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ABSTRACT

As the structure of space-time at very short length scales comparable to the Planck length

remains a contentious issue, this study aims to determine whether non-commutative space-time

would prove to be an appropriate candidate for space-time at short length scales. Also, it

aims to test whether it would be possible to observe non-commutative effects on macroscopic

scales. By providing a formulation for quantum mechanics where fuzzy commutation relations

for spatial coordinates are assumed, this study was able to make notable progress toward this

goal. Exact solutions to the non-commutative free particle and spherical well problems were

achieved and effects exclusive to non-commutative systems were observed, in particular an upper

bound on the kinetic energy of a particle and a finite number of bound states in the spherical

well problem. Significant deviations from the normal behaviour of commutative systems were

also observed in the study of scattering states of the fuzzy well where states with high incident

energies experience the spherical well as a repulsive potential. Finally, thermodynamic studies

of non-interacting fermions confined in fuzzy space provided drastically different results for high

energy, high particle density and low temperature systems in comparison to standard results.

These results include an incompressibility limit for the fermion gas, as well as an apparent duality

between high density and low density systems.
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OPSOMMING

Aangesien die struktuur van ruimtetyd op baie kort lengteskale, vergelykbaar met die Planck-

lengte, steeds ’n omstrede saak bly, beoog hierdie studie om vas te stel of nie-kommutatiewe

ruimtetyd ’n gepaste kandidaat vir ruimte-tyd op kort lengte skale sal wees. Dit beoog ook om te

toets of dit moontlik is om nie-kommutatiewe effekte op makroskopiese skale waar te neem. Deur

’n formulering vir kwantummeganika te verskaf waar “fuzzy” kommutasieverbande vir ruimtelike

koördinate aanvaar word, kon hierdie studie merkbare vordering maak in die rigting van hierdie

doelwit. Eksakte oplossings vir die nie-kommutatiewe vrye deeltjies en sferiese put probleme

is verkry en effekte eksklusief tot nie-kommutatiewe stelsels is waargeneem, veral ’n bogrens

op die kinetiese energie van ’n deeltjie en ’n eindige aantal gebonde toestande in die sferiese

put probleem. Beduidende afwykings van die normale gedrag van kommutatiewe stelsels is ook

waargeneem in die studie oor verstrooiingstoestande van die “fuzzy”-put waar toestande met hoë

invalenergieë die sferiese put as ’n afstotende potensiaal ervaar. Ten slotte het termodinamiese

studies van nie-wisselwerkende fermione inbeperk in “fuzzy”-ruimte drasties verskillende resultate

vir hoë energie, hoë deeltjie digtheid en lae temperatuur stelsels gelewer in vergelyking met

standaard resultate. Hierdie resultate sluit in ’n onsaampersbaarheidslimiet vir die fermiongas,

sowel as ’n duidelike dualiteit tussen hoë- en laedigtheidstelsels.
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“O, the depth of the riches of the wisdom and knowledge of God!

How unsearchable His judgments, and untraceable His ways!”

- Romans 11:33
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CHAPTER 1

INTRODUCTION

A problem that we face in our current understanding of modern physics is the lack of a complete

description for the structure of space-time at very short length scales on the order of the Planck

length. There have been attempts in the past to propose non-commutative space-time as a

viable description at the shortest length scales by Snyder [1], but it was not until the recent

works of Doplicher et al. [2] that non-commutative space-time regained attention with strong

arguments that support non-commutative space-time as a candidate description at short length

scales. Later on non-commutative coordinates also emerged in the low energy limit of certain

string theories [3].

These works inspired additional research and work within quantum mechanics [4, 5, 6, 7] and

quantum field theories [8, 9] gained some attention. Unfortunately, since energies required to

probe Planck length scales only existed in the very start of the universe, it is impossible to

obtain empirical data that would enable realistic studies at these length scales. However, it

is often thought that non-commutative effects might become observable at the high energies,

temperatures and densities often in very large astrophysical objects such as black holes, neutron

stars and even white dwarfs. These physical objects may serve as indirect sources of data

that may be used in the search for non-commutative effects. Indeed, a study done on dense

fermion gases in two-dimensional non-commutative space [10] exhibits notable differences in its

thermodynamic behaviour at high energies and low temperatures when compared to conventional

studies. This gives some promise that non-commutative effects might in certain instances become

observable with current technologies.

