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Abstract Lateralization is a fundamental principle of nervous system organization but its

molecular determinants are mostly unknown. In humans, asymmetric gene expression in the fetal

cortex has been suggested as the molecular basis of handedness. However, human fetuses already

show considerable asymmetries in arm movements before the motor cortex is functionally linked to

the spinal cord, making it more likely that spinal gene expression asymmetries form the molecular

basis of handedness. We analyzed genome-wide mRNA expression and DNA methylation in

cervical and anterior thoracal spinal cord segments of five human fetuses and show development-

dependent gene expression asymmetries. These gene expression asymmetries were epigenetically

regulated by miRNA expression asymmetries in the TGF-b signaling pathway and lateralized

methylation of CpG islands. Our findings suggest that molecular mechanisms for epigenetic

regulation within the spinal cord constitute the starting point for handedness, implying a

fundamental shift in our understanding of the ontogenesis of hemispheric asymmetries in humans.

DOI: 10.7554/eLife.22784.001

Introduction
Compared to the almost infinite complexity of vertebrate cognition and behavior, the number of

genes influencing central nervous system development is staggeringly small (Kadakkuzha and

Puthanveettil, 2013). Thus, understanding the molecular mechanism underlying the epigenetics of

vertebrate central nervous system architecture has become an issue central to neuroscience

(Kundakovic and Champagne, 2015).

One fundamental principle of brain organization is lateralization, i.e. structural or functional dif-

ference between the left and the right hemisphere of the brain (Corballis, 2014). Lateralization is a
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conserved feature across the vertebrate lineage (Ströckens et al., 2013; Ocklenburg et al., 2013a;

Bisazza et al., 1998; Rogers et al., 2012; Versace and Vallortigara, 2015) and recent studies

strongly suggest it is also present in invertebrates (Frasnelli et al., 2012). This ubiquity of behav-

ioral and brain lateralization strongly supports the idea that lateralized central nervous system orga-

nization provides an evolutionary advantage (Vallortigara and Rogers, 2005). Suggestions about

why a lateralized brain would increase an organism’s fitness include avoidance of unnecessary dupli-

cation of neuronal activity in both hemispheres, faster neuronal processing due to not being con-

strained by slow callosal transfer of information between the hemispheres and better coordination

of unilateral behaviors in swarms or other social groups of animals (Vallortigara and Rogers, 2005;

Corballis, 2009). In humans, hemispheric asymmetries have been shown in almost all major cogni-

tive systems (Ocklenburg et al., 2014a) including language (Friederici, 2011; Sepeta et al., 2016),

memory (Giammattei and Arndt, 2012; Tat and Azuma, 2016; Habib et al., 2003), attention

(Falasca et al., 2015; Duecker et al., 2013), emotional processing (Demaree et al., 2005), face

perception (De Winter et al., 2015), working memory (Langel et al., 2014; Nagel et al., 2013) and

executive functions (Ocklenburg et al., 2011a, 2012; Stock and Beste, 2014).

By far the most widely investigated manifestation of lateralization in humans is handedness

(Corballis, 2014). Importantly, handedness is related to the lateralized organization of cognitive

systems in the human brain (Ocklenburg et al., 2014b; Frässle et al., 2016). For example, left-

hemispheric language dominance is found in 96% of right-handed subjects, but only in 73% of left-

handed subjects (Knecht et al., 2000). The relevance of handedness has recently been highlighted

by Willems et al. (Willems et al., 2014), who state that it is one of the most important factors

influencing the individual brain organization and that explicit inclusion of left-handers in experimen-

tal studies has strongly improved our understanding of language, motor behavior and visual proc-

essing. Handedness might not only be a behavioral proxy for individual brain organization, but is

also interesting from a clinical perspective: A variety of neuropsychiatric and developmental disor-

ders like autism spectrum disorders (Colby and Parkison, 1977; Forrester et al., 2014;

Preslar et al., 2014; Rysstad and Pedersen, 2016), depression (Denny, 2009; Elias et al., 2001;

Logue et al., 2015), bipolar disorder (van Dyck et al., 2012; Nowakowska et al., 2008), anxiety

disorders (Logue et al., 2015; Hicks and Pellegrini, 1978; Orme, 1970; Wright and Hardie,

2012; Hardie et al., 2016; Lyle et al., 2013), schizophrenia (Hirnstein and Hugdahl, 2014;

Dragovic and Hammond, 2005; Sommer et al., 2001) or alcoholism (Denny, 2011;

Mandal et al., 2000; Sperling et al., 2000) has been associated with left- and mixed-handedness.

Thus, understanding the ontogenesis of handedness and hemispheric asymmetries in general could

potentially yield important insights into pathogenesis of these disorders.

However, despite their importance for many aspects of brain organization, the ontogenetic back-

ground of brain asymmetries is still far from being understood. Initially, single gene theories have

been suggested to explain the emergence of handedness as a function of one gene with two alleles

(Annett, 1998; McManus, 1985). However, recent genome wide association studies failed to detect

any genome-wide significant single nucleotide polymorphisms, refuting single gene theories

(Armour et al., 2014; Eriksson et al., 2010). Candidate gene studies revealed a number of genes

that display an association with handedness, among them leucine rich repeat transmembrane neuro-

nal 1 (LRRTM1) (Francks et al., 2007), proprotein convertase subtilisin/kexin type 6 (PCSK6)

(Scerri et al., 2011; Arning et al., 2013; Brandler et al., 2013) and the androgen receptor gene

(AR) (Arning et al., 2015; Hampson and Sankar, 2012; Medland et al., 2005). However, these

genes explain only a fraction of the variance in handedness data. Moreover, a number of studies has

suggested that only about one quarter of the variance in handedness is attributed to genetic varia-

tion, whereas the remaining 75% of variance are explained by non-shared environmental factors

(Medland et al., 2006, 2009; Vuoksimaa et al., 2009). These findings highlight the importance of

integrating both genetic variation and epigenetic processes modulating gene expression when

investigating the ontogenesis of hemispheric asymmetries (Geschwind and Miller, 2001).

Asymmetric gene expression in the fetal cortex has been suggested as the molecular basis of left-

right differences in hand-use: Sun et al. (Sun et al., 2005) compared gene expression levels in the

right and left perisylvian cortex of the human fetus. At 12 gestational weeks, the authors identified

27 consistently asymmetrically expressed genes, which are mostly responsible for gene expression

regulation, signal transduction, and cortical development. One of the consistently asymmetrically

expressed genes was LIM Domain Only 4 (LMO4). Further investigation revealed that unilateral
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variation of Lmo4 expression in embryonic mice suppresses neurogenesis in one hemisphere, leading

to the asymmetric functional area formation, neuronal production and axonal projection as well as

altered paw preference (Li et al., 2013). Analysis of gene expression in the adult human brain

yielded less clear results, since two independent studies found no differences in gene expression

between analogous regions across the cerebral hemispheres (Hawrylycz et al., 2012;

Pletikos et al., 2014). In a recent study, Karlebach and Francks reanalyzed both datasets and

showed that subtle lateralization at single gene level translates to stronger asymmetries at the level

of functional gene ontology (GO) groups. The authors found lateralized gene sets to be associated

with neuronal electrophysiology, synaptic transmission, nervous system development, and glutamate

receptor activity (Karlebach and Francks, 2015).

