist of a majority class. For this 

reason the results and analysis are fast tracked for BVC.   

4.4.2 Summary 

In the case of BVC, more clarity on predictability and predictor variables influence on predictability is 

required and could be achieved by extending the number of classes or moving into the regression 

framework treating excess return as a continuous variable. The full set of outputs is available in 

Appendix D. Even with the class imbalance not providing the ideal basis for comparing predictive 

capabilities, the observations from the BVC analysis still provide some interesting discussion points. 

Figure 4.4.3 illustrates the class imbalance in the test prediction set for the 1-year returns as well as 

two impressive features about the ‘ROE_LTVol_BB’ predictor variable. The first impressive feature is 

the co-integration of the future returns and the forecasted returns.  

Figure 4.4.3 BVC logistic regression 1-year return predictions with ROE_LTVol_BB as predictor variable. The black line 
illustrates the ROE_LTVol_BB estimate of expected return over the sample. The dotted black-line plots the classification 

decision boundary determined by the logistic regression model. The graphic displays the time-series plot of the forward 1-
year returns on the BVC stock price, the colours in the plot indicate the prediction performance for that return observation. 

 
 

The second noteworthy feature of Figure 4.4.3 is both impressive and unimpressive at the same time. 

It is impressive that the rare negative events were successfully predicted by using the ‘ROE_LTVol_BB’, 

however examining the results this small negative return was correctly predicted at the expense of 

incorrectly classifying far larger positive returns to be achieved. The magnitude of the losses are 

arguably relative small that the incorrect classification here is not a detriment to the model 

performance especially where the predictions are being used to execute a trading strategy. The dis-
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connection between the ‘ROE_LTVol_BB’ predictor variable and forward returns around 2016 

correlates to a change in the total debt per share estimate used in the estimation procedure.  

In the case of the 6-month returns for BVC the class imbalance in the test set is not as severe. Table 

4.4.1 highlights the fact that there are a large number of unsuccessfully predicted negative returns in 

the test prediction set. In fact the top performing prediction results are all for models with no 

specificity, inability to predict the negative returns.  

Table 4.4.1BVC summary of top 6--month return class predictions including pairs of predictors. The abbreviated measures in 
the table include; TSS: test sample size; FPR: False positive rate; False negative rate; CB: Class Balance. IND in the link 

function is the stand-alone class prediction with a constant class decision boundary of zero. 

 

Figure 4.4.4 BVC logistic regression 6-month return predictions with Discount_LTVol_BB as predictor variable. The black line 
illustrates the Discount_LTVol_BB estimate of expected return over the sample. The dotted black-line plots the classification 
decision boundary determined by the logistic regression model. The graphic displays the time-series plot of the forward 6-

month returns on the BVC stock price, the colours in the plot indicate the prediction performance for that return 
observation. 

 

Link TSS Accuracy Precision Sensitivity Specificity FPR FNR CB

LOGIT CAPM_6MER Discount_GARCH_CS 976 72% 72% 100% 0% 28% 0% 72%

LOGIT Discount_GARCH_CS ROE_360D_CS 976 72% 72% 100% 0% 28% 0% 72%

LOGIT Discount_GARCH_CS 976 72% 72% 99% 0% 28% 1% 72%

LOGIT ROE_360D_BB Discount_GARCH_CS 976 72% 72% 99% 0% 28% 1% 72%

LOGIT ROE_GARCH_BB 828 71% 71% 100% 0% 29% 0% 71%

LOGIT CAPM_6MER 1028 71% 71% 100% 0% 29% 0% 71%

IND ROE_360D_CS 1028 71% 71% 100% 0% 29% 0% 71%

IND ROE_LTVol_CS 1028 71% 71% 100% 0% 29% 0% 71%

IND ROE_GARCH_CS 1028 71% 71% 100% 0% 29% 0% 71%

LOGIT Discount_LTVol_BB 1028 66% 72% 85% 19% 24% 11% 71%

IND CAPM_6MER 1028 64% 71% 85% 13% 25% 11% 71%

KNN 5 CAPM_6MER ROE_GARCH_BB 828 63% 76% 70% 45% 16% 21% 71%

KNN 5 CAPM_6MER Discount_360D_CS 1028 63% 74% 73% 37% 18% 19% 71%

KNN 5 ROE_GARCH_BB Discount_360D_CS 828 62% 72% 77% 27% 21% 17% 71%

KNN 5 Discount_360D_CS 1028 62% 74% 72% 38% 18% 20% 71%

KNN 5 Discount_GARCH_CS 976 61% 72% 77% 22% 22% 17% 72%

KNN 5 Discount_GARCH_BB 1028 60% 71% 75% 24% 22% 18% 71%

Predictor Variables
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Figure 4.4.4 further illustrates that these are sufficiently large material losses worthwhile to accurately 

predict. Further it is not as if there is insufficient observations of both classes in the training data. The 

6-month return predictions in Figure 4.4.4 provide that large negative returns were observed post 

2008 although the market regime has arguably shifted post the 2008 credit crisis. The ‘Discount’ 

estimate of expected return created from the Bloomberg default probability does quite an amazing 

job at forecasting the actual returns earned by BVC. Barring once again the clear shift around 2016 in 

the ‘Discount_LTVol_BB’ predictor variable as seen in the graphic. The jump in the predictor estimate 

highlights the weakest point of the implementation of the structural approach, reliance on financial 

statement information. 
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4.5 CAPITEC RESULTS 

Modelling for Capitec bank is analysed in short detail.  

4.5.1 Predictor and target variables 

4.5.1.1 Input variables 

The total debt per share of Capitec appears to grow in proportion to the firm’s equity price in the 

market. The Capitec share price also displays a very interesting spike towards the end of the sample 

period as seen in Figure 4.5.1. 

Figure 4.5.1 Capitec firm debt, equity and market variables time series 

 

4.5.1.2 Realized forward excess log return 

 

Figure 4.5.2 Capitec realized forward excess log returns 2010-2015 
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The return series for Capitec provides that test prediction samples will be dominated by a majority 

class and thus performance evaluation on the two class system does not provide adequate 

discriminatory information regarding predictor and model performance. The analysis of the prediction 

performance for the stock price returns for Capitec is fast tracked in a similar case to that of BVC. The 

full set of outputs and analysis for Capitec is found in Appendix E. 

4.5.2 Summary 

Figure 4.5.3 illustrates the class imbalance problem in the test prediction set. The case for Capitec is 

worse than for the imbalance within BVC, this is since there is only one negative return set which 

occurs mid-way through the test sample set. This highlights the weakness in the use of the statistical 

learning methods in stock price prediction – the models require sufficient training data to yield 

accurate predictions. Historical data for bond spreads in South Africa is not available in abundance as 

evidenced by the small sample size of firms and small sample of observations attainable for Capitec.  

Figure 4.5.3 Capitec KNN (K=1) 1-year return predictions with ROE_LTVol_BB & Discount_360D_CS as predictor variables. 
The graphic displays the time-series plot of the forward 1-year returns on the BVC stock price, the colours in the plot 

indicate the prediction performance for that return observation. 

 

Even with the class imbalance not providing the ideal basis for comparing predictive capabilities, the 

observations from the Capitec analysis still provide some interesting discussion points. The CAPM 

historic returns are poor indicators of the direction of future excess returns. The combination of 

‘Discount’ type predictor variables from the default probability and credit spreads is able to predict 6-

month return classes for a relatively small test prediction sample of 589 days or observations. 
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Table 4.5.1 Capitec summary of top 6--month return class predictions including pairs of predictors. The abbreviated 
measures in the table include; TSS: test sample size; FPR: False positive rate; False negative rate; CB: Class Balance. IND in 

the link function is the stand-alone class prediction with a constant class decision boundary of zero. 

 
 

The summary of the 6-month return prediction performance is found in Table 4.5.1. The ability to 

predict novel cases is suggestive that debt structure and price of debt can be good indicators of future 

performance. Figure 4.5.4 displays the ability of the pair of debt predictors to successfully predict 

cross-overs in future class returns where there is sufficient training data. More insight can be gleamed 

by extending the number of classes in a meaningful way or shifting to the regression problem realm. 

Figure 4.5.4 Capitec 6-month return predictions from logistic regression with Discount_LTVol_BB & Discount_360D_CS as 
predictor variables. The graphic displays the time-series plot of the forward 6-month returns on the Capitec stock price, the 

colours in the plot indicate the prediction performance for that return observation. 

 

 

  

Link TSS Accuracy Precision Sensitivity Specificity FPR FNR CB

LOGIT Discount_LTVol_BB Discount_360D_CS 589 85% 85% 100% 19% 15% 0% 82%

LOGIT Discount_GARCH_BB Discount_GARCH_CS 566 84% 85% 98% 12% 15% 1% 83%

LOGIT Discount_360D_BB Discount_GARCH_CS 566 83% 83% 100% 0% 17% 0% 83%

LOGIT Discount_GARCH_CS 566 83% 83% 100% 0% 17% 0% 83%

LOGIT ROE_LTVol_BB 582 83% 83% 100% 0% 17% 0% 83%

LOGIT Discount_LTVol_CS 583 83% 83% 100% 0% 18% 0% 83%

KNN 3 ROE_LTVol_BB Discount_LTVol_CS 582 82% 83% 99% 0% 17% 1% 83%

LOGIT CAPM_6MER 594 81% 81% 100% 0% 19% 0% 81%

IND ROE_360D_CS 594 81% 81% 100% 0% 19% 0% 81%

IND ROE_LTVol_CS 594 81% 81% 100% 0% 19% 0% 81%

KNN 3 Discount_LTVol_CS 583 79% 83% 95% 7% 16% 4% 83%

KNN 3 Discount_360D_BB ROE_LTVol_BB 582 79% 85% 92% 20% 14% 7% 83%

KNN 3 ROE_360D_BB 594 72% 82% 85% 18% 16% 12% 81%

KNN 3 Discount_GARCH_CS 566 71% 85% 79% 30% 12% 17% 83%

Predictor Variables
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4.6 REVIEW OF FINDINGS AND OBSERVATIONS 

The journey through the detailed analysis for each of the five firms was laborious and arduous. The 

analysis provided much food for thought for the arguments and sentiments being aired throughout 

the research. In this section the take-aways from the food for thought is served up.  

Lessons from BVC and Capitec: 

The imbalance in the test and training data sets for Capitec and BVC emphasised that statistical 

learning methods require sufficient training data in order to estimate the functional form of the 

relationship between the dependent variable and predictors. The class split should be adjusted where 

classes around zero do not provide for sufficient discrimination in predictive performance as well as 

proper model training.  

The structural model predictors of return created from Bloomberg default probabilities for BVC 

displayed startling good forecasts of the future excess return on the stock. The BVC 6-month negative 

returns are materially large to warrant concern in lack of predictive accuracy. Although the co-

integration of predicted and realized returns time series suggests that the structural approach may 

produce good predictors of future return, estimating the form of the relationship remains a challenge.  

The varying of test and training data sets revealed that the optimal set of feature variables to be used 

for stock return prediction is not constant. 

Findings from INL:  

The univariate predictor performance for INL produced very disparaging results. The move to pairs of 

predictors in the statistical learning methods yielded much improved results. Influence of debt on 

stock returns can be used to produce reasonable predictions, 70% prediction accuracy for 1248 out 

of sample test predictions. However, the model performance varied significantly with different test 

prediction and training sets, sending the reminder that there is no free lunch in statistics and no one 

method or set of predictors will dominate all data sets. 

The INL share price changes over quite a large range yet the debt per share remains relatively 

consistent. The changing nature of the firm’s capital structure is connected to the dis-connectivity in 

predictor performance. In other words, changes in debt to equity structure are linked to when market 

or debt variables will be optimal predictors of expected return on the firm.  

Insights from Absa: 

Over the 1-year return horizon the CAPM predictor variable aided by the use of logistic regression 

provides the most accurate predictions of the future 1-year return class. The CAPM predictor variable 
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performance is noticeably less dazzling over the 6-month returns horizon. At the 6-month level the 

debt predictor variables show very good capability for forecasting direction of excess returns.  

The ROE_360D_BB variable is very interesting since it performs well with constant boundary around 

zero. This indicates the predictor is a good discriminator of future performance but specifying the link 

function remains a challenge. Further insights into predictive capabilities should be garnered from 

extending the analysis to the regression setting from the classification setting in lieu of such 

challenges.  

Observations from GRF: 

Predictors created from default probabilities produced reasonable forecasts of expected return over 

some time periods. The surprisingly good correlation between the forecasts and the actual return 

suggests that specifying the proper link function might yield improved accuracy in out-of-sample 

predictions. The performance over time for the GRF stock return predictions illustrates the nature of 

‘learning’ in the statistical methods. 

The use of CAPM predictor variable in conjunction with structural model variables showed 

resoundingly positive signs for the use of these predictors in stock prediction algorithms. Both the 1-

year and 6-month returns showed highly accurate predictions over a decently length test sample set. 

Given sufficient training data the models were able to correctly predict both return classes with 

admirable accuracy.  

Common themes: 

Variable selection techniques once again emphasize the difference between in- and out-of-sample 

model diagnostics. In all cases the subset selection techniques yielded over-fit models and an un-

parsimonious number of predictor variables in the optimal set of explanatory variables. Out of sample 

model diagnostics are key when evaluating predictive performance as all selected subsets produced 

very poor test prediction accuracy. The move to pairs of predictor variables was examined by 

performing test sample predictions for all possible pairs of predictors. This was extremely 

computationally expensive although worthwhile in terms of predictive accuracy that was shown to be 

possible. 

The creation of the CAPM and structural model predictor variables were shown to be productive, as 

predictions using the raw market variable data and financial statement data yielded much poorer 

prediction accuracy. The CAPM estimates of expected return were shown to be very poor indicators 

of future return earned on the stock of the firm as stand-alone predictors. The CAPM estimate of 
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expected return produced much improved prediction accuracy with the aid of statistical learning 

methods.  

The deliberation and conclusions regarding the performance of the structural model predictors and 

the CAPM predictors in the greater scheme of things is postponed to the grand-finale in the final 

chapter. In the final chapter the research is reviewed as whole; the ability of the research to answer 

the posed research question and objectives is evaluated. The scope and limitations of the research is 

also presented along with recommendations for potential further research.  
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5 SUMMARY, CONCLUSIONS & RECOMMENDATIONS 

5.1 SUMMARY 

Economic models of equilibrium and asset pricing were shown to be more appropriately applied in 

the evaluation of past performance. The economic models of pricing in perfect competition offers 

little insight into forecasting future stock returns since in efficient markets the distinction between 

estimates of past performance and forecasts of future return are not meaningful.  

In the literature review it was critically shown that estimates of future asset returns are essential to 

correctly solving the portfolio selection problem when operating under uncertainty. Portfolio 

optimization should be performed under future risk and return parameters not historical estimates. 

This implies that historical mean-covariance construction for portfolio selection problems are useful 

for evaluating past performance not selecting portfolio that will be efficient.  

Estimating future asset returns for individual firms is no small feat. The discounted cash flow approach 

to value is one way of estimating future performance of the company’s stock although the approach 

is hindered by the number of subjective estimates required as well as lack of market observable 

information from which to imply value and expected return. The CAPM can be used to predict stock 

price returns although requires prediction or forecasts of beta and the market, alternatively an 

employment of statistical learning methods.  

Vast amount of credible economic theory and sound logic provided that capital structure plays an 

important role in future earnings of a company at the firm level. Reflexivity in stock prices suggests 

that both debt and equity measures of performance are useful in predicting stock price returns. The 

contingent claims framework of Merton (1974) or structural models was appropriated to provide an 

alternate framework for value of the firm. Making use of market observable information for the traded 

debt of the firm it was suggested that the structural model framework could provide a unique 

framework for firm valuation and estimating the expected return of the share.  

The methodology then outlined the procedure for evaluating estimates of expected return under the 

proposed structural model approach and the CAPM framework. From the exploration of the basic 

structural models it is evident that the greatest challenge to these models lies within estimating the 

unobservable parameters in the firm’s asset value process. The current methodology of solving from 

sets of simultaneous equations are shown to negatively prejudice the estimation procedure. The 

estimates of return obtained from credit spreads on bonds are constrained by the preservation of 

value in the estimation procedure.  
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The difference between the brilliance of theories describing an ideal world and the implementation in 

a vastly more complex reality was emphasised throughout the research. Statistical learning methods 

were proposed to adjust the models to be applied in a more complex reality. Statistical learning 

methods were employed to assess how well the created return estimates can be used to predict the 

class (positive or negative) of future excess returns. The framing of the problem as one of classification 

extends a further analogy between credit risk and market risk models.  

5.2 CONCLUSIONS & RECOMMENDATIONS FOR FURTHER RESEARCH 

The CAPM estimates of expected return were irrefutably shown to provide poor predictions of future 

firm returns for the sample evaluated in the research. The fact that average past returns did not 

provide decent predictions of future returns would suggest non stationarity in prices. The results of 

the CAPM estimates as stand-alone predictors of future returns validated the second proposition 

within this research – historic mean-variance constructions are not good forecasts of future return. 

The implication is clear that distinctions are required between historic estimates and future forecasts 

of stock returns, especially since markets can never be perfectly efficient.  

This should send out a warning to anyone who believes in a free lunch. The law of one price and no-

arbitrage provides there can be no free lunch. The laws of statistics also state there are no free 

lunches. Defiantly modern portfolio theory claims that diversification is the only free lunch in finance. 

The warning here is that diversification becomes the sole criterion to solving portfolio selection 

problems only when future asset returns are not predictable or price series are assumed to be 

stationary. Even Keynes (1939) said, "to suppose that safety-first consists in having a small gamble in 

a large number of different companies where I have no information to reach a good judgement, as 

compared with a substantial stake in a company where one’s information is adequate, strikes me as a 

travesty of investment policy”. 

The structural models of debt predictor variables yielded useful predictions for firm returns over the 

longer time horizon in this research. Within the small firm sample size it was irrefutably shown that 

the structural model predictors of firm return provide unique explanatory variables to be used in the 

prediction of equity returns. The lack of easily accessible historic data for corporate debt in South 

Africa limits the investigation to an analysis of five firms. Albeit a small sample size, the impressive 

predictions of class of stock returns suggests that structural models of default can be used to capture 

forward looking expectations of return for individual firms and the approach warrants further 

investigation.  
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The return estimates obtained from structural models using Bloomberg default probabilities provided 

surprisingly accurate forecasts of firm returns in some instances. It suggests then, that exploring 

default probabilities obtained from reduced form models on observed credit spreads may provide 

further useful estimates of return under the structural model approach. There is also a nice further 

interplay then between the use of credit risk models in applications to market risk and equity 

valuation.  

Only the most basic of the contingent claims framework was considered in this research and suggests 

that extensions of the structural model framework such as the compound option model of Delianedis 

and Geske (1998) can also be used to capture more complex debt structures. The DG model as well as 

other structural models are able to make use of more market information from multiple issues of 

traded corporate debt. The greatest challenge to the implementation of the structural models is the 

estimation of the hidden asset value process. The re-iterative approaches of the KMV model and more 

complex estimation procedures outlined in Vassalou and Xing (2004) are worthwhile visiting in this 

regard.  

The use of statistical learning methods in this research was shown to add great value in the quest to 

predict equity price movements. The structural model estimates of return displayed startling co-

integrations with future equity returns in numerous instances although specifying the link function in 

the statistical learning methodology remained a challenge. Combining more flexible statistical learning 

methods with more complex structural model approaches in a simulated investment strategy forms 

the basis for proposed PhD research. 

The investigation surrounding the use of structural models to forecast equity prices movements 

yielded more questions than answers. The question of predictability in equity prices is indubitably 

better established by the construction of a portfolio strategy based on equity return predictions. 

Extended class partitions of firm returns corresponding to investment decisions are required in order 

to garner further insight into the predictability of equity prices.  

The question of the exact nature of the reflexive relationship between price and value and how much 

of this can be captured through the firm’s capital structure remains elusive. The study of Elton et al. 

(2001) show, much of the information in the default spread is unrelated to default risk. Vassalou and 

Xing (2004) conclude that independent of whether the default spread can explain, predict, or 

otherwise relate to equity returns, such a relation cannot be attributed to the effects that default risk 

may have on equities. 
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In conclusion: whether value is regarded as equal to price, the present value of discounted future cash 

flows or defined by the debt holder’s claim on the assets, the relationship between equity returns and 

value is still uncertain. As Yogi Berra is famously quoted as saying “It’s tough to make predictions, 

especially about the future”.  
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7 ADDENDA 

A. ABSA RESULTS 

i. Estimates of Alpha, Beta and equity volatility 

 

Figure A.1 Absa estimates of alpha and beta 

 

 

Figure A.2 Absa estimates of equity volatility 

 

ii. Indicator results 
Table A.1 Absa 1-year stand-alone prediction performance 

 

 

K Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

ROE_360D_BB 1500 0.669 845 234 280 0 331 0.542 1.000 0.455 0.331 0.000 0.392

Discount_GARCH_CS 1500 0.647 814 514 0 287 13 1.000 0.043 1.000 0.000 0.353 0.369

Discount_LTVol_CS 1500 0.628 819 514 0 305 0 NaN 0.000 1.000 0.000 0.372 0.372

Discount_360D_BB 1500 0.624 745 234 280 0 231 0.452 1.000 0.455 0.376 0.000 0.310

Discount_360D_CS 1500 0.624 824 514 0 310 0 NaN 0.000 1.000 0.000 0.376 0.376

CAPM_1YER 1500 0.485 845 391 123 312 19 0.134 0.057 0.761 0.146 0.369 0.392

ROE_LTVol_BB 1500 0.392 845 0 514 0 331 0.392 1.000 0.000 0.608 0.000 0.392

ROE_360D_CS 1500 0.392 845 0 514 0 331 0.392 1.000 0.000 0.608 0.000 0.392

ROE_LTVol_CS 1500 0.392 845 0 514 0 331 0.392 1.000 0.000 0.608 0.000 0.392

ROE_GARCH_CS 1500 0.378 845 0 514 12 319 0.383 0.964 0.000 0.608 0.014 0.392

Discount_LTVol_BB 1500 0.324 760 0 514 0 246 0.324 1.000 0.000 0.676 0.000 0.324

ROE_GARCH_BB 1500 0.290 769 88 425 121 135 0.241 0.527 0.172 0.553 0.157 0.333

Discount_GARCH_BB 1500 0.280 774 89 425 132 128 0.231 0.492 0.173 0.549 0.171 0.336

ABSA 1 Year Indicator Results
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Table A.2 Absa 6-months stand-alone prediction performance 

 

Table A.3 Absa 3-months stand-alone prediction performance 

 

iii. KNN prediction Results 

 

Table A.4 Absa 1-year return predictions KNN (K=99) 

 

K Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

ROE_360D_BB 1500 0.702 845 225 243 9 368 0.602 0.976 0.481 0.288 0.011 0.446

Discount_360D_BB 1500 0.672 745 225 235 9 276 0.540 0.968 0.489 0.315 0.012 0.383

Discount_LTVol_CS 1500 0.571 819 468 0 351 0 NaN 0.000 1.000 0.000 0.429 0.429

Discount_GARCH_CS 1500 0.571 814 460 8 341 5 0.385 0.014 0.983 0.010 0.419 0.425

Discount_360D_CS 1500 0.568 824 468 0 356 0 NaN 0.000 1.000 0.000 0.432 0.432

ROE_GARCH_CS 1500 0.449 845 7 461 5 372 0.447 0.987 0.015 0.546 0.006 0.446

ROE_LTVol_BB 1500 0.446 845 0 468 0 377 0.446 1.000 0.000 0.554 0.000 0.446

ROE_360D_CS 1500 0.446 845 0 468 0 377 0.446 1.000 0.000 0.554 0.000 0.446

ROE_LTVol_CS 1500 0.446 845 0 468 0 377 0.446 1.000 0.000 0.554 0.000 0.446

CAPM_6MER 1500 0.439 845 351 117 357 20 0.146 0.053 0.750 0.138 0.422 0.446

Discount_LTVol_BB 1500 0.387 760 0 466 0 294 0.387 1.000 0.000 0.613 0.000 0.387

ROE_GARCH_BB 1500 0.362 769 93 375 116 185 0.330 0.615 0.199 0.488 0.151 0.391

Discount_GARCH_BB 1500 0.350 774 93 375 128 178 0.322 0.582 0.199 0.484 0.165 0.395

ABSA 6 Months Indicator Results

K Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

ROE_360D_BB 1500 0.669 845 201 247 33 364 0.596 0.917 0.449 0.292 0.039 0.470

Discount_360D_BB 1500 0.626 745 201 246 33 265 0.519 0.889 0.450 0.330 0.044 0.400

Discount_GARCH_CS 1500 0.548 814 440 7 361 6 0.462 0.016 0.984 0.009 0.443 0.451

Discount_LTVol_CS 1500 0.546 819 447 0 372 0 NaN 0.000 1.000 0.000 0.454 0.454

Discount_360D_CS 1500 0.542 824 447 0 377 0 NaN 0.000 1.000 0.000 0.458 0.458

ROE_GARCH_CS 1500 0.472 845 7 441 5 392 0.471 0.987 0.016 0.522 0.006 0.470

ROE_LTVol_BB 1500 0.470 845 0 448 0 397 0.470 1.000 0.000 0.530 0.000 0.470

ROE_360D_CS 1500 0.470 845 0 448 0 397 0.470 1.000 0.000 0.530 0.000 0.470

ROE_LTVol_CS 1500 0.470 845 0 448 0 397 0.470 1.000 0.000 0.530 0.000 0.470

ROE_GARCH_BB 1500 0.438 769 111 334 98 226 0.404 0.698 0.249 0.434 0.127 0.421

Discount_GARCH_BB 1500 0.429 774 113 334 108 219 0.396 0.670 0.253 0.432 0.140 0.422

Discount_LTVol_BB 1500 0.412 760 0 447 0 313 0.412 1.000 0.000 0.588 0.000 0.412

CAPM_3MER 1500 0.395 845 326 122 389 8 0.062 0.020 0.728 0.144 0.460 0.470

ABSA 3 Months Indicator Results

K K1 ITD ITU Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

CAPM_1YER 1500 1249 619 630 0.678 845 512 2 270 61 0.968 0.184 0.996 0.002 0.320 0.392

ROE_360D_BB 1500 1249 619 630 0.670 845 464 50 229 102 0.671 0.308 0.903 0.059 0.271 0.392

Discount_LTVol_CS 1500 1249 645 604 0.634 819 456 58 242 63 0.521 0.207 0.887 0.071 0.295 0.372

Discount_360D_CS 1500 1249 640 609 0.600 824 407 107 223 87 0.448 0.281 0.792 0.130 0.271 0.376

ROE_GARCH_BB 1500 1249 648 601 0.586 769 383 130 188 68 0.343 0.266 0.747 0.169 0.244 0.333

Discount_GARCH_BB 1500 1249 664 585 0.557 774 372 142 201 59 0.294 0.227 0.724 0.183 0.260 0.336

Discount_360D_BB 1500 1249 667 582 0.537 745 298 216 129 102 0.321 0.442 0.580 0.290 0.173 0.310

ROE_LTVol_CS 1500 1249 619 630 0.458 845 274 240 218 113 0.320 0.341 0.533 0.284 0.258 0.392

ROE_360D_CS 1500 1249 619 630 0.434 845 274 240 238 93 0.279 0.281 0.533 0.284 0.282 0.392

Discount_GARCH_CS 1500 1249 637 612 0.434 814 281 233 228 72 0.236 0.240 0.547 0.286 0.280 0.369

Discount_LTVol_BB 1500 1249 679 570 0.386 760 243 271 196 50 0.156 0.203 0.473 0.357 0.258 0.324

ROE_LTVol_BB 1500 1249 619 630 0.382 845 275 239 283 48 0.167 0.145 0.535 0.283 0.335 0.392

ROE_GARCH_CS 1500 1249 619 630 0.368 845 221 293 241 90 0.235 0.272 0.430 0.347 0.285 0.392

ABSA 1 Year KNN Prediction Results
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Table A.5 Absa 6-month return predictions with KNN (k=99) 

 

Table A.6 Absa 3-month return predictions with KNN (k=99) 

 

iv. Logistic Regression Results 

 

Table A.7 Absa 1-year logistic regression prediction results 

 

 

K K1 ITD ITU Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

Discount_360D_BB 1500 1375 743 632 0.674 745 439 21 222 63 0.750 0.221 0.954 0.028 0.298 0.383

CAPM_6MER 1500 1375 697 678 0.530 845 343 125 272 105 0.457 0.279 0.733 0.148 0.322 0.446

ROE_GARCH_BB 1500 1375 709 666 0.515 769 268 200 173 128 0.390 0.425 0.573 0.260 0.225 0.391

Discount_360D_CS 1500 1375 718 657 0.513 824 285 183 218 138 0.430 0.388 0.609 0.222 0.265 0.432