One drawback however is that most of the studies done in non-commutative quantum mechan-

ics and thermodynamics are limited to two dimensions, which cannot be extended to a non-

commutative description for real world objects. Initial attempts to extend the two-dimensional

formulation to three dimensions resulted in problematic breaking of rotational invariance when

the simplest non-commutative commutation relations were taken [11]. A breakthrough came in

a study conducted by Gáliková and Prešnajder [12] who were able to preserve rotational invari-

ance by assuming fuzzy commutation relations. This selection of commutation relations and

the formulation of quantum mechanics built thereon enabled them to find exact solutions to the

1
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1. INTRODUCTION 2

time-independent Schrödinger equation with a Coulomb potential.

Having access to a good basis for non-commutative space in three dimensions may serve as the

perfect starting point in the pursuit of finding non-commutative effects in real world systems.

Unfortunately, a full formulation of the quantum mechanics for free particles, as well as particles

confined to a piece-wise constant potential well, was still lacking. Key results in these studies,

in particular the energy spectrum and density of states, are required before an attempt could be

made to study the thermodynamics of fermions confined in three-dimensional non-commutative

space.

This then serves as the motivation behind this dissertation: In the hopes of finding significantly

different thermodynamic behaviour for fermion gases in three-dimensional non-commutative

space, we aim to establish both the necessary quantum mechanical and thermodynamic for-

mulations that are needed to study the possibility of observing qualitative non-commutative

effects in real systems. If this study proves successful, it will provide an important milestone in

the search for non-commutative effects and will provide a good platform for future research in

the same field.

The outline for this dissertation will therefore be as follows:

• We shall first briefly review similar work done in two-dimensional quantum mechanics

and the approach followed there that will serve as a basis for our approach in three di-

mensions. Thereafter, we shall outline the formulation of quantum mechanics in three-

dimensional fuzzy space and detail the solutions to the free particle and spherical well

problems. Throughout the chapter we will obtain the necessary key results such as the

respective energy spectra and the density of states that would be needed in the following

chapters.

• The following section will take a slight detour as we will then focus on the study of particle

scattering in the presence of a spherical fuzzy well. Even though this deviates slightly from

the main goal behind this dissertation of studying thermodynamics of fermions in fuzzy

space, it will be seen that the formulation and study of scattering in fuzzy space follows

naturally from the previous results and provides noteworthy results. Some of these results

will also highlight stark differences between scattering in non-commutative space and the

analogous commutative system.

• Thereafter we will use the key results from previous chapters and formulate the thermody-
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1. INTRODUCTION 3

namic system of fermions confined in fuzzy space. After the formulation is done and the

means of obtaining the central thermodynamic quantities is achieved, we will proceed to do

qualitative and numerical studies on these quantities. We will then do a comparison of the

thermodynamics observed in the non-commutative system and the analogous commutative

system.

• Lastly we will conclude our work with a summary of the work done and the results it has

produced. We will also then provide an outlook for future research that may follow from

the studies conducted in this dissertation.
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CHAPTER 2

NON-COMMUTATIVE QUANTUM MECHANICS IN TWO

DIMENSIONS

As the construction of space-time with discretization at very small length scales can be ap-

proached using several different methods, we will discuss a few of these methods throughout this

chapter that relate to our construction of a non-commutative system in 3-dimensional space.

Since non-commutativity can only be realised in spaces of at least two dimensions, the simplest

case to investigate the effect of non-commutativity in quantum mechanics would be 2-dimen-

sional space. However, non-commutative quantum mechanics in 2-dimensions has already been

investigated in some detail [5, 6, 7] and only an overview of the underlying theory will be covered

in this chapter. This will be critical and supportive to the development of the non-commutative

quantum theory in 3-dimensional space.