However, recent research indicates that cortical tissue might not be the optimal choice to investi-

gate the relation of gene expression asymmetries and behavioral asymmetries. Ontogenetically,

handedness starts early in development since coordinated hand movements begin 8 weeks post

conception (PC), i.e. 10 weeks gestational age, when 85% of fetuses exhibit more right arm than left

arm movements (Hepper et al., 1998; de Vries et al., 1985). Investigation of thumb sucking in 274

fetuses revealed that at 13 weeks PC 90% prefer to suck their right thumb whereas only 10% suck

their left thumb more often (Hepper et al., 1990, 1991). Interestingly, a follow up study of 75

infants revealed that thumb sucking preference is significantly positively correlated with subsequent

handedness: The 60 children showing a right thumb preference were right-handed whereas out of

the 15 children displaying a left thumb preference, five were right-handed and 10 were left-handed

(Hepper et al., 2005). Importantly, the motor cortex is not yet functionally linked to the spinal cord

at that stage of development as the outgrowth of corticospinal projections does not enter the ante-

rior spinal cord before 15 weeks PC (ten Donkelaar et al., 2004). This implies that handedness is

unlikely to be under brain control (Hepper et al., 1991) and asymmetrical hand movements have to

arise from spinal activity patterns. Thus, it is likely that spinal rather than cortical gene expression

asymmetries represent the molecular basis of handedness.

Asymmetrical gene expression patterns are likely to be influenced by epigenetic variation. The

most important epigenetic mechanism is DNA methylation. Binding of methyl (-CH3) groups to CpG

sites or islands causes a reduction or prevention of transcription and thus gene expression. DNA

methylation is confirmed to be involved in the development of basic central nervous system func-

tions like synaptic function, neuronal plasticity, learning and memory (Nikolova and Hariri, 2015;

Day et al., 2015; Roth, 2012). Especially intrauterine stressors have been shown to influence DNA

methylation (Turecki and Meaney, 2016; Vaiserman, 2015), which is particularly interesting in the

context of handedness ontogenesis. Moreover, a recent study showed that methylation plays a role

in the ontogenesis of handedness: methylation levels in a CpG block in the promoter region of

LRRTM1 were associated with atypical handedness (Leach et al., 2014).

Post-transcriptionally, gene expression is further regulated by microRNAs (miRNAs) that are com-

posed of small, 21–25 nucleotide, non-coding RNAs. In humans and other mammals, miRNAs pri-

marily cause destabilization of target mRNAs instead of reduced translation (Guo et al., 2010). This

has also been shown to be relevant for hemispheric asymmetries, as neuronal asymmetries in the

nematode Caenorhabditis elegans are controlled for by different miRNAs (Alqadah et al., 2013;

Cochella and Hobert, 2012; Johnston and Hobert, 2003; Hsieh et al., 2012).

Pronounced changes in spatiotemporal expression profiles are a key feature of human embryo-

genesis (Yi et al., 2010) and formation of functional asymmetries in vertebrates has been shown

to strongly depend on critical periods in early development (Le Grand et al., 2003; Zappia and

Rogers, 1983). To investigate the molecular determinants of human behavioral asymmetries we

analyzed asymmetries in genome-wide mRNA expression, miRNA expression and DNA methyla-

tion patterns in human fetal spinal cord tissue. Importantly, we specifically wanted to investigate

the spinal cord segments innervating arms and hands. While rostral cervical segments (C2–C5)

innervate the head, neck and shoulder region, the subsequent segments directly innervate arms

and hands with C6 innervating the thumb, C7 innervating the middle finger and C8 innervating

the little finger. T1 innervates the medial site of the antecubital fossa (Maynard et al., 1997).

Based on the findings on the start of left-right asymmetries in coordinated hand movements

(Hepper et al., 1998; de Vries et al., 1985), we focused on fetal tissue samples obtained

between 8 and 12 weeks PC.
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We hypothesized that gene expression asymmetries between the left and right spinal cord start

at 8 weeks PC, as this is the starting point of coordinated asymmetrical hand movements. Based on

the findings about the role of non-genetic influence factors for handedness development, we also

assumed a pronounced modulation of these mRNA expression asymmetries by asymmetric DNA

methylation and asymmetric miRNA expression.

Results

Gene expression
Asymmetries in mRNA expression in spinal cord segments C2 to T2 were observed at all three devel-

opmental stages, with the largest differences evident at 8 weeks PC. At 8 weeks PC, 1690 transcripts

(3.29%) showed left-right gene expression differences with log2(fold change) > 1.5. The fact that 39

transcripts showed stronger left-sided gene expression, while 1651 transcripts showed stronger

right-sided gene expression highlights increased right-sided gene expression in the spinal cord at

this developmental stage. The number of asymmetrically expressed genes with a log2(fold

change) > 1.5 was reduced to only 24 genes (0.05%) at 10 weeks PC. Among these, 15 displayed

leftward asymmetrical gene expression and nine showed rightward asymmetrical gene expression.

Four genes (0.01%) showed a log2(fold change) of 1.5 or higher (see Figure 1 for top 25 asymmetri-

cally expressed genes per developmental stage and Supplementary file 1G for individual samples)

at 12 weeks PC, all indicating stronger gene expression in the right spinal cord. Among the candi-

date genes associated with the development of hemispheric asymmetries (see Figure 2A), forkhead

box P2 (FOXP2) (Ocklenburg et al., 2013b) displayed a rightward asymmetry in the spinal cord at

10 weeks PC. BDNF antisense RNA (BDNF-AS) (Manns et al., 2008) was higher expressed in the left

spinal cord at 8 weeks PC.

GO groups
Recently, it has been suggested that subtle expression asymmetries at the level of individual genes

may translate to stronger asymmetries within the gene ontology (GO) groups (Karlebach and

Francks, 2015). The number of significant GO groups (p<0.05) as displayed by enrichment analysis

over asymmetrically expressed genes per hemisphere and developmental stage was the highest at 8

weeks PC (123 overall). For the 69 transcripts showing asymmetrical gene expression towards the

left spinal cord, WebGestalt revealed three enriched GO groups: Platelet-derived growth factor

binding (p<0.05), collagen (p<0.05), and fibrillary collagen (p<0.05). In contrast, for the 1651 tran-

scripts showing asymmetrical gene expression towards the right spinal cord, GO analysis revealed

120 enriched GO groups displaying particular involvement in biological processes like cell cycle

(p<0.001), cellular component organization or biogenesis (p<0.001), and metabolic processes

(p<0.001). Enriched molecular functions include protein binding (p<0.001), transferase activity

(p<0.001), and protein binding transcription factor activity (p<0.001). The number of significant GO

groups was reduced at 10 weeks PC (41 overall): The 15 genes showing leftward asymmetric gene

expression cluster in 4 GO categories representing cellular components: DNA-directed RNA poly-

merase II, holoenzyme (p<0.05), nuclear DNA-directed RNA polymerase complex (p<0.05), RNA

polymerase complex (p<0.05), and DNA-directed RNA polymerase complex (p<0.05). GO catego-

ries enriched in the nine genes asymmetrically expressed towards the right spinal cord include sys-

tem development (p<0.05), regulation of reproductive process (p<0.05), cell proliferation (p<0.05),

and multicellular organismal process (p<0.05). At 12 weeks PC, no GO group reached statistical sig-

nificance (see Figure 2B–C and related Figure 2—source data 1).

miRNA
At 8 weeks PC, 301 miRNA transcripts were expressed in both the left and the right spinal cord. Out

of those, five (1.66%) showed a biologically relevant asymmetry towards the right spinal cord. At 10

weeks PC, six of 382 transcripts (1.57%) displayed a log2(fold change) > 1.5, thereof three leftwards

and three rightwards. At 12 weeks PC, seven of 294 expressed transcripts (2.38%) were differentially

expressed with six being more strongly expressed in the left spinal cord and one being more

strongly expressed in the right spinal cord (see Figure 3A and related Figure 3—source data 1).