ROE_360D_BB 1500 1375 697 678 0.509 845 359 109 306 71 0.394 0.188 0.767 0.129 0.362 0.446

Discount_LTVol_CS 1500 1375 723 652 0.436 819 204 264 198 153 0.367 0.436 0.436 0.322 0.242 0.429

Discount_GARCH_BB 1500 1375 735 640 0.408 774 237 231 227 79 0.255 0.258 0.506 0.298 0.293 0.395

ROE_LTVol_BB 1500 1375 697 678 0.399 845 224 244 264 113 0.317 0.300 0.479 0.289 0.312 0.446

ROE_360D_CS 1500 1375 697 678 0.388 845 239 229 288 89 0.280 0.236 0.511 0.271 0.341 0.446

ROE_GARCH_CS 1500 1375 697 678 0.385 845 251 217 303 74 0.254 0.196 0.536 0.257 0.359 0.446

Discount_GARCH_CS 1500 1375 712 663 0.376 814 187 281 227 119 0.298 0.344 0.400 0.345 0.279 0.425

ROE_LTVol_CS 1500 1375 697 678 0.354 845 199 269 277 100 0.271 0.265 0.425 0.318 0.328 0.446

Discount_LTVol_BB 1500 1375 743 632 0.267 760 152 314 243 51 0.140 0.173 0.326 0.413 0.320 0.387

ABSA 6 Months KNN Prediction Results

K K1 ITD ITU Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

ROE_360D_BB 1500 1438 716 722 0.631 845 394 54 258 139 0.720 0.350 0.879 0.064 0.305 0.470

CAPM_3MER 1500 1438 716 722 0.553 845 392 56 322 75 0.573 0.189 0.875 0.066 0.381 0.470

ROE_GARCH_BB 1500 1438 737 701 0.532 769 309 136 224 100 0.424 0.309 0.694 0.177 0.291 0.421

Discount_360D_BB 1500 1438 737 701 0.530 745 367 80 270 28 0.259 0.094 0.821 0.107 0.362 0.400

ROE_LTVol_BB 1500 1438 716 722 0.507 845 266 182 235 162 0.471 0.408 0.594 0.215 0.278 0.470

Discount_LTVol_BB 1500 1438 751 687 0.484 760 209 238 154 159 0.401 0.508 0.468 0.313 0.203 0.412

ROE_360D_CS 1500 1438 716 722 0.465 845 290 158 294 103 0.395 0.259 0.647 0.187 0.348 0.470

Discount_GARCH_BB 1500 1438 761 677 0.464 774 247 200 215 112 0.359 0.343 0.553 0.258 0.278 0.422

Discount_360D_CS 1500 1438 737 701 0.461 824 293 154 290 87 0.361 0.231 0.655 0.187 0.352 0.458

Discount_GARCH_CS 1500 1438 743 695 0.441 814 226 221 234 133 0.376 0.362 0.506 0.271 0.287 0.451

ROE_GARCH_CS 1500 1438 716 722 0.440 845 218 230 243 154 0.401 0.388 0.487 0.272 0.288 0.470

ROE_LTVol_CS 1500 1438 716 722 0.436 845 244 204 273 124 0.378 0.312 0.545 0.241 0.323 0.470

Discount_LTVol_CS 1500 1438 742 696 0.424 819 189 258 214 158 0.380 0.425 0.423 0.315 0.261 0.454

ABSA 3 Months KNN Prediction Results

K K1 ITD ITU IT Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

CAPM_1YER 1500 1249 619 630 -0.088 0.795 845 513 1 172 159 0.994 0.480 0.998 0.001 0.204 0.392

Discount_LTVol_BB 1500 1249 679 570 0.428 0.693 760 512 2 231 15 0.882 0.061 0.996 0.003 0.304 0.324

ROE_LTVol_BB 1500 1249 619 630 0.565 0.640 845 502 12 292 39 0.765 0.118 0.977 0.014 0.346 0.392

Discount_LTVol_CS 1500 1249 645 604 -0.328 0.640 819 508 6 289 16 0.727 0.052 0.988 0.007 0.353 0.372

Discount_360D_BB 1500 1249 667 582 0.416 0.573 745 298 216 102 129 0.374 0.558 0.580 0.290 0.137 0.310

Discount_GARCH_BB 1500 1249 664 585 0.327 0.556 774 356 158 186 74 0.319 0.285 0.693 0.204 0.240 0.336

Discount_360D_CS 1500 1249 640 609 -0.339 0.524 824 303 211 181 129 0.379 0.416 0.589 0.256 0.220 0.376

ROE_360D_BB 1500 1249 619 630 0.472 0.511 845 303 211 202 129 0.379 0.390 0.589 0.250 0.239 0.392

Discount_GARCH_CS 1500 1249 637 612 -0.384 0.462 814 292 222 216 84 0.275 0.280 0.568 0.273 0.265 0.369

ROE_GARCH_CS 1500 1249 619 630 0.041 0.367 845 178 336 199 132 0.282 0.399 0.346 0.398 0.236 0.392

ROE_360D_CS 1500 1249 619 630 0.041 0.354 845 205 309 237 94 0.233 0.284 0.399 0.366 0.280 0.392

ROE_GARCH_BB 1500 1249 648 601 1.314 0.315 769 180 333 194 62 0.157 0.242 0.351 0.433 0.252 0.333

ROE_LTVol_CS 1500 1249 619 630 0.044 0.310 845 196 318 265 66 0.172 0.199 0.381 0.376 0.314 0.392

ABSA 1 Year Logistic Regression Prediction Results
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Table A.8 Absa 6-month logistic regression prediction results 

 

 

v. Variable Selection 

 

Figure A.3 Absa variable subset selection results 

 

Run step Wise AIC variable Selection 

============================================= 

                      Dependent variable:     

                  --------------------------- 

                             ER 1Y            

--------------------------------------------- 

Discount_GARCH_BB          96.773***          

CAPM                      -17.458***          

Discount_360D_BB          -88.638***          

Discount_LTVol_CS         -37.194***          

ROE_GARCH_CS              -216.649***         

Discount_GARCH_CS         -177.197***         

K K1 ITD ITU IT Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

Discount_LTVol_BB 1500 1375 743 632 0.418 0.617 760 464 2 289 5 0.714 0.017 0.996 0.003 0.380 0.387

Discount_LTVol_CS 1500 1375 723 652 -0.326 0.571 819 463 5 346 5 0.500 0.014 0.989 0.006 0.422 0.429

ROE_LTVol_BB 1500 1375 697 678 0.558 0.567 845 464 4 362 15 0.789 0.040 0.991 0.005 0.428 0.446

CAPM_6MER 1500 1375 697 678 -0.094 0.528 845 437 31 368 9 0.225 0.024 0.934 0.037 0.436 0.446

ROE_LTVol_CS 1500 1375 697 678 0.044 0.528 845 315 153 246 131 0.461 0.347 0.673 0.181 0.291 0.446

Discount_360D_BB 1500 1375 743 632 0.411 0.526 745 271 189 164 121 0.390 0.425 0.589 0.254 0.220 0.383

ROE_360D_BB 1500 1375 697 678 0.441 0.480 845 267 201 238 139 0.409 0.369 0.571 0.238 0.282 0.446

Discount_GARCH_BB 1500 1375 735 640 0.403 0.478 774 270 198 206 100 0.336 0.327 0.577 0.256 0.266 0.395

Discount_360D_CS 1500 1375 718 657 -0.337 0.468 824 279 189 249 107 0.361 0.301 0.596 0.229 0.302 0.432

Discount_GARCH_CS 1500 1375 712 663 -0.351 0.403 814 231 237 249 97 0.290 0.280 0.494 0.291 0.306 0.425

ROE_360D_CS 1500 1375 697 678 0.039 0.389 845 205 263 253 124 0.320 0.329 0.438 0.311 0.299 0.446

ROE_GARCH_BB 1500 1375 709 666 0.496 0.326 769 195 273 245 56 0.170 0.186 0.417 0.355 0.319 0.391

ROE_GARCH_CS 1500 1375 697 678 0.028 0.289 845 204 264 337 40 0.132 0.106 0.436 0.312 0.399 0.446

ABSA 6 Month Logistic Regression Prediction Results
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Discount_360D_CS          178.056***          

ROE_LTVol_CS              229.608***                                       

ROE_360D_CS                65.315***          

Constant                  -19.519***          

--------------------------------------------- 

Observations                 1,500            

Log Likelihood             -764.913           

Akaike Inf. Crit.          1,549.826          

============================================= 

Note:             *p<0.1; **p<0.05; ***p<0.01 
 

============================================= 

                      Dependent variable:     

                  --------------------------- 

                             ER 6M            

--------------------------------------------- 

ROE_360D_BB                4.780***           

ROE_360D_CS                -63.210**          

Discount_360D_CS          173.011***          

ROE_LTVol_CS              329.090***          

Discount_GARCH_BB          94.514***          

Discount_GARCH_CS         -168.429***         

ROE_GARCH_CS              -58.902***          

Discount_360D_BB          -98.231***          

ROE_LTVol_BB              -35.382***          

CAPM                      -17.324***          

Discount_LTVol_BB          12.951***              

Constant                     5.227                  

--------------------------------------------- 

Observations                 1,500            

Log Likelihood             -815.969           

Akaike Inf. Crit.          1,655.937          

============================================= 

Note:             *p<0.1; **p<0.05; ***p<0.01 

============================================= 

                      Dependent variable:     

                  --------------------------- 

                             ER 1D            

--------------------------------------------- 

ROE_LTVol_CS               18.205**           

Constant                   -0.828**           

--------------------------------------------- 

Observations                 1,500            

Log Likelihood            -1,036.788          

Akaike Inf. Crit.          2,077.576          

============================================= 

Note:             *p<0.1; **p<0.05; ***p<0.01 
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B. INL RESULTS 

i. Estimates of alpha and Beta and equity volatility 

 

Figure B.1 INL equity return volatility estimates 

 

 

Figure B.2 INL estimates of alpha and beta 

 

ii. Indicator Results 

 

Table B.1INL stand-alone predictor performance for 1-year returns 

 

K Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

ROE_GARCH_CS 1500 0.544 1248 1 569 0 678 0.544 1.000 0.002 0.456 0.000 0.543

ROE_360D_CS 1500 0.543 1248 0 570 0 678 0.543 1.000 0.000 0.457 0.000 0.543

ROE_LTVol_CS 1500 0.543 1248 0 570 0 678 0.543 1.000 0.000 0.457 0.000 0.543

ROE_GARCH_BB 1500 0.477 1019 476 23 510 10 0.303 0.019 0.954 0.023 0.500 0.510

Discount_360D_BB 1500 0.457 1248 570 0 678 0 NaN 0.000 1.000 0.000 0.543 0.543

ROE_360D_BB 1500 0.457 1248 570 0 678 0 NaN 0.000 1.000 0.000 0.543 0.543

Discount_LTVol_CS 1500 0.457 1248 570 0 678 0 NaN 0.000 1.000 0.000 0.543 0.543

Discount_LTVol_BB 1500 0.456 1248 569 1 678 0 0.000 0.000 0.998 0.001 0.543 0.543

ROE_LTVol_BB 1500 0.456 1248 569 1 678 0 0.000 0.000 0.998 0.001 0.543 0.543

Discount_GARCH_BB 1500 0.442 1238 537 23 668 10 0.303 0.015 0.959 0.019 0.540 0.548

CAPM_1YER 1500 0.431 1248 157 413 297 381 0.480 0.562 0.275 0.331 0.238 0.543

Discount_360D_CS 1500 0.390 1104 431 0 673 0 NaN 0.000 1.000 0.000 0.610 0.610

Discount_GARCH_CS 1500 0.338 786 266 0 520 0 NaN 0.000 1.000 0.000 0.662 0.662

INL 1 Year Indicator Results
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Table B.2 INL 6-month return stand-alone prediction 

 
 

Table B.3 INL 3-months stand-alone prediction performance 

 
 

iii. KNN Prediction Results 
Table B.4 INL 1-year return predictions with KNN 

 

K Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

ROE_GARCH_CS 1500 0.575 1248 1 531 0 716 0.574 1.000 0.002 0.425 0.000 0.574

ROE_360D_CS 1500 0.574 1248 0 532 0 716 0.574 1.000 0.000 0.426 0.000 0.574

ROE_LTVol_CS 1500 0.574 1248 0 532 0 716 0.574 1.000 0.000 0.426 0.000 0.574

CAPM_6MER 1500 0.442 1248 169 363 334 382 0.513 0.534 0.318 0.291 0.268 0.574

Discount_360D_BB 1500 0.426 1248 532 0 716 0 NaN 0.000 1.000 0.000 0.574 0.574

ROE_360D_BB 1500 0.426 1248 532 0 716 0 NaN 0.000 1.000 0.000 0.574 0.574

Discount_LTVol_CS 1500 0.426 1248 532 0 716 0 NaN 0.000 1.000 0.000 0.574 0.574

Discount_LTVol_BB 1500 0.425 1248 531 1 716 0 0.000 0.000 0.998 0.001 0.574 0.574

ROE_LTVol_BB 1500 0.425 1248 531 1 716 0 0.000 0.000 0.998 0.001 0.574 0.574

ROE_GARCH_BB 1500 0.421 1019 421 25 565 8 0.242 0.014 0.944 0.025 0.554 0.562

Discount_GARCH_BB 1500 0.410 1238 499 25 706 8 0.242 0.011 0.952 0.020 0.570 0.577

Discount_360D_CS 1500 0.384 1104 424 0 680 0 NaN 0.000 1.000 0.000 0.616 0.616

Discount_GARCH_CS 1500 0.377 786 296 0 490 0 NaN 0.000 1.000 0.000 0.623 0.623

INL 6 Months Indicator Results

K Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

ROE_GARCH_CS 1500 0.567 1248 1 541 0 706 0.566 1.000 0.002 0.433 0.000 0.566

ROE_360D_CS 1500 0.566 1248 0 542 0 706 0.566 1.000 0.000 0.434 0.000 0.566

ROE_LTVol_CS 1500 0.566 1248 0 542 0 706 0.566 1.000 0.000 0.434 0.000 0.566

CAPM_3MER 1500 0.498 1248 216 326 300 406 0.555 0.575 0.399 0.261 0.240 0.566

Discount_360D_BB 1500 0.434 1248 542 0 706 0 NaN 0.000 1.000 0.000 0.566 0.566

ROE_360D_BB 1500 0.434 1248 542 0 706 0 NaN 0.000 1.000 0.000 0.566 0.566

Discount_LTVol_CS 1500 0.434 1248 542 0 706 0 NaN 0.000 1.000 0.000 0.566 0.566

Discount_LTVol_BB 1500 0.433 1248 541 1 706 0 0.000 0.000 0.998 0.001 0.566 0.566

ROE_LTVol_BB 1500 0.433 1248 541 1 706 0 0.000 0.000 0.998 0.001 0.566 0.566

ROE_GARCH_BB 1500 0.425 1019 422 22 564 11 0.333 0.019 0.950 0.022 0.553 0.564

Discount_GARCH_BB 1500 0.422 1238 511 22 694 11 0.333 0.016 0.959 0.018 0.561 0.569

Discount_GARCH_CS 1500 0.416 786 327 0 459 0 NaN 0.000 1.000 0.000 0.584 0.584

Discount_360D_CS 1500 0.411 1104 454 0 650 0 NaN 0.000 1.000 0.000 0.589 0.589

INL 3 Months Indicator Results

K K1 ITD ITU Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

ROE_360D_BB 1500 1249 952 297 0.648 1248 247 323 116 562 0.635 0.829 0.433 0.259 0.093 0.543

ROE_360D_CS 1500 1249 952 297 0.637 1248 377 193 260 418 0.684 0.617 0.661 0.155 0.208 0.543

ROE_LTVol_CS 1500 1249 952 297 0.542 1248 452 118 453 225 0.656 0.332 0.793 0.095 0.363 0.543

ROE_GARCH_CS 1500 1249 952 297 0.538 1248 452 118 459 219 0.650 0.323 0.793 0.095 0.368 0.543

Discount_360D_BB 1500 1249 952 297 0.533 1248 105 465 118 560 0.546 0.826 0.184 0.373 0.095 0.543

Discount_360D_CS 1500 1249 952 297 0.418 1104 196 235 407 266 0.531 0.395 0.455 0.213 0.369 0.610

ROE_GARCH_BB 1500 1249 936 313 0.397 1019 249 250 364 156 0.384 0.300 0.499 0.245 0.357 0.510

Discount_GARCH_BB 1500 1249 952 297 0.363 1238 166 394 395 283 0.418 0.417 0.296 0.318 0.319 0.548

Discount_GARCH_CS 1500 1249 940 309 0.360 786 150 116 387 133 0.534 0.256 0.564 0.148 0.492 0.662

ROE_LTVol_BB 1500 1249 952 297 0.330 1248 184 386 450 228 0.371 0.336 0.323 0.309 0.361 0.543

CAPM_1YER 1500 1249 952 297 0.290 1248 311 259 627 51 0.165 0.075 0.546 0.208 0.502 0.543

Discount_LTVol_BB 1500 1249 952 297 0.256 1248 136 434 494 184 0.298 0.271 0.239 0.348 0.396 0.543

Discount_LTVol_CS 1500 1249 952 297 0.219 1248 158 412 563 115 0.218 0.170 0.277 0.330 0.451 0.543

INL 1 Year KNN Prediction 5
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Table B.5 INL 6-month return predictions with KNN 

 

iv. Logistic Regression Results 
Table B.6 INL 1-year return predictions with logistic regression 

 

Table B.7 INL 6-month return predictions with logistic regression 

 

v. Variable Selection 

 

K K1 ITD ITU Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

ROE_360D_CS 1500 1375 972 403 0.583 1248 294 238 282 434 0.646 0.606 0.553 0.191 0.226 0.574

ROE_360D_BB 1500 1375 972 403 0.522 1248 268 264 333 383 0.592 0.535 0.504 0.212 0.267 0.574

Discount_360D_BB 1500 1375 972 403 0.514 1248 237 295 311 405 0.579 0.566 0.445 0.236 0.249 0.574

ROE_GARCH_CS 1500 1375 972 403 0.494 1248 381 151 480 236 0.610 0.330 0.716 0.121 0.385 0.574

ROE_LTVol_BB 1500 1375 972 403 0.470 1248 321 211 450 266 0.558 0.372 0.603 0.169 0.361 0.574

Discount_GARCH_CS 1500 1375 960 415 0.468 786 192 104 314 176 0.629 0.359 0.649 0.132 0.399 0.623

ROE_LTVol_CS 1500 1375 972 403 0.463 1248 330 202 468 248 0.551 0.346 0.620 0.162 0.375 0.574

Discount_360D_CS 1500 1375 972 403 0.447 1104 274 150 461 219 0.593 0.322 0.646 0.136 0.418 0.616

Discount_GARCH_BB 1500 1375 972 403 0.436 1238 205 319 379 335 0.512 0.469 0.391 0.258 0.306 0.577

ROE_GARCH_BB 1500 1375 955 420 0.436 1019 254 192 383 190 0.497 0.332 0.570 0.188 0.376 0.562

Discount_LTVol_BB 1500 1375 972 403 0.427 1248 283 249 466 250 0.501 0.349 0.532 0.200 0.373 0.574

Discount_LTVol_CS 1500 1375 972 403 0.422 1248 256 276 445 271 0.495 0.378 0.481 0.221 0.357 0.574

CAPM_6MER 1500 1375 972 403 0.381 1248 308 224 548 168 0.429 0.235 0.579 0.179 0.439 0.574

INL 6 Months KNN Prediction 5

K K1 ITD ITU IT Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

ROE_360D_BB 1500 1249 952 297 0.829 0.506 1248 173 397 220 458 0.536 0.676 0.304 0.318 0.176 0.543

CAPM_1YER 1500 1249 952 297 -0.178 0.478 1248 523 47 605 73 0.608 0.108 0.918 0.038 0.485 0.543

ROE_GARCH_BB 1500 1249 936 313 0.155 0.410 1019 392 107 494 26 0.195 0.050 0.786 0.105 0.485 0.510

Discount_LTVol_CS 1500 1249 952 297 -0.380 0.357 1248 435 135 668 10 0.069 0.015 0.763 0.108 0.535 0.543

Discount_GARCH_BB 1500 1249 952 297 0.189 0.300 1238 355 205 661 17 0.077 0.025 0.634 0.166 0.534 0.548

Discount_360D_BB 1500 1249 952 297 0.340 0.296 1248 147 423 455 223 0.345 0.329 0.258 0.339 0.365 0.543

Discount_GARCH_CS 1500 1249 940 309 -0.279 0.295 786 209 57 497 23 0.288 0.044 0.786 0.073 0.632 0.662

Discount_LTVol_BB 1500 1249 952 297 0.056 0.249 1248 248 322 615 63 0.164 0.093 0.435 0.258 0.493 0.543

ROE_LTVol_BB 1500 1249 952 297 0.066 0.240 1248 232 338 611 67 0.165 0.099 0.407 0.271 0.490 0.543

ROE_360D_CS 1500 1249 952 297 0.005 0.238 1248 6 564 387 291 0.340 0.429 0.011 0.452 0.310 0.543

Discount_360D_CS 1500 1249 952 297 -0.196 0.201 1104 6 425 457 216 0.337 0.321 0.014 0.385 0.414 0.610

ROE_LTVol_CS 1500 1249 952 297 0.035 0.188 1248 48 522 491 187 0.264 0.276 0.084 0.418 0.393 0.543

ROE_GARCH_CS 1500 1249 952 297 -0.009 0.175 1248 23 547 483 195 0.263 0.288 0.040 0.438 0.387 0.543

INL 1 Year Logistic Regression Prediction Results

K K1 ITD ITU IT Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

Discount_LTVol_CS 1500 1375 972 403 -0.383 0.419 1248 522 10 715 1 0.091 0.001 0.981 0.008 0.573 0.574

ROE_GARCH_CS 1500 1375 972 403 -0.083 0.417 1248 519 13 714 2 0.133 0.003 0.976 0.010 0.572 0.574

ROE_GARCH_BB 1500 1375 955 420 -71.358 0.416 1019 398 48 547 26 0.351 0.045 0.892 0.047 0.537 0.562

ROE_360D_BB 1500 1375 972 403 -3.209 0.415 1248 332 200 530 186 0.482 0.260 0.624 0.160 0.425 0.574

CAPM_6MER 1500 1375 972 403 -0.098 0.403 1248 503 29 716 0 0.000 0.000 0.945 0.023 0.574 0.574

ROE_360D_CS 1500 1375 972 403 0.009 0.396 1248 60 472 282 434 0.479 0.606 0.113 0.378 0.226 0.574

Discount_GARCH_CS 1500 1375 960 415 -0.101 0.377 786 296 0 490 0 NaN 0.000 1.000 0.000 0.623 0.623

Discount_GARCH_BB 1500 1375 972 403 0.446 0.362 1238 444 80 710 4 0.048 0.006 0.847 0.065 0.574 0.577

Discount_LTVol_BB 1500 1375 972 403 0.062 0.337 1248 404 128 699 17 0.117 0.024 0.759 0.103 0.560 0.574

Discount_360D_CS 1500 1375 972 403 -0.232 0.331 1104 365 59 680 0 0.000 0.000 0.861 0.053 0.616 0.616

ROE_LTVol_BB 1500 1375 972 403 0.090 0.324 1248 371 161 683 33 0.170 0.046 0.697 0.129 0.547 0.574

Discount_360D_BB 1500 1375 972 403 0.294 0.296 1248 349 183 695 21 0.103 0.029 0.656 0.147 0.557 0.574

ROE_LTVol_CS 1500 1375 972 403 0.033 0.216 1248 249 283 695 21 0.069 0.029 0.468 0.227 0.557 0.574

INL 6 Months Logistic Regression Prediction Results
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Figure B.3 INL variable subset selection results 

 

 

============================================= 

                      Dependent variable:     

                  --------------------------- 

                             ER 1Y            

--------------------------------------------- 

CAPM                      -57.957***          

ROE_360D_CS                -851.616*          

ROE_360D_BB               -12.576***          

Discount_360D_CS         -1,646.121***        

Discount_GARCH_BB         545.248***          

ROE_GARCH_CS                 9.777            

ROE_LTVol_BB               -57.564**          

Discount_GARCH_CS         -827.830***         

Discount_LTVol_CS        2,787.932***         

Discount_LTVol_BB        -1,752.573***        

Discount_360D_BB         1,082.092***         

ROE_LTVol_CS             3,334.110***         

ROE_GARCH_BB               -0.489***          

Constant                    46.460*           

--------------------------------------------- 

Observations                 1,500            

Log Likelihood             -118.372           

Akaike Inf. Crit.           264.745           

============================================= 

Note:             *p<0.1; **p<0.05; ***p<0.01 
 

============================================= 

                      Dependent variable:     

                  --------------------------- 

                             ER 6M            

--------------------------------------------- 

CAPM                      -24.069***          

ROE_360D_CS               -915.462***         

ROE_LTVol_CS              656.446***          

Discount_360D_CS          -455.974***         

Discount_GARCH_BB          91.899***          

ROE_LTVol_BB              -46.884***          

Discount_GARCH_CS         -140.688***         

ROE_360D_BB                0.859***                                        
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Discount_LTVol_CS         451.185***          

Discount_360D_BB          279.066***          

Discount_LTVol_BB         -235.011***         

Constant                  -58.181***          

--------------------------------------------- 

Observations                 1,500            

Log Likelihood             -524.266           

Akaike Inf. Crit.          1,072.532          

============================================= 

Note:             *p<0.1; **p<0.05; ***p<0.01 
 

============================================= 

                      Dependent variable:     

                  --------------------------- 

                             ER 1D            

--------------------------------------------- 

ROE_LTVol_BB                 0.508            

Constant                    -0.049            

--------------------------------------------- 

Observations                 1,500            

Log Likelihood            -1,037.273          

Akaike Inf. Crit.          2,078.545          

============================================= 

Note:             *p<0.1; **p<0.05; ***p<0.01 

 

vi. INL Summary of 6 month return predictions 
Table B.8 INL summary of top 6-month return predictions 

 

vii. INL 6 month debt variable efficiency 
Table B.9 INL variable efficiency for 6-month return prediction 

 

 

  

Link K K1 ITD ITU Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

KNN 99 ROE_360D_BB Discount_GARCH_CS 1500 1375 960 415 0.641 786 135 161 121 369 0.696 0.753 0.456 0.205 0.154 0.623

KNN 99 ROE_360D_BB Discount_360D_CS 1500 1375 972 403 0.627 1104 207 217 195 485 0.691 0.713 0.488 0.197 0.177 0.616

KNN 5 ROE_360D_CS 1500 1375 972 403 0.583 1248 294 238 282 434 0.646 0.606 0.553 0.191 0.226 0.574

IND ROE_GARCH_CS 1500 0.575 1248 1 531 0 716 0.574 1.000 0.002 0.425 0.000 0.574

IND ROE_360D_CS 1500 0.574 1248 0 532 0 716 0.574 1.000 0.000 0.426 0.000 0.574

KNN 5 ROE_360D_BB 1500 1375 972 403 0.522 1248 268 264 333 383 0.592 0.535 0.504 0.212 0.267 0.574

LOGIT ROE_360D_BB ROE_360D_CS 1500 1375 972 403 0.486 1248 63 469 172 544 0.537 0.760 0.118 0.376 0.138 0.574

LOGIT CAPM_6MER Discount_LTVol_CS 1500 1375 972 403 0.438 1248 425 107 594 122 0.533 0.170 0.799 0.086 0.476 0.574

LOGIT Discount_LTVol_CS 1500 1375 972 403 0.419 1248 522 10 715 1 0.091 0.001 0.981 0.008 0.573 0.574

LOGIT ROE_GARCH_CS 1500 1375 972 403 0.417 1248 519 13 714 2 0.133 0.003 0.976 0.010 0.572 0.574

Predictor Variables

INL 6 Months  Prediction Results

K K1 Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

CS 1500 1375 0.426 1248 532 0 716 0 NaN 0.000 1.000 0.000 0.574 0.574

BB 1500 1375 0.256 1248 286 246 682 34 0.121 0.047 0.538 0.197 0.546 0.574

CAPM 1500 1375 0.469 1248 409 123 540 176 0.589 0.246 0.769 0.099 0.433 0.574

ALL 1500 1375 0.299 1248 218 314 561 155 0.330 0.216 0.410 0.252 0.450 0.574

BBCS 1500 1375 0.260 1248 268 264 660 56 0.175 0.078 0.504 0.212 0.529 0.574

CAPMCS 1500 1375 0.464 1248 471 61 608 108 0.639 0.151 0.885 0.049 0.487 0.574

CAPMBB 1500 1375 0.296 1248 214 318 561 155 0.328 0.216 0.402 0.255 0.450 0.574

INL 6 Months Predictor Variable Efficiency
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C. GRF RESULTS 

i. Estimates of alpha, beta and equity volatility 

 

Figure C.1 GRF estimates of equity volatility 

 

 