This chapter, therefore, serves as a brief literature review of [5, 6, 7] on the formulation of non-

commutative quantum mechanics in 2-dimensional space. The chapters following this one develop

the notion of non-commutative quantum mechanics in 3-dimensional space along the same lines.

Special emphasis is placed on the preservation of rotational symmetry, which requires a deviation

from the most naive constant commutation relations to those of the fuzzy sphere. All results

presented in subsequent chapters are new and have been published [13, 16, 17].

2.1 Formulation of the configuration and quantum Hilbert spaces

In this section we review the basic formulation of non-commutative quantum mechanics in two

dimensions as represented in [5, 6].

A simple way to introduce non-commutativity in two dimensions is through the commutation

relations given by

[x̂1, x̂2] = iθ. (2.1)

Here θ is a real variable quantifying the extent of non-commutativity and x̂1, x̂2 are the two

coordinate operators. The first step in constructing the non-commutative quantum theory for

this coordinate algebra is to introduce a concrete realization of the coordinate algebra as operators

on some Hilbert space Hc, which we will refer to as the configuration space. From the coordinate

4
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2. NON-COMMUTATIVE QUANTUM MECHANICS IN TWO DIMENSIONS 5

algebra in (2.1) it is natural to construct a pair of boson creation- and annihilation operators

given by

b =
1√
2θ

(x̂1 + ix̂2), b† =
1√
2θ

(x̂1 − ix̂2). (2.2)

A natural choice for Hc is therefore the boson Fock space spanned by

Hc = span{|n〉}∞n=0 (2.3)

where |n〉 = 1√
n!

(b†)n |0〉 and b |0〉 = 0. Given the radial operator

r̂ = x̂2
1 + x̂2

2 = θ(2b†b+ 1c), (2.4)

where 1c =
∑∞

n=0 |n〉 〈n| is the identity operator on the configuration space, one notes that Hc
corresponds to a “polar” choice of coordinates in which the radius is quantized.

Having defined the configuration space, we now proceed to construct the non-commutative quan-

tum Hilbert space. Keeping in mind that for the commutative case the quantum Hilbert space

is the set of all square-integrable functions of the coordinates, the natural generalization to the

non-commutative case is the algebra of Hilbert-Schmidt operators generated by the coordinate

operators, i.e.

Hq =
{
ψ(x̂1, x̂2) : Trc

(
ψ(x̂1, x̂2)†ψ(x̂1, x̂2)

)
<∞

}
. (2.5)

Here we used the subscript q in order to distinguish the quantum Hilbert space from the con-

figuration space. As per notation used in [6], we also distinguish between the states of the

configuration space, denoted by |·〉, and the states of the quantum space, denoted by |·). Addi-

tionally, we also, from this point onward, distinguish between the states of these Hilbert spaces

by referring to states in the configuration space simply as states, while we refer to states in the

quantum Hilbert space as wavefunctions.

The inner product in the quantum space is defined by

(ψ |φ) = (ψ , φ) = Trc(ψ
†φ), (2.6)

where |ψ) = ψ(x̂1, x̂2) and |φ) = φ(x̂1, x̂2) are both arbitrary wavefunctions represented as states

of the quantum space.

The final step in setting up the quantum system is to construct a representation on the quantum
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2. NON-COMMUTATIVE QUANTUM MECHANICS IN TWO DIMENSIONS 6

Hilbert space of the non-commutative Heisenberg algebra:

[
x̂1,q , x̂2,q

]
= iθ,[

x̂j,q , p̂k,q
]

= i~ δjk,[
p̂1,q , p̂2,q

]
= 0.