For each developmental stage, target genes of asymmetrically expressed miRNA transcripts were
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Figure 1. Gene expression asymmetries in human fetal spinal cord at 8, 10 and 12 weeks PC. X-axis shows the

extent of asymmetry measured in log2(fold change) between right and left spinal cord samples. Blue bars show

leftward asymmetrically expressed genes, red bars show rightward asymmetrically expressed genes. For 8 weeks

Figure 1 continued on next page
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compared to asymmetrically expressed genes. At 8 weeks PC, 65 of the 1690 asymmetrically

expressed genes (3.85%) were likely to be targets of asymmetrically expressed miRNA transcripts.

At 10 weeks PC, six of the 24 asymmetrically expressed genes (25%) were targets of differentially

expressed miRNAs. At 12 weeks PC, one of the four asymmetrically expressed genes (25%) was a

target of the asymmetrically expressed miRNAs of that developmental stage. For the miRNAs asym-

metrically expressed towards the right spinal cord at 8 weeks PC, 12 KEGG pathways reached FDR-

corrected significance. By far the largest effect was observed for the Transforming growth factor

beta (TGF-b) signaling pathway (p<0.001), which all five miRNAs asymmetrically expressed towards

the right spinal cord were involved in. Additionally, among the 10 genes involved in this pathway,

two (SP1, SMAD3) were differentially expressed at 8 weeks PC. At 10 weeks PC, four pathways

reached FDR-corrected significance (two left, two right). For 12 weeks PC, 16 pathways were

detected in KEGG analyses (14 left, two right).

DNA methylation
At 8 weeks PC, 31,278 CpG sites showed higher DNA methylation (FDR-corrected p-value below

0.01 and the % methylation difference between left and right above 25%) in the left spinal cord over

both samples, whereas only 8615 CpG sites were more extensively methylated in the right spinal

cord of both samples. At 10 weeks PC, 10,892 CpG sites showed side-specific asymmetrical DNA

methylation towards the left side and 11,081 towards the right side of both samples (see Figure 3B–

C and related Figure 3—source data 4). At 12 weeks PC, for which only one sample was available,

281,119 CpG sites showed higher DNA methylation in the left and 352,118 in the right spinal cord.

Comparing the methylation data to gene expression data revealed that at 8 weeks PC, 451 of 1690

asymmetrically expressed genes were asymmetrically methylated towards the opposite direction,

thus, 27% of the variance in asymmetrical gene expression could be explained by differential methyl-

ation alone. Moreover, 1% of variance (18 genes) could be explained by the asymmetrical miRNA

expression as well as differential methylation and 3% of variance (47 genes) could be explained by

miRNA alone, which leaves 69% of variance unexplained (Figure 3D). At 10 weeks PC, 25% of vari-

ance in asymmetrical gene expression (six genes) could be explained by miRNA alone, followed by

methylation (8%, two genes). 67% of variance remained unexplained. At 12 weeks PC, 25% of vari-

ance (one gene) was explained by miRNA and 25% (one gene) by methylation. 50% of variance

remained unexplained at 12 weeks PC.

Discussion
Hemispheric asymmetries in brain and behavior are a major organizational principle in the vertebrate

central nervous system, but their ontogenesis is not well understood (Ocklenburg et al., 2014b).

While it is general consensus that both genetic and epigenetic factors play a role

(Ocklenburg et al., 2013c), it is unclear, which molecular processes underlie the epigenetic modula-

tion of gene expression asymmetries, a potential origin of behavioral asymmetries (Sun et al., 2005;

Karlebach and Francks, 2015). To elucidate this question we analyzed asymmetries in genome-

wide mRNA expression, miRNA expression and DNA methylation patterns in human fetal tissue sam-

ples. Importantly, we focused on spinal cord, not brain, tissue. Eight weeks after conception, human

fetuses exhibit pronounced lateralized motor behavior of the arms. As cortical control of this behav-

ior is unlikely (Hepper et al., 1998; de Vries et al., 1985; Hepper et al., 2005; ten Donkelaar

et al., 2004), it has been suggested that it is under spinal control (Hepper, 2013).

Figure 1 continued

PC, the top 25 genes with highest rightward/leftward gene expression asymmetries are depicted. For 10 and 12

weeks PC, all genes with a log2(fold change) > 1.5 are shown. The source files of asymmetrically expressed genes

per developmental stage with corresponding fold change values are available in Figure 1—source data 1.

DOI: 10.7554/eLife.22784.002

The following source data is available for figure 1:

Source data 1. Asymmetrically expressed genes per week.

DOI: 10.7554/eLife.22784.003
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Figure 2. Functional genes and gene groups. (A) Gene expression asymmetries for previously published

candidate genes for handedness and functional lateralization. Asterisks indicate biologically relevant gene

expression asymmetry with a log2(fold change) > 1.5. (B) Number of significant Gene Ontology (GO) groups for

the three main categories ‘biological processes’, ’molecular function’ and ’cellular component’ for weeks 8, 10 and

12 PC. (C) Main GO groups for 8 and 10 weeks PC with p-value and number of involved genes for the left and

right spinal cord. The source files of all enriched GO groups are available in Figure 2—source data 1.

DOI: 10.7554/eLife.22784.004

The following source data is available for figure 2:

Figure 2 continued on next page
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In line with our hypothesis, our findings suggest that gene expression asymmetries in the spinal

cord segments innervating the hands and arms might be critical for the ontogenesis of functional

asymmetries. For the first time we show that the left and right cervical and anterior thoracal seg-

ments of the fetal spinal cord do show biologically relevant gene expression differences. Impor-

tantly, these gene expression asymmetries are highly developmental stage-specific. At eight weeks

after conception, gene expression asymmetries between the two halves of the spinal cord were

most pronounced, with 3.29% of all transcripts showing biologically relevant left-right gene expres-

sion differences, largely higher towards the right side and involved in numerous GO categories con-

tributing to neurodevelopment. At 10 weeks PC, this number decreased substantially to 0.05% and

further so at 12 weeks PC (0.01%). While the findings for 10 and 12 weeks PC are largely comparable

to what has been reported for gene expression asymmetries in the fetal cerebral cortex (Sun et al.,

2005; Karlebach and Francks, 2015), the data for eight weeks PC indicate a substantial increase

over previous reports of gene expression asymmetries in CNS tissue that goes along with the first

onset of coordinated hand movements.