Figure C.2 GRF estimates of alpha and beta 

 

ii. Indicator Results 
Table C.1GRF 1-year return prediction performance on stand-alone basis 

 

K Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

Discount_LTVol_CS 1500 0.840 892 749 0 143 0 NaN 0.000 1.000 0.000 0.160 0.160

Discount_360D_CS 1500 0.825 795 656 0 139 0 NaN 0.000 1.000 0.000 0.175 0.175

Discount_GARCH_CS 1500 0.815 807 658 10 139 0 0.000 0.000 0.985 0.012 0.172 0.172

Discount_LTVol_BB 1500 0.796 898 623 130 53 92 0.414 0.634 0.827 0.145 0.059 0.161

ROE_LTVol_BB 1500 0.796 898 623 130 53 92 0.414 0.634 0.827 0.145 0.059 0.161

Discount_GARCH_BB 1500 0.726 898 531 222 24 121 0.353 0.834 0.705 0.247 0.027 0.161

ROE_GARCH_BB 1500 0.725 887 522 222 22 121 0.353 0.846 0.702 0.250 0.025 0.161

Discount_360D_BB 1500 0.710 898 507 246 14 131 0.347 0.903 0.673 0.274 0.016 0.161

ROE_360D_BB 1500 0.710 898 507 246 14 131 0.347 0.903 0.673 0.274 0.016 0.161

CAPM_1YER 1500 0.462 898 409 344 139 6 0.017 0.041 0.543 0.383 0.155 0.161

ROE_GARCH_CS 1500 0.173 898 10 743 0 145 0.163 1.000 0.013 0.827 0.000 0.161

ROE_360D_CS 1500 0.161 898 0 753 0 145 0.161 1.000 0.000 0.839 0.000 0.161

ROE_LTVol_CS 1500 0.161 898 0 753 0 145 0.161 1.000 0.000 0.839 0.000 0.161

GRF 1 Year Indicator Performance
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Table C.2 GRF 6-month return prediction performance on stand-alone basis 

 

iii. KNN Prediction Results 
Table C.3 GRF 1-year return predictions with KNN 

 

Table C.4 GRF 6-month return predictions with KNN 

 

Table C.5 GRF 3-month return predictions with KNN 

 

K Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

Discount_LTVol_CS 1500 0.759 892 677 0 215 0 NaN 0.000 1.000 0.000 0.241 0.241

Discount_360D_CS 1500 0.757 795 602 0 193 0 NaN 0.000 1.000 0.000 0.243 0.243

Discount_GARCH_CS 1500 0.748 807 604 10 193 0 0.000 0.000 0.984 0.012 0.239 0.239

Discount_360D_BB 1500 0.707 898 468 210 53 167 0.443 0.759 0.690 0.234 0.059 0.245

ROE_360D_BB 1500 0.707 898 468 210 53 167 0.443 0.759 0.690 0.234 0.059 0.245

ROE_GARCH_BB 1500 0.691 887 471 201 73 142 0.414 0.660 0.701 0.227 0.082 0.242

Discount_GARCH_BB 1500 0.689 898 477 201 78 142 0.414 0.645 0.704 0.224 0.087 0.245

Discount_LTVol_BB 1500 0.639 898 515 163 161 59 0.266 0.268 0.760 0.182 0.179 0.245

ROE_LTVol_BB 1500 0.639 898 515 163 161 59 0.266 0.268 0.760 0.182 0.179 0.245

CAPM_6MER 1500 0.461 898 371 307 177 43 0.123 0.195 0.547 0.342 0.197 0.245

ROE_GARCH_CS 1500 0.256 898 10 668 0 220 0.248 1.000 0.015 0.744 0.000 0.245

ROE_360D_CS 1500 0.245 898 0 678 0 220 0.245 1.000 0.000 0.755 0.000 0.245

ROE_LTVol_CS 1500 0.245 898 0 678 0 220 0.245 1.000 0.000 0.755 0.000 0.245

GRF 6 Months Indicator Performance

K K1 ITD ITU Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

ROE_360D_BB 1500 1249 958 291 0.684 898 611 142 142 3 0.021 0.021 0.811 0.158 0.158 0.161

Discount_360D_CS 1500 1249 957 292 0.682 795 542 114 139 0 0.000 0.000 0.826 0.143 0.175 0.175

ROE_GARCH_BB 1500 1249 958 291 0.678 887 555 189 97 46 0.196 0.322 0.746 0.213 0.109 0.161

Discount_LTVol_CS 1500 1249 957 292 0.649 892 573 176 137 6 0.033 0.042 0.765 0.197 0.154 0.160

Discount_GARCH_CS 1500 1249 957 292 0.638 807 476 192 100 39 0.169 0.281 0.713 0.238 0.124 0.172

Discount_GARCH_BB 1500 1249 958 291 0.635 898 535 218 110 35 0.138 0.241 0.710 0.243 0.122 0.161

CAPM_1YER 1500 1249 958 291 0.620 898 546 207 134 11 0.050 0.076 0.725 0.231 0.149 0.161

Discount_LTVol_BB 1500 1249 958 291 0.598 898 504 249 112 33 0.117 0.228 0.669 0.277 0.125 0.161

Discount_360D_BB 1500 1249 958 291 0.559 898 502 251 145 0 0.000 0.000 0.667 0.280 0.161 0.161

ROE_LTVol_BB 1500 1249 958 291 0.523 898 426 327 101 44 0.119 0.303 0.566 0.364 0.112 0.161

ROE_360D_CS 1500 1249 958 291 0.463 898 395 358 124 21 0.055 0.145 0.525 0.399 0.138 0.161

ROE_LTVol_CS 1500 1249 958 291 0.455 898 383 370 119 26 0.066 0.179 0.509 0.412 0.133 0.161

ROE_GARCH_CS 1500 1249 958 291 0.425 898 356 397 119 26 0.061 0.179 0.473 0.442 0.133 0.161

GRF 1 Year KNN 5 Prediction Performance

K K1 ITD ITU Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

ROE_360D_BB 1500 1375 911 464 0.619 898 500 178 164 56 0.239 0.255 0.737 0.198 0.183 0.245

CAPM_6MER 1500 1375 911 464 0.606 898 512 166 188 32 0.162 0.145 0.755 0.185 0.209 0.245

Discount_LTVol_CS 1500 1375 905 470 0.604 892 489 188 165 50 0.210 0.233 0.722 0.211 0.185 0.241

ROE_GARCH_BB 1500 1375 900 475 0.595 887 450 222 137 78 0.260 0.363 0.670 0.250 0.154 0.242

Discount_360D_CS 1500 1375 828 547 0.580 795 429 173 161 32 0.156 0.166 0.713 0.218 0.203 0.243

Discount_GARCH_BB 1500 1375 911 464 0.533 898 404 274 145 75 0.215 0.341 0.596 0.305 0.161 0.245

Discount_GARCH_CS 1500 1375 827 548 0.513 807 330 284 109 84 0.228 0.435 0.537 0.352 0.135 0.239

Discount_LTVol_BB 1500 1375 911 464 0.488 898 382 296 164 56 0.159 0.255 0.563 0.330 0.183 0.245

ROE_360D_CS 1500 1375 911 464 0.469 898 362 316 161 59 0.157 0.268 0.534 0.352 0.179 0.245

Discount_360D_BB 1500 1375 911 464 0.453 898 367 311 180 40 0.114 0.182 0.541 0.346 0.200 0.245

ROE_LTVol_BB 1500 1375 911 464 0.440 898 323 355 148 72 0.169 0.327 0.476 0.395 0.165 0.245

ROE_GARCH_CS 1500 1375 911 464 0.355 898 245 433 146 74 0.146 0.336 0.361 0.482 0.163 0.245

ROE_LTVol_CS 1500 1375 911 464 0.305 898 235 443 181 39 0.081 0.177 0.347 0.493 0.202 0.245

GRF 6 Months KNN 5 Prediction Performance

K K1 ITD ITU Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

ROE_360D_CS 1500 1438 793 645 0.561 898 327 279 115 177 0.388 0.606 0.540 0.311 0.128 0.325

ROE_GARCH_BB 1500 1438 793 645 0.550 887 368 238 161 120 0.335 0.427 0.607 0.268 0.182 0.317

Discount_GARCH_CS 1500 1438 731 707 0.524 807 313 239 145 110 0.315 0.431 0.567 0.296 0.180 0.316

Discount_LTVol_CS 1500 1438 787 651 0.512 892 345 261 174 112 0.300 0.392 0.569 0.293 0.195 0.321

CAPM_3MER 1500 1438 793 645 0.507 898 364 242 201 91 0.273 0.312 0.601 0.269 0.224 0.325

Discount_360D_BB 1500 1438 793 645 0.491 898 363 243 214 78 0.243 0.267 0.599 0.271 0.238 0.325

ROE_360D_BB 1500 1438 793 645 0.476 898 393 213 258 34 0.138 0.116 0.649 0.237 0.287 0.325

ROE_GARCH_CS 1500 1438 793 645 0.468 898 264 342 136 156 0.313 0.534 0.436 0.381 0.151 0.325

ROE_LTVol_BB 1500 1438 793 645 0.463 898 277 329 153 139 0.297 0.476 0.457 0.366 0.170 0.325

Discount_GARCH_BB 1500 1438 793 645 0.451 898 287 319 174 118 0.270 0.404 0.474 0.355 0.194 0.325

ROE_LTVol_CS 1500 1438 793 645 0.451 898 264 342 151 141 0.292 0.483 0.436 0.381 0.168 0.325

Discount_LTVol_BB 1500 1438 793 645 0.440 898 302 304 199 93 0.234 0.318 0.498 0.339 0.222 0.325

Discount_360D_CS 1500 1438 737 701 0.438 795 241 304 143 107 0.260 0.428 0.442 0.382 0.180 0.314

GRF 3 Months KNN 5 Prediction Performance

Stellenbosch University  https://scholar.sun.ac.za



125 
 

iv. Logistic Regression Results 
Table C.6 GRF 1-year return predictions with logistic regression 

 

Table C.7 GRF 6-month return predictions with logistic regression 

 

Table C.8 GRF 3-month return prediction performance with logistic regression 

 

v. Variable Selection 

 

K K1 ITD ITU IT Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

CAPM_1YER 1500 1249 958 291 -0.363 0.850 898 624 129 6 139 0.519 0.959 0.829 0.144 0.007 0.161

Discount_LTVol_CS 1500 1249 957 292 -0.211 0.840 892 749 0 143 0 NaN 0.000 1.000 0.000 0.160 0.160

Discount_360D_BB 1500 1249 958 291 -0.408 0.839 898 753 0 145 0 NaN 0.000 1.000 0.000 0.161 0.161

Discount_LTVol_BB 1500 1249 958 291 -0.306 0.839 898 753 0 145 0 NaN 0.000 1.000 0.000 0.161 0.161

Discount_GARCH_BB 1500 1249 958 291 -0.827 0.839 898 753 0 145 0 NaN 0.000 1.000 0.000 0.161 0.161

ROE_360D_BB 1500 1249 958 291 -1.634 0.839 898 753 0 145 0 NaN 0.000 1.000 0.000 0.161 0.161

ROE_LTVol_BB 1500 1249 958 291 -0.509 0.839 898 753 0 145 0 NaN 0.000 1.000 0.000 0.161 0.161

ROE_360D_CS 1500 1249 958 291 0.010 0.839 898 753 0 145 0 NaN 0.000 1.000 0.000 0.161 0.161

ROE_LTVol_CS 1500 1249 958 291 0.010 0.839 898 753 0 145 0 NaN 0.000 1.000 0.000 0.161 0.161

Discount_360D_CS 1500 1249 957 292 -1.904 0.825 795 656 0 139 0 NaN 0.000 1.000 0.000 0.175 0.175

ROE_GARCH_CS 1500 1249 958 291 0.008 0.821 898 737 16 145 0 0.000 0.000 0.979 0.018 0.161 0.161

Discount_GARCH_CS 1500 1249 957 292 -0.164 0.797 807 643 25 139 0 0.000 0.000 0.963 0.031 0.172 0.172

ROE_GARCH_BB 1500 1249 958 291 -1.256 0.763 887 677 67 143 0 0.000 0.000 0.910 0.076 0.161 0.161

GRF 1 Year Logit Predictions

K K1 ITD ITU IT Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

CAPM_6MER 1500 1375 911 464 -0.156 0.817 898 580 98 66 154 0.611 0.700 0.855 0.109 0.073 0.245

ROE_GARCH_BB 1500 1375 900 475 2.316 0.758 887 672 0 215 0 NaN 0.000 1.000 0.000 0.242 0.242

Discount_360D_CS 1500 1375 828 547 -1.144 0.757 795 602 0 193 0 NaN 0.000 1.000 0.000 0.243 0.243

Discount_360D_BB 1500 1375 911 464 1.171 0.755 898 678 0 220 0 NaN 0.000 1.000 0.000 0.245 0.245

ROE_360D_BB 1500 1375 911 464 -3.351 0.755 898 678 0 220 0 NaN 0.000 1.000 0.000 0.245 0.245

ROE_360D_CS 1500 1375 911 464 -0.148 0.755 898 678 0 220 0 NaN 0.000 1.000 0.000 0.245 0.245

ROE_LTVol_CS 1500 1375 911 464 0.290 0.755 898 678 0 220 0 NaN 0.000 1.000 0.000 0.245 0.245

ROE_GARCH_CS 1500 1375 911 464 -0.066 0.755 898 678 0 220 0 NaN 0.000 1.000 0.000 0.245 0.245

ROE_LTVol_BB 1500 1375 911 464 0.222 0.751 898 674 4 220 0 0.000 0.000 0.994 0.004 0.245 0.245

Discount_LTVol_BB 1500 1375 911 464 0.093 0.735 898 659 19 219 1 0.050 0.005 0.972 0.021 0.244 0.245

Discount_LTVol_CS 1500 1375 905 470 -0.393 0.702 892 624 53 213 2 0.036 0.009 0.922 0.059 0.239 0.241

Discount_GARCH_CS 1500 1375 827 548 -0.333 0.663 807 530 84 188 5 0.056 0.026 0.863 0.104 0.233 0.239

Discount_GARCH_BB 1500 1375 911 464 0.181 0.663 898 585 93 210 10 0.097 0.045 0.863 0.104 0.234 0.245

GRF 6 Months Logit Predictions

K K1 ITD ITU IT Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

ROE_360D_CS 1500 1438 793 645 0.032 0.687 898 596 10 271 21 0.677 0.072 0.983 0.011 0.302 0.325

ROE_GARCH_CS 1500 1438 793 645 0.032 0.686 898 601 5 277 15 0.750 0.051 0.992 0.006 0.308 0.325

Discount_360D_BB 1500 1438 793 645 15.849 0.675 898 606 0 292 0 NaN 0.000 1.000 0.000 0.325 0.325

Discount_LTVol_BB 1500 1438 793 645 0.084 0.675 898 606 0 292 0 NaN 0.000 1.000 0.000 0.325 0.325

ROE_360D_BB 1500 1438 793 645 -1.546 0.675 898 606 0 292 0 NaN 0.000 1.000 0.000 0.325 0.325

ROE_LTVol_BB 1500 1438 793 645 1.300 0.675 898 606 0 292 0 NaN 0.000 1.000 0.000 0.325 0.325

ROE_LTVol_CS 1500 1438 793 645 0.032 0.675 898 606 0 292 0 NaN 0.000 1.000 0.000 0.325 0.325

Discount_LTVol_CS 1500 1438 787 651 -0.389 0.664 892 592 14 286 0 0.000 0.000 0.977 0.016 0.321 0.321

CAPM_3MER 1500 1438 793 645 -0.062 0.661 898 442 164 140 152 0.481 0.521 0.729 0.183 0.156 0.325

ROE_GARCH_BB 1500 1438 793 645 -2.072 0.661 887 586 20 281 0 0.000 0.000 0.967 0.023 0.317 0.317

Discount_GARCH_BB 1500 1438 793 645 0.218 0.646 898 574 32 286 6 0.158 0.021 0.947 0.036 0.318 0.325

Discount_GARCH_CS 1500 1438 731 707 -0.639 0.632 807 510 42 255 0 0.000 0.000 0.924 0.052 0.316 0.316

Discount_360D_CS 1500 1438 737 701 -0.488 0.626 795 482 63 234 16 0.203 0.064 0.884 0.079 0.294 0.314

GRF 3 Months Logit Predictions
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Figure C.3 GRF variable subset selection results 

 

============================================= 

                      Dependent variable:     

                  --------------------------- 

                             ER 1Y            

--------------------------------------------- 

CAPM                      -10.413***          

ROE_GARCH_CS               83.673**           

Discount_360D_CS          -100.355**          

Discount_GARCH_CS            0.545            

Discount_LTVol_BB         -90.510***          

ROE_360D_BB                5.068***           

Discount_360D_BB            -11.496           

Discount_GARCH_BB           17.300            

ROE_LTVol_CS             5,366.876***         

ROE_360D_CS              -5,703.379***        

ROE_GARCH_BB               -1.403***          

ROE_LTVol_BB               17.869**                  

Discount_LTVol_CS          98.483**           

Constant                    -3.755            

--------------------------------------------- 

Observations                 1,500            

Log Likelihood             -333.705           

Akaike Inf. Crit.           695.411           

============================================= 

Note:             *p<0.1; **p<0.05; ***p<0.01 
 

============================================= 

                      Dependent variable:     

                  --------------------------- 

                             ER 6M            

--------------------------------------------- 

CAPM                      -13.495***          

ROE_LTVol_CS              839.628***          

ROE_GARCH_BB               0.475***           

Discount_360D_BB          -11.545***          

ROE_360D_CS               -968.803***         
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Discount_GARCH_CS          9.363***           

Discount_LTVol_CS         -16.416***          

ROE_GARCH_CS               48.952**           

Constant                   -3.429***                  

--------------------------------------------- 

Observations                 1,500            

Log Likelihood             -772.556           

Akaike Inf. Crit.          1,563.112          

============================================= 

Note:             *p<0.1; **p<0.05; ***p<0.01 
 

============================================= 

                      Dependent variable:     

                  --------------------------- 

                             ER 1D            

--------------------------------------------- 

ROE_GARCH_CS                41.572*           

ROE_LTVol_CS               -52.654**          

ROE_LTVol_BB                1.318**           

Discount_360D_CS            -0.949*           

Constant                    -0.151            

--------------------------------------------- 

Observations                 1,500            

Log Likelihood            -1,031.310          

Akaike Inf. Crit.          2,072.619          

============================================= 

Note:             *p<0.1; **p<0.05; ***p<0.01 
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D. BVC RESULTS 

Structural model predictor variables 

 

Figure D.1 BVC structural model variables 

 

Table D.1BVC convergence to solutions in solving for asset value parameters 

 

i. CAPM estimates of alpha and beta and equity volatility 

 

1 2 3 4 5 6 7 8 9 10

TermCD_M1_360D_BB 2528 0 0 0 0 0 0 0 0 0

TermCD_M1_LTVol_BB 2528 0 0 0 0 0 0 0 0 0

TermCD_M1_GARCH_BB 2528 0 0 0 0 0 0 0 0 0

TermCD_M2_360D_BB 2528 0 0 0 0 0 0 0 0 0

TermCD_M2_LTVol_BB 2528 0 0 0 0 0 0 0 0 0

TermCD_M2_GARCH_BB 2328 170 30 0 0 0 0 0 0 0

TermCD_M1_360D_CS 2528 0 0 0 0 0 0 0 0 0

TermCD_M1_LTVol_CS 2528 0 0 0 0 0 0 0 0 0

TermCD_M1_GARCH_CS 2476 2 50 0 0 0 0 0 0 0

TermCD_M2_360D_CS 2528 0 0 0 0 0 0 0 0 0

TermCD_M2_LTVol_CS 2528 0 0 0 0 0 0 0 0 0

TermCD_M2_GARCH_CS 2528 0 0 0 0 0 0 0 0 0

BVC TermCD Check
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Figure D.2 BVC estimates of alpha and beta 

 
 

Figure D.3 BVC estimates of equity return volatility 

 

ii. Indicator Results 

 

Table D.2  BVC 1-year predictor performance on stand-alone basis 

 

K Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

ROE_360D_CS 1500 0.914 1028 0 88 0 940 0.914 1.000 0.000 0.086 0.000 0.914

ROE_LTVol_CS 1500 0.914 1028 0 88 0 940 0.914 1.000 0.000 0.086 0.000 0.914

ROE_GARCH_CS 1500 0.914 1028 0 88 0 940 0.914 1.000 0.000 0.086 0.000 0.914

CAPM_1YER 1500 0.804 1028 6 82 120 820 0.909 0.872 0.068 0.080 0.117 0.914

Discount_LTVol_BB 1500 0.473 1028 48 40 502 438 0.916 0.466 0.545 0.039 0.488 0.914

ROE_LTVol_BB 1500 0.473 1028 48 40 502 438 0.916 0.466 0.545 0.039 0.488 0.914

ROE_GARCH_BB 1500 0.281 828 55 5 590 178 0.973 0.232 0.917 0.006 0.713 0.928

Discount_GARCH_BB 1500 0.270 1028 83 5 745 195 0.975 0.207 0.943 0.005 0.725 0.914

Discount_360D_BB 1500 0.086 1028 88 0 940 0 NaN 0.000 1.000 0.000 0.914 0.914

ROE_360D_BB 1500 0.086 1028 88 0 940 0 NaN 0.000 1.000 0.000 0.914 0.914

Discount_360D_CS 1500 0.086 1028 88 0 940 0 NaN 0.000 1.000 0.000 0.914 0.914

Discount_LTVol_CS 1500 0.086 1028 88 0 940 0 NaN 0.000 1.000 0.000 0.914 0.914

Discount_GARCH_CS 1500 0.075 976 73 0 903 0 NaN 0.000 1.000 0.000 0.925 0.925

BVC 1 Year Indicator Performance
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Table D.3 BVC 6-month return prediction performance eon stand-alone basis 

 

iii. KNN Prediction Results 
Table D.4 BVC 1-year return predictions with KNN (K=5) 

 

Table D.5 BVC 6-month return predictions with KNN (K=5) 

 

iv. Logistic Regression Results 

 

K Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

ROE_360D_CS 1500 0.711 1028 0 297 0 731 0.711 1.000 0.000 0.289 0.000 0.711

ROE_LTVol_CS 1500 0.711 1028 0 297 0 731 0.711 1.000 0.000 0.289 0.000 0.711

ROE_GARCH_CS 1500 0.711 1028 0 297 0 731 0.711 1.000 0.000 0.289 0.000 0.711

CAPM_6MER 1500 0.641 1028 37 260 109 622 0.705 0.851 0.125 0.253 0.106 0.711

Discount_LTVol_BB 1500 0.476 1028 154 143 396 335 0.701 0.458 0.519 0.139 0.385 0.711

ROE_LTVol_BB 1500 0.476 1028 154 143 396 335 0.701 0.458 0.519 0.139 0.385 0.711

ROE_GARCH_BB 1500 0.459 828 218 21 427 162 0.885 0.275 0.912 0.025 0.516 0.711

Discount_GARCH_BB 1500 0.443 1028 276 21 552 179 0.895 0.245 0.929 0.020 0.537 0.711

Discount_360D_BB 1500 0.289 1028 297 0 731 0 NaN 0.000 1.000 0.000 0.711 0.711

ROE_360D_BB 1500 0.289 1028 297 0 731 0 NaN 0.000 1.000 0.000 0.711 0.711

Discount_360D_CS 1500 0.289 1028 297 0 731 0 NaN 0.000 1.000 0.000 0.711 0.711

Discount_LTVol_CS 1500 0.289 1028 297 0 731 0 NaN 0.000 1.000 0.000 0.711 0.711

Discount_GARCH_CS 1500 0.276 976 269 0 707 0 NaN 0.000 1.000 0.000 0.724 0.724

BVC 6 Months Indicator Performance

K K1 ITD ITU Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

ROE_GARCH_BB 1500 1249 338 911 0.879 828 1 59 41 727 0.925 0.947 0.017 0.071 0.050 0.928

Discount_GARCH_CS 1500 1249 350 899 0.872 976 3 70 55 848 0.924 0.939 0.041 0.072 0.056 0.925

CAPM_1YER 1500 1249 355 894 0.852 1028 3 85 67 873 0.911 0.929 0.034 0.083 0.065 0.914

Discount_GARCH_BB 1500 1249 355 894 0.851 1028 7 81 72 868 0.915 0.923 0.080 0.079 0.070 0.914

ROE_LTVol_CS 1500 1249 355 894 0.786 1028 0 88 132 808 0.902 0.860 0.000 0.086 0.128 0.914

ROE_GARCH_CS 1500 1249 355 894 0.731 1028 9 79 198 742 0.904 0.789 0.102 0.077 0.193 0.914

ROE_360D_CS 1500 1249 355 894 0.720 1028 12 76 212 728 0.905 0.774 0.136 0.074 0.206 0.914

Discount_360D_CS 1500 1249 355 894 0.716 1028 29 59 233 707 0.923 0.752 0.330 0.057 0.227 0.914

Discount_360D_BB 1500 1249 355 894 0.649 1028 42 46 315 625 0.931 0.665 0.477 0.045 0.306 0.914

Discount_LTVol_CS 1500 1249 355 894 0.648 1028 36 52 310 630 0.924 0.670 0.409 0.051 0.302 0.914

ROE_360D_BB 1500 1249 355 894 0.643 1028 38 50 317 623 0.926 0.663 0.432 0.049 0.308 0.914

ROE_LTVol_BB 1500 1249 355 894 0.638 1028 43 45 327 613 0.932 0.652 0.489 0.044 0.318 0.914

Discount_LTVol_BB 1500 1249 355 894 0.627 1028 43 45 338 602 0.930 0.640 0.489 0.044 0.329 0.914

BVC 1 Year KNN Prediction Performance 5

K K1 ITD ITU Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

Discount_360D_CS 1500 1375 557 818 0.620 1028 113 184 207 524 0.740 0.717 0.380 0.179 0.201 0.711

Discount_GARCH_CS 1500 1375 554 821 0.614 976 58 211 166 541 0.719 0.765 0.216 0.216 0.170 0.724

Discount_GARCH_BB 1500 1375 557 818 0.600 1028 72 225 186 545 0.708 0.746 0.242 0.219 0.181 0.711

Discount_LTVol_BB 1500 1375 557 818 0.581 1028 99 198 233 498 0.716 0.681 0.333 0.193 0.227 0.711

ROE_GARCH_BB 1500 1375 556 819 0.580 828 73 166 182 407 0.710 0.691 0.305 0.200 0.220 0.711

CAPM_6MER 1500 1375 557 818 0.578 1028 69 228 206 525 0.697 0.718 0.232 0.222 0.200 0.711

ROE_LTVol_BB 1500 1375 557 818 0.571 1028 101 196 245 486 0.713 0.665 0.340 0.191 0.238 0.711

ROE_LTVol_CS 1500 1375 557 818 0.562 1028 32 265 185 546 0.673 0.747 0.108 0.258 0.180 0.711

Discount_360D_BB 1500 1375 557 818 0.543 1028 122 175 295 436 0.714 0.596 0.411 0.170 0.287 0.711

ROE_360D_BB 1500 1375 557 818 0.532 1028 128 169 312 419 0.713 0.573 0.431 0.164 0.304 0.711

ROE_GARCH_CS 1500 1375 557 818 0.517 1028 121 176 321 410 0.700 0.561 0.407 0.171 0.312 0.711

ROE_360D_CS 1500 1375 557 818 0.485 1028 68 229 300 431 0.653 0.590 0.229 0.223 0.292 0.711

Discount_LTVol_CS 1500 1375 557 818 0.444 1028 116 181 391 340 0.653 0.465 0.391 0.176 0.380 0.711

BVC 6 Months KNN Prediction Performance 5
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Table D.6 BVC 1-year return predictions with logistic regression 

 

Table D.7 BVC 6-month return predictions with logistic regression 

 

v. Multiple predictor variables 

Variable selection 
Table D.8 BVC variable subset selection 

 

K K1 ITD ITU IT Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

ROE_GARCH_BB 1500 1249 338 911 19.967 0.928 828 0 60 0 768 0.928 1.000 0.000 0.072 0.000 0.928

Discount_GARCH_CS 1500 1249 350 899 0.914 0.925 976 0 73 0 903 0.925 1.000 0.000 0.075 0.000 0.925

CAPM_1YER 1500 1249 355 894 -2.098 0.914 1028 0 88 0 940 0.914 1.000 0.000 0.086 0.000 0.914

Discount_360D_BB 1500 1249 355 894 -0.254 0.914 1028 0 88 0 940 0.914 1.000 0.000 0.086 0.000 0.914

Discount_GARCH_BB 1500 1249 355 894 3.227 0.914 1028 0 88 0 940 0.914 1.000 0.000 0.086 0.000 0.914