(2.7)

The representation is realised by defining the action of the operators in (2.7) on an arbitrary

wavefunction as

x̂j,q ψ(x̂1, x̂2) = x̂j ψ(x̂1, x̂2),

p̂j,q ψ(x̂1, x̂2) = εjk
~
θ

[
x̂k , ψ(x̂1, x̂2)

]
,

(2.8)

where εjk is anti-symmetric. For reasons that will become apparent later it is also convenient to

define complex momenta through

pq = p̂1,q + ip̂2,q = −i~
√

2

θ
[b , ψ(x̂1, x̂2)] and

pq = p̂1,q − ip̂2,q = i~
√

2

θ

[
b†, ψ(x̂1 , x̂2)

]
,

(2.9)

where it should also be noted that p2
q = pqpq = pqpq.

Finally, we write down the non-commutative equivalent of the non-relativistic time-independent

Schrödinger equation. It is given by[
p2
q

2µ
+ Vq(x̂1, x̂2)

]
ψ(x̂1, x̂2) = E ψ(x̂1, x̂2) (2.10)

where µ is the particle mass, Vq(x̂1, x̂2) an arbitrary potential and E the energy.

From here on the program is as in the commutative case, i.e. to find the solutions for the

Schrödinger equation for both free particles and particles in the presence of a varying potential.

For the purposes of the studies in this dissertation, we only investigate the free particle and that

of a piecewise constant potential, which we will later use to describe confined particles. However,

as coordinates no longer commute, it is necessary to revisit the notions of positions and position

measurement. We, therefore, briefly summarize these notions as described in [5].

Firstly, we introduce the normalized coherent states defined by

|z〉 = e−zz/2ezb
† |0〉 , (2.11)
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2. NON-COMMUTATIVE QUANTUM MECHANICS IN TWO DIMENSIONS 7

where |z〉 are minimal uncertainty states that provide an overcomplete basis of the configuration

space and z = 1√
2θ

(x1 + ix2). One may use the coherent states to construct corresponding states

in the quantum Hilbert space through

|z) = |z〉 〈z| . (2.12)

The position representation of a wavefunction is then introduced through the inner product

(z |ψ) = Trc (|z〉 〈z|ψ(x̂1, x̂2)) = 〈z|ψ(x̂1, x̂2) |z〉 . (2.13)

2.2 The spherical well in two dimensions

With the quantum Hilbert space and position representation in place, we are now able to iden-

tify the necessary components of the non-commutative Schrödinger equation with a piecewise

constant potential, also known as the non-commutative spherical well.

In the following, we would like to solve for a particle moving in a potential with a constant value

of V1 inside a disk with of radius R and V2 outside the disc. It is therefore necessary that we

define two projection operators P and Q that would project the states in the configuration space

into the appropriate regions. These two projection operators are easily found to be

P =
M∑
n=0

|n〉 〈n| and Q =
∞∑

n=M+1

|n〉 〈n| , (2.14)

where the positive integer M determines the radius through R2 = θ(2M+1) by use of (2.4). From

this construction it holds that P 2 = P , Q2 = Q, P Q = QP = 0 and P +Q = 1c. Furthermore,

we construct the projection operator counter-parts that act on the quantum Hilbert space simply

as

Pqψ(x̂1, x̂2) = P ψ(x̂1, x̂2) and Qqψ(x̂1, x̂2) = Qψ(x̂1, x̂2). (2.15)

We are now able to define the piecewise potential as

Vq = V1Pq + V2Qq, (2.16)
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2. NON-COMMUTATIVE QUANTUM MECHANICS IN TWO DIMENSIONS 8

which results in the final form of the spherical well problem given by[
p2
q

2µ
+ V1Pq + V2Qq

]
ψ(x̂1, x̂2) = E ψ(x̂1, x̂2). (2.17)

In the commutative case this problem is solved by considering two independent Schrödinger

equations, each having a constant potential of V1 and V2 respectively, while keeping the energy

(eigenvalue) the same for both. The solutions to these two equations, which we will denote as ψ1

and ψ2, will also serve as the solutions to the original piecewise potential where ψ1 corresponds

to the region with a potential V1 and ψ2 corresponds to the region with potential V2. These

two solutions, however, need to have their function values, as well as derivatives, match up at

the boundary between the two regions. The matching conditions are essential in computing the

bound states and scattering coefficients in the scattering states.