In line with the suggestion that non-shared environmental influences account for more than 75%

of the variance in functional hemispheric asymmetries in humans (Medland et al., 2009), we could

show that a large part of these gene expression asymmetries is regulated by epigenetic processes.

On the one hand, we could show that DNA methylation of CpG islands shows substantial asym-

metries that are related to RNA expression asymmetries. In week 8 tissue samples, there was a

strong left-lateralization of CpG island methylation, indicating a stronger repression of gene tran-

scription in the left spinal cord. This is well in line with our finding of increased overall right-sided

gene expression at that time point. Direct comparison of the location of asymmetrically methylated

CpG islands and asymmetrically expressed genes indicated that 27% of the variance in asymmetrical

gene expression at week 8 could be explained by differential methylation. In week 10 tissue samples,

methylation asymmetries are massively decreased as compared to week eight, also in line with the

gene expression data. Week 12 is difficult to interpret as here only one sample was analyzed, greatly

increasing the number of asymmetrically methylated CpG sites.

On the other hand, we could also show that the asymmetries in gene expression are modulated

by miRNA expression asymmetries. Particularly interesting was our finding that for the miRNAs

asymmetrically expressed towards the right spinal cord at week eight, KEGG pathway analysis

revealed a substantial effect of the TGF-b signaling pathway. This is an intriguing finding, as both

nodal growth differentiation factor (Nodal) and left-right determination factor (Lefty), two of the key

proteins for establishing bodily left–right asymmetry during development are part of the TGF-b

superfamily (Mittwoch, 2008; Shiratori and Hamada, 2014). Importantly, TGF-b signaling has

directly been linked to handedness, as proprotein convertase subtilisin/kexin type 6 (PCSK6), one of

the major candidate genes for handedness, encodes for a protease that cleaves NODAL

(Scerri et al., 2011).

Our data collection was limited to weeks 8 to 12 PC and for future studies, it could potentially be

interesting to include tissue samples from even earlier stages to get a more detailed picture of the

developmental trajectory. Also, independent replication in larger samples is needed in order to

make more in-depth functional conclusions. As limb preferences have been reported in many non-

human primates, but the strong 90 to 10 distribution of right- and left-handedness in humans seems

to be rather unique, comparative analysis of primate tissue samples might yield unique insights into

the evolution of the molecular basis of hemispheric asymmetries.

One potential issue with the interpretation of our data is to what extent the observed gene

expression asymmetries are linked to visceral situs and not necessarily nervous system asymmetries.

A particular interesting experiment in this regard would be to investigate spinal cord gene expres-

sion asymmetries in the inversus viscerum (iv) line of mouse mutants (Okada et al., 1999). These

mutants show randomized visceral laterality and by comparing spinal cord gene expression asymme-

tries between animals with normal and atypical visceral asymmetries a potential impact of visceral

asymmetries on spinal cord gene expression could easily be identified.

Figure 2 continued

Source data 1. Enriched GO groups per week and side of the spinal cord.

DOI: 10.7554/eLife.22784.005
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Figure 3. Epigenetic regulation of gene expression asymmetries in human fetal spinal cord. (A) Asymmetrically expressed miRNA transcripts at 8, 10

and 12 weeks PC. The extent of expression asymmetries is measured in log2(fold change). Red bars show rightward asymmetrically expressed

microRNA transcripts, blue bars show leftward asymmetrically expressed miRNA transcripts. (B) Number of CpG sites showing differential DNA

methylation per chromosome, compared between the left and right spinal cord for 8 and 10 weeks PC. Depicted are only CpG sites with methylation

Figure 3 continued on next page
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Taken together, these results are a strong indicator of epigenetic influences on human spinal

cord gene expression asymmetries, a potential precursor of handedness. In birds, it has been shown

that a behavioral preference for turning the head to the right, caused by epigenetic modulation dur-

ing a critical period just before hatch, induces not only motor, but also visual and cognitive asymme-

tries (Casey and Martino, 2000; Manns and Güntürkün, 2009; Rogers, 1982; Skiba et al., 2002).

Based on our data, a similar model is conceivable in humans. As week eight after conception repre-

sents the onset of coordinated hand movements and behavioral asymmetries of the hands occur first

at this time point (Hepper et al., 1998; de Vries et al., 1985), we assume that a certain time frame

before 10 weeks PC represents the critical period for handedness formation. During this period,

asymmetrical DNA methylation and posttranscriptional regulation by asymmetrically expressed miR-

NAs lead to a spike in RNA expression asymmetries in the spinal segments innervating the arms and

hands. These expression asymmetries of genes relevant for CNS development could lead to a differ-

ential development of neuronal circuits influencing the right arm and hand, causing the described

behavioral asymmetries. For example, it has been shown that spinal cord segments innervating the

right arm contain motoneurons with larger somata than left arm segments. In contrast, there are no

size differences in left and right segments innervating the upper trunk (Melsbach et al., 1996). Fur-

thermore, at eight weeks PC, the spinal cord and motor cortex are functionally not connected

(ten Donkelaar et al., 2004), also supporting that behavioral asymmetries in arm use at that stage

are controlled for by the spinal cord. At a later developmental stage when the spinal cord and motor

cortex are functionally connected, the established behavioral asymmetry then could lead to asymme-

tries in use-dependent neuronal plasticity processes (Cirillo et al., 2010) in the motor cortex, ulti-

mately leading to the cortical correlates of handedness (Ocklenburg et al., 2013c). This process

could start at around 14 weeks PC, as asymmetric fetal hand use at that stage strongly correlates

with later handedness at school age (Hepper et al., 1990, 2005). Unlike models assuming that

handedness is primarily controlled by allelic variations in one or more candidate genes

(Annett, 1998), our suggestion is in line with the finding that more than 75% of the variance in hand-

edness data is explained for by non-shared environmental influences (Medland et al., 2009). More-

over, our data do not contradict neither linkage studies in extended left-handed pedigrees nor

genome-wide association studies which were unable to identify allelic variants that explain more

than a fraction of the variance in handedness data (Armour et al., 2014; Eriksson et al., 2010;

Somers et al., 2015). Whereas our findings suggest that a large part of these influencing factors act

prenatally, there remain several important peri- and postnatal environmental factors like social mod-

ulation to shape actual handedness (Schaafsma et al., 2009).

In summary, we could show pronounced, time sensitive gene expression asymmetries in human

fetal spinal tissue that overlap with the onset of behavioral asymmetries. Thus, our data suggest a

spinal, not a cortical, beginning of hemispheric asymmetries. The observed gene expression asym-

metries were modulated by asymmetric CpG island methylation and asymmetries in miRNA

Figure 3 continued

asymmetries in both samples. Red bars represent the number of CpG sites that showed significantly higher DNA methylation on the right side, blue

bars show the number of CpG sites that showed significantly more DNA methylation on the left side. (C) Percentage of differential DNA methylation in

leftward (blue) and rightward (red) asymmetrically methylated CpG sites as a function of p-value. (D) Percentage of gene expression asymmetries on

each chromosome at 8 weeks PC that can be explained by regulation via asymmetrically expressed miRNAs or asymmetric DNA methylation of CpG

sites within and 1500 nucleotides upstream of the expressed genes. The source files of asymmetrically expressed miRNAs, asymmetrically expressed

targets of miRNAs, enriched KEGG pathways and differentially methylated CpG sites are available in Figure 3—source data 1, Figure 3—source data

2, Figure 3—source data 3, and Figure 3—source data 4 respectively.