ROE_360D_BB 1500 1249 355 894 -1.158 0.914 1028 0 88 0 940 0.914 1.000 0.000 0.086 0.000 0.914

Discount_360D_CS 1500 1249 355 894 -0.604 0.914 1028 0 88 0 940 0.914 1.000 0.000 0.086 0.000 0.914

ROE_360D_CS 1500 1249 355 894 0.002 0.914 1028 0 88 0 940 0.914 1.000 0.000 0.086 0.000 0.914

ROE_LTVol_CS 1500 1249 355 894 0.005 0.914 1028 0 88 0 940 0.914 1.000 0.000 0.086 0.000 0.914

ROE_GARCH_CS 1500 1249 355 894 -0.028 0.914 1028 0 88 0 940 0.914 1.000 0.000 0.086 0.000 0.914

ROE_LTVol_BB 1500 1249 355 894 0.000 0.791 1028 37 51 164 776 0.938 0.826 0.420 0.050 0.160 0.914

Discount_LTVol_BB 1500 1249 355 894 0.009 0.747 1028 37 51 209 731 0.935 0.778 0.420 0.050 0.203 0.914

Discount_LTVol_CS 1500 1249 355 894 -0.457 0.695 1028 55 33 281 659 0.952 0.701 0.625 0.032 0.273 0.914

BVC 1 Year Logistic Regression Results

K K1 ITD ITU IT Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

Discount_GARCH_CS 1500 1375 554 821 -0.289 0.719 976 0 269 5 702 0.723 0.993 0.000 0.276 0.005 0.724

ROE_GARCH_BB 1500 1375 556 819 26.616 0.711 828 0 239 0 589 0.711 1.000 0.000 0.289 0.000 0.711

CAPM_6MER 1500 1375 557 818 -0.114 0.711 1028 0 297 0 731 0.711 1.000 0.000 0.289 0.000 0.711

Discount_360D_BB 1500 1375 557 818 -0.514 0.711 1028 0 297 0 731 0.711 1.000 0.000 0.289 0.000 0.711

ROE_360D_BB 1500 1375 557 818 -0.705 0.711 1028 0 297 0 731 0.711 1.000 0.000 0.289 0.000 0.711

Discount_360D_CS 1500 1375 557 818 -0.611 0.711 1028 0 297 0 731 0.711 1.000 0.000 0.289 0.000 0.711

ROE_360D_CS 1500 1375 557 818 0.042 0.711 1028 0 297 0 731 0.711 1.000 0.000 0.289 0.000 0.711

ROE_LTVol_CS 1500 1375 557 818 0.072 0.711 1028 0 297 0 731 0.711 1.000 0.000 0.289 0.000 0.711

ROE_GARCH_CS 1500 1375 557 818 0.005 0.711 1028 0 297 0 731 0.711 1.000 0.000 0.289 0.000 0.711

Discount_GARCH_BB 1500 1375 557 818 0.304 0.706 1028 0 297 5 726 0.710 0.993 0.000 0.289 0.005 0.711

Discount_LTVol_BB 1500 1375 557 818 -0.003 0.657 1028 55 242 111 620 0.719 0.848 0.185 0.235 0.108 0.711

ROE_LTVol_BB 1500 1375 557 818 -0.011 0.649 1028 62 235 126 605 0.720 0.828 0.209 0.229 0.123 0.711

Discount_LTVol_CS 1500 1375 557 818 -0.447 0.625 1028 70 227 159 572 0.716 0.782 0.236 0.221 0.155 0.711

BVC 6 Months Logistic Regression Prediction Results

Adjr2 Cp Bic Aic Adjr2 Cp Bic Aic Adjr2 Cp Bic Aic

CAPM

Discount_360D_BB

Discount_LTVol_BB

Discount_GARCH_BB

ROE_360D_BB

ROE_LTVol_BB

ROE_GARCH_BB

Discount_360D_CS

Discount_LTVol_CS

Discount_GARCH_CS

ROE_360D_CS

ROE_LTVol_CS

ROE_GARCH_CS

No. Predictor Variables 11 11 10 11 13 13 13 12 4 1 1 0

1Y Prediction Accuracy 0,31 0,31 0,47 0,27 0,29 0,29 0,29 0,40 0,65 0,91 0,91

6M Prediction Accuracy 0,35 0,35 0,41 0,35 0,34 0,34 0,34 0,40 0,58 0,71 0,71

1D Prediction Accuracy 0,50 0,50 0,48 0,50 0,51 0,51 0,51 0,48 0,47 0,49 0,49

BVC Variable Selection

1 Year 6 Months 1 Day
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Bivariate predictor performance 
Table D.9 BVC 1-year return top performing predictions including pairs of predictors 

 

Debt variable efficiency 
Table D.10 BVC 6-month return predictor variable efficiency 

 

 

 

 

 

  

Link K K1 ITD ITU Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

LOGIT ROE_GARCH_BB Discount_GARCH_CS 1500 1249 337 912 0.933 817 0 55 0 762 0.933 1.000 0.000 0.067 0.000 0.933

LOGIT CAPM_1YER ROE_GARCH_BB 1500 1249 338 911 0.928 828 0 60 0 768 0.928 1.000 0.000 0.072 0.000 0.928

LOGIT ROE_GARCH_BB 1500 1249 338 911 0.928 828 0 60 0 768 0.928 1.000 0.000 0.072 0.000 0.928

LOGIT Discount_GARCH_CS 1500 1249 350 899 0.925 976 0 73 0 903 0.925 1.000 0.000 0.075 0.000 0.925

LOGIT CAPM_1YER 1500 1249 355 894 0.914 1028 0 88 0 940 0.914 1.000 0.000 0.086 0.000 0.914

IND ROE_360D_CS 1500 0.914 1028 0 88 0 940 0.914 1.000 0.000 0.086 0.000 0.914

IND ROE_LTVol_CS 1500 0.914 1028 0 88 0 940 0.914 1.000 0.000 0.086 0.000 0.914

IND ROE_GARCH_CS 1500 0.914 1028 0 88 0 940 0.914 1.000 0.000 0.086 0.000 0.914

KNN 5 Discount_GARCH_BB ROE_GARCH_BB 1500 1249 338 911 0.886 828 2 58 36 732 0.927 0.953 0.033 0.070 0.043 0.928

KNN 5 CAPM_1YER ROE_GARCH_BB 1500 1249 338 911 0.883 828 4 56 41 727 0.928 0.947 0.067 0.068 0.050 0.928

LOGIT CAPM_1YER ROE_LTVol_BB 1500 1249 355 894 0.882 1028 7 81 40 900 0.917 0.957 0.080 0.079 0.039 0.914

KNN 5 ROE_GARCH_BB 1500 1249 338 911 0.879 828 1 59 41 727 0.925 0.947 0.017 0.071 0.050 0.928

KNN 5 Discount_GARCH_CS 1500 1249 350 899 0.872 976 3 70 55 848 0.924 0.939 0.041 0.072 0.056 0.925

KNN 5 ROE_GARCH_BB ROE_GARCH_CS 1500 1249 338 911 0.856 828 1 59 60 708 0.923 0.922 0.017 0.071 0.072 0.928

KNN 5 ROE_GARCH_BB ROE_360D_CS 1500 1249 338 911 0.854 828 1 59 62 706 0.923 0.919 0.017 0.071 0.075 0.928

KNN 5 ROE_GARCH_BB ROE_LTVol_CS 1500 1249 338 911 0.854 828 1 59 62 706 0.923 0.919 0.017 0.071 0.075 0.928

KNN 5 CAPM_1YER 1500 1249 355 894 0.852 1028 3 85 67 873 0.911 0.929 0.034 0.083 0.065 0.914

KNN 5 ROE_GARCH_BB Discount_360D_CS 1500 1249 338 911 0.841 828 11 49 83 685 0.933 0.892 0.183 0.059 0.100 0.928

KNN 5 CAPM_1YER Discount_GARCH_CS 1500 1249 350 899 0.826 976 1 72 98 805 0.918 0.891 0.014 0.074 0.100 0.925

KNN 5 CAPM_1YER Discount_GARCH_BB 1500 1249 355 894 0.816 1028 3 85 104 836 0.908 0.889 0.034 0.083 0.101 0.914

IND CAPM_1YER 1500 0.804 1028 6 82 120 820 0.909 0.872 0.068 0.080 0.117 0.914

LOGIT ROE_LTVol_BB 1500 1249 355 894 0.791 1028 37 51 164 776 0.938 0.826 0.420 0.050 0.160 0.914

Predictor Variables

BVC 1 YearPrediction Results

K K1 Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

CS 1500 1375 0.413 1028 226 71 532 199 0.737 0.272 0.761 0.069 0.518 0.711

BB 1500 1375 0.534 1028 164 133 346 385 0.743 0.527 0.552 0.129 0.337 0.711

CAPM 1500 1375 0.700 1028 0 297 11 720 0.708 0.985 0.000 0.289 0.011 0.711

ALL 1500 1375 0.468 1028 143 154 393 338 0.687 0.462 0.481 0.150 0.382 0.711

BBCS 1500 1375 0.449 1028 185 112 454 277 0.712 0.379 0.623 0.109 0.442 0.711

CAPMCS 1500 1375 0.447 1028 179 118 450 281 0.704 0.384 0.603 0.115 0.438 0.711

CAPMBB 1500 1375 0.493 1028 133 164 357 374 0.695 0.512 0.448 0.160 0.347 0.711

BVC Variable Efficency
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E. CAPITEC RESULTS 

i. Estimates of alpha and Beta and equity volatility 

 

Figure E.1 Capitec estimates of alpha and beta 

 

Figure E.2 Capitec estimates of equity return volatility 

 

Structural model predictor variables 

 
Figure E.3 Capitec structural model predictor variables 
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Table E.1 Capitec TermCD check to convergence in simultaneous equations 

 
 

ii. Indicator Results 
Table E.2 Capitec 1-year return prediction performance evaluated on stand-alone prediction 

 

Table E.3 Capitec 6-month return prediction performance evaluated on stand-alone basis 

 

1 2 3 4 5 6 7 8 9 10

TermCD_M1_360D_BB 1594 0 0 0 0 0 0 0 0 0

TermCD_M1_LTVol_BB 1589 0 5 0 0 0 0 0 0 0

TermCD_M1_GARCH_BB 1586 2 6 0 0 0 0 0 0 0

TermCD_M2_360D_BB 1594 0 0 0 0 0 0 0 0 0

TermCD_M2_LTVol_BB 1582 11 1 0 0 0 0 0 0 0

TermCD_M2_GARCH_BB 1544 47 3 0 0 0 0 0 0 0

TermCD_M1_360D_CS 1594 0 0 0 0 0 0 0 0 0

TermCD_M1_LTVol_CS 1583 0 11 0 0 0 0 0 0 0

TermCD_M1_GARCH_CS 1566 4 24 0 0 0 0 0 0 0

TermCD_M2_360D_CS 1594 0 0 0 0 0 0 0 0 0

TermCD_M2_LTVol_CS 1594 0 0 0 0 0 0 0 0 0

TermCD_M2_GARCH_CS 1594 0 0 0 0 0 0 0 0 0

CAPITEC TermCD Check

K Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

ROE_360D_CS 1000 0.909 594 0 54 0 540 0.909 1.000 0.000 0.091 0.000 0.909

ROE_LTVol_CS 1000 0.909 594 0 54 0 540 0.909 1.000 0.000 0.091 0.000 0.909

ROE_GARCH_CS 1000 0.909 594 0 54 0 540 0.909 1.000 0.000 0.091 0.000 0.909

ROE_LTVol_BB 1000 0.603 582 18 24 207 333 0.933 0.617 0.429 0.041 0.356 0.928

Discount_LTVol_BB 1000 0.596 589 18 31 207 333 0.915 0.617 0.367 0.053 0.351 0.917

CAPM_1YER 1000 0.364 594 0 54 324 216 0.800 0.400 0.000 0.091 0.545 0.909

ROE_GARCH_BB 1000 0.290 544 29 4 382 129 0.970 0.252 0.879 0.007 0.702 0.939

Discount_GARCH_BB 1000 0.290 586 41 5 411 129 0.963 0.239 0.891 0.009 0.701 0.922

Discount_360D_BB 1000 0.091 594 54 0 540 0 NaN 0.000 1.000 0.000 0.909 0.909

ROE_360D_BB 1000 0.091 594 54 0 540 0 NaN 0.000 1.000 0.000 0.909 0.909

Discount_360D_CS 1000 0.091 594 54 0 540 0 NaN 0.000 1.000 0.000 0.909 0.909

Discount_LTVol_CS 1000 0.074 583 43 0 540 0 NaN 0.000 1.000 0.000 0.926 0.926

Discount_GARCH_CS 1000 0.062 566 35 0 531 0 NaN 0.000 1.000 0.000 0.938 0.938

CAPITEC 1 Year Indicator Results

K Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

ROE_360D_CS 1000 0.810 594 0 113 0 481 0.810 1.000 0.000 0.190 0.000 0.810

ROE_LTVol_CS 1000 0.810 594 0 113 0 481 0.810 1.000 0.000 0.190 0.000 0.810

ROE_GARCH_CS 1000 0.810 594 0 113 0 481 0.810 1.000 0.000 0.190 0.000 0.810

ROE_LTVol_BB 1000 0.543 582 30 71 195 286 0.801 0.595 0.297 0.122 0.335 0.826

Discount_LTVol_BB 1000 0.537 589 30 78 195 286 0.786 0.595 0.278 0.132 0.331 0.817

CAPM_6MER 1000 0.502 594 42 71 225 256 0.783 0.532 0.372 0.120 0.379 0.810

ROE_GARCH_BB 1000 0.344 544 73 19 338 114 0.857 0.252 0.793 0.035 0.621 0.831

Discount_GARCH_BB 1000 0.340 586 85 20 367 114 0.851 0.237 0.810 0.034 0.626 0.821

Discount_360D_BB 1000 0.190 594 113 0 481 0 NaN 0.000 1.000 0.000 0.810 0.810

ROE_360D_BB 1000 0.190 594 113 0 481 0 NaN 0.000 1.000 0.000 0.810 0.810

Discount_360D_CS 1000 0.190 594 113 0 481 0 NaN 0.000 1.000 0.000 0.810 0.810

Discount_LTVol_CS 1000 0.175 583 102 0 481 0 NaN 0.000 1.000 0.000 0.825 0.825

Discount_GARCH_CS 1000 0.166 566 94 0 472 0 NaN 0.000 1.000 0.000 0.834 0.834

CAPITEC 6 Month Indicator Results
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iii. KNN Prediction Results 
Table E.4 Capitec 1-year return predictions with KNN (K=3) 

 

Table E.5 Capitec 6-month return predictions with KNN (K=3) 

 

iv. Logistic Regression Results 
Table E.6 Capitec 1-year return predictions with logistic regression 

 

K K1 ITD ITU Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

ROE_LTVol_BB 1000 749 24 725 0.885 582 0 42 25 515 0.925 0.954 0.000 0.072 0.043 0.928

Discount_GARCH_BB 1000 749 24 725 0.828 586 1 45 56 484 0.915 0.896 0.022 0.077 0.096 0.922

Discount_LTVol_CS 1000 749 24 725 0.827 583 2 41 60 480 0.921 0.889 0.047 0.070 0.103 0.926

Discount_GARCH_CS 1000 749 24 725 0.822 566 3 32 69 462 0.935 0.870 0.086 0.057 0.122 0.938

ROE_GARCH_BB 1000 749 25 724 0.820 544 1 32 66 445 0.933 0.871 0.030 0.059 0.121 0.939

Discount_LTVol_BB 1000 749 24 725 0.812 589 18 31 80 460 0.937 0.852 0.367 0.053 0.136 0.917

ROE_GARCH_CS 1000 749 24 725 0.805 594 13 41 75 465 0.919 0.861 0.241 0.069 0.126 0.909

ROE_360D_CS 1000 749 24 725 0.803 594 11 43 74 466 0.916 0.863 0.204 0.072 0.125 0.909

CAPM_1YER 1000 749 24 725 0.790 594 0 54 71 469 0.897 0.869 0.000 0.091 0.120 0.909

ROE_360D_BB 1000 749 24 725 0.774 594 0 54 80 460 0.895 0.852 0.000 0.091 0.135 0.909

Discount_360D_CS 1000 749 24 725 0.766 594 3 51 88 452 0.899 0.837 0.056 0.086 0.148 0.909

Discount_360D_BB 1000 749 24 725 0.678 594 17 37 154 386 0.913 0.715 0.315 0.062 0.259 0.909

ROE_LTVol_CS 1000 749 24 725 0.660 594 8 46 156 384 0.893 0.711 0.148 0.077 0.263 0.909

CAPITEC 1 Year KNN 3 Prediction Performance

K K1 ITD ITU Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

Discount_LTVol_CS 1000 875 181 694 0.794 583 7 95 25 456 0.828 0.948 0.069 0.163 0.043 0.825

ROE_360D_BB 1000 875 174 701 0.724 594 20 93 71 410 0.815 0.852 0.177 0.157 0.120 0.810

Discount_GARCH_CS 1000 875 185 690 0.710 566 28 66 98 374 0.850 0.792 0.298 0.117 0.173 0.834

ROE_GARCH_BB 1000 875 185 690 0.704 544 22 70 91 361 0.838 0.799 0.239 0.129 0.167 0.831

ROE_LTVol_BB 1000 875 182 693 0.701 582 25 76 98 383 0.834 0.796 0.248 0.131 0.168 0.826

Discount_GARCH_BB 1000 875 180 695 0.698 586 15 90 87 394 0.814 0.819 0.143 0.154 0.148 0.821

CAPM_6MER 1000 875 174 701 0.650 594 3 110 98 383 0.777 0.796 0.027 0.185 0.165 0.810

Discount_360D_CS 1000 875 174 701 0.626 594 22 91 131 350 0.794 0.728 0.195 0.153 0.221 0.810

ROE_360D_CS 1000 875 174 701 0.614 594 19 94 135 346 0.786 0.719 0.168 0.158 0.227 0.810

Discount_LTVol_BB 1000 875 178 697 0.611 589 21 87 142 339 0.796 0.705 0.194 0.148 0.241 0.817

ROE_GARCH_CS 1000 875 174 701 0.572 594 32 81 173 308 0.792 0.640 0.283 0.136 0.291 0.810

Discount_360D_BB 1000 875 174 701 0.522 594 16 97 187 294 0.752 0.611 0.142 0.163 0.315 0.810

ROE_LTVol_CS 1000 875 174 701 0.517 594 32 81 206 275 0.772 0.572 0.283 0.136 0.347 0.810

CAPITEC 6 Months KNN 3 Prediction Performance

K K1 ITD ITU IT Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

Discount_GARCH_CS 1000 749 24 725 -0.709 0.938 566 0 35 0 531 0.938 1.000 0 0.062 0.000 0.938

ROE_LTVol_BB 1000 749 24 725 -0.133 0.928 582 0 42 0 540 0.928 1.000 0 0.072 0.000 0.928

Discount_LTVol_CS 1000 749 24 725 -0.658 0.926 583 0 43 0 540 0.926 1.000 0 0.074 0.000 0.926

Discount_GARCH_BB 1000 749 24 725 -0.447 0.922 586 0 46 0 540 0.922 1.000 0 0.078 0.000 0.922

Discount_LTVol_BB 1000 749 24 725 -0.120 0.917 589 0 49 0 540 0.917 1.000 0 0.083 0.000 0.917

ROE_GARCH_BB 1000 749 25 724 -47.809 0.914 544 0 33 14 497 0.938 0.973 0 0.061 0.026 0.939

CAPM_1YER 1000 749 24 725 1.452 0.909 594 0 54 0 540 0.909 1.000 0 0.091 0.000 0.909

Discount_360D_BB 1000 749 24 725 -0.452 0.909 594 0 54 0 540 0.909 1.000 0 0.091 0.000 0.909

ROE_360D_BB 1000 749 24 725 -2.639 0.909 594 0 54 0 540 0.909 1.000 0 0.091 0.000 0.909

Discount_360D_CS 1000 749 24 725 -0.685 0.909 594 0 54 0 540 0.909 1.000 0 0.091 0.000 0.909

ROE_360D_CS 1000 749 24 725 0.010 0.909 594 0 54 0 540 0.909 1.000 0 0.091 0.000 0.909

ROE_LTVol_CS 1000 749 24 725 0.009 0.909 594 0 54 0 540 0.909 1.000 0 0.091 0.000 0.909

ROE_GARCH_CS 1000 749 24 725 0.004 0.909 594 0 54 0 540 0.909 1.000 0 0.091 0.000 0.909

CAPITEC 1 Year Logit Predictions
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Table E.7 Capitec 6-month return predictions using logistic regression 

 

v. Multiple predictor variables 

Variable selection 
Table E.8 Capitec subset variable selection results 

 

Bivariate prediction performance 
Table E.9 Capitec summary of 1-year return predictions including pairs of predictor variables 

 

 

K K1 ITD ITU IT Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

Discount_GARCH_CS 1000 875 185 690 -1.080 0.834 566 0 94 0 472 0.834 1.000 0 0.166 0.000 0.834

ROE_LTVol_BB 1000 875 182 693 -2.223 0.826 582 0 101 0 481 0.826 1.000 0 0.174 0.000 0.826

Discount_LTVol_CS 1000 875 181 694 -0.382 0.825 583 0 102 0 481 0.825 1.000 0 0.175 0.000 0.825

Discount_GARCH_BB 1000 875 180 695 -0.553 0.821 586 0 105 0 481 0.821 1.000 0 0.179 0.000 0.821

Discount_LTVol_BB 1000 875 178 697 -0.394 0.817 589 0 108 0 481 0.817 1.000 0 0.183 0.000 0.817

ROE_GARCH_BB 1000 875 185 690 -29.942 0.812 544 0 92 10 442 0.828 0.978 0 0.169 0.018 0.831

CAPM_6MER 1000 875 174 701 1.322 0.810 594 0 113 0 481 0.810 1.000 0 0.190 0.000 0.810

Discount_360D_BB 1000 875 174 701 -0.310 0.810 594 0 113 0 481 0.810 1.000 0 0.190 0.000 0.810

ROE_360D_BB 1000 875 174 701 -1.610 0.810 594 0 113 0 481 0.810 1.000 0 0.190 0.000 0.810

Discount_360D_CS 1000 875 174 701 -0.641 0.810 594 0 113 0 481 0.810 1.000 0 0.190 0.000 0.810

ROE_360D_CS 1000 875 174 701 0.029 0.810 594 0 113 0 481 0.810 1.000 0 0.190 0.000 0.810

ROE_LTVol_CS 1000 875 174 701 0.028 0.810 594 0 113 0 481 0.810 1.000 0 0.190 0.000 0.810

ROE_GARCH_CS 1000 875 174 701 0.028 0.808 594 0 113 1 480 0.809 0.998 0 0.190 0.002 0.810

CAPITEC 6 Months Logit Predictions

Adjr2 Cp Bic Aic Adjr2 Cp Bic Aic Adjr2 Cp Bic Aic

CAPM

Discount_360D_BB

Discount_LTVol_BB

Discount_GARCH_BB

ROE_360D_BB

ROE_LTVol_BB

ROE_GARCH_BB

Discount_360D_CS

Discount_LTVol_CS

Discount_GARCH_CS

ROE_360D_CS

ROE_LTVol_CS

ROE_GARCH_CS

No. Predictor Variables 13 12 8 11 10 10 8 8 6 4 1 4

1Y Prediction Accuracy 0,54 0,67 0,37 0,58 0,49 0,49 0,37 0,37 0,86 0,94 0,91 0,93

6M Prediction Accuracy 0,50 0,34 0,43 0,67 0,53 0,53 0,43 0,39 0,67 0,83 0,81 0,81

1D Prediction Accuracy 0,46 0,48 0,49 0,49 0,49 0,49 0,49 0,50 0,48 0,50 0,49 0,51

CAPITEC Variable Selection

1 Year 6 Months 1 Day

Link K K1 ITD ITU Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

LOGIT ROE_GARCH_BB Discount_360D_CS 1000 749 25 724 0.939 544 0 33 0 511 0.939 1.000 0 0.061 0.000 0.939

LOGIT Discount_360D_BB Discount_GARCH_CS 1000 749 24 725 0.938 566 0 35 0 531 0.938 1.000 0 0.062 0.000 0.938

LOGIT Discount_LTVol_BB Discount_GARCH_CS 1000 749 24 725 0.938 566 0 35 0 531 0.938 1.000 0 0.062 0.000 0.938

LOGIT Discount_GARCH_CS 1000 749 24 725 0.938 566 0 35 0 531 0.938 1.000 0 0.062 0.000 0.938

KNN 3 ROE_LTVol_BB Discount_LTVol_CS 1000 749 24 725 0.928 582 0 42 0 540 0.928 1.000 0.000 0.072 0.000 0.928

LOGIT ROE_LTVol_BB 1000 749 24 725 0.928 582 0 42 0 540 0.928 1.000 0 0.072 0.000 0.928

LOGIT Discount_LTVol_CS 1000 749 24 725 0.926 583 0 43 0 540 0.926 1.000 0 0.074 0.000 0.926

IND ROE_360D_CS 1000 0.909 594 0 54 0 540 0.909 1.000 0.000 0.091 0.000 0.909

KNN 3 ROE_LTVol_BB Discount_360D_CS 1000 749 24 725 0.904 582 10 32 24 516 0.942 0.956 0.238 0.055 0.041 0.928

KNN 3 ROE_LTVol_BB 1000 749 24 725 0.885 582 0 42 25 515 0.925 0.954 0.000 0.072 0.043 0.928

KNN 3 Discount_GARCH_BB 1000 749 24 725 0.828 586 1 45 56 484 0.915 0.896 0.022 0.077 0.096 0.922

KNN 3 Discount_LTVol_CS 1000 749 24 725 0.827 583 2 41 60 480 0.921 0.889 0.047 0.070 0.103 0.926

IND ROE_LTVol_BB 1000 0.603 582 18 24 207 333 0.933 0.617 0.429 0.041 0.356 0.928

CAPITEC 1 Year Prediction Performance

Predictor Variables
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Table E.10 Capitec summary of 3-monthr return predictions including pairs of predictor variables 

 
 

Debt variable efficiency 
Table E.11 Capitec 6-month return predictor variable efficiency 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Link K K1 ITD ITU Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

LOGIT Discount_GARCH_BB Discount_GARCH_CS 1000 938 247 691 0.675 566 39 158 26 343 0.685 0.930 0.198 0.279 0.046 0.652

LOGIT Discount_LTVol_BB Discount_360D_CS 1000 938 254 684 0.669 589 16 195 0 378 0.660 1.000 0.076 0.331 0.000 0.642

KNN 3 ROE_360D_BB Discount_LTVol_CS 1000 938 254 684 0.659 583 105 100 99 279 0.736 0.738 0.512 0.172 0.170 0.648

LOGIT Discount_GARCH_CS ROE_GARCH_CS 1000 938 247 691 0.654 566 1 196 0 369 0.653 1.000 0.005 0.346 0.000 0.652

LOGIT Discount_GARCH_CS 1000 938 247 691 0.652 566 0 197 0 369 0.652 1.000 0.000 0.348 0.000 0.652

LOGIT Discount_LTVol_CS 1000 938 254 684 0.648 583 0 205 0 378 0.648 1.000 0.000 0.352 0.000 0.648

LOGIT CAPM_3MER 1000 938 254 684 0.636 594 0 216 0 378 0.636 1.000 0.000 0.364 0.000 0.636

IND ROE_360D_CS 1000 0.636 594 0 216 0 378 0.636 1.000 0.000 0.364 0.000 0.636

IND ROE_LTVol_CS 1000 0.636 594 0 216 0 378 0.636 1.000 0.000 0.364 0.000 0.636

KNN 3 Discount_360D_CS ROE_GARCH_CS 1000 938 254 684 0.631 594 114 102 117 261 0.719 0.690 0.528 0.172 0.197 0.636

KNN 3 Discount_GARCH_CS 1000 938 247 691 0.625 566 45 152 60 309 0.670 0.837 0.228 0.269 0.106 0.652

KNN 3 Discount_GARCH_BB 1000 938 254 684 0.608 586 65 143 87 291 0.671 0.770 0.312 0.244 0.148 0.645

KNN 3 ROE_360D_BB 1000 938 254 684 0.593 594 119 97 145 233 0.706 0.616 0.551 0.163 0.244 0.636

IND ROE_LTVol_BB 1000 0.486 582 65 139 160 218 0.611 0.577 0.319 0.239 0.275 0.649

Predictor Variables

CAPITEC 3 Months Prediction Performance

K K1 Acc TSS TN FP FN TP Prec Sens Spec FPR FNR CB

CS 1000 875 0.285 594 80 33 392 89 0.730 0.185 0.708 0.056 0.660 0.81

BB 1000 875 0.256 594 53 60 382 99 0.623 0.206 0.469 0.101 0.643 0.81

CAPM 1000 875 0.310 594 104 9 401 80 0.899 0.166 0.920 0.015 0.675 0.81

ALL 1000 875 0.200 594 48 65 410 71 0.522 0.148 0.425 0.109 0.690 0.81

BBCS 1000 875 0.251 594 48 65 380 101 0.608 0.210 0.425 0.109 0.640 0.81

CAPMCS 1000 875 0.237 594 80 33 420 61 0.649 0.127 0.708 0.056 0.707 0.81

CAPMBB 1000 875 0.200 594 48 65 410 71 0.522 0.148 0.425 0.109 0.690 0.81

CAPITEC 6M Variable efficiency
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F. R-CODE 