Following the same philosophy as the commutative case, we provide an analogous approach in

the non-commutative case. We start with the two constant potential equations:[
p2
q

2µ
+ V1

]
ψ1(x̂1, x̂2) = E ψ1(x̂1, x̂2),[

p2
q

2µ
+ V2

]
ψ2(x̂1, x̂2) = E ψ2(x̂1, x̂2).

(2.18)

Since the final solution to the piecewise potential will be of the form ψ(x̂1, x̂2) = Pqψ1(x̂1, x̂2) +

Qqψ2(x̂1, x̂2), we ultimately need to find solutions to the following set of equations following from

(2.18):

Pq

[
p2
q

2µ
+ V1

]
ψ1(x̂1, x̂2) = E Pqψ1(x̂1, x̂2),

Qq

[
p2
q

2µ
+ V2

]
ψ2(x̂1, x̂2) = EQqψ2(x̂1, x̂2),

(2.19)

where we applied Pq to the left of the first equation, and Qq to the left of the second. From this

we try to construct a solution to (2.17) of the form ψ(x̂1, x̂2) = Pqψ1(x̂1, x̂2) +Qqψ2(x̂1, x̂2). We

substitute this form into (2.17) and by using (2.19) and the fact that
[
p2
q , Qq

]
= −

[
p2
q , Pq

]
, we

arrive at the following condition that needs to be satisfied:

Ωqψ1(x̂1, x̂2) = Ωqψ2(x̂1, x̂2), (2.20)

where Ωq =
[
p2
q , Pq

]
. By doing some further calculations, and by taking the inner-product first
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2. NON-COMMUTATIVE QUANTUM MECHANICS IN TWO DIMENSIONS 9

with |n〉 and then |l〉, we find that the key conditions to be satisfied in (2.20) are given by the

two equations

〈M + 1|ψ1(x̂1, x̂2) |l + 1〉 = 〈M + 1|ψ2(x̂1, x̂2) |l + 1〉 , ∀l ≥ 0,

〈M |ψ1(x̂1, x̂2) |l − 1〉 = 〈M |ψ2(x̂1, x̂2) |l − 1〉 , ∀l > 0.
(2.21)

The only remaining task, therefore, is to solve the two constant potential problems for ψ1(x̂1, x̂2)

and ψ2(x̂1, x̂2), whereafter we can apply the matching conditions in (2.21).

The constant potential problem where Vq(x̂1, x̂2) in (2.10) is set to a constant V , can be simplified

to the form of (
p2
q + k2~2

)
ψ(x̂1, x̂2) = 0, (2.22)

where k2 = 2µ(V − E)/~2. Here k2 can both be positive or negative depending on whether

bound- or scattering states are considered. The most general form in which the wavefunction

ψ(x̂1, x̂2) can be expressed, is given by

ψ(x̂1, x̂2) =

∞∑
k=0

∞∑
l=0

ck,l(b
†)kbl ≡

∞∑
m=−∞

ψm, (2.23)

where

ψm =

∞∑
k=0

ck,k+m(b†)kbk+m, m ≥ 0,

ψm =

∞∑
k=0

ck+|m|,k(b
†)k+|m|bk, m < 0,

(2.24)

and

[b†b , ψm] = −mψm, ∀m,

[b†b , p2
qψm] = −mp2

qψm, ∀m.
(2.25)

From (2.25) it is evident that p2
q , as well as constant potential terms, will not mix wavefunctions

with different values of m. We may, therefore, without the loss of generality only consider

solutions of the form ψm, where we restrict our attention to a single value of m. Additionally,

it is easily verified that (p2
qψm)† = p2

qψ
†
m and therefore both ψm and ψ†m are solutions to (2.22).