DOI: 10.7554/eLife.22784.006

The following source data is available for figure 3:

Source data 1. Asymmetrically expressed miRNAs per week.

DOI: 10.7554/eLife.22784.007

Source data 2. Asymmetrically expressed RNA targets of asymmetrically expressed miRNAs per week.

DOI: 10.7554/eLife.22784.008

Source data 3. Enriched KEGG pathways per week and side of the spinal cord.

DOI: 10.7554/eLife.22784.009

Source data 4. Asymmetrically methylated CpG sites per week and side of the spinal cord.

DOI: 10.7554/eLife.22784.010
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expression, suggesting that these processes form the molecular basis of asymmetry epigenetics. In

conclusion, our data strongly suggest a multifactorial model for the ontogenesis of hemispheric

asymmetries, including both multiple genetic and epigenetic factors.

Materials and methods

Sample collection
The human spinal cord was collected from fetal tissue discarded following induced pregnancy termi-

nation in a regional gynecology clinic. None of the physicians or other medical personnel involved in

conducting the pregnancy terminations was involved in this scientific study. The study was approved

by the Ethics Committee of the Medical Faculty of the Ruhr University Bochum (registration number

5056–14). All fetal tissue donors signed written informed consent at least 24 hr before the pregnancy

termination was conducted. Following informed consent, the handedness of fetal tissue donors was

determined using the Edinburgh Handedness Inventory (EHI) (Oldfield, 1971).

Tissue preparation
Tissue samples were dissected from the spinal cord of six fetuses after pregnancy terminations at 8,

10, and 12 weeks post conception (PC), i.e. 10, 12 and 14 weeks gestational age. Due to ethical con-

siderations when working with aborted human fetal tissue, the sample size was limited to six fetuses

for which we got allowance by the Ethics Committee. This number was based on effects in previous

studies with fetal cortical tissue (Sun et al., 2005). Fetal pathologies were ruled out as far as possible

by excluding pregnancy terminations due to medical indications as well as karyotype aberrations.

The samples were also excluded in case of heavily destructed tissue. Following pregnancy termina-

tion, fetal and surrounding tissue was immediately rinsed with sterile 1x phosphate buffered saline

(PBS) in order to hold ion concentrations constant while blood was removed. In case the spine was

detectable, it was fixed with sterile cannulas with a diameter of 0.6 mm (B Braun, Melsungen, Ger-

many) and opened longitudinally with ball-ended dissecting scissors. In order to differentiate left

and right, the right spinal cord was marked with small injections of 1% cresyl violet. Tissue samples

were stored in 1 ml Allprotect Tissue Reagent (Qiagen, Hilden, Germany). Spinal cord tissue prepa-

ration was conducted as quickly as possible to ensure that RNA was not degraded (7:50–16:40 min,

see Supplementary file 1A). Subsequently, 50–100 mg of chorionic villi were removed and stored

in 10 ml of RPMI 1640 Medium (Life Technologies GmbH, Carlsbad, California) for subsequent karyo-

gram analysis. All tissue samples were transported to Ruhr University Bochum, Germany. Spinal cord

samples were stored at 4˚C to preserve the gene expression profile. 24 hr later, the upper third of

the spinal cord was separated on a Teflon freezing plate in order to include spinal cord segments C2

to T2. The left and right spinal cord were dissected by separating the tissue longitudinally along the

midline and restored in the Allprotect Tissue Reagent at �80˚C.

Karyotyping
Karyograms were assembled at the Department of Human Genetics (Ruhr University Bochum) to

ensure that karyotypes were normal without major chromosomal aberrations. Cell cultures were incu-

bated with 1 mg colcemid (Gibco, Karlsruhe, Germany) for 80 min and were then harvested from

flask applying trypsin-EDTA (0.05/0.02 w/v) (Biochrome, Berlin, Germany) for 2–4 min. After transfer-

ring to tube and centrifugation (170 g for 10 min) cells were incubated in 0.56% KCl hypotonic solu-

tion for 20 min and subsequently fixed and washed using a 3:1 methanol–glacial acetic acid fixative.

After spreading on slides and air drying samples were stained in 0.025% quinacrine hydrochloride

(Sigma, Steinheim, Germany) for 20 min. Q bands were visualized on a Zeiss Axioskop 2 fluorescent

microscope and 100 metaphases per sample were analyzed in Ikaros software (Metasystems, Altlus-

sheim, Germany).

Assessment of RNA and DNA
Total RNA including miRNA and DNA was extracted using the AllPrep DNA/RNA/miRNA Universal

Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. Concentration and

purity of RNA and DNA were determined photometrically (NanoDrop ND-1000 Spectrophotometer,

Thermo Scientific, Waltham, Massachusetts). RNA quality was controlled using the Agilent RNA
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6000 Pico Kit and Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, California) according

to the manufacturer’s recommendations. Extracted RNA and DNA were stored at �80˚C until gene

expression analysis was performed. For RNA and DNA quality measurements see Supplementary

files 1B–C.

Gene expression analysis and bioinformatics
‘INVIEW Transcriptome Discover’ provided by GATC Biotech AG (Konstanz, Germany) was used to

analyze the extracted mRNA. Sample VI did not pass entry quality control and was not further proc-

essed. For the remaining samples, rRNA was depleted from total RNA for purification and subse-

quent fragmentation of mRNA into RNA-Seq reads. A strand-specific cDNA-library was generated

for subsequent Illumina paired-end sequencing with 60 million reads. The RNA-Seq reads were

aligned to the reference genome (Homo sapiens, hg19) using Bowtie (RRID:SCR_005476). Read sta-

tistics are reported in Supplementary files 1D–E. Potential exon-exon splice junctions were discov-

ered (TopHat, RRID:SCR_013035). The software Cufflinks (RRID:SCR_013307) (Trapnell et al., 2010)

then recognized and quantified transcripts, which were merged to full length transcripts and anno-

tated. Cuffdiff (RRID:SCR_001647) tracked the mapped reads and determined the relative gene

expression value (fragment per kilo base of transcript per million fragments mapped [FPKM]) for

each transcript in each sample.

Overall, gene expression was investigated in 51,408 transcripts in left and right spinal cord of five

samples. Asymmetric gene expression was determined for annotated genes, which were identified

using the RefSeq database (http://www.ncbi.nlm.nih.gov/refseq/; RRID:SCR_003496). Differential

gene expression is usually reported as a fold change in FPKM. In case of very small FPKM values the

fold change is likely to be high although the difference in gene expression is small (Warden et al.,

2013), so a gene was considered as abundant if FPKM was at least 1. The number of protein coding

genes with an FPKM-threshold of 1 on both sides was slightly lower in sample II (9102, 17.7%) than

in the other samples (I: 10,618, 20.7%, III: 10,970, 21.3%, IV: 10,854, 21.1%, V: 10,989, 21.4%). Due

to the small sample size, differential gene expression for 8 and 10 weeks PC was determined by fold

change of means using a threshold of log2(fold change) > 1.5. This value is commonly acknowledged

to indicate a gene expression difference with possible functional relevance (Hawrylycz et al., 2012).