DataPrep 

Data preparation function 

DataPrep 

function (HAR,Train)  

{ 

# ==INPUTS ==  

# HAR:    Input matrix of data  

# Train:  The length of time-series observations to train GARCH and LOGIT 

 

# Eventually aim to remove K such that Garch model beigns 1 step update when Credit Spreads h

ave values 

# First Bond Issue Date on the Bond Info for particular company 

K <- Train 

 

# Declaring Variables as per BLOOMBERG CODES 

Share_Price <- HAR[,"PX_LAST"] 

JSE_Price <- HAR[,"JSE40_PX_LAST"] 

RFR <- HAR[,"SWAP_RATE"] 

 

# creating Daily Log Return Series 

ELR_1D <- NULL 

LR_1D <- NULL 

MR_1D <- NULL 

DMER <- NULL 

 

# output vector for garch (1,1) volatility of daily share returns 

SigmaE <- NULL 

LTVol <- NULL 

 

# Null Vectors for Excess Returns on The Market and Excess Returns Predicted by CAPM 

Market_1YER <- NULL 

Market_6MER <- NULL 

Market_3MER <- NULL    

Market_1MER <- NULL 

Market_1WER <- NULL 

 

Beta <- NULL    # Estimated Beta Coefficient 

Alpha <- NULL 

### daily market and Share returns plus excess log return ### 

for (i in 2:nrow(HAR)) 

 { 

 ELR_1D[i] <- log((Share_Price[i])/(Share_Price[i-1]))-(1/252)*RFR[i] 

 LR_1D[i] <- log((Share_Price[i])/(Share_Price[i-1])) 

 MR_1D[i] <- log((JSE_Price[i])/(JSE_Price[i-1])) 

 DMER[i] <- MR_1D[i]-(1/252)*RFR[i]  # Daily Market Excess Return 

 } 

  

### HISTORICAL MARKET RETURNS ###  

for (i in 252:length(DMER)) 

 { 

 Market_1YER[i] <- sum(DMER[(i-251):i]) 

 } 

 

for (i in 126:length(DMER)) 

 { 

 Market_6MER[i] <- sum(DMER[(i-125):i]) 

Stellenbosch University  https://scholar.sun.ac.za



139 
 

 }  

 

for (i in 63:length(DMER)) 

 { 

 Market_3MER[i] <- sum(DMER[(i-62):i]) 

 } 

 

for (i in 22:length(DMER)) 

 { 

 Market_1MER[i] <- sum(DMER[(i-21):i]) 

 } 

 

for (i in 5:length(DMER)) 

 { 

 Market_1WER[i] <- sum(DMER[(i-4):i]) 

 } 

 

### GARCH ### 

  

for (i in 1:(nrow(HAR)-K)) 

 { 

 Vol_Model <- garchFit(formula=~garch(1,1),data=LR_1D[2:(K+i)],trace=FALSE) 

 Vol_Pred1 <- predict(Vol_Model,n.ahead=100)[,"standardDeviation"]*sqrt(252) 

 Vol_Pred2 <- predict(Vol_Model,n.ahead=1)[,"standardDeviation"]*sqrt(252) 

 SigmaE[K+i] <- tail(Vol_Pred2,n=1) 

 LTVol[K+i] <- tail(Vol_Pred1,n=1) 

 }  

 

### FORWARD REALIZED RETURNS ### 

 

# Realized following day log return 

ER_1D <- rep(0,nrow(HAR)) 

for (i in 1:(nrow(HAR)-1)) 

 { 

 ER_1D[i] <-ELR_1D[i+1]  

 } 

# Realized following 1W log return 

ER_1W <- rep(0,nrow(HAR)) 

for (i in 1:(nrow(HAR)-5)) 

 { 

 ER_1W[i] <-sum(ELR_1D[(1+i):(5+i)])  

 } 

# Realized following 1M log return 

ER_1M <- rep(0,nrow(HAR)) 

for (i in 1:(nrow(HAR)-21)) 

 { 

 ER_1M[i] <-sum(ELR_1D[(1+i):(21+i)])  

 } 

# Realized following 3M log return 

ER_3M <- rep(0,nrow(HAR)) 

for (i in 1:(nrow(HAR)-63)) 

 { 

 ER_3M[i] <-sum(ELR_1D[(1+i):(63+i)])  

 } 

 

# Realized following 6M log return 

ER_6M <- rep(0,nrow(HAR)) 

for (i in 1:(nrow(HAR)-126)) 

 { 

 ER_6M[i] <-sum(ELR_1D[(1+i):(126+i)])  

 } 

# Realized following 1Y log return 
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ER_1Y <- rep(0,nrow(HAR)) 

for (i in 1:(nrow(HAR)-252)) 

 { 

 ER_1Y[i] <-sum(ELR_1D[(1+i):(252+i)])  

 } 

 

### CAPM ESTIMATES ###  

   

for (j in K:nrow(HAR)) 

 { 

# linear regression to estimate beta using the daily returns on the market and the stock 

 md1 <- lm(ELR_1D[(j-K+1):j]~DMER[(j-K+1):j]) 

 Beta[j] <- md1$coefficients[[2]] 

 Alpha[j] <- md1$coefficients[[1]] 

 } 

out1 <- cbind(Alpha,Beta,Market_1YER,Market_6MER,Market_3MER,Market_1MER,Market_1WER,DMER) 

 

### RECOMBINING RESULTS AND DATA ### 

# Combining the realized future returns and original data 

#HAR <- cbind(HAR,ELR_1D,LR_1D,MR_1D,SigmaE,LTVol,ER_1D,ER_1W,ER_1M,ER_3M,ER_6M,ER_1Y) 

out2 <- cbind(ELR_1D,LR_1D,MR_1D,SigmaE,LTVol,ER_1D,ER_1W,ER_1M,ER_3M,ER_6M,ER_1Y) 

out3 <- cbind(HAR,out2,out1) 

 

# Chopping of the 1st K and last 252 observations for which we do not have realized returns 

out4 <- out3[((K+1):(nrow(out3)-252)),] 

out5 <- CAPM(out4) 

return(out5) 

} 
 

CAPM 

Capital Asset Pricing Model return estimates 

CAPM 

function (DataSet)  

{ 

# prepare the alternative which is to compare against the CAPM model for future returns 

# Alpha and Beta determined in Data Prep 

# along with Historical Market Excess returns over different horizons 

DS <- DataSet 

 

# Null Vectors for Excess Returns on The Market and Excess Returns Predicted by CAPM 

Market_1YER <- DS[,"Market_1YER"]     

Market_6MER <- DS[,"Market_6MER"] 

Market_3MER <- DS[,"Market_3MER"] 

Market_1MER <- DS[,"Market_1MER"] 

Market_1WER <-DS[,"Market_1WER"] 

DMER <- DS[,"DMER"] 

Beta <- DS[,"Beta"] # Estimateed Beta Coefficient    

Alpha <- DS[,"Alpha"] 

 

CAPM_1YER <- NULL 

CAPM_6MER <- NULL     

CAPM_3MER <- NULL   

CAPM_1MER <- NULL 

CAPM_1WER <- NULL 

CAPM_1DER <- NULL 

 

AVM_1YER <- NULL 

AVM_6MER <- NULL 
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AVM_3MER <- NULL 

AVM_1MER <- NULL 

AVM_1WER <- NULL 

AVM_1DER <- NULL 

 

# now create average Market Excess return over previous lag 

for (i in 1:nrow(DS)) 

{ 

if (i > 252){AVM_1YER[i] <- mean(Market_1YER[i-252:i]) 

 AVM_6MER[i] <- mean(Market_6MER[i-252:i]) 

 AVM_3MER[i] <- mean(Market_3MER[i-252:i])} 

else{AVM_1YER[i] <- mean(Market_1YER[1:i]) 

AVM_6MER[i] <- mean(Market_6MER[1:i]) 

AVM_3MER[i] <- mean(Market_3MER[1:i])} 

 

if (i > 126){AVM_1MER[i] <- mean(Market_1MER[i-126:i])} 

else{AVM_1MER[i] <- mean(Market_1MER[1:i])} 

 

if (i > 22){AVM_1WER[i] <- mean(Market_1WER[i-22:i])} 

else{AVM_1WER[i] <- mean(Market_1WER[1:i])} 

if (i > 5){AVM_1DER[i] <- mean(DMER[i-5:i])} 

else{AVM_1DER[i] <- mean(DMER[1:i])}  

} 

 

CAPM_1YER <- Beta*AVM_1YER+Alpha*252 

CAPM_6MER <- Beta*AVM_6MER+Alpha*126 

CAPM_3MER <- Beta*AVM_3MER+Alpha*63 

CAPM_1MER <- Beta*AVM_1MER+Alpha*21 

CAPM_1WER <- Beta*AVM_1WER+Alpha*5 

CAPM_1DER <- Beta*AVM_1DER+Alpha 

 

out1 <- cbind(CAPM_1YER,CAPM_6MER,CAPM_3MER,CAPM_1MER,CAPM_1WER,CAPM_1DER) 

out2 <- cbind(DataSet,out1)  

out2  

} 

Structural model functions 

Black-Scholes Call option price 

BSCall 

function (V,F,Sigma,r,T)  

{ 

# Function that prices BS price of a Call option 

# ==INPUTS== 

# V:  Current asset price 

# F:  Strike price 

# Sigma: Volatility of asset returns 

# r:  risk-free rate 

# T:  Time-to-maturity on option 

 

# Outputs 

# The value of a call C under the BS formula 

d1 <-(1/(Sigma*sqrt(T)))*(log(V/F)+(r+0.5*(Sigma^2))*T) 

d2 <- d1-Sigma*sqrt(T) 

C <- V*pnorm(d1)-F*exp(-r*T)*pnorm(d2) 

return(C) 

} 

 

Discount from PD 
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Merton.v1 

function (E,SigmaE,r,T,F,PD)  

{ 

# Function to solve for Merton parameters {V,Sigma} using PD as an input 

# This version uses Risk-neutral inputs 

 

# ==INPUTS== 

# E:    Equity price 

# r:    Risk-free rate 

# T:    Time to expiration 

# F:    Facevalue of debt outstanding 

# SigmaE:   Volatility of equity 

# PD:    Risk-neutral Probability of Default 

 

# ==OUTPUTS== 

# V:    Implied Asset value 

# SigmaV:   Implied volatility of asset value 

# L:    Degree of leverage 

# Et:    Implied Equity value 

# DER:    Discount Excess Return 

 

F <- F*exp(r*T) 

# we now adapt the set of simultaneous equations to solve from a given PD 

SimEqMerton <- function(x) 

 { 

 d1 <-(1/(x[2]*sqrt(T)))*(log(x[1]/F)+(r+0.5*(x[2]^2))*T) 

 d2 <- d1-x[2]*sqrt(T) 

 

 y <- numeric(2) 

 y[1] <- (PD-pnorm(-d2))*10000 # to uses risk-neutral pd  

 y[2] <- (SigmaE*E-(x[1]*x[2]*pnorm(d1))) # to solve for V and sigmaV 

 y 

 } 

 

# Starting guesses for V and SigmaV as per Crosbie & Bohn 

GuessV <- E+F 

GuessSigmaV <- SigmaE*(E/(E+F)) 

xstart <- c(GuessV,GuessSigmaV) 

solutions <- nleqslv(xstart,SimEqMerton,method="Newton",control=list(allowSingular=TRUE,maxit

=10000,ftol=0.001)) 

V_M1 <-solutions$x[1] # estimate of V 

SigmaV_M1 <- solutions$x[2] # estimate of SigmaV 

L_M1 <-  (exp(-r*T)*F)/V_M1 

d1 <- (1/(SigmaV_M1*sqrt(T)))*(log(V_M1/F)+(r+0.5*(SigmaV_M1^2))*T) 

d2 <- d1-SigmaV_M1*sqrt(T) 

RR_M1 <- exp(-r*T)*(V_M1/F)*(pnorm(-d1)/pnorm(-d2)) 

Et_M1 <- BSCall(V_M1,F,SigmaV_M1,r,T) 

Discount <- (Et_M1-E)/E 

DER <- Discount-r   # Discount Excess Return over risk-free rate 

TermCD_M1 <- solutions$termcd[1] 

PD_M1 <-pnorm(-d2) 

output <- cbind(V_M1,SigmaV_M1,L_M1,RR_M1,Et_M1,Discount,DER,TermCD_M1,PD_M1) 

output 

} 

 

ROE from PD 

Merton.v2 

function (E,SigmaE,r,T,F,PD)  

{ 

# Function to solve for Merton parameters {V,Sigma,Mu} using PD,Et,Vol as an input 
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# ==INPUTS== 

# E:    Equity price 

# r:    Risk-free rate 

# T:    Time to expiration 

# F:    Facevalue of debt outstanding 

# SigmaE:   Volatility of equity 

# PD:    Risk-neutral Probability of Default 

 

# ==OUTPUTS== 

# V:    Implied Asset value 

# SigmaV:   Implied volatility of asset value 

# L:    Degree of leverage 

# Et:    Implied Equity value 

# Mu:    Real-World Asset drift rate 

# EAD:   Excess Asset Drift Rate 

# ROE:    Excess Return on Equity implied by EAD 

 

F <- F*exp(r*T) 

# we now adapt the set of simultaneous equations to solve from a given PD 

# x[3] is the Excess Asset Drift over risk-free rate 

SimEqMerton2 <- function(x) 

 { 

 d1 <- (1/(x[2]*sqrt(T)))*(log(x[1]/F)+((x[3]+r)+0.5*(x[2]^2))*T) 

 d2 <- d1-x[2]*sqrt(T) 

 y <- numeric(3) 

 y[1] <- (E-BSCall(x[1],F,x[2],x[3]+r,T)) 

 y[2] <- (SigmaE*E-x[1]*x[2]*pnorm(d1)) # to solve for V and sigmaV 

 y[3] <- (PD-pnorm(-d2))*1000 # to uses risk-neutral pd  

 y 

 } 

# Starting guesses for V and SigmaV as per Crosbie & Bohn 

GuessV <- E+F 

GuessSigmaV <- SigmaE*(E/(E+F)) 

GuessMu <- 0 

xstart <- c(GuessV,GuessSigmaV,GuessMu) 

solutions <- nleqslv(xstart,SimEqMerton2,method="Newton",control=list(allowSingular=TRUE,maxi

t=10000,ftol=0.001)) 

V_M2 <-solutions$x[1] # estimate of V 

SigmaV_M2 <- solutions$x[2] # estimate of SigmaV 

EAD <- solutions$x[3] 

Mu <- EAD+r 

L_M2 <-(exp(-r*T)*F)/V_M2 

d1 <- (1/(SigmaV_M2*sqrt(T)))*(log(V_M2/F)+(Mu+0.5*(SigmaV_M2^2))*T) 

d2 <- d1-SigmaV_M2*sqrt(T) 

RR_M2 <- exp(-r*T)*(V_M2/F)*(pnorm(-d1)/pnorm(-d2)) 

Et_M2 <- BSCall(V_M2,F,SigmaV_M2,Mu,T) 

TermCD_M2 <- solutions$termcd[1] 

PD_M2 <-pnorm(-d2) 

ROE <- EAD*(V_M2/E) 

output <- cbind(V_M2,SigmaV_M2,L_M2,RR_M2,Et_M2,Mu,EAD,ROE,TermCD_M2,PD_M2) 

output 

} 

 

PD models estimates applied to dataset 

 

Merton.v4 

function (DataMatrix,Maturity)  

{ 

# ==INPUTS ==  

# DataMatrix:     Input matrix of data  
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# Maturity:    Time to Maturity on debt/PD 

T <- Maturity 

output4 <- DataMatrix 

#DataSet <- DataPrep(DataMatrix) 

 

# Merton Results on Test Set  

Share_Price <- DataMatrix[,"PX_LAST"] 

risk_free_rate <- DataMatrix[,"SWAP_RATE"] 

Vol_Class <- c("VOLATILITY_360D","LTVol","SigmaE") 

Vol_Names <- c("360D","LTVol","GARCH") 

CAPM_Returns <- c("CAPM_1YER","CAPM_6MER","CAPM_3MER","CAPM_1MER","CAPM_1WER","CAPM_1DER") 

CAPM_names <- c("1Y","6M","3M","1M","1W","1D") 

#dps <- HAR[,"TOT_DEBT_TO_COM_EQY"] 

dps <- DataMatrix[,"TOTAL_DEBT_PER_SHARE"] 

 

#PD_1YR <- DataMatrix[,"BB_1YR_DEFAULT_PROB"] 

#PD_4YR <- DataMatrix[ ,"BB_4Y_DEFAULT_PROB"] 

PD_5YR <- DataMatrix[,"BB_5Y_DEFAULT_PROB"] 

 

# if statements to control PD Matching based on T inputed by user 

if(T==1){ 

PD <- PD_1YR} 

else if (T==4){ 

PD <- PD_4YR} 

else{ 

PD <- PD_5YR} 

for (j in 1:length(Vol_Class)) 

{ 

Equity_Vol <- DataMatrix[,Vol_Class[j]] 

output1 <- Merton.v1(Share_Price[1],Equity_Vol[1],risk_free_rate[1],T,dps[1],PD[1]) 

output2 <- Merton.v2(Share_Price[1],Equity_Vol[1],risk_free_rate[1],T,dps[1],PD[1]) 

 

 for (i in 2:(nrow(DataMatrix))) 

  { 

  output1 <- rbind(output1,Merton.v1(Share_Price[i],Equity_Vol[i],risk_free_

rate[i],T,dps[i],PD[i])) 

  output2 <- rbind(output2,Merton.v2(Share_Price[i],Equity_Vol[i],risk_free_

rate[i],T,dps[i],PD[i])) 

  } 

varnames1 <- NULL 

varnames2 <- NULL 

aaa <- colnames(output1) 

bbb <- colnames(output2) 

  

 for(z in 1:length(aaa)) 

  { 

  varnames1[z] <- paste(aaa[z],Vol_Names[j],"BB",sep="_") 

  } 

   

 for(u in 1:length(bbb)) 

  { 

  varnames2[u] <- paste(bbb[u],Vol_Names[j],"BB",sep="_") 

  } 

   

colnames(output1) <- varnames1 

colnames(output2) <- varnames2  

output3 <- cbind(output1,output2) 

output4 <- cbind(output4,output3) 

} 

zz <- na.locf(output4,na.rm=TRUE) 

return(zz)  

} 
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Discount from Credit Spread (CS) 

MV.1 

function (E,SigmaE,r,T,F,CS)  

{ 

# Function to solve for Merton parameters {V,Sigma} using Credit Spread as an input 

# This version uses Risk-neutral inputs 

 

# ==INPUTS== 

# E:    Equity price 

# r:    Risk-free rate 

# T:    Time to expiration 

# F:    Facevalue of debt outstanding 

# SigmaE:   Volatility of equity 

# CS:    Credit Spread on Bond 

 

# ==OUTPUTS== 

# V:    Implied Asset value 

# SigmaV:   Implied volatility of asset value 

# L:    Degree of leverage 

# Et:    Implied Equity value 

# DER:    Discount Excess Return 

 

#F <- F*exp(r*T) 

# we now adapt the set of simultaneous equations to solve from a given PD 

SimEqMerton <- function(x) 

 { 

 d1 <-(1/(x[2]*sqrt(T)))*(log(x[1]/F)+(r+0.5*(x[2]^2))*T) 

 d2 <- d1-x[2]*sqrt(T) 

 Dt <- x[1]-BSCall(x[1],F,x[2],r,T) 

 S <- -((log(Dt/F))/T)-r 

 y <- numeric(2) 

 y[1] <- (CS-S)*1000 # to uses risk-neutral pd  

 y[2] <- (SigmaE*E-(x[1]*x[2]*pnorm(d1))) # to solve for V and sigmaV 

 y 

 } 

 

# Starting guesses for V and SigmaV as per Crosbie & Bohn 

GuessV <- E+F 

GuessSigmaV <- SigmaE*(E/(E+F)) 

xstart <- c(GuessV,GuessSigmaV) 

solutions <- nleqslv(xstart,SimEqMerton,method="Newton",control=list(allowSingular=TRUE,maxit

=10000,ftol=0.001)) 

V_M1 <-solutions$x[1] # estimate of V 

SigmaV_M1 <- solutions$x[2] # estimate of SigmaV 

L_M1 <-  (exp(-r*T)*F)/V_M1 

d1 <- (1/(SigmaV_M1*sqrt(T)))*(log(V_M1/F)+(r+0.5*(SigmaV_M1^2))*T) 

d2 <- d1-SigmaV_M1*sqrt(T) 

RR_M1 <- exp(-r*T)*(V_M1/F)*(pnorm(-d1)/pnorm(-d2)) 

Et_M1 <- BSCall(V_M1,F,SigmaV_M1,r,T) 

Discount <- (Et_M1-E)/E 

DER <- Discount-r   # Discount Excess Return over risk-free rate 

TermCD_M1 <- solutions$termcd[1] 

PD_M1 <-pnorm(-d2) 

Dt <- V_M1-BSCall(V_M1,F,SigmaV_M1,r,T) 

S_M1 <- -((log(Dt/F))/T)-r 

output <- cbind(V_M1,SigmaV_M1,L_M1,RR_M1,Et_M1,Discount,DER,TermCD_M1,PD_M1,Dt,S_M1) 

output 
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} 

 

ROE from credit Spreads 

MV.2 

function (E,SigmaE,r,T,F,CS)  

{ 

# Function to solve for Merton parameters {V,Sigma,Mu} using PD,Et,Vol as an input 

 

# ==INPUTS== 

# E:    Equity price 

# r:    Risk-free rate 

# T:    Time to expiration 

# F:    Facevalue of debt outstanding 

# SigmaE:   Volatility of equity 

# CS:    Credit Spread 

# ==OUTPUTS== 

# V:    Implied Asset value 

# SigmaV:   Implied volatility of asset value 

# L:    Degree of leverage 

# Et:    Implied Equity value 

# Mu:    Real-World Asset drift rate 

# EAD:   Excess Asset Drift Rate 

# ROE:    Excess Return on Equity implied by EAD 

F <- F*exp(r*T) 

# we now adapt the set of simultaneous equations to solve from a given PD 

# x[3] is the Excess Asset Drift over risk-free rate 

SimEqMerton2 <- function(x) 

 { 

 d1 <- (1/(x[2]*sqrt(T)))*(log(x[1]/F)+((x[3]+r)+0.5*(x[2]^2))*T) 

 d2 <- d1-x[2]*sqrt(T) 

 Dt <- x[1]-BSCall(x[1],F,x[2],x[3]+r,T) 

 S <- -((log(Dt/F))/T)-r 

 y <- numeric(3) 

 y[1] <- (E-BSCall(x[1],F,x[2],x[3]+r,T)) 

 y[2] <- (SigmaE*E-x[1]*x[2]*pnorm(d1)) # to solve for V and sigmaV 

 y[3] <- (CS-S)*1000 # to uses risk-neutral pd  

 y 

 } 

# Starting guesses for V and SigmaV as per Crosbie & Bohn 

GuessV <- E+F 

GuessSigmaV <- SigmaE*(E/(E+F)) 

GuessMu <- 0 

xstart <- c(GuessV,GuessSigmaV,GuessMu) 

solutions <- nleqslv(xstart,SimEqMerton2,method="Newton",control=list(allowSingular=TRUE,maxi

t=10000,ftol=0.001)) 

V_M2 <-solutions$x[1] # estimate of V 

SigmaV_M2 <- solutions$x[2] # estimate of SigmaV 

EAD <- solutions$x[3] 

Mu <- EAD+r 

L_M2 <-(exp(-r*T)*F)/V_M2 

d1 <- (1/(SigmaV_M2*sqrt(T)))*(log(V_M2/F)+(Mu+0.5*(SigmaV_M2^2))*T) 

d2 <- d1-SigmaV_M2*sqrt(T) 

RR_M2 <- exp(-r*T)*(V_M2/F)*(pnorm(-d1)/pnorm(-d2)) 

Et_M2 <- BSCall(V_M2,F,SigmaV_M2,Mu,T) 

TermCD_M2 <- solutions$termcd[1] 

PD_M2 <-pnorm(-d2) 

ROE <- EAD*(V_M2/E) 

Dt_M2 <- V_M2-Et_M2 

S_M2 <- -((log(Dt_M2/F))/T)-r 
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output <- cbind(V_M2,SigmaV_M2,L_M2,RR_M2,Et_M2,Mu,EAD,ROE,TermCD_M2,PD_M2,Dt_M2,S_M2) 

output 

} 

 

Results from structural models with credit spread input 

MV.4 

function (DataMatrix,Maturity)  

{ 

# ==INPUTS ==  

# DataMatrix:    Input matrix of data  

# Maturity:   Time to Maturity on debt/PD 

T <- Maturity 

output4 <- DataMatrix 

#DataSet <- DataPrep(DataMatrix) 

# Merton Results on Test Set  

Share_Price <- DataMatrix[,"PX_LAST"] 

risk_free_rate <- DataMatrix[,"SWAP_RATE"] 

Vol_Class <- c("VOLATILITY_360D","LTVol","SigmaE") 

Vol_Names <- c("360D","LTVol","GARCH") 

CAPM_Returns <- c("CAPM_1YER","CAPM_6MER","CAPM_3MER","CAPM_1MER","CAPM_1WER","CAPM_1DER") 

CAPM_names <- c("1Y","6M","3M","1M","1W","1D") 

#dps <- HAR[,"TOT_DEBT_TO_COM_EQY"] 

dps <- DataMatrix[,"TOTAL_DEBT_PER_SHARE"] 

CS <- DataMatrix[,"MC_SPREAD"] 

 

for (j in 1:length(Vol_Class)) 

{ 

Equity_Vol <- DataMatrix[,Vol_Class[j]] 

output1 <- MV.1(Share_Price[1],Equity_Vol[1],risk_free_rate[1],T,dps[1],CS[1]) 

output2 <- MV.2(Share_Price[1],Equity_Vol[1],risk_free_rate[1],T,dps[1],CS[1]) 

 

 for (i in 2:(nrow(DataMatrix))) 

  { 

output1 <- rbind(output1,MV.1(Share_Price[i],Equity_Vol[i],risk_free_rate[i],T,dps[i],CS[i])) 

output2 <- rbind(output2,MV.2(Share_Price[i],Equity_Vol[i],risk_free_rate[i],T,dps[i],CS[i])) 

  } 

varnames1 <- NULL 

varnames2 <- NULL 

aaa <- colnames(output1) 

bbb <- colnames(output2) 

  

 for(z in 1:length(aaa)) 

  { 

  varnames1[z] <- paste(aaa[z],Vol_Names[j],"CS",sep="_") 

  } 

   

 for(u in 1:length(bbb)) 

  { 

  varnames2[u] <- paste(bbb[u],Vol_Names[j],"CS",sep="_") 

  } 

   

colnames(output1) <- varnames1 

colnames(output2) <- varnames2  

output3 <- cbind(output1,output2) 

output4 <- cbind(output4,output3) 

} 

zz <- na.locf(output4,na.rm=TRUE) 

return(zz)  

} 
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Utility functions 

Confustion matrix to results vector 

Table_Results 

function (PredictionTable)  

{ 

PR <- PredictionTable 

# how to deal with table when results contain predictions of only 1 Direction 

TD <- dim(PR)  

# 1 Row of only "Down" predictions + 2 columns 

if(TD[1]==1 & TD[2]==2 & rownames(PR)[1]=="Down") 

 { 

 FP <-0 

 TP <-0 

 TN <-PR[1,1] 

 FN <-PR[1,2] 

 } 

# 1 Row of only "Up" predictions+ 2 columns 

else if(TD[1]==1 & TD[2]==2 & rownames(PR)[1]=="Up") 

 { 

 TN <- 0 

 FN <- 0 

 FP <-PR[1,1] 

 TP <-PR[1,2] 

 } 

# 2 rows + 1 column of only "Down" realizations   

else if(TD[1]==2 & TD[2]==1 & colnames(PR)[1]=="Down") 

 { 

 TN <- PR[1,1] 

 FP <-PR[2,1] 

 FN <- 0 

 TP <- 0 

 } 

# 2 rows + 1 column of only "Up" realizations 

else if(TD[1]==2 & TD[2]==1 & colnames(PR)[1]=="Up") 

 { 

 TN <- 0 

 FP <- 0 

 FN <- PR[1,1] 

 TP <- PR[2,1] 