This enables us to easily construct two linear independent Hermitian solutions through ψm+ψ†m

and i
(
ψm − ψ†m

)
. Given this fact, we are free to choose the solution ψm to be Hermitian with

a useful consequence being that ψ†m = ψ−m. Since we only need to find the matrix elements

that would satisfy the matching conditions in (2.21), we will only consider the m ≥ 0 case as
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the m < 0 is simply related to the positive case. Furthermore, the only non-vanishing matrix

elements are given by 〈n|ψm |n+m〉 for n ≥ 0. Therefore, we will take the matrix elements of

(2.22) between |n〉 and |n+m〉. The end result of the Schrödinger equation taken between |n〉

and |n+m〉 is expressed through the recursion relation given by

(2n+m+ 1 + z) 〈n|ψm |n+m〉 =
√
n(n+m) 〈n− 1|ψm |n+m− 1〉

+
√

(n+ 1)(n+m+ 1) 〈n+ 1|ψm |n+m+ 1〉 ,
(2.26)

where z = 1
2θk

2. This recursion relation has two linear independent solutions given by

〈n|ψm |n+m〉 = c1(m, z)

√
(n+m)!

n!m!
M(−n,m+ 1,−z), and

〈n|ψm |n+m〉 = c2(m, z)

√
n!(n+m)!

m!
U(n+ 1, 1−m, z), ∀m,n ≥ 0.

(2.27)

Here c1(m, z) and c2(m, z) are, at this point, arbitrary functions of m and z, while M(a, b, z)

and U(a, b, z) are the two solutions of the confluent hypergeometric differential equation. We

now find that the most general solution for (2.26), therefore, is given by

〈n|ψm |n+m〉 = c1(m, z)

√
n!m!

(n+m)!
Lmn (−z)

+ c2(m, z)

√
n!(n+m)!

m!
U(n+ 1, 1−m, z), ∀m,n ≥ 0,

(2.28)

where the Lmn (z) is a Laguerre polynomial and is associated to the Kummer’s function M(a, b, z)

with a negative integer value for a. Similarly, for the m < 0 case it can be shown that the

corresponding matrix element is given by

〈n−m|ψm |n〉 = c∗1(|m|, z)

√
n! |m|!

(n+ |m|)!
L|m|n (−z)

+ c∗2(|m|, z)

√
n!(n+ |m|)!
|m|!

U(n+ 1, 1− |m|, z), ∀m < 0, n ≥ 0.

(2.29)

It remains now to determine the functions c1(m, z) and c2(m, z). In the works of [6], these

functions were determined by ensuring that (2.28) and (2.29) have the correct commutative

limits. Achieving this, they noted that r̂2 |n〉 = θ(2n + 1) |n〉 ≡ r2 |n〉. The commutative limit

was then taken by keeping m and r fixed, while taking θ → 0 and n → ∞. Furthermore, we

replace θ = r2/2n in the definition for z so that we have the form z = r2k2/4n.
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First considering the case of scattering states, i.e. E > V , we find for m ≥ 0 and large n that

(2.28) obtains the form of

〈n|ψm |n+m〉 = c1

(
m,
−κ2r2

4n

)√
m!n−m/2 Lmn

(
κ2r2

4n

)
+ c2

(
m,
−κ2r2

4n

)√
2π

m!
e−nnn+m

2
+ 1

2 U

(
n+ 1 , 1−m,

−κ2r2

4n

)
,

(2.30)

where κ2 = −k2 and κ > 0. To achieve the correct commutative limit, it is necessary that c1(m, z)

and c2(m, z) should take on the forms of c1(m, z) = c1(m) zm/2 and c2(m, z) = c2(m) z−m/2. The

final scattering solution in the commutative limit is then given by

lim
n→∞

〈n|ψm |n+m〉 = c1(m)(−1)m/2Jm(κr) +
c2(m)π(±i)m+1

√
m!