At 12 weeks PC, only one sample was included and genes with a log2(fold change) > 1.5 of FPKM

values were considered as asymmetrically expressed.

After the initial analysis on the single gene level, we targeted candidate genes that had previously

been associated with the development of hemispheric asymmetries: LRRTM1 (Francks et al., 2007),

PCSK6 (Scerri et al., 2011; Arning et al., 2013; Brandler et al., 2013), meiosis specific nuclear

structural 1 (MNS1) (Brandler et al., 2013), polycystin 2, transient receptor potential cation channel

(PKD2) (Brandler et al., 2013), AR (Arning et al., 2015; Hampson and Sankar, 2012;

Medland et al., 2005), SET domain bifurcated 2 (SETDB2) (Ocklenburg et al., 2016), and catechol-

O-methyltransferase (COMT) (Savitz et al., 2007) have been reported as specific candidate genes

for handedness, whereas glutamate ionotropic receptor NMDA type subunit 2B (GRIN2B)

(Ocklenburg et al., 2011b), FOXP2 (Ocklenburg et al., 2013b; Pinel et al., 2012), KIAA031945

(Pinel et al., 2012), and cholecystokinin A receptor (CCKAR) (Ocklenburg et al., 2013d) have been

associated with language lateralization. Other genes associated with left-right differentiation are

left-right determination factor 1 (LEFTY1) (Mittwoch, 2008) and nodal growth differentiation factor

(NODAL) (Mittwoch, 2008), BDNF (Manns et al., 2008), LIM homeobox 1 (LHX1) (Tsang et al.,

1999), and bone morphogenetic protein 7 (BMP7) (Abu-Khalil et al., 2004). Among these, AR and

NODAL were not expressed above the detection level at any developmental stage.

In order to identify functional groups of asymmetrically expressed genes, we used WebGestalt

(RRID:SCR_006786) (Wang et al., 2013; Zhang et al., 2005) to carry out an enrichment analysis over

all genes with a log2(fold change) > 1.5 per hemisphere and developmental stage with respect to

GO groups (biological process, molecular function, cellular component).

miRNA expression analysis and bioinformatics
The amount of RNA for miRNA sequencing was only sufficient in sample II, IV, and V (see

Supplementary file 1B). The service ’Regulome sequencing’ of GATC Biotech AG provided the

analysis of miRNA and included the generation of a small- / miRNA-library for subsequent Illumina

Ocklenburg et al. eLife 2017;6:e22784. DOI: 10.7554/eLife.22784 12 of 19

Research article Neuroscience

https://scicrunch.org/resolver/SCR_005476
https://scicrunch.org/resolver/SCR_013035
https://scicrunch.org/resolver/SCR_013307
https://scicrunch.org/resolver/SCR_001647
http://www.ncbi.nlm.nih.gov/refseq/
https://scicrunch.org/resolver/SCR_003496
https://scicrunch.org/resolver/SCR_006786
http://dx.doi.org/10.7554/eLife.22784


single-read sequencing with 5 million reads as well as identification of common miRNAs with corre-

sponding expression values (read counts). Originally, all samples yielded between 618 and 858

expressed miRNAs (sample II: 638 left, 858 right; sample IV: 838 left, 799 right; sample V: 618 left,

658 right). miRNAs with less than 10 read counts on both sides of the spinal cord were removed

from analysis to prevent unrealistically high fold changes (Hu et al., 2011), which left 300 miRNA

transcripts for sample II, 381 transcripts for sample IV, and 293 transcripts for sample V. In contrast

to pure read counts, RPKM (reads per kilo base of exon model per million mapped reads) values cor-

rect for sequencing depth and gene length, so RPKM was calculated (RPKM = [109 � reads mapped

to the transcript)/(total number of reads in the library � transcript length] [Kazemian et al., 2015]).

Differential miRNA expression was defined as a minimum log2(fold change) of 1.5. Using Mirpath

v3.0 (Vlachos et al., 2015), we identified genes that were likely (probability of interaction > 0.8) to

be targeted by the asymmetrically expressed miRNA transcripts, which were then compared to the

differentially expressed genes. Variance in asymmetrical gene expression was considered to be

explained by miRNA if asymmetrically expressed genes were targets of asymmetrically expressed

miRNAs. Additionally, we performed KEGG (RRID:SCR_012773) analyses (Vlachos et al., 2015) to

identify biological pathways regulated by asymmetrically expressed miRNA transcripts.

Methylation analysis and bioinformatics
DNA was bisulfite treated and adapter and primer sequences as well as bases with a phred quality

score lower than Q15 were removed. After transformation into a C-to-T and G-to-A version, BIS-

MARK (RRID:SCR_005604) (Krueger and Andrews, 2011) and Bowtie2 (Langmead et al., 2009)

were applied on the sequence reads in order to align them to the in silico converted reference

(Homo sapiens, hg19), which was refined using Bis-SNP (RRID:SCR_005439) (Liu et al., 2012)

adopted GATK (RRID:SCR_001876) (McKenna et al., 2010; DePristo et al., 2011) modules. Bis-SNP

then simultaneously determined the genotypes and methylation rates at each CpG site using Bayes-

ian inference. DNA read statistics and methylation levels are reported in Supplementary file 1F.

The annotation was performed using the UCSC genome browser (http://genome.ucsc.edu/.) for

detected CpG sites and using the RefSeq database (http://www.ncbi.nlm.nih.gov/refseq/) for genes.

Comparative methylation analysis (left vs. right) was performed by using Fishers exact test using the

R-package methylKit (RRID:SCR_005177) (Akalin et al., 2012). P-values were adjusted for false dis-

covery rate (FDR) using the SLIM method (Wang et al., 2011). CpG sites were considered as differ-

entially methylated if FDR-corrected p-value was below 0.01 and % methylation difference between

left and right was above 25%. For week 10 and 12, average % methylation difference was calculated

for every CpG site that was asymmetrically methylated in both samples, whereas for week 14, only

one sample was available. CpG sites were compared to asymmetrical gene expression data by

matching chromosome positions. For each asymmetrically expressed gene, the number of hyper-

methylated CpG sites in the left and in the right spinal cord within this gene and 1500 nucleotides

upstream was determined. A laterality quotient (LQ) was calculated [(right�left)/(right+left)*100] for

each gene. Variance in asymmetrical gene expression was considered to be explained by differential

methylation if methylation of CpG sites within one gene was strongly asymmetric (i.e. LQ > 25/LQ <

�25) towards the opposite direction of gene expression.
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Knecht S, Dräger B, Deppe M, Bobe L, Lohmann H, Flöel A, Ringelstein EB, Henningsen H. 2000. Handedness
and hemispheric language dominance in healthy humans. Brain 123 Pt 12:2512–2518. doi: 10.1093/brain/123.
12.2512, PMID: 11099452

Krueger F, Andrews SR. 2011. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications.
Bioinformatics 27:1571–1572. doi: 10.1093/bioinformatics/btr167, PMID: 21493656