 } 

# 1 Row + 1 Column both "Up" 

else if(TD[1]==1 & TD[2]==1 & colnames(PR)[1]=="Up" & rownames(PR)[1]=="Up") 

 { 

 TN <- 0 

 FP <- 0 

 FN <- 0 

 TP <- PR[1,1] 

 }  

# 1 Row + 1 Column both "Down" 

else if(TD[1]==1 & TD[2]==1 & colnames(PR)[1]=="Down" & rownames(PR)[1]=="Down") 

 { 

 TN <- PR[1,1] 

 FP <- 0 

 FN <- 0 

 TP <- 0 

 }  

# 1 Row prediction only "Down" + 1 Column only "Up" realized 

else if(TD[1]==1 & TD[2]==1 & colnames(PR)[1]=="Up" & rownames(PR)[1]=="Down") 

 { 
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 TN <- 0 

 FP <- 0 

 FN <- PR[1,1] 

 TP <- 0 

 }  

# 1 Row prediction only "Up" + 1 Column only "Down" realized 

else if(TD[1]==1 & TD[2]==1 & rownames(PR)[1]=="Up" & colnames(PR)[1]=="Down") 

 { 

 TN <- 0 

 FP <- PR[1,1] 

 FN <- 0 

 TP <- 0 

 }   

# Assuming 2 rows + 2 columns  

else{  

 FP <-PR[2,1] 

 TP <-PR[2,2] 

 TN <-PR[1,1] 

 FN <-PR[1,2] 

 } 

# end of for loop and extracting TP, FP,TN,FN & Accuracy from prediction table Merton  

# Prediction Robustness Metrics  

Prec <- TP/(TP+FP) 

Sens <- TP/(TP+FN) 

Spec <- TN/(TN+FP) 

FPR <- FP/(TP+TN+FN+FP) 

FNR <- FN/(TP+TN+FN+FP) 

# Class Balance: Proportion of upwards movements actually realized in test prediction set 

CB <- (TP+FN)/(TP+TN+FN+FP) 

TSS <- TP+FN+FP+TN 

output <- cbind(TSS,TN,FP,FN,TP,Prec,Sens,Spec,FPR,FNR,CB) 

return(output) 

} 

 

Predictor variable efficiency (PVE)  

PVE 

function (Results,Target_Variable,Train)  

{ 

# Test function to see if transformation of variables to option is information productive 

# Predictor Variable Efficiency (PVE) 

 

K <- Train 

nn <- nrow(Results) 

Direction <- rep("Down",nn) 

TV <- Results[,Target_Variable] 

# Predictors from BB created Variables 

P1 <- Results[,"PX_LAST"] 

P2 <- Results[,"TOTAL_DEBT_PER_SHARE"] 

P3 <- Results[,"SWAP_RATE"] 

P4 <- Results[,"MC_SPREAD"] 

P5 <- Results[,"BB_5Y_DEFAULT_PROB"] 

P6 <- Results[,"JSE40_PX_LAST"] 

Direction[TV>0] <-"Up" 

if(Target_Variable=="ER_1Y"){KA <- 251} 

else if(Target_Variable=="ER_6M"){KA <- 125} 

else if(Target_Variable=="ER_3M"){KA <- 62} 

else if(Target_Variable=="ER_1M"){KA <- 20} 

else if(Target_Variable=="ER_1W"){KA <- 4} 

else if(Target_Variable=="ER_1D"){KA <- 0} 
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K1 <- K-KA 

#Credit Spread Variables 

DataMat <- cbind(Results,Direction,P1,P2,P3,P4) 

glm.pred <- rep("Down",(nn-K)) 

for (i in K:(nn-1)) 

 { 

 df_train <-DataMat[1:(i-KA),] 

 df_test <- DataMat[(i+1),]  

 glm.fit <- glm(Direction~P1+P2+P3+P4,family=binomial,data=df_train) 

 glm.probs <-predict(glm.fit,df_test,type="response") 

 if(glm.probs>.5){glm.pred[i-K+1]<-"Up"} 

 } 

Direct <- DataMat[((K+1):nn),"Direction"] 

t1<-table(glm.pred,Direct) 

Tc <- mean(glm.pred==Direct) 

Acc <- Tc 

TR <- Table_Results(t1) 

output <- cbind(K,K1,Acc,TR) 

rownames(output)<-"CS" 

#BB Variables 

DataMat <- cbind(Results,Direction,P1,P2,P3,P5) 

glm.pred <- rep("Down",(nn-K)) 

for (i in K:(nn-1)) 

 { 

 df_train <-DataMat[1:(i-KA),] 

 df_test <- DataMat[(i+1),]  

 glm.fit <- glm(Direction~P1+P2+P3+P5,family=binomial,data=df_train) 

 glm.probs <-predict(glm.fit,df_test,type="response") 

 if(glm.probs>.5){glm.pred[i-K+1]<-"Up"} 

 } 

Direct <- DataMat[((K+1):nn),"Direction"] 

t1<-table(glm.pred,Direct) 

Tc <- mean(glm.pred==Direct) 

Acc <- Tc 

TR <- Table_Results(t1) 

output1 <- cbind(K,K1,Acc,TR) 

rownames(output1)<-"BB" 

#CAPM 

DataMat <- cbind(Results,Direction,P1,P6) 

glm.pred <- rep("Down",(nn-K)) 

for (i in K:(nn-1)) 

 { 

 df_train <-DataMat[1:(i-KA),] 

 df_test <- DataMat[(i+1),]  

 glm.fit <- glm(Direction~P1+P6,family=binomial,data=df_train) 

 glm.probs <-predict(glm.fit,df_test,type="response") 

 if(glm.probs>.5){glm.pred[i-K+1]<-"Up"} 

 } 

Direct <- DataMat[((K+1):nn),"Direction"] 

t1<-table(glm.pred,Direct) 

Tc <- mean(glm.pred==Direct) 

Acc <- Tc 

TR <- Table_Results(t1) 

output2 <- cbind(K,K1,Acc,TR) 

rownames(output2)<-"CAPM" 

#ALL 

DataMat <- cbind(Results,Direction,P1,P2,P3,P4,P5,P6) 

glm.pred <- rep("Down",(nn-K)) 

 

for (i in K:(nn-1)) 

 { 

 df_train <-DataMat[1:(i-KA),] 
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 df_test <- DataMat[(i+1),]  

 glm.fit <- glm(Direction~P1+P2+P3+P4+P5+P6,family=binomial,data=df_train) 

 glm.probs <-predict(glm.fit,df_test,type="response") 

 if(glm.probs>.5){glm.pred[i-K+1]<-"Up"} 

 } 

Direct <- DataMat[((K+1):nn),"Direction"] 

t1<-table(glm.pred,Direct) 

Tc <- mean(glm.pred==Direct) 

Acc <- Tc 

TR <- Table_Results(t1) 

output3 <- cbind(K,K1,Acc,TR) 

rownames(output3)<-"ALL" 

 

# BB+CS 

DataMat <- cbind(Results,Direction,P1,P2,P3,P4,P5) 

glm.pred <- rep("Down",(nn-K)) 

 

for (i in K:(nn-1)) 

 { 

 df_train <-DataMat[1:(i-KA),] 

 df_test <- DataMat[(i+1),]  

 glm.fit <- glm(Direction~P1+P2+P3+P4+P5,family=binomial,data=df_train) 

 glm.probs <-predict(glm.fit,df_test,type="response") 

 if(glm.probs>.5){glm.pred[i-K+1]<-"Up"} 

 } 

 

Direct <- DataMat[((K+1):nn),"Direction"] 

t1<-table(glm.pred,Direct) 

Tc <- mean(glm.pred==Direct) 

Acc <- Tc 

TR <- Table_Results(t1) 

output4 <- cbind(K,K1,Acc,TR) 

rownames(output4)<-"BBCS" 

# CAPM+CS 

DataMat <- cbind(Results,Direction,P1,P2,P3,P4,P6) 

glm.pred <- rep("Down",(nn-K)) 

 

for (i in K:(nn-1)) 

 { 

 df_train <-DataMat[1:(i-KA),] 

 df_test <- DataMat[(i+1),]  

 glm.fit <- glm(Direction~P1+P2+P3+P4+P6,family=binomial,data=df_train) 

 glm.probs <-predict(glm.fit,df_test,type="response") 

 if(glm.probs>.5){glm.pred[i-K+1]<-"Up"} 

 } 

 

Direct <- DataMat[((K+1):nn),"Direction"] 

t1<-table(glm.pred,Direct) 

Tc <- mean(glm.pred==Direct) 

Acc <- Tc 

TR <- Table_Results(t1) 

output5 <- cbind(K,K1,Acc,TR) 

rownames(output5)<-"CAPMCS" 

# CAPM+BB 

DataMat <- cbind(Results,Direction,P1,P2,P3,P5,P6) 

glm.pred <- rep("Down",(nn-K)) 

 

for (i in K:(nn-1)) 

 { 

 df_train <-DataMat[1:(i-KA),] 

 df_test <- DataMat[(i+1),]  

 glm.fit <- glm(Direction~P1+P2+P3+P5+P6,family=binomial,data=df_train) 
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 glm.probs <-predict(glm.fit,df_test,type="response") 

 if(glm.probs>.5){glm.pred[i-K+1]<-"Up"} 

 } 

Direct <- DataMat[((K+1):nn),"Direction"] 

t1<-table(glm.pred,Direct) 

Tc <- mean(glm.pred==Direct) 

Acc <- Tc 

TR <- Table_Results(t1) 

output6 <- cbind(K,K1,Acc,TR) 

rownames(output6)<-"CAPMBB" 

output7 <- rbind(output,output1,output2,output3,output4,output5,output6) 

output8 <- round(output7,digits=3) 

return(output8) 

} 
 

TermCD Check for convergence to solutions in solving for structural model parameters 

TermCD_Check 

function (DataSet)  

{ 

# function follows Merton.v9 currently 

# First goal is to check TermCD on all relevant ROE and Discount From all PDs 

DS <- DataSet 

Models <- c("TermCD_M1_360D_BB","TermCD_M1_LTVol_BB","TermCD_M1_GARCH_BB", 

 "TermCD_M2_360D_BB","TermCD_M2_LTVol_BB","TermCD_M2_GARCH_BB", 

 "TermCD_M1_360D_CS","TermCD_M1_LTVol_CS","TermCD_M1_GARCH_CS", 

 "TermCD_M2_360D_CS","TermCD_M2_LTVol_CS","TermCD_M2_GARCH_CS") 

 

# create 1st row vector for Model 1    

A <- table(DS[,Models[1]]) 

AA <- dimnames(A) 

output1 <- rep(0,10) 

for (k in 1:length(AA[[1]])) 

 { 

 output1[eval(parse(text=AA[[1]][k]))] <-A[k] 

 } 

# Reiterate over all models binding the row output each time 

for (j in 2:length(Models)) 

{ 

C <- table(DS[,Models[j]]) 

CC <- dimnames(C) 

output3 <- rep(0,10) 

for (i in 1:length(CC[[1]])) 

 { 

 output3[eval(parse(text=CC[[1]][i]))] <-C[i] 

 }   

output1 <- rbind(output1,output3) 

} 

rownames(output1) <- Models 

colnames(output1) <- c(1:10) 

return(output1) 

} 
 

Stand-alone performance evaluation 

Indicator function 

Indicator 
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function (DS,x1,x2,K)  

{ 

# == INPUTS == # 

# DS: Data Set 

# x1:  Predictions 

# x2:  Actual 

Prefix <- substr(x1,start=1,stop=3) 

NC <- nchar(x1) 

if(Prefix=="ROE") 

{Label <- "TermCD_M2" 

Suffix <- substr(x1,start=5,stop=NC)} 

else if(Prefix=="Dis") 

{Label <-"TermCD_M1" 

Suffix <- substr(x1,start=10,stop=NC)} 

if(Prefix=="CAP"){DM <- DS} 

else{TermCD <- paste(Label,Suffix,sep="_") 

DM <- DS[DS[,TermCD]==1,]} 

NT <- nrow(DM) 

DataMat <- DM[((K+1):NT),] 

x <- DataMat[,x1] 

y <- DataMat[,x2] 

# Indicator of how well predictions split the positive and negative returns 

N <- length(x) # Total number of predictions made 

 

Actual_Indicator <- rep("Down",N) 

Actual_Indicator[y>0] <- "Up" 

Pred_Indicator <- rep("Down",N) 

Pred_Indicator[x>0] <- "Up" 

 

PR <- table(Pred_Indicator,Actual_Indicator) 

Acc <- mean(Pred_Indicator==Actual_Indicator) 

TR <- Table_Results(PR) 

 

AA <- cbind(K,Acc,TR)  

AA 

} 

Indicator Results 

Indicator_List 

function (Results,K)  

{ 

# function to list the indicator around fixed value of zero for all models against different 

return horizons 

Target_Variable <- c("ER_1Y","ER_6M","ER_3M","ER_1M","ER_1W","ER_1D") 

CAPM <- c("CAPM_1YER","CAPM_6MER","CAPM_3MER","CAPM_1MER","CAPM_1WER","CAPM_1DER") 

Models <- c("CAPM", 

 "Discount_360D_BB","Discount_LTVol_BB","Discount_GARCH_BB", 

 "ROE_360D_BB","ROE_LTVol_BB","ROE_GARCH_BB", 

 "Discount_360D_CS","Discount_LTVol_CS","Discount_GARCH_CS", 

 "ROE_360D_CS","ROE_LTVol_CS","ROE_GARCH_CS") 

    

ExRet_1Y <- NULL 

ExRet_6M <- NULL 

ExRet_3M <- NULL 

ExRet_1M <- NULL 

ExRet_1W <- NULL 

ExRet_1D <- NULL 

ListNames <- NULL 

 

## For loop over each Target Variable 
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for (m in 1:length(Target_Variable)) 

{ 

# initial run over CAPM 

TVar <- Target_Variable[m] 

Pr <- CAPM[m] 

output <- Indicator(Results,Pr,TVar,K) 

rownames(output) <- CAPM[m] 

for (h in 2:length(Models)) 

{ 

Pr <- Models[h] 

output1 <- Indicator(Results,Pr,TVar,K) 

rownames(output1) <- Models[h] 

output <- rbind(output,output1) 

} 

 

output2<- output[sort.list(output[,2],decreasing=TRUE),] 

output3<- round(output2,digits=3) 

if(m==1){ExRet_1Y <-output3} 

else if(m==2){ExRet_6M <- output3} 

else if(m==3){ExRet_3M <- output3} 

else if(m==4){ExRet_1M <- output3} 

else if(m==5){ExRet_1W <- output3} 

else{ExRet_1D <- output3} 

ListNames[m] <- paste(Target_Variable[m],"Indicator")  

}  

outlist <- list(ExRet_1Y,ExRet_6M,ExRet_3M,ExRet_1M,ExRet_1W,ExRet_1D) 

names(outlist) <- ListNames  

return(outlist) 

} 
 

Logistic regression functions 

Logistic regression predictions for single predictor variable 

Logit 

function (DS,Target_Variable,Predictor,Train)  

{ 

NC <- nchar(Predictor) 

Prefix <- substr(Predictor,start=1,stop=3) 

if(Prefix=="ROE") 

{Label <- "TermCD_M2" 

Suffix <- substr(Predictor,start=5,stop=NC)} 

else if(Prefix=="Dis") 

{Label <-"TermCD_M1" 

Suffix <- substr(Predictor,start=10,stop=NC)} 

if(Prefix=="CAP"){Results <- DS} 

else{ 

TermCD <- paste(Label,Suffix,sep="_") 

Results <- DS[DS[,TermCD]==1,]} 

 

K <- Train 

nn <- nrow(Results) 

Direction <- rep("Down",nn) 

TV <- Results[,Target_Variable] 

Pred <- Results[,Predictor] 

Direction[TV>0] <-"Up" 

 

DataMat <- cbind(Results,Direction,Pred) 

glm.pred <- rep("Down",(nn-K)) 

B0 <- NULL 
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B1 <- NULL 

Threshold <- NULL 

 

if(Target_Variable=="ER_1Y"){KA <- 251} 

else if(Target_Variable == "ER_6M"){KA <- 125} 

else if(Target_Variable == "ER_3M"){KA <- 62} 

else if(Target_Variable == "ER_1M"){KA <- 20} 

else if(Target_Variable == "ER_1W"){KA <- 4} 

else if(Target_Variable == "ER_1D"){KA <- 0} 

 

# in 1step forward update fashion 

Signal <- rep(0,nn) 

Signal[Results[,Target_Variable]>0] <- 1 

ss <- length(Signal) 

TD <- rep(0,ss) 

TU <- rep(0,ss) 

  

for (i in 1:ss) 

 { 

 TU[i] <- sum(Signal[1:i]) 

 TD[i] <- i-TU[i] 

 } 

 

for (i in K:(nn-1)) 

 { 

 df_train <-DataMat[(1:(i-KA)),] 

 df_test <- DataMat[(i+1),]  

 glm.fit <- glm(Direction~Pred,family=binomial,data=df_train) 

 B0[i] <- glm.fit$coefficients[[1]] 

 B1[i] <- glm.fit$coefficients[[2]] 

 Threshold[i] <- (log(1)-B0[i])/B1[i] 

 glm.probs <-predict(glm.fit,df_test,type="response") 

 if(glm.probs>.5){glm.pred[i-K+1]<-"Up"} 

 } 

 

Direct <- DataMat[((K+1):nn),"Direction"] 

t1<-table(glm.pred,Direct) 

Tc <- mean(glm.pred==Direct) 

outlist <- list("Prediction Table"=t1,"Total Correct"=Tc,"Threshold"=Threshold,"TU"=TU,"TD"=T

D) 

return(outlist) 

} 
 

Logistic Regression results for single predictor variable 

Logit_Results 

function (Results,MinTrain)  

{ 

# function recursivley draws 1-step update predictions from SINGLE starting points 

# See V13 for varying start points 

 

# Results:   Full set Returns and Return Predictors 

# MinTrain:   The Minimum observations in the initial training set 

 

K <- MinTrain 

Target_Variable <- c("ER_1Y","ER_6M","ER_3M","ER_1M","ER_1W","ER_1D") 

CAPM <- c("CAPM_1YER","CAPM_6MER","CAPM_3MER","CAPM_1MER","CAPM_1WER","CAPM_1DER") 

Models <- c("CAPM", 

 "Discount_360D_BB","Discount_LTVol_BB","Discount_GARCH_BB", 

 "ROE_360D_BB","ROE_LTVol_BB","ROE_GARCH_BB", 
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 "Discount_360D_CS","Discount_LTVol_CS","Discount_GARCH_CS", 

 "ROE_360D_CS","ROE_LTVol_CS","ROE_GARCH_CS") 

       

ExRet_1Y <- NULL 

ExRet_6M <- NULL 

ExRet_3M <- NULL 

ExRet_1M <- NULL 

ExRet_1W <- NULL 

ExRet_1D <- NULL 

ListNames <- NULL 

 

## For loop over each Target Variable 

for (m in 1:length(Target_Variable)) 

{ 

# initial run over CAPM 

TVar <- Target_Variable[m] 

if(TVar=="ER_1Y"){KA <- 251} 

else if(TVar=="ER_6M"){KA <- 125} 

else if(TVar=="ER_3M"){KA <- 62} 

else if(TVar=="ER_1M"){KA <- 20} 

else if(TVar=="ER_1W"){KA <- 4} 

else if(TVar=="ER_1D"){KA <- 0} 

K1 <- K-KA 

Pr <- CAPM[m] 

 

ff <- Logit(Results,TVar,Pr,K) 

PR <- ff[["Prediction Table"]] 

Acc <-ff[["Total Correct"]] 

Threshold <- ff[["Threshold"]] 

TrainD <- ff[["TD"]] 

TrainU <- ff[["TU"]] 

# how to deal with table when results contain predictions of only 1 Direction 

TR <- Table_Results(PR) 

IT <- Threshold[K] 

ITU <- TrainU[K1] 

ITD <- TrainD[K1] 

 

output <- cbind(K,K1,ITD,ITU,IT,Acc,TR) 

rownames(output) <- CAPM[m] 

  

for (h in 2:length(Models)) 

 { 

 Pr <- Models[h] 

 ff <- Logit(Results,TVar,Pr,K) 

 PR <- ff[["Prediction Table"]] 

 Acc <-ff[["Total Correct"]] 

 Threshold <- ff[["Threshold"]] 

 TrainD <- ff[["TD"]] 

 TrainU <- ff[["TU"]] 

  

 IT <- Threshold[K] # Initial Threshold 

 ITU <- TrainU[K1] # initial upward obs in train set 

 ITD <- TrainD[K1] # initial D obs in train set 

 TR <- Table_Results(PR) 

 output1 <- cbind(K,K1,ITD,ITU,IT,Acc,TR) 

 rownames(output1) <- Models[h] 

 output <- rbind(output,output1) 

 } 

 

output2 <- output[sort.list(output[,6],decreasing=TRUE),] 

output3 <- round(output2,digits=3)  
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if(m==1){ExRet_1Y <-output3} 

else if(m==2){ExRet_6M <- output3} 

else if(m==3){ExRet_3M <- output3} 

else if(m==4){ExRet_1M <- output3} 

else if(m==5){ExRet_1W <- output3} 

else{ExRet_1D <- output3} 

ListNames[m] <- paste(Target_Variable[m],"Logit Prediction") 

  

}  

outlist <- list(ExRet_1Y,ExRet_6M,ExRet_3M,ExRet_1M,ExRet_1W,ExRet_1D) 

names(outlist) <- ListNames  

return(outlist) 

} 
 

Logistic regression predictions for pairs of explanatory variables 

Multiple_Logit 

function (DS,Target_Variable,P1,P2,Train)  

{ 

NC1 <- nchar(P1) 

Prefix1 <- substr(P1,start=1,stop=3) 

NC2 <- nchar(P2) 

Prefix2 <- substr(P2,start=1,stop=3) 

if(Prefix1=="ROE") 

{Label1 <- "TermCD_M2" 

Suffix1 <- substr(P1,start=5,stop=NC1)} 

else if(Prefix1=="Dis") 

{Label1 <-"TermCD_M1" 

Suffix1 <- substr(P1,start=10,stop=NC1)} 

if(Prefix1=="CAP"){R1 <- DS} 

else{ 

TermCD1 <- paste(Label1,Suffix1,sep="_") 

R1 <- DS[DS[,TermCD1]==1,]} 

if(Prefix2=="ROE") 

{Label2 <- "TermCD_M2" 

Suffix2 <- substr(P2,start=5,stop=NC2)} 

else if(Prefix2=="Dis") 

{Label2 <-"TermCD_M1" 

Suffix2 <- substr(P2,start=10,stop=NC2)} 

if(Prefix2=="CAP"){Results <- R1} 

else{ 

TermCD2 <- paste(Label2,Suffix2,sep="_") 

Results <- R1[R1[,TermCD2]==1,]} 

 

if(Target_Variable=="ER_1Y"){KA <- 251} 

else if(Target_Variable=="ER_6M"){KA <- 125} 

else if(Target_Variable=="ER_3M"){KA <- 62} 

else if(Target_Variable=="ER_1M"){KA <- 20} 

else if(Target_Variable=="ER_1W"){KA <- 4} 

else if(Target_Variable=="ER_1D"){KA <- 0} 

 

K <- Train 

nn <- nrow(Results) 

 

Direction <- rep("Down",nn) 

TV <- Results[,Target_Variable] 

Pred1 <- Results[,P1] 

Pred2 <- Results[,P2] 

Direction[TV>0] <-"Up" 

DataMat <- cbind(Results,Direction,Pred1,Pred2) 
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glm.pred <- rep("Down",(nn-K)) 

 

# in 1step forward update fashion 

Signal <- rep(0,nn) 

Signal[Results[,Target_Variable]>0] <- 1 

ss <- length(Signal) 

TD <- rep(0,ss) 

TU <- rep(0,ss) 

  

for (i in 1:ss) 

 { 

 TU[i] <- sum(Signal[1:i]) 

 TD[i] <- i-TU[i] 

 } 

 

for (i in K:(nn-1)) 

 { 

 df_train <-DataMat[(1:(i-KA)),] 

 df_test <- DataMat[(i+1),]  

 glm.fit <- glm(Direction~Pred1+Pred2,family=binomial,data=df_train) 

 glm.probs <-predict(glm.fit,df_test,type="response") 

 if(glm.probs>.5){glm.pred[i-K+1]<-"Up"} 

 } 

 

Direct <- DataMat[((K+1):nn),"Direction"] 

t1<-table(glm.pred,Direct) 

Tc <- mean(glm.pred==Direct) 

outlist <- list("Prediction Table"=t1,"Total Correct"=Tc,"TU"=TU,"TD"=TD) 

return(outlist) 

 

} 

 

Results from logistic regression predictions with pairs of explanatory variables 

 

Multiple_Logit_Results 

function (Results,MinTrain)  

{ 

# Function that calculates KNN Prediction Accuracy for combinations of 2 predictor Variables 

K <- MinTrain 

Target_Variable <- c("ER_1Y","ER_6M","ER_3M","ER_1M","ER_1W","ER_1D") 

CAPM <- c("CAPM_1YER","CAPM_6MER","CAPM_3MER","CAPM_1MER","CAPM_1WER","CAPM_1DER") 

M1 <- c("Discount_360D_BB","Discount_LTVol_BB","Discount_GARCH_BB") 

M2 <- c("ROE_360D_BB","ROE_LTVol_BB","ROE_GARCH_BB") 

M3 <- c("Discount_360D_CS","Discount_LTVol_CS","Discount_GARCH_CS") 

M4 <- c("ROE_360D_CS","ROE_LTVol_CS","ROE_GARCH_CS") 

 

Models <- c(M1,M2,M3,M4) 

Models1 <- c(M2,M3,M4) 

Models2 <- c(M3,M4) 

ExRet_1Y <- NULL 

ExRet_6M <- NULL 

ExRet_3M <- NULL 

ExRet_1M <- NULL 

ExRet_1W <- NULL 

ExRet_1D <- NULL 

ListNames <- NULL 

 

## For loop over each Target Variable 

for (m in 1:length(Target_Variable)) 

{ 
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# initial run over CAPM 

TVar <- Target_Variable[m] 

 

if(TVar=="ER_1Y"){KA <- 251} 

else if(TVar=="ER_6M"){KA <- 125} 

else if(TVar=="ER_3M"){KA <- 62} 

else if(TVar=="ER_1M"){KA <- 20} 

else if(TVar=="ER_1W"){KA <- 4} 

else if(TVar=="ER_1D"){KA <- 0} 

 

K1 <- K-KA 

Pr1 <- CAPM[m] 

Pr2 <- Models[1] 

ff <- Multiple_Logit(Results,TVar,Pr1,Pr2,K) 

PR <- ff[["Prediction Table"]] 

Acc <-ff[["Total Correct"]] 

TrainD <- ff[["TD"]] 

TrainU <- ff[["TU"]] 

ITU <- TrainU[K1] 

ITD <- TrainD[K1] 

TR <- Table_Results(PR) 

output <- cbind(K,K1,ITD,ITU,Acc,TR) 

rownames(output) <- paste(CAPM[m],Models[1]) 

  

for (h in 2:length(Models)) 

 { 

 Pr2 <- Models[h] 

 ff <- Multiple_Logit(Results,TVar,Pr1,Pr2,K) 

 PR <- ff[["Prediction Table"]] 

 Acc <-ff[["Total Correct"]] 

 TrainD <- ff[["TD"]] 

 TrainU <- ff[["TU"]] 

 ITU <- TrainU[K1] # initial upward obs in train set 

 ITD <- TrainD[K1] # initial D obs in train set 

 TR <- Table_Results(PR)  

 output1 <- cbind(K,K1,ITD,ITU,Acc,TR) 

 rownames(output1) <- paste(CAPM[m],Models[h]) 

 output <- rbind(output,output1) 

 } 

############################################################## 

# COMBINATIONS WITH M1 ## 

############################################### 

for (Z in 1:length(M1)) 

 { 

 Pr1 <- M1[Z] 

 for(X in 1:length(Models1)) 

  { 

  Pr2 <- Models1[X] 

  ff <- Multiple_Logit(Results,TVar,Pr1,Pr2,K) 

  PR <- ff[["Prediction Table"]] 

  Acc <-ff[["Total Correct"]] 

  TrainD <- ff[["TD"]] 

  TrainU <- ff[["TU"]] 

  ITU <- TrainU[K1] # initial upward obs in train set 

  ITD <- TrainD[K1] # initial D obs in train set 

  TR <- Table_Results(PR)  

  output1 <- cbind(K,K1,ITD,ITU,Acc,TR) 

  rownames(output1) <- paste(M1[Z],Models1[X]) 

  output <- rbind(output,output1) 

  } 

 } 

############################################################## 
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# COMBINATIONS WITH M2 ## 

############################################### 

for (Z in 1:length(M2)) 

 { 

 Pr1 <- M2[Z] 

 for(X in 1:length(Models2)) 