(Jm(κr)± iYm(κr)) , (2.31)

where Jm and Ym are the Bessel functions of the first- and second kind, respectively, and c1(m)

and c2(m) are normalization factors with their forms undetermined at this point. As Ym is

singular near the origin, it is automatically excluded from being considered a solution inside the

disk (n ≤M). It necessitates that c2(m) be zero for n ≤M for all values of m, whereas outside

the disk (n > M) we have that both factors are accepted.

Now, considering bound states where E < V and, therefore, k2 > 0, we find in the large n limit

and m ≥ 0 that (2.28) simplifies to

lim
n→∞

〈n|ψm |n+m〉 = c1(m)(−1)m/2 Im(kr) +
2c2(m)√

m!
Km(kr), (2.32)

where Im and Km are the modified Bessel functions of the first- and second kind respectively.

In this case we have that Im grows exponentially outside the disk (n > M) and, therefore, can

not be used as part of the solution for bound states. This leads to c1(m) = 0 for all values of m.

Once again, the solutions for m < 0 for the bound- and scattering states can easily be related to

these.

As we now have the necessary forms of solutions to bound- and scattering states for the well

problem, we are now able to complete the matching conditions set in (2.21). For simplicity we

will assume that the potential inside the disk will be V1 = 0, while outside the disk we simply

have V2 = V . Later we will take the limit where V →∞. For the m ≥ 0 case we have that the

relevant form for the matrix elements for the wavefunction inside the well (ψ1(x̂1, x̂2)) is given
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by

〈n|ψin,m(x̂1, x̂2) |n+m〉 = c1(m) z
m/2
in

√
n!m!

(n+m)!
Lmn (−zin), ∀m, n ≥ 0, (2.33)

with zin = −µEθ
~2 ≡ −

θk2in
2 . Outside of the disk we only consider bound states as we will be taking

the V →∞ limit. Therefore, we have the matrix elements given by

〈n|ψout,m(x̂1, x̂2) |n+m〉 = c2(m) z
−m/2
out

√
n!(n+m)!

m!
U(n+1, 1−m, zout), ∀m, n ≥ 0, (2.34)

where zout = µ(V−E)θ
~2 ≡ θk2out

2 . We now have the final components necessary to compute the

matching conditions given in (2.21). The final form of these matching conditions are given by

〈M + 1|ψin,m(x̂1, x̂2) |M +m+ 1〉 = 〈M + 1|ψout,m(x̂1, x̂2) |M +m+ 1〉 ,

〈M |ψin,m(x̂1, x̂2) |M +m〉 = 〈M |ψout,m(x̂1, x̂2) |M +m〉 , ∀m ≥ 0.
(2.35)

From (2.35) we see that the function values should match at the well border. Furthermore,

subtracting the second equation from the first results in

〈M + 1|ψin,m(x̂1, x̂2) |M +m+ 1〉 − 〈M |ψin,m(x̂1, x̂2) |M +m〉

= 〈M + 1|ψout,m(x̂1, x̂2) |M +m+ 1〉 − 〈M |ψout,m(x̂1, x̂2) |M +m〉 , ∀m ≥ 0.
(2.36)

In (2.36) we see that both sides of the equation contain the equivalent of the first derivatives

at the well border for both the wavefunctions inside- and outside the well and, therefore, re-

quires that the derivatives of the two functions match up as well. The matching conditions in

(2.35) and (2.36) are the direct non-commutative equivalents of the commutative case where the

wavefunction values and first derivatives match up on the well border.

Consequently, when substituting the final forms of (2.33) and (2.34) into (2.35), we find the

following matching equations

c1(m)z
m/2
in

√
(M + 1)!m!

(M +m+ 1)!
LmM+1(−zin)

= c2(m)z
−m/2
out

√
(M + 1)!(M +m+ 1)!

m!
U(M + 2, 1−m, zout),

(2.37)
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and

c1(m)z
m/2
in

√
M !m!