Kundakovic M, Champagne FA. 2015. Early-life experience, epigenetics, and the developing brain.
Neuropsychopharmacology 40:141–153. doi: 10.1038/npp.2014.140, PMID: 24917200

Langel J, Hakun J, Zhu DC, Ravizza SM. 2014. Functional specialization of the left ventral parietal cortex in
working memory. Frontiers in Human Neuroscience 8:440. doi: 10.3389/fnhum.2014.00440, PMID: 24994977

Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-efficient alignment of short DNA
sequences to the human genome. Genome Biology 10:R25. doi: 10.1186/gb-2009-10-3-r25, PMID: 19261174

Le Grand R, Mondloch CJ, Maurer D, Brent HP. 2003. Expert face processing requires visual input to the right
hemisphere during infancy. Nature Neuroscience 6:1108–1112. doi: 10.1038/nn1121, PMID: 12958600

Leach EL, Prefontaine G, Hurd PL, Crespi BJ. 2014. The imprinted gene LRRTM1 mediates schizotypy and
handedness in a nonclinical population. Journal of Human Genetics 59:332–336. doi: 10.1038/jhg.2014.30,
PMID: 24785688

Li Q, Bian S, Liu B, Hong J, Toth M, Sun T. 2013. Establishing brain functional laterality in adult mice through
unilateral gene manipulation in the embryonic cortex. Cell Research 23:1147–1149. doi: 10.1038/cr.2013.106,
PMID: 23917527

Liu Y, Siegmund KD, Laird PW, Berman BP. 2012. Bis-SNP: combined DNA methylation and SNP calling for
Bisulfite-seq data. Genome Biology 13:R61. doi: 10.1186/gb-2012-13-7-r61, PMID: 22784381

Logue DD, Logue RT, Kaufmann WE, Belcher HM. 2015. Psychiatric disorders and left-handedness in children
living in an urban environment. Laterality 20:249–256. doi: 10.1080/1357650X.2014.961927, PMID: 25280263

Lyle KB, Chapman LK, Hatton JM. 2013. Is handedness related to anxiety? new answers to an old question.
Laterality 18:520–535. doi: 10.1080/1357650X.2012.720259, PMID: 23003219

Ocklenburg et al. eLife 2017;6:e22784. DOI: 10.7554/eLife.22784 16 of 19

Research article Neuroscience

http://dx.doi.org/10.1016/S1364-6613(03)00110-4
http://www.ncbi.nlm.nih.gov/pubmed/12804689
http://dx.doi.org/10.1016/j.neuropsychologia.2012.04.027
http://www.ncbi.nlm.nih.gov/pubmed/22579704
http://dx.doi.org/10.1080/1357650x.2015.1131712
http://dx.doi.org/10.1080/1357650x.2015.1131712
http://dx.doi.org/10.1038/nature11405
http://www.ncbi.nlm.nih.gov/pubmed/22996553
http://dx.doi.org/10.1016/S0028-3932(97)00156-5
http://www.ncbi.nlm.nih.gov/pubmed/9705063
http://dx.doi.org/10.1038/347431b0
http://www.ncbi.nlm.nih.gov/pubmed/2215661
http://dx.doi.org/10.1016/0028-3932(91)90080-R
http://www.ncbi.nlm.nih.gov/pubmed/1775228
http://dx.doi.org/10.1016/j.neuropsychologia.2004.08.009
http://www.ncbi.nlm.nih.gov/pubmed/15707608
http://dx.doi.org/10.1002/dev.21119
http://www.ncbi.nlm.nih.gov/pubmed/23765736
http://dx.doi.org/10.1016/S0010-9452(78)80014-8
http://dx.doi.org/10.1016/S0010-9452(78)80014-8
http://www.ncbi.nlm.nih.gov/pubmed/16295116
http://dx.doi.org/10.1192/bjp.bp.113.137349
http://dx.doi.org/10.1192/bjp.bp.113.137349
http://www.ncbi.nlm.nih.gov/pubmed/25274314
http://dx.doi.org/10.1371/journal.pgen.1002864
http://www.ncbi.nlm.nih.gov/pubmed/22876200
http://dx.doi.org/10.1371/journal.pgen.1002327
http://www.ncbi.nlm.nih.gov/pubmed/22022286
http://dx.doi.org/10.1038/nature02255
http://www.ncbi.nlm.nih.gov/pubmed/14685240
http://dx.doi.org/10.1039/c3mb25391k
http://www.ncbi.nlm.nih.gov/pubmed/23615871
http://dx.doi.org/10.1016/j.cortex.2015.03.003
http://www.ncbi.nlm.nih.gov/pubmed/25863470
http://dx.doi.org/10.15252/msb.156172
http://www.ncbi.nlm.nih.gov/pubmed/26253570
http://dx.doi.org/10.1093/brain/123.12.2512
http://dx.doi.org/10.1093/brain/123.12.2512
http://www.ncbi.nlm.nih.gov/pubmed/11099452
http://dx.doi.org/10.1093/bioinformatics/btr167
http://www.ncbi.nlm.nih.gov/pubmed/21493656
http://dx.doi.org/10.1038/npp.2014.140
http://www.ncbi.nlm.nih.gov/pubmed/24917200
http://dx.doi.org/10.3389/fnhum.2014.00440
http://www.ncbi.nlm.nih.gov/pubmed/24994977
http://dx.doi.org/10.1186/gb-2009-10-3-r25
http://www.ncbi.nlm.nih.gov/pubmed/19261174
http://dx.doi.org/10.1038/nn1121
http://www.ncbi.nlm.nih.gov/pubmed/12958600
http://dx.doi.org/10.1038/jhg.2014.30
http://www.ncbi.nlm.nih.gov/pubmed/24785688
http://dx.doi.org/10.1038/cr.2013.106
http://www.ncbi.nlm.nih.gov/pubmed/23917527
http://dx.doi.org/10.1186/gb-2012-13-7-r61
http://www.ncbi.nlm.nih.gov/pubmed/22784381
http://dx.doi.org/10.1080/1357650X.2014.961927
http://www.ncbi.nlm.nih.gov/pubmed/25280263
http://dx.doi.org/10.1080/1357650X.2012.720259
http://www.ncbi.nlm.nih.gov/pubmed/23003219
http://dx.doi.org/10.7554/eLife.22784


Mandal MK, Bhushan B, Kumar A, Gupta P. 2000. Side-bias in alcohol and heroin addicts. Alcohol and
Alcoholism 35:381–383. doi: 10.1093/alcalc/35.4.381, PMID: 10906005
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Ocklenburg S, Ströckens F, Güntürkün O. 2013a. Lateralisation of conspecific vocalisation in non-human
vertebrates. Laterality 18:1–31. doi: 10.1080/1357650X.2011.626561, PMID: 23231542

Okada Y, Nonaka S, Tanaka Y, Saijoh Y, Hamada H, Hirokawa N. 1999. Abnormal nodal flow precedes situs
inversus in iv and inv mice. Molecular Cell 4:459–468. doi: 10.1016/S1097-2765(00)80197-5, PMID: 10549278