  { 

  Pr2 <- Models2[X] 

  ff <- Multiple_Logit(Results,TVar,Pr1,Pr2,K) 

  PR <- ff[["Prediction Table"]] 

  Acc <-ff[["Total Correct"]] 

  TrainD <- ff[["TD"]] 

  TrainU <- ff[["TU"]] 

  ITU <- TrainU[K1] # initial upward obs in train set 

  ITD <- TrainD[K1] # initial D obs in train set 

  TR <- Table_Results(PR)  

  output1 <- cbind(K,K1,ITD,ITU,Acc,TR) 

  rownames(output1) <- paste(M2[Z],Models2[X]) 

  output <- rbind(output,output1) 

  } 

 } 

############################################################## 

# COMBINATIONS WITH M3 ## 

############################################### 

for (Z in 1:length(M3)) 

 { 

 Pr1 <- M3[Z] 

 for(X in 1:length(M4)) 

  { 

  Pr2 <- M4[X] 

  ff <- Multiple_Logit(Results,TVar,Pr1,Pr2,K) 

  PR <- ff[["Prediction Table"]] 

  Acc <-ff[["Total Correct"]] 

  TrainD <- ff[["TD"]] 

  TrainU <- ff[["TU"]] 

  ITU <- TrainU[K1] # initial upward obs in train set 

  ITD <- TrainD[K1] # initial D obs in train set 

  TR <- Table_Results(PR)  

  output1 <- cbind(K,K1,ITD,ITU,Acc,TR) 

  rownames(output1) <- paste(M3[Z],M4[X]) 

  output <- rbind(output,output1) 

  } 

 } 

  

output2 <- output[sort.list(output[,5],decreasing=TRUE),] 

output3 <- round(output2,digits=3)  

if(m==1){ExRet_1Y <-output3} 

else if(m==2){ExRet_6M <- output3} 

else if(m==3){ExRet_3M <- output3} 

else if(m==4){ExRet_1M <- output3} 

else if(m==5){ExRet_1W <- output3} 

else{ExRet_1D <- output3} 

ListNames[m] <- paste(Target_Variable[m],"Multiple Logit Prediction")  

} 

  

outlist <- list(ExRet_1Y,ExRet_6M,ExRet_3M,ExRet_1M,ExRet_1W,ExRet_1D) 

names(outlist) <- ListNames  

return(outlist) 

} 
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Graphics from univariate logistic regression predictions 

Logit_Graphics 

function (DS,Target_Variable,Predictor,Train)  

{ 

# Function to graph the predictions of chosen 1 variable model 

# Making sure only TermCD=1 used in predictor 

NC <- nchar(Predictor) 

Prefix <- substr(Predictor,start=1,stop=3) 

if(Prefix=="ROE") 

{Label <- "TermCD_M2" 

Suffix <- substr(Predictor,start=5,stop=NC)} 

else if(Prefix=="Dis") 

{Label <-"TermCD_M1" 

Suffix <- substr(Predictor,start=10,stop=NC)} 

 

if(Prefix=="CAP"){Results <- DS} 

else{ 

TermCD <- paste(Label,Suffix,sep="_") 

Results <- DS[DS[,TermCD]==1,]} 

# we now have clean result set 

 

K <- Train 

nn <- nrow(Results) 

Direction <- rep("Down",nn) 

TV <- Results[,Target_Variable] 

Pred <- Results[,Predictor] 

Direction[TV>0] <-"Up" 

DataMat <- cbind(Results,Direction,Pred) 

glm.pred <- rep("Down",(nn-K)) 

B0 <- NULL 

B1 <- NULL 

Threshold <- rep(0,nn) 

if(Target_Variable=="ER_1Y"){KA <- 251} 

else if(Target_Variable =="ER_6M"){KA <- 125} 

else if(Target_Variable =="ER_3M"){KA <- 62} 

else if(Target_Variable =="ER_1M"){KA <- 20} 

else if(Target_Variable =="ER_1W"){KA <- 4} 

else if(Target_Variable =="ER_1D"){KA <- 0} 

 

# in 1step forward update fashion 

Signal <- rep(0,nn) 

Signal[Results[,Target_Variable]>0] <- 1 

ss <- length(Signal) 

TD <- rep(0,ss) 

TU <- rep(0,ss) 

  

for (i in 1:ss) 

 { 

 TU[i] <- sum(Signal[1:i]) 

 TD[i] <- i-TU[i] 

 } 

for (i in K:(nn-1)) 

 { 

 df_train <-DataMat[(1:(i-KA)),] 

 df_test <- DataMat[(i+1),]  

 glm.fit <- glm(Direction~Pred,family=binomial,data=df_train) 

 B0[i] <- glm.fit$coefficients[[1]] 

 B1[i] <- glm.fit$coefficients[[2]] 

 Threshold[i] <- (log(1)-B0[i])/B1[i] 
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 glm.probs <-predict(glm.fit,df_test,type="response") 

 if(glm.probs>.5){glm.pred[i-K+1]<-"Up"} 

 } 

 

Direct <- DataMat[((K+1):nn),"Direction"] 

t1<-table(glm.pred,Direct) 

Tc <- mean(glm.pred==Direct) 

fam1 <- rep("Init Train",(K-KA)) 

fam2 <- rep("Pred Dist",KA) 

fam <- rep("True",(nn-K)) 

fam[Direct=="Down" & glm.pred=="Down"]="True" 

fam[Direct=="Down" & glm.pred=="Up"]="False" 

fam[Direct=="Up" & glm.pred=="Down"]="False" 

fam3 <- c(fam1,fam2,fam) 

Date <- as.Date(rownames(DataMat),"%Y-%m-%d") 

Mat <- data.frame(Date=Date,TargVar=TV,Prediction=fam3,Thresh=Threshold,PVar=Pred) 

 

x <- substitute(DS) 

if(x=="ABSA_R2"){Company <-"ABSA"} 

else if(x=="BVC_R2"){Company<-"BVC"} 

else if(x=="CAPITEC_R2"){Company<-"CAPITEC"} 

else if(x=="INL_R2"){Company<-"INL"} 

else if(x=="GRF_R2"){Company<-"GRF"} 

 

gg <- ggplot(Mat,aes(x=Date,y=TargVar)) 

p <- gg+geom_point(aes(color=Prediction))+geom_hline(yintercept=0,linetype="dashed",color="bl

ack")+ 

geom_line(aes(x=Date,y=Thresh),linetype="dashed")+ 

geom_line(aes(x=Date,y=PVar))+ 

scale_color_discrete(name="Legend")+ 

labs(x="Date",y=paste(Target_Variable,""),title=paste(Company, "Logistic Regression Predictio

ns"), 

subtitle=paste(Predictor," As predictor Variable")) 

multiplot(p) 

 

 

 

outlist <- list("Prediction Table"=t1,"Total Correct"=Tc)#,"Threshold"=Threshold,"TU"=TU,"TD"

=TD) 

return(outlist) 

} 

 

Graphics from logistic regression predictions with pair of predictor variables 

MLG 

function (DS,Target_Variable,P1,P2,Train)  

{ 

NC1 <- nchar(P1) 

Prefix1 <- substr(P1,start=1,stop=3) 

NC2 <- nchar(P2) 

Prefix2 <- substr(P2,start=1,stop=3) 

if(Prefix1=="ROE") 

{Label1 <- "TermCD_M2" 

Suffix1 <- substr(P1,start=5,stop=NC1)} 

else if(Prefix1=="Dis") 

{Label1 <-"TermCD_M1" 

Suffix1 <- substr(P1,start=10,stop=NC1)} 

if(Prefix1=="CAP"){R1 <- DS} 

else{ 

TermCD1 <- paste(Label1,Suffix1,sep="_") 
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R1 <- DS[DS[,TermCD1]==1,]} 

if(Prefix2=="ROE") 

{Label2 <- "TermCD_M2" 

Suffix2 <- substr(P2,start=5,stop=NC2)} 

else if(Prefix2=="Dis") 

{Label2 <-"TermCD_M1" 

Suffix2 <- substr(P2,start=10,stop=NC2)} 

if(Prefix2=="CAP"){Results <- R1} 

else{ 

TermCD2 <- paste(Label2,Suffix2,sep="_") 

Results <- R1[R1[,TermCD2]==1,]} 

 

if(Target_Variable=="ER_1Y"){KA <- 251} 

else if(Target_Variable=="ER_6M"){KA <- 125} 

else if(Target_Variable=="ER_3M"){KA <- 62} 

else if(Target_Variable=="ER_1M"){KA <- 20} 

else if(Target_Variable=="ER_1W"){KA <- 4} 

else if(Target_Variable=="ER_1D"){KA <- 0} 

 

K <- Train 

nn <- nrow(Results) 

 

Direction <- rep("Down",nn) 

TV <- Results[,Target_Variable] 

Pred1 <- Results[,P1] 

Pred2 <- Results[,P2] 

Direction[TV>0] <-"Up" 

DataMat <- cbind(Results,Direction,Pred1,Pred2) 

glm.pred <- rep("Down",(nn-K)) 

 

# Creating vector of running indication of class balance of U vs D in the training set  

# in 1step forward update fashion 

Signal <- rep(0,nn) 

Signal[Results[,Target_Variable]>0] <- 1 

ss <- length(Signal) 

TD <- rep(0,ss) 

TU <- rep(0,ss) 

  

for (i in 1:ss) 

 { 

 TU[i] <- sum(Signal[1:i]) 

 TD[i] <- i-TU[i] 

 } 

 

for (i in K:(nn-1)) 

 { 

 df_train <-DataMat[(1:(i-KA)),] 

 df_test <- DataMat[(i+1),]  

 glm.fit <- glm(Direction~Pred1+Pred2,family=binomial,data=df_train) 

 glm.probs <-predict(glm.fit,df_test,type="response") 

 if(glm.probs>.5){glm.pred[i-K+1]<-"Up"} 

 } 

 

Direct <- DataMat[((K+1):nn),"Direction"] 

t1<-table(glm.pred,Direct) 

Tc <- mean(glm.pred==Direct) 

fam1 <- rep("Init Train",(K-KA)) 

fam2 <- rep("Pred Dist",KA) 

fam <- rep("True",(nn-K)) 

fam[Direct=="Down" & glm.pred=="Down"]="True" 

fam[Direct=="Down" & glm.pred=="Up"]="False" 

fam[Direct=="Up" & glm.pred=="Down"]="False" 
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fam3 <- c(fam1,fam2,fam) 

 

Date <- as.Date(rownames(DataMat),"%Y-%m-%d") 

Mat <- data.frame(Date=Date,TargVar=TV,PredAccuracy=fam3) 

x <- substitute(DS) 

if(x=="ABSA_R2"){Company <-"ABSA"} 

else if(x=="BVC_R2"){Company<-"BVC"} 

else if(x=="CAPITEC_R2"){Company<-"CAPITEC"} 

else if(x=="INL_R2"){Company<-"INL"} 

else if(x=="GRF_R2"){Company<-"GRF"} 

gg <- ggplot(Mat,aes(x=Date,y=TargVar)) 

p <- gg+geom_point(aes(color=PredAccuracy))+geom_hline(yintercept=0,linetype="dashed",color="

black")+ 

abs(x="Date",y=paste(Target_Variable,""),title=paste(Company, "Multiple Logistic Regression P

rediction"),subtitle=paste(P1,"&", P2)) 

multiplot(p) 

 

outlist <- list("Prediction Table"=t1,"Total Correct"=Tc)#,"Threshold"=Threshold,"TU"=TU,"TD"

=TD) 

return(outlist) 

 

} 
 

Varying training & test sets for logistic regression with pairs of predictors 

 

VLR.v2 

function (DS,Target_Variable,P1,P2,MinTrain,MinPred,Jump)  

{ 

# function recursivley draws 1-step update predictions from Multiple starting points 

# Results:  Full set Returns and Return Predictors 

# MinTrain:  The Minimum observations in the initial training set 

# MinPred: The minimum number of observations to be predicted in the 1-step update  

NC1 <- nchar(P1) 

Prefix1 <- substr(P1,start=1,stop=3) 

NC2 <- nchar(P2) 

Prefix2 <- substr(P2,start=1,stop=3) 

if(Prefix1=="ROE") 

{Label1 <- "TermCD_M2" 

Suffix1 <- substr(P1,start=5,stop=NC1)} 

else if(Prefix1=="Dis") 

{Label1 <-"TermCD_M1" 

Suffix1 <- substr(P1,start=10,stop=NC1)} 

if(Prefix1=="CAP"){R1 <- DS} 

else{ 

TermCD1 <- paste(Label1,Suffix1,sep="_") 

R1 <- DS[DS[,TermCD1]==1,]} 

if(Prefix2=="ROE") 

{Label2 <- "TermCD_M2" 

Suffix2 <- substr(P2,start=5,stop=NC2)} 

else if(Prefix2=="Dis") 

{Label2 <-"TermCD_M1" 

Suffix2 <- substr(P2,start=10,stop=NC2)} 

if(Prefix2=="CAP"){Results <- R1} 

else{ 

TermCD2 <- paste(Label2,Suffix2,sep="_") 

Results <- R1[R1[,TermCD2]==1,]} 

index <- seq(from=MinTrain,to=(nrow(Results)-MinPred),by=Jump) 

NN <- length(index) 

 

TVar <- Target_Variable 
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if(TVar=="ER_1Y"){KA <- 251} 

else if(TVar=="ER_6M"){KA <- 125} 

else if(TVar=="ER_3M"){KA <- 62} 

else if(TVar=="ER_1M"){KA <- 20} 

else if(TVar=="ER_1W"){KA <- 4} 

else if(TVar=="ER_1D"){KA <- 0} 

 

K <- index[1] 

K1 <- K-KA 

ff <- Multiple_Logit(Results,TVar,P1,P2,K) 

PR <- ff[["Prediction Table"]] 

Acc <-ff[["Total Correct"]] 

TrainD <- ff[["TD"]] 

TrainU <- ff[["TU"]] 

TR <- Table_Results(PR) 

ITU <- TrainU[K1] 

ITD <- TrainD[K1] 

output <- cbind(K,K1,ITD,ITU,Acc,TR) 

  

for (h in 2:NN) 

 { 

 K <- index[h] 

 K1 <- K-KA 

 ff <- Multiple_Logit(Results,TVar,P1,P2,K) 

 PR <- ff[["Prediction Table"]] 

 Acc <-ff[["Total Correct"]] 

 TrainD <- ff[["TD"]] 

 TrainU <- ff[["TU"]] 

  

 ITU <- TrainU[K1] # initial upward obs in train set 

 ITD <- TrainD[K1] # initial D obs in train set 

 TR <- Table_Results(PR) 

 output1 <- cbind(K,K1,ITD,ITU,Acc,TR) 

 output <- rbind(output,output1) 

 } 

 

output3 <- round(output,digits=3)  

return(output3)  

} 

 

Varying training and test sets for univariate logistic regression 

VLR 

function (DS,Target_Variable,P1,MinTrain,MinPred,Jump)  

{ 

# function recursivley draws 1-step update predictions from Multiple starting points 

 

# Results:  Full set Returns and Return Predictors 

# MinTrain:  The Minimum observations in the initial training set 

# MinPred:  The minimum number of obser to be predicted in the 1-step update  

NC <- nchar(P1) 

Prefix <- substr(P1,start=1,stop=3) 

if(Prefix=="ROE") 

{Label <- "TermCD_M2" 

Suffix <- substr(P1,start=5,stop=NC)} 

else if(Prefix=="Dis") 

{Label <-"TermCD_M1" 

Suffix <- substr(P1,start=10,stop=NC)} 

else if(Prefix=="CMD"){ 

Label <- "TermCD_M3" 

Suffix <- substr(P1,start=5,stop=NC)} 
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if(Prefix=="CAP"){Results <- DS} 

else{ 

TermCD <- paste(Label,Suffix,sep="_") 

Results <- DS[DS[,TermCD]==1,]} 

index <- seq(from=MinTrain,to=(nrow(Results)-MinPred),by=Jump) 

NN <- length(index) 

 

TVar <- Target_Variable 

if(TVar=="ER_1Y"){KA <- 251} 

else if(TVar=="ER_6M"){KA <- 125} 

else if(TVar=="ER_3M"){KA <- 62} 

else if(TVar=="ER_1M"){KA <- 20} 

else if(TVar=="ER_1W"){KA <- 4} 

else if(TVar=="ER_1D"){KA <- 0} 

 

K <- index[1] 

K1 <- K-KA 

 

ff <- Logit(Results,TVar,P1,K) 

PR <- ff[["Prediction Table"]] 

Acc <-ff[["Total Correct"]] 

Threshold <- ff[["Threshold"]] 

TrainD <- ff[["TD"]] 

TrainU <- ff[["TU"]] 

 

TR <- Table_Results(PR) 

IT <- Threshold[K] 

ITU <- TrainU[K1] 

ITD <- TrainD[K1] 

output <- cbind(K,K1,ITD,ITU,IT,Acc,TR) 

  

for (h in 2:NN) 

 { 

 K <- index[h] 

 K1 <- K-KA 

 ff <- Logit(Results,TVar,P1,K) 

 PR <- ff[["Prediction Table"]] 

 Acc <-ff[["Total Correct"]] 

 Threshold <- ff[["Threshold"]] 

 TrainD <- ff[["TD"]] 

 TrainU <- ff[["TU"]] 

  

 IT <- Threshold[K] # Initial Threshold 

 ITU <- TrainU[K1] # initial upward obs in train set 

 ITD <- TrainD[K1] # initial D obs in train set 

 TR <- Table_Results(PR) 

 output1 <- cbind(K,K1,ITD,ITU,IT,Acc,TR) 

 output <- rbind(output,output1) 

 } 

 

output3 <- round(output,digits=3)  

return(output3)  

} 
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KNN functions 

KNN-Classifier predictions for single explanatory variable 

KNN_Class 

function (DS,Target_Variable,Predictor,Train,Neighbors)  

{ 

J <- Neighbors 

NC <- nchar(Predictor) 

Prefix <- substr(Predictor,start=1,stop=3) 

if(Prefix=="ROE") 

{Label <- "TermCD_M2" 

Suffix <- substr(Predictor,start=5,stop=NC)} 

else if(Prefix=="Dis") 

{Label <-"TermCD_M1" 

Suffix <- substr(Predictor,start=10,stop=NC)} 

else if(Prefix=="CMD"){ 

Label <- "TermCD_M3" 

Suffix <- substr(Predictor,start=5,stop=NC)} 

if(Prefix=="CAP"){Results <- DS} 

else{ 

TermCD <- paste(Label,Suffix,sep="_") 

Results <- DS[DS[,TermCD]==1,]} 

 

if(Target_Variable=="ER_1Y"){KA <- 251} 

else if(Target_Variable=="ER_6M"){KA <- 125} 

else if(Target_Variable=="ER_3M"){KA <- 62} 

else if(Target_Variable=="ER_1M"){KA <- 20} 

else if(Target_Variable=="ER_1W"){KA <- 4} 

else if(Target_Variable=="ER_1D"){KA <- 0} 

 

K <- Train 

nn <- nrow(Results) 

Direction <- rep("Down",nn) 

TV <- Results[,Target_Variable] 

Direction[TV>0] <-"Up" 

 

DataMat <- cbind(Results,Direction) 

glm.pred <- rep("Down",(nn-K)) 

# Creating vector of running indication of class balance of U vs D in the training set 

forward update fashion 

Signal <- rep(0,nn) 

Signal[Results[,Target_Variable]>0] <- 1 

ss <- length(Signal) 

TD <- rep(0,ss) 

TU <- rep(0,ss) 

  

for (i in 1:ss) 

 { 

 TU[i] <- sum(Signal[1:i]) 

 TD[i] <- i-TU[i] 

 } 

for (i in K:(nn-1)) 

 {  

 train.x <- as.matrix(cbind(DataMat[(1:(i-KA)),Predictor])) 

 test.x <- as.matrix(cbind(DataMat[(i+1),Predictor])) 

 train.direction <- DataMat[(1:(i-KA)),"Direction"] 

 knn.prediction <- knn(train.x,test.x,train.direction,k=J) 

 AB <- summary(knn.prediction) 

 if(AB[2]==1){glm.pred[i-K+1]<-"Up"}  

 } 
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Direct <- DataMat[((K+1):nn),"Direction"] 

t1<-table(glm.pred,Direct) 

Tc <- mean(glm.pred==Direct) 

outlist <- list("Prediction Table"=t1,"Total Correct"=Tc,"TU"=TU,"TD"=TD) 

return(outlist) 

} 

 

KNN classifier results for single explanatory variable 

KNN_Results 

function (Results,MinTrain,Neighbors)  

{ 

# Results:    Full set of ROE VS ER_3M 

# MinTrain:   The Minimum observations in the initial training set 

K <- MinTrain 

J <- Neighbors 

Target_Variable <- c("ER_1Y","ER_6M","ER_3M","ER_1M","ER_1W","ER_1D") 

CAPM <- c("CAPM_1YER","CAPM_6MER","CAPM_3MER","CAPM_1MER","CAPM_1WER","CAPM_1DER") 

Models <- c("CAPM", 

 "Discount_360D_BB","Discount_LTVol_BB","Discount_GARCH_BB", 

 "ROE_360D_BB","ROE_LTVol_BB","ROE_GARCH_BB", 

 "Discount_360D_CS","Discount_LTVol_CS","Discount_GARCH_CS", 

 "ROE_360D_CS","ROE_LTVol_CS","ROE_GARCH_CS") 

    

ExRet_1Y <- NULL 

ExRet_6M <- NULL 

ExRet_3M <- NULL 

ExRet_1M <- NULL 

ExRet_1W <- NULL 

ExRet_1D <- NULL 

ListNames <- NULL 

 

## For loop over each Target Variable 

for (m in 1:length(Target_Variable)) 

{ 

# initial run over CAPM 

TVar <- Target_Variable[m] 

if(TVar=="ER_1Y"){KA <- 251} 

else if(TVar=="ER_6M"){KA <- 125} 

else if(TVar=="ER_3M"){KA <- 62} 

else if(TVar=="ER_1M"){KA <- 20} 

else if(TVar=="ER_1W"){KA <- 4} 

else if(TVar=="ER_1D"){KA <- 0} 

 

K1 <- K-KA 

Pr <- CAPM[m] 

ff <- KNN_Class(Results,TVar,Pr,K,J) 

PR <- ff[["Prediction Table"]] 

Acc <-ff[["Total Correct"]] 

TrainD <- ff[["TD"]] 

TrainU <- ff[["TU"]] 

ITU <- TrainU[K1] 

ITD <- TrainD[K1] 

TR <- Table_Results(PR  

(K,K1,ITD,ITU,Acc,TR) 

rownames(output) <- CAPM[m] 

  

for (h in 2:length(Models)) 

 { 

 Pr <- Models[h] 
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 ff <- KNN_Class(Results,TVar,Pr,K,J) 

 PR <- ff[["Prediction Table"]] 

 Acc <-ff[["Total Correct"]] 

 TrainD <- ff[["TD"]] 

 TrainU <- ff[["TU"]] 

 ITU <- TrainU[K1] # initial upward obs in train set 

 ITD <- TrainD[K1] # initial D obs in train set 

 TR <- Table_Results(PR) # how to deal with table when results contain predictions of

 only 1 Direction 

 output1 <- cbind(K,K1,ITD,ITU,Acc,TR) 

 rownames(output1) <- Models[h] 

 output <- rbind(output,output1) 

 } 

 

output2<- output[sort.list(output[,5],decreasing=TRUE),] 

output3<- round(output2,digits=3)  

 

if(m==1){ExRet_1Y <-output3} 

else if(m==2){ExRet_6M <- output3} 

else if(m==3){ExRet_3M <- output3} 

else if(m==4){ExRet_1M <- output3} 

else if(m==5){ExRet_1W <- output3} 

else{ExRet_1D <- output3} 

ListNames[m] <- paste(Target_Variable[m],"KNN Prediction",Neighbors)  

} 

  

outlist <- list(ExRet_1Y,ExRet_6M,ExRet_3M,ExRet_1M,ExRet_1W,ExRet_1D) 

names(outlist) <- ListNames  

return(outlist) 

} 
 

KNN classifier predictions for predictor pairs 

Multiple_KNN_Class 

function (DS,Target_Variable,P1,P2,Train,Neighbors)  

{ 

# KNN Function to predict Negative and Positive Returns using 2 Predictions 

# Dichotomous stratification 

J <- Neighbors 

NC1 <- nchar(P1) 

Prefix1 <- substr(P1,start=1,stop=3) 

NC2 <- nchar(P2) 

Prefix2 <- substr(P2,start=1,stop=3) 

if(Prefix1=="ROE") 

{Label1 <- "TermCD_M2" 

Suffix1 <- substr(P1,start=5,stop=NC1)} 

else if(Prefix1=="Dis") 

{Label1 <-"TermCD_M1" 

Suffix1 <- substr(P1,start=10,stop=NC1)} 

 

if(Prefix1=="CAP"){R1 <- DS} 

else{ 

TermCD1 <- paste(Label1,Suffix1,sep="_") 

R1 <- DS[DS[,TermCD1]==1,]} 

if(Prefix2=="ROE") 

{Label2 <- "TermCD_M2" 

Suffix2 <- substr(P2,start=5,stop=NC2)} 

else if(Prefix2=="Dis") 

{Label2 <-"TermCD_M1" 

Suffix2 <- substr(P2,start=10,stop=NC2)} 
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if(Prefix2=="CAP"){Results <- R1} 

else{ 

TermCD2 <- paste(Label2,Suffix2,sep="_") 

Results <- R1[R1[,TermCD2]==1,]} 

 

if(Target_Variable=="ER_1Y"){KA <- 251} 

else if(Target_Variable=="ER_6M"){KA <- 125} 

else if(Target_Variable=="ER_3M"){KA <- 62} 

else if(Target_Variable=="ER_1M"){KA <- 20} 

else if(Target_Variable=="ER_1W"){KA <- 4} 

else if(Target_Variable=="ER_1D"){KA <- 0} 

 

K <- Train 

nn <- nrow(Results) 

Direction <- rep("Down",nn) 

TV <- Results[,Target_Variable] 

Direction[TV>0] <-"Up" 

DataMat <- cbind(Results,Direction) 

glm.pred <- rep("Down",(nn-K)) 

Signal <- rep(0,nn) 

Signal[Results[,Target_Variable]>0] <- 1 

ss <- length(Signal) 

TD <- rep(0,ss) 

TU <- rep(0,ss) 

  

for (i in 1:ss) 

 { 

 TU[i] <- sum(Signal[1:i]) 

 TD[i] <- i-TU[i] 

 } 

 

for (i in K:(nn-1)) 

 {  

 train.x <- as.matrix(cbind(DataMat[(1:(i-KA)),P1],DataMat[(1:(i-KA)),P2])) 

 test.x <- as.matrix(cbind(DataMat[(i+1),P1],DataMat[(i+1),P2])) 

 train.direction <- DataMat[(1:(i-KA)),"Direction"] 

 knn.prediction <- knn(train.x,test.x,train.direction,k=J) 

 AB <- summary(knn.prediction) 

 if(AB[2]==1){glm.pred[i-K+1]<-"Up"}  

 } 

 

Direct <- DataMat[((K+1):nn),"Direction"] 

t1<-table(glm.pred,Direct) 

Tc <- mean(glm.pred==Direct) 

outlist <- list("Prediction Table"=t1,"Total Correct"=Tc,"TU"=TU,"TD"=TD) 

return(outlist) 

} 
 

Full results for KNN classifier with pairs of explanatory variables 

Multiple_KNN_Results 

function (Results,MinTrain,Neighbors)  

{ 

# Function that calculates KNN Prediction Accuracy for combinations of 2 predictor Variables 

K <- MinTrain 

J <- Neighbors 

Target_Variable <- c("ER_1Y","ER_6M","ER_3M","ER_1M","ER_1W","ER_1D") 

CAPM <- c("CAPM_1YER","CAPM_6MER","CAPM_3MER","CAPM_1MER","CAPM_1WER","CAPM_1DER") 

M1 <- c("Discount_360D_BB","Discount_LTVol_BB","Discount_GARCH_BB") 

M2 <- c("ROE_360D_BB","ROE_LTVol_BB","ROE_GARCH_BB") 
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M3 <- c("Discount_360D_CS","Discount_LTVol_CS","Discount_GARCH_CS") 

M4 <- c("ROE_360D_CS","ROE_LTVol_CS","ROE_GARCH_CS") 

Models <- c(M1,M2,M3,M4) 

Models1 <- c(M2,M3,M4) 

Models2 <- c(M3,M4) 

ExRet_1Y <- NULL 

ExRet_6M <- NULL 

ExRet_3M <- NULL 

ExRet_1M <- NULL 

ExRet_1W <- NULL 

ExRet_1D <- NULL 

ListNames <- NULL 

 

## For loop over each Target Variable 

for (m in 1:length(Target_Variable)) 