Ocklenburg et al. eLife 2017;6:e22784. DOI: 10.7554/eLife.22784 17 of 19

Research article Neuroscience

http://dx.doi.org/10.1093/alcalc/35.4.381
http://www.ncbi.nlm.nih.gov/pubmed/10906005
http://dx.doi.org/10.1002/dneu.20647
http://www.ncbi.nlm.nih.gov/pubmed/18506770
http://www.ncbi.nlm.nih.gov/pubmed/18506770
http://dx.doi.org/10.1007/s00221-009-1702-z
http://www.ncbi.nlm.nih.gov/pubmed/19153723
http://www.ncbi.nlm.nih.gov/pubmed/9160449
http://dx.doi.org/10.1101/gr.107524.110
http://www.ncbi.nlm.nih.gov/pubmed/20644199
http://dx.doi.org/10.1017/S0264180100001879
http://dx.doi.org/10.1007/s10519-005-6187-3
http://www.ncbi.nlm.nih.gov/pubmed/16273319
http://dx.doi.org/10.1016/j.neuropsychologia.2008.09.005
http://www.ncbi.nlm.nih.gov/pubmed/18824185
http://dx.doi.org/10.1375/twin.9.1.46
http://www.ncbi.nlm.nih.gov/pubmed/16611467
http://dx.doi.org/10.3109/00207459608986712
http://www.ncbi.nlm.nih.gov/pubmed/8884392
http://dx.doi.org/10.1111/j.1469-1809.2007.00402.x
http://www.ncbi.nlm.nih.gov/pubmed/18021289
http://dx.doi.org/10.1016/j.bandc.2013.02.007
http://www.ncbi.nlm.nih.gov/pubmed/23511846
http://dx.doi.org/10.1016/j.tics.2015.05.003
http://www.ncbi.nlm.nih.gov/pubmed/26051383
http://dx.doi.org/10.4088/JCP.v69n0522g
http://www.ncbi.nlm.nih.gov/pubmed/18681768
http://dx.doi.org/10.1016/j.bandl.2013.07.001
http://dx.doi.org/10.1016/j.bandl.2013.07.001
http://www.ncbi.nlm.nih.gov/pubmed/23911943
http://dx.doi.org/10.1371/journal.pone.0053643
http://dx.doi.org/10.1371/journal.pone.0053643
http://www.ncbi.nlm.nih.gov/pubmed/23341962
http://dx.doi.org/10.1007/s12035-015-9534-2
http://dx.doi.org/10.1007/s12035-015-9534-2
http://dx.doi.org/10.1016/j.bbr.2011.07.042
http://www.ncbi.nlm.nih.gov/pubmed/21827795
http://dx.doi.org/10.1016/j.neubiorev.2014.04.008
http://dx.doi.org/10.1016/j.neubiorev.2014.04.008
http://www.ncbi.nlm.nih.gov/pubmed/24769292
http://dx.doi.org/10.1016/j.neubiorev.2013.09.014
http://www.ncbi.nlm.nih.gov/pubmed/24091023
http://dx.doi.org/10.1016/j.neuroimage.2011.01.035
http://www.ncbi.nlm.nih.gov/pubmed/21256235
http://dx.doi.org/10.1016/j.bandc.2011.11.001
http://www.ncbi.nlm.nih.gov/pubmed/22133628
http://dx.doi.org/10.3389/fpsyg.2014.01143
http://www.ncbi.nlm.nih.gov/pubmed/25339936
http://dx.doi.org/10.1080/1357650X.2011.626561
http://www.ncbi.nlm.nih.gov/pubmed/23231542
http://dx.doi.org/10.1016/S1097-2765(00)80197-5
http://www.ncbi.nlm.nih.gov/pubmed/10549278
http://dx.doi.org/10.7554/eLife.22784


Oldfield RC. 1971. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:
97–113. doi: 10.1016/0028-3932(71)90067-4, PMID: 5146491

Orme JE. 1970. Left-handedness, ability and emotional instability. British Journal of Social and Clinical
Psychology 9:87–88. doi: 10.1111/j.2044-8260.1970.tb00646.x, PMID: 5488967

Pinel P, Fauchereau F, Moreno A, Barbot A, Lathrop M, Zelenika D, Le Bihan D, Poline JB, Bourgeron T,
Dehaene S. 2012. Genetic variants of FOXP2 and KIAA0319/TTRAP/THEM2 locus are associated with altered
brain activation in distinct language-related regions. Journal of Neuroscience 32:817–825. doi: 10.1523/
JNEUROSCI.5996-10.2012, PMID: 22262880

Pletikos M, Sousa AM, Sedmak G, Meyer KA, Zhu Y, Cheng F, Li M, Kawasawa YI, Sestan N. 2014. Temporal
specification and bilaterality of human neocortical topographic gene expression. Neuron 81:321–332. doi: 10.
1016/j.neuron.2013.11.018, PMID: 24373884

Preslar J, Kushner HI, Marino L, Pearce B. 2014. Autism, lateralisation, and handedness: a review of the literature
and meta-analysis. Laterality 19:64–95. doi: 10.1080/1357650X.2013.772621, PMID: 23477561

Rogers LJ, Vallortigara G, Andrew RJ. 2012. Divided Brains, The Biology and Behaviour of Brain Asymmetries.
Cambrige [England], New York: Cambridge University Press.

Rogers LJ. 1982. Light experience and asymmetry of brain function in chickens. Nature 297:223–225. doi: 10.
1038/297223a0, PMID: 7200573

Roth TL. 2012. Epigenetics of neurobiology and behavior during development and adulthood. Developmental
Psychobiology 54:590–597. doi: 10.1002/dev.20550, PMID: 22714649

Rysstad AL, Pedersen AV. 2016. Brief report: Non-right-Handedness within the autism spectrum disorder.
Journal of Autism and Developmental Disorders 46:1110–1117. doi: 10.1007/s10803-015-2631-2,
PMID: 26520149

Savitz J, van der Merwe L, Solms M, Ramesar R. 2007. Lateralization of hand skill in bipolar affective disorder.
Genes, Brain and Behavior 6:698–705. doi: 10.1111/j.1601-183X.2006.00299.x, PMID: 17309660

Scerri TS, Brandler WM, Paracchini S, Morris AP, Ring SM, Richardson AJ, Talcott JB, Stein J, Monaco AP. 2011.
PCSK6 is associated with handedness in individuals with dyslexia. Human Molecular Genetics 20:608–614.
doi: 10.1093/hmg/ddq475, PMID: 21051773

Schaafsma SM, Riedstra BJ, Pfannkuche KA, Bouma A, Groothuis TG. 2009. Epigenesis of behavioural
lateralization in humans and other animals. Philosophical Transactions of the Royal Society B: Biological
Sciences 364:915–927. doi: 10.1098/rstb.2008.0244, PMID: 19064352

Sepeta LN, Berl MM, Wilke M, You X, Mehta M, Xu B, Inati S, Dustin I, Khan O, Austermuehle A, Theodore WH,
Gaillard WD. 2016. Age-dependent mesial temporal lobe lateralization in language fMRI. Epilepsia 57:122–130.
doi: 10.1111/epi.13258, PMID: 26696589

Shiratori H, Hamada H. 2014. Tgfb signaling in establishing left-right asymmetry. Seminars in Cell &
Developmental Biology 32:80–84. doi: 10.1016/j.semcdb.2014.03.029, PMID: 24704359
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