{ 

# initial run over CAPM 

TVar <- Target_Variable[m] 

if(TVar=="ER_1Y"){KA <- 251} 

else if(TVar=="ER_6M"){KA <- 125} 

else if(TVar=="ER_3M"){KA <- 62} 

else if(TVar=="ER_1M"){KA <- 20} 

else if(TVar=="ER_1W"){KA <- 4} 

else if(TVar=="ER_1D"){KA <- 0} 

 

K1 <- K-KA 

Pr1 <- CAPM[m] 

Pr2 <- Models[1] 

ff <- Multiple_KNN_Class(Results,TVar,Pr1,Pr2,K,J) 

PR <- ff[["Prediction Table"]] 

Acc <-ff[["Total Correct"]] 

TrainD <- ff[["TD"]] 

TrainU <- ff[["TU"]] 

ITU <- TrainU[K1] 

ITD <- TrainD[K1] 

TR <- Table_Results(PR)# how to deal with table when results contain predictions of only 1 Di

rection 

output <- cbind(K,K1,ITD,ITU,Acc,TR) 

rownames(output) <- paste(CAPM[m],Models[1]) 

  

for (h in 2:length(Models)) 

 { 

 Pr2 <- Models[h] 

 ff <- Multiple_KNN_Class(Results,TVar,Pr1,Pr2,K,J) 

 PR <- ff[["Prediction Table"]] 

 Acc <-ff[["Total Correct"]] 

 TrainD <- ff[["TD"]] 

 TrainU <- ff[["TU"]] 

 ITU <- TrainU[K1] # initial upward obs in train set 

 ITD <- TrainD[K1] # initial D obs in train set 

 TR <- Table_Results(PR)  

 output1 <- cbind(K,K1,ITD,ITU,Acc,TR) 

 rownames(output1) <- paste(CAPM[m],Models[h]) 

 output <- rbind(output,output1) 

 } 

############################################################## 

# COMBINATIONS WITH M1 ## 

############################################### 

for (Z in 1:length(M1)) 

 { 

 Pr1 <- M1[Z] 

 for(X in 1:length(Models1)) 
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  { 

  Pr2 <- Models1[X] 

  ff <- Multiple_KNN_Class(Results,TVar,Pr1,Pr2,K,J) 

  PR <- ff[["Prediction Table"]] 

  Acc <-ff[["Total Correct"]] 

  TrainD <- ff[["TD"]] 

  TrainU <- ff[["TU"]] 

  ITU <- TrainU[K1] # initial upward obs in train set 

  ITD <- TrainD[K1] # initial D obs in train set 

  TR <- Table_Results(PR) # how to deal with table when results contain pred

ictions of only 1 Direction 

  output1 <- cbind(K,K1,ITD,ITU,Acc,TR) 

  rownames(output1) <- paste(M1[Z],Models1[X]) 

  output <- rbind(output,output1) 

  } 

 } 

############################################################## 

# COMBINATIONS WITH M2 ## 

############################################### 

for (Z in 1:length(M2)) 

 { 

 Pr1 <- M2[Z] 

 for(X in 1:length(Models2)) 

  { 

  Pr2 <- Models2[X] 

  ff <- Multiple_KNN_Class(Results,TVar,Pr1,Pr2,K,J) 

  PR <- ff[["Prediction Table"]] 

  Acc <-ff[["Total Correct"]] 

  TrainD <- ff[["TD"]] 

  TrainU <- ff[["TU"]] 

  ITU <- TrainU[K1] # initial upward obs in train set 

  ITD <- TrainD[K1] # initial D obs in train set 

  TR <- Table_Results(PR)  

  output1 <- cbind(K,K1,ITD,ITU,Acc,TR) 

  rownames(output1) <- paste(M2[Z],Models2[X]) 

  output <- rbind(output,output1) 

  } 

 } 

############################################################## 

# COMBINATIONS WITH M3 ## 

############################################### 

for (Z in 1:length(M3)) 

 { 

 Pr1 <- M3[Z] 

 for(X in 1:length(M4)) 

  { 

  Pr2 <- M4[X] 

  ff <- Multiple_KNN_Class(Results,TVar,Pr1,Pr2,K,J) 

  PR <- ff[["Prediction Table"]] 

  Acc <-ff[["Total Correct"]] 

  TrainD <- ff[["TD"]] 

  TrainU <- ff[["TU"]] 

  ITU <- TrainU[K1] # initial upward obs in train set 

  ITD <- TrainD[K1] # initial D obs in train set 

  TR <- Table_Results(PR)  

  output1 <- cbind(K,K1,ITD,ITU,Acc,TR) 

  rownames(output1) <- paste(M3[Z],M4[X]) 

  output <- rbind(output,output1) 

  } 

 } 

  

output2 <- output[sort.list(output[,5],decreasing=TRUE),] 
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output3 <- round(output2,digits=3)  

if(m==1){ExRet_1Y <-output3} 

else if(m==2){ExRet_6M <- output3} 

else if(m==3){ExRet_3M <- output3} 

else if(m==4){ExRet_1M <- output3} 

else if(m==5){ExRet_1W <- output3} 

else{ExRet_1D <- output3} 

ListNames[m] <- paste(Target_Variable[m],"Multiple KNN Prediction",Neighbors)  

} 

  

outlist <- list(ExRet_1Y,ExRet_6M,ExRet_3M,ExRet_1M,ExRet_1W,ExRet_1D) 

names(outlist) <- ListNames  

return(outlist) 

} 
 

Graphics of KNN predictions with single predictor variable 

KNN_Graphics 

function (DS,Target_Variable,Predictor,Train,Neighbors)  

{ 

# Function to Graph Test prediction over sample for KNN prediction 

# for single chosen variable 

 

J <- Neighbors 

NC <- nchar(Predictor) 

Prefix <- substr(Predictor,start=1,stop=3) 

if(Prefix=="ROE") 

{Label <- "TermCD_M2" 

Suffix <- substr(Predictor,start=5,stop=NC)} 

else if(Prefix=="Dis") 

{Label <-"TermCD_M1" 

Suffix <- substr(Predictor,start=10,stop=NC)} 

else if(Prefix=="CMD"){ 

Label <- "TermCD_M3" 

Suffix <- substr(Predictor,start=5,stop=NC)} 

 

if(Prefix=="CAP"){Results <- DS} 

else{ 

TermCD <- paste(Label,Suffix,sep="_") 

Results <- DS[DS[,TermCD]==1,]} 

 

if(Target_Variable=="ER_1Y"){KA <- 251} 

else if(Target_Variable=="ER_6M"){KA <- 125} 

else if(Target_Variable=="ER_3M"){KA <- 62} 

else if(Target_Variable=="ER_1M"){KA <- 20} 

else if(Target_Variable=="ER_1W"){KA <- 4} 

else if(Target_Variable=="ER_1D"){KA <- 0} 

 

K <- Train 

nn <- nrow(Results) 

Direction <- rep("Down",nn) 

TV <- Results[,Target_Variable] 

Direction[TV>0] <-"Up" 

DataMat <- cbind(Results,Direction) 

glm.pred <- rep("Down",(nn-K)) 

 

# Creating vector of running indication of class balance of U vs D in the training set  

# in 1step forward update fashion 

Signal <- rep(0,nn) 

Signal[Results[,Target_Variable]>0] <- 1 
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ss <- length(Signal) 

TD <- rep(0,ss) 

TU <- rep(0,ss) 

  

for (i in 1:ss) 

 { 

 TU[i] <- sum(Signal[1:i]) 

 TD[i] <- i-TU[i] 

 } 

 

for (i in K:(nn-1)) 

 {  

 train.x <- as.matrix(cbind(DataMat[(1:(i-KA)),Predictor])) 

 test.x <- as.matrix(cbind(DataMat[(i+1),Predictor])) 

 train.direction <- DataMat[(1:(i-KA)),"Direction"] 

 knn.prediction <- knn(train.x,test.x,train.direction,k=J) 

 AB <- summary(knn.prediction) 

 if(AB[2]==1){glm.pred[i-K+1]<-"Up"}  

 } 

 

Direct <- DataMat[((K+1):nn),"Direction"] 

t1<-table(glm.pred,Direct) 

Tc <- mean(glm.pred==Direct) 

fam1 <- rep("Init Train",(K-KA)) 

fam2 <- rep("Pred Dist",KA) 

fam <- rep("Correct",(nn-K)) 

fam[Direct=="Down" & glm.pred=="Down"]="Correct" 

fam[Direct=="Down" & glm.pred=="Up"]="False" 

fam[Direct=="Up" & glm.pred=="Down"]="False" 

fam3 <- c(fam1,fam2,fam) 

Pred <- DataMat[,Predictor] 

 

Date <- as.Date(rownames(DataMat),"%Y-%m-%d") 

Mat <- data.frame(Date=Date,TargVar=TV,PredAccuracy=fam3,PVar=Pred) 

 

x <- substitute(DS) 

if(x=="ABSA_R2"){Company <-"ABSA"} 

else if(x=="BVC_R2"){Company<-"BVC"} 

else if(x=="CAPITEC_R2"){Company<-"CAPITEC"} 

else if(x=="INL_R2"){Company<-"INL"} 

else if(x=="GRF_R2"){Company<-"GRF"} 

 

gg <- ggplot(Mat,aes(x=Date,y=TargVar)) 

p <- gg+geom_point(aes(color=PredAccuracy))+geom_hline(yintercept=0,linetype="dashed",color="

black")+ 

geom_line(aes(x=Date,y=PVar))+ 

labs(x="Date",y=paste(Target_Variable,""),title=paste(Company, "KNN Predictions"), 

  subtitle=paste(Predictor,"")) 

multiplot(p) 

outlist <- list("Prediction Table"=t1,"Total Correct"=Tc)#,"TU"=TU,"TD"=TD) 

return(outlist) 

} 

 

Graphics from KNN predictions with pair of predictor variables 

MKG 

function (DS,Target_Variable,P1,P2,Train,Neighbors)  

{ 

# KNN Function to predict Negative and Positive Returns using 2 Predictions 

# Dichotomous stratification 
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J <- Neighbors 

NC1 <- nchar(P1) 

Prefix1 <- substr(P1,start=1,stop=3) 

NC2 <- nchar(P2) 

Prefix2 <- substr(P2,start=1,stop=3) 

if(Prefix1=="ROE") 

{Label1 <- "TermCD_M2" 

Suffix1 <- substr(P1,start=5,stop=NC1)} 

else if(Prefix1=="Dis") 

{Label1 <-"TermCD_M1" 

Suffix1 <- substr(P1,start=10,stop=NC1)} 

if(Prefix1=="CAP"){R1 <- DS} 

else{ 

TermCD1 <- paste(Label1,Suffix1,sep="_") 

R1 <- DS[DS[,TermCD1]==1,]} 

if(Prefix2=="ROE") 

{Label2 <- "TermCD_M2" 

Suffix2 <- substr(P2,start=5,stop=NC2)} 

else if(Prefix2=="Dis") 

{Label2 <-"TermCD_M1" 

Suffix2 <- substr(P2,start=10,stop=NC2)} 

if(Prefix2=="CAP"){Results <- R1} 

else{ 

TermCD2 <- paste(Label2,Suffix2,sep="_") 

Results <- R1[R1[,TermCD2]==1,]} 

 

 

if(Target_Variable=="ER_1Y"){KA <- 251} 

else if(Target_Variable=="ER_6M"){KA <- 125} 

else if(Target_Variable=="ER_3M"){KA <- 62} 

else if(Target_Variable=="ER_1M"){KA <- 20} 

else if(Target_Variable=="ER_1W"){KA <- 4} 

else if(Target_Variable=="ER_1D"){KA <- 0} 

 

K <- Train 

nn <- nrow(Results) 

Direction <- rep("Down",nn) 

TV <- Results[,Target_Variable] 

Direction[TV>0] <-"Up" 

DataMat <- cbind(Results,Direction) 

glm.pred <- rep("Down",(nn-K)) 

Signal <- rep(0,nn) 

Signal[Results[,Target_Variable]>0] <- 1 

ss <- length(Signal) 

TD <- rep(0,ss) 

TU <- rep(0,ss) 

  

for (i in 1:ss) 

 { 

 TU[i] <- sum(Signal[1:i]) 

 TD[i] <- i-TU[i] 

 } 

 

for (i in K:(nn-1)) 

 {  

 train.x <- as.matrix(cbind(DataMat[(1:(i-KA)),P1],DataMat[(1:(i-KA)),P2])) 

 test.x <- as.matrix(cbind(DataMat[(i+1),P1],DataMat[(i+1),P2])) 

 train.direction <- DataMat[(1:(i-KA)),"Direction"] 

 knn.prediction <- knn(train.x,test.x,train.direction,k=J) 

 AB <- summary(knn.prediction) 

 if(AB[2]==1){glm.pred[i-K+1]<-"Up"}  

 } 
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Direct <- DataMat[((K+1):nn),"Direction"] 

t1<-table(glm.pred,Direct) 

Tc <- mean(glm.pred==Direct) 

fam1 <- rep("Init Train",(K-KA)) 

fam2 <- rep("Pred Dist",KA) 

fam <- rep("True",(nn-K)) 

fam[Direct=="Down" & glm.pred=="Down"]="True" 

fam[Direct=="Down" & glm.pred=="Up"]="False" 

fam[Direct=="Up" & glm.pred=="Down"]="False" 

fam3 <- c(fam1,fam2,fam) 

 

Date <- as.Date(rownames(DataMat),"%Y-%m-%d") 

Mat <- data.frame(Date=Date,TargVar=TV,PredAccuracy=fam3) 

 

x <- substitute(DS) 

if(x=="ABSA_R2"){Company <-"ABSA"} 

else if(x=="BVC_R2"){Company<-"BVC"} 

else if(x=="CAPITEC_R2"){Company<-"CAPITEC"} 

else if(x=="INL_R2"){Company<-"INL"} 

else if(x=="GRF_R2"){Company<-"GRF"} 

 

gg <- ggplot(Mat,aes(x=Date,y=TargVar)) 

p <- gg+geom_point(aes(color=PredAccuracy))+geom_hline(yintercept=0,linetype="dashed",color="

black")+ 

labs(x="Date",y=paste(Target_Variable,""),title=paste(Company, "Multiple KNN Prediction"), 

 subtitle=paste(P1,"&", P2)) 

multiplot(p) 

outlist <- list("Prediction Table"=t1,"Total Correct"=Tc)#,"TU"=TU,"TD"=TD) 

return(outlist) 

 

} 

 

Varying training and test sets for KNN Classifier with single predictor variable 

VKR 

function (DS,Target_Variable,P1,Neighbors,MinTrain,MinPred,Jump)  

{ 

# Results:    Full set of ROE VS ER_3M 

# MinTrain:    The Minimum observations in the initial training set 

J <- Neighbors 

NC <- nchar(P1) 

Prefix <- substr(P1,start=1,stop=3) 

if(Prefix=="ROE") 

{Label <- "TermCD_M2" 

Suffix <- substr(P1,start=5,stop=NC)} 

else if(Prefix=="Dis") 

{Label <-"TermCD_M1" 

Suffix <- substr(P1,start=10,stop=NC)} 

else if(Prefix=="CMD"){ 

Label <- "TermCD_M3" 

Suffix <- substr(P1,start=5,stop=NC)} 

if(Prefix=="CAP"){Results <- DS} 

else{ 

TermCD <- paste(Label,Suffix,sep="_") 

Results <- DS[DS[,TermCD]==1,]} 

index <- seq(from=MinTrain,to=(nrow(Results)-MinPred),by=Jump) 

NN <- length(index) 

 

TVar <- Target_Variable 

if(TVar=="ER_1Y"){KA <- 251} 
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else if(TVar=="ER_6M"){KA <- 125} 

else if(TVar=="ER_3M"){KA <- 62} 

else if(TVar=="ER_1M"){KA <- 20} 

else if(TVar=="ER_1W"){KA <- 4} 

else if(TVar=="ER_1D"){KA <- 0} 

 

K <- index[1] 

K1 <- K-KA 

 

ff <- KNN_Class(Results,TVar,P1,K,J) 

PR <- ff[["Prediction Table"]] 

Acc <-ff[["Total Correct"]] 

TrainD <- ff[["TD"]] 

TrainU <- ff[["TU"]] 

ITU <- TrainU[K1] 

ITD <- TrainD[K1] 

TR <- Table_Results(PR)# how to deal with table when results contain predictions of only 1 Di

rection 

output <- cbind(K,K1,ITD,ITU,Acc,TR) 

 

for (h in 2:NN) 

 { 

 K <- index[h] 

 K1 <- K-KA 

 ff <- KNN_Class(Results,TVar,P1,K,J) 

 PR <- ff[["Prediction Table"]] 

 Acc <-ff[["Total Correct"]] 

 TrainD <- ff[["TD"]] 

 TrainU <- ff[["TU"]] 

 ITU <- TrainU[K1] # initial upward obs in train set 

 ITD <- TrainD[K1] # initial D obs in train set 

 TR <- Table_Results(PR) # how to deal with table when results contain predictions of

 only 1 Direction 

 output1 <- cbind(K,K1,ITD,ITU,Acc,TR) 

 output <- rbind(output,output1) 

 } 

 

output3<- round(output,digits=3)  

return(output3) 

} 

 

Varying training and test sets for KNN Classifier with pairs of predictor variables 

VKR.v2 

function (DS,Target_Variable,P1,P2,Neighbors,MinTrain,MinPred,Jump)  

{ 

J <- Neighbors 

NC1 <- nchar(P1) 

Prefix1 <- substr(P1,start=1,stop=3) 

NC2 <- nchar(P2) 

Prefix2 <- substr(P2,start=1,stop=3) 

if(Prefix1=="ROE") 

{Label1 <- "TermCD_M2" 

Suffix1 <- substr(P1,start=5,stop=NC1)} 

else if(Prefix1=="Dis") 

{Label1 <-"TermCD_M1" 

Suffix1 <- substr(P1,start=10,stop=NC1)} 

if(Prefix1=="CAP"){R1 <- DS} 

else{ 

TermCD1 <- paste(Label1,Suffix1,sep="_") 

R1 <- DS[DS[,TermCD1]==1,]} 
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if(Prefix2=="ROE") 

{Label2 <- "TermCD_M2" 

Suffix2 <- substr(P2,start=5,stop=NC2)} 

else if(Prefix2=="Dis") 

{Label2 <-"TermCD_M1" 

Suffix2 <- substr(P2,start=10,stop=NC2)} 

if(Prefix2=="CAP"){Results <- R1} 

else{ 

TermCD2 <- paste(Label2,Suffix2,sep="_") 

Results <- R1[R1[,TermCD2]==1,]} 

index <- seq(from=MinTrain,to=(nrow(Results)-MinPred),by=Jump) 

NN <- length(index) 

 

TVar <- Target_Variable 

if(TVar=="ER_1Y"){KA <- 251} 

else if(TVar=="ER_6M"){KA <- 125} 

else if(TVar=="ER_3M"){KA <- 62} 

else if(TVar=="ER_1M"){KA <- 20} 

else if(TVar=="ER_1W"){KA <- 4} 

else if(TVar=="ER_1D"){KA <- 0} 

K <- index[1] 

K1 <- K-KA 

 

ff <- Multiple_KNN_Class(Results,TVar,P1,P2,K,J) 

PR <- ff[["Prediction Table"]] 

Acc <-ff[["Total Correct"]] 

TrainD <- ff[["TD"]] 

TrainU <- ff[["TU"]] 

ITU <- TrainU[K1] 

ITD <- TrainD[K1] 

TR <- Table_Results(PR) 

output <- cbind(K,K1,ITD,ITU,Acc,TR) 

 

for (h in 2:NN) 

 { 

 K <- index[h] 

 K1 <- K-KA 

 ff <- Multiple_KNN_Class(Results,TVar,P1,P2,K,J) 

 PR <- ff[["Prediction Table"]] 

 Acc <-ff[["Total Correct"]] 

 TrainD <- ff[["TD"]] 

 TrainU <- ff[["TU"]] 

 ITU <- TrainU[K1] # initial upward obs in train set 

 ITD <- TrainD[K1] # initial D obs in train set 

 TR <- Table_Results(PR)  

 output1 <- cbind(K,K1,ITD,ITU,Acc,TR) 

 output <- rbind(output,output1) 

 } 

 

output3<- round(output,digits=3)  

return(output3) 

} 
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Variable selection 
 

Subset selection using regitfull 

Var_Select 

function (DS,TVar,K)  

{ 

# Function to perform Regression variable subset selection 

 

#Target_Variable <- c("ER_1Y","ER_6M","ER_3M","ER_1M","ER_1W","ER_1D") 

#CAPM <- c("CAPM_1YER","CAPM_6MER","CAPM_3MER","CAPM_1MER","CAPM_1WER","CAPM_1DER") 

 

Models <- c("CAPM_1YER","Discount_360D_BB","Discount_LTVol_BB","Discount_GARCH_BB", 

   "ROE_360D_BB","ROE_LTVol_BB","ROE_GARCH_BB", 

   "Discount_360D_CS","Discount_LTVol_CS","Discount_GARCH_CS", 

   "ROE_360D_CS","ROE_LTVol_CS","ROE_GARCH_CS") 

 

# first TermCd Check 

PX <- Models[1] 

NC <- nchar(PX) 

Prefix <- substr(PX,start=1,stop=3) 

if(Prefix=="ROE") 

{Label <- "TermCD_M2" 

Suffix <- substr(PX,start=5,stop=NC)} 

else if(Prefix=="Dis") 

{Label <-"TermCD_M1" 

Suffix <- substr(PX,start=10,stop=NC)} 

if(Prefix=="CAP"){R1 <- DS} 

else{ 

TermCD <- paste(Label,Suffix,sep="_") 

R1 <- DS[DS[,TermCD]==1,]} 

 

for(i in 2:length(Models)) 

 { 

 PX1 <- Models[i] 

 NC1 <- nchar(PX1) 

 Prefix1 <- substr(PX1,start=1,stop=3) 

 if(Prefix1=="ROE") 

 {Label1 <- "TermCD_M2" 

 Suffix1 <- substr(PX1,start=5,stop=NC1)} 

 else if(Prefix1=="Dis") 

 {Label1 <-"TermCD_M1" 

 Suffix1 <- substr(PX1,start=10,stop=NC1)} 

 if(Prefix1=="CAP"){R1 <- R1} 

 else{ 

 TermCD1 <- paste(Label1,Suffix1,sep="_") 

 R1 <- R1[R1[,TermCD1]==1,]} 

 }    

# R1 is now Data Set with all variables TermCD 1  

 

if(TVar=="ER_1Y"){P1 <- R1[,"CAPM_1YER"]} 

else if(TVar=="ER_6M"){P1 <- R1[,"CAPM_6MER"]} 

else if(TVar=="ER_3M"){P1 <- R1[,"CAPM_3MER"]} 

else if(TVar=="ER_1M"){P1 <- R1[,"CAPM_1MER"]} 

else if(TVar=="ER_1W"){P1 <- R1[,"CAPM_1WER"]} 

else if(TVar=="ER_1D"){P1 <- R1[,"CAPM_1DER"]} 

 

P2 <- R1[,"Discount_360D_BB"] 

P3 <- R1[,"Discount_LTVol_BB"] 

P4 <- R1[,"Discount_GARCH_BB"] 
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P5 <- R1[,"ROE_360D_BB"] 

P6 <- R1[,"ROE_LTVol_BB"] 

P7 <- R1[,"ROE_GARCH_BB"] 

P8 <- R1[,"Discount_360D_CS"] 

P9 <- R1[,"Discount_LTVol_CS"] 

P10 <- R1[,"Discount_GARCH_CS"] 

P11 <- R1[,"ROE_360D_CS"] 

P12 <- R1[,"ROE_LTVol_CS"] 

P13 <- R1[,"ROE_GARCH_CS"] 

 

y <- R1[,TVar] 

 

DF <- data.frame(CAPM=P1, 

  Discount_360D_BB=P2,Discount_LTVol_BB=P3,Discount_GARCH_BB=P4, 

  ROE_360D_BB=P5,ROE_LTVol_BB=P6,ROE_GARCH_BB=P7, 

  Discount_360D_CS=P8,Discount_LTVol_CS=P9,Discount_GARCH_CS=P10, 

  ROE_360D_CS=P11,ROE_LTVol_CS=P12,ROE_GARCH_CS=P13,Y=y) 

 

DF1 <- DF[1:K,] 

regit.full <- regsubsets(Y~.,data=DF1,nvmax=NULL,method="seqrep",nbest=1) 

sub.graph(regit.full) 

#return(reg.sum) 

} 

 

Subset selection using logistic regression AIC 

Var_Select2 

function (DS,TVar,K,Label)  

{ 

# Function to perform Regression variable subset selection 

Models <- c("CAPM_1YER","Discount_360D_BB","Discount_LTVol_BB","Discount_GARCH_BB", 

   "ROE_360D_BB","ROE_LTVol_BB","ROE_GARCH_BB", 

   "Discount_360D_CS","Discount_LTVol_CS","Discount_GARCH_CS", 

   "ROE_360D_CS","ROE_LTVol_CS","ROE_GARCH_CS") 

 

# first TermCd Check 

PX <- Models[1] 

NC <- nchar(PX) 

Prefix <- substr(PX,start=1,stop=3) 

if(Prefix=="ROE") 

{Label <- "TermCD_M2" 

Suffix <- substr(PX,start=5,stop=NC)} 

else if(Prefix=="Dis") 

{Label <-"TermCD_M1" 

Suffix <- substr(PX,start=10,stop=NC)} 

if(Prefix=="CAP"){R1 <- DS} 

else{ 

TermCD <- paste(Label,Suffix,sep="_") 

R1 <- DS[DS[,TermCD]==1,]} 

 

for(i in 2:length(Models)) 

 { 

 PX1 <- Models[i] 

 NC1 <- nchar(PX1) 

 Prefix1 <- substr(PX1,start=1,stop=3) 

 if(Prefix1=="ROE") 

 {Label1 <- "TermCD_M2" 

 Suffix1 <- substr(PX1,start=5,stop=NC1)} 

 else if(Prefix1=="Dis") 

 {Label1 <-"TermCD_M1" 

 Suffix1 <- substr(PX1,start=10,stop=NC1)} 
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 if(Prefix1=="CAP"){R1 <- R1} 

 else{ 

 TermCD1 <- paste(Label1,Suffix1,sep="_") 

 R1 <- R1[R1[,TermCD1]==1,]} 

 }    

# R1 is now Data Set with all variables TermCD 1  

 

if(TVar=="ER_1Y"){P1 <- R1[,"CAPM_1YER"]} 

else if(TVar=="ER_6M"){P1 <- R1[,"CAPM_6MER"]} 

else if(TVar=="ER_3M"){P1 <- R1[,"CAPM_3MER"]} 

else if(TVar=="ER_1M"){P1 <- R1[,"CAPM_1MER"]} 

else if(TVar=="ER_1W"){P1 <- R1[,"CAPM_1WER"]} 

else if(TVar=="ER_1D"){P1 <- R1[,"CAPM_1DER"]} 

 

P2 <- R1[,"Discount_360D_BB"] 

P3 <- R1[,"Discount_LTVol_BB"] 

P4 <- R1[,"Discount_GARCH_BB"] 

P5 <- R1[,"ROE_360D_BB"] 

P6 <- R1[,"ROE_LTVol_BB"] 

P7 <- R1[,"ROE_GARCH_BB"] 

P8 <- R1[,"Discount_360D_CS"] 

P9 <- R1[,"Discount_LTVol_CS"] 

P10 <- R1[,"Discount_GARCH_CS"] 

P11 <- R1[,"ROE_360D_CS"] 

P12 <- R1[,"ROE_LTVol_CS"] 

P13 <- R1[,"ROE_GARCH_CS"] 

 

y <- R1[,TVar] 

Direction <- rep("Down",K) 

Direction[y>0] <-"Up" 

 

DF <- data.frame(CAPM=P1, 

  Discount_360D_BB=P2,Discount_LTVol_BB=P3,Discount_GARCH_BB=P4, 

  ROE_360D_BB=P5,ROE_LTVol_BB=P6,ROE_GARCH_BB=P7, 

  Discount_360D_CS=P8,Discount_LTVol_CS=P9,Discount_GARCH_CS=P10, 

  ROE_360D_CS=P11,ROE_LTVol_CS=P12,ROE_GARCH_CS=P13,Y=Direction) 

 

DF1 <- DF[1:K,] 

fullmod <- glm(Y~.,family=binomial,data=DF1) 

nothing <- glm(Y~1,family=binomial,data=DF1) 

backwards <- step(fullmod,trace=0) 

#summary(backwards) 

forwards <- step(nothing,scope=list(lower=formula(nothing),upper=formula(fullmod)),direction=

"forward",trace=0) 

bothways <- step(nothing,scope=list(lower=formula(nothing),upper=formula(fullmod)),direction=

"forward",trace=0) 

#summary(bothways) 

stargazer(bothways,type="text",out="regression.txt",dep.var.labels=Label) 

} 
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