(M +m)!
LmM (−zin) = c2(m)z

−m/2
out

√
M !(M +m)!

m!
U(M + 1, 1−m, zout). (2.38)

By dividing equations (2.37) and (2.38), we find that the currently unknown constants c1(m)

and c2(m) no longer feature and we have a final expression that can be used to calculate the

permitted bound state energies of a system for all values of m ≥ 0. This expression for bound

state energies is given by√
M + 1

M +m+ 1

LmM+1(−zin)

LmM (−zin)
=
√

(M + 1)(M +m+ 1)
U(M + 2, 1−m, zout)

U(M + 1, 1−m, zout)
, ∀m ≥ 0. (2.39)

One finds that the above reduces, in the commutative limit where we have a well radius of R, to

the expected commutative result given by

kinJ
′
m(kinR)

Jm(kinR)
=
koutK

′
m(koutR)

Km(koutR)
. (2.40)

Although the exact expressions for c1(m) and c2(m) remain unknown, we are still able to deter-

mine the ratio c1(m)/c2(m) by substituting the energies calculated in (2.39) into either (2.37)

and (2.38).

Since we are ultimately interested in the energy solutions for the infinite well, in the limit

V → ∞ we solve for the energies in (2.39) for this limit. Since, in the case of the infinite well,

the wavefunction has to vanish everywhere outside the well, we find that the energies are obtained

from the condition:

LmM+1

(
θk2

2

)
= 0, ∀m ≥ 0, (2.41)

with k2 = 2µE
~2 . Furthermore, it is clearly seen that there exist M + 1 bound states for each

sector in the postive angular momentum range.

For the case of negative momenta (−m with m > 0) we follow a similar method. The bound

state energies for negative momenta are now found through the expression given by√
M −m+ 1

M + 1

LmM−m+1(−zin)

LmM−m(−zin)
=
√

(M + 1)(M −m+ 1)
U(M −m+ 2, 1−m, zout)

U(M −m+ 1, 1−m, zout)
, (2.42)
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for all 0 < m ≤M . This reduces, in the limit where V →∞, to

LmM−m+1

(
θk2

2

)
= 0, 0 < m ≤M. (2.43)

This time we see that there are M −m + 1 bound states for each negative angular momentum

sector where 0 < m < M . This naturally sets the upper- and lower bounds on the number of

bounds states to 1 ≤M −m+ 1 ≤M .

Calculating the bound state energies in (2.41) and (2.43) is done by finding the zeros of each

Laguerre polynomial.
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CHAPTER 3

NON-COMMUTATIVE QUANTUM MECHANICS IN THREE

DIMENSIONS

As mentioned previously, the work contained here is original and is, in part, inspired by the

approach followed in Chapter 2. Here we detail the basic formalism of 3-dimensional fuzzy space

which follows closely the approach used in [12]. This recollection of the formalism is detailed in

Sections 3.1 and 3.2. From Section 3.3 onward we have the original work produced during this

PhD project, where a section of the results was published in [13].

We investigate the behaviour of various free particle solutions and find interesting results for the

allowed energies for free particles in fuzzy space. Thereafter we show how a potential well is

constructed in fuzzy space and then apply this to the infinite well problem. Results from the

finite well are used in the next chapter on scattering states of the finite fuzzy well, whereas the

results of the infinite well are used in a later chapter to study the thermodynamics of a Fermi

gas in fuzzy space.

3.1 The classical configuration space

Three-dimensional fuzzy space is described by the set of coordinate operators X̂i that obey the

SU(2) commutation relations

[X̂i, X̂j ] = 2iθεijkX̂k, (3.1)

for i = 1, 2, 3 and with θ the real, non-commutative length scale.

As in the previous chapter, the first step in setting up the quantum system is to find a concrete

realization of the coordinate algebra (3.1). Introducing two pairs of creation- and annihilation

operators (âα, â
†
α) for α = 1, 2, we are able to express the coordinate operators X̂i as

X̂i = θâ†σ(i)â ≡ θσ(i)
αβ â
†
αâβ, (3.2)

with σ(i) the Pauli matrices. The creation and annihilation operators obey the standard com-

mutation relations

[âα, â
†
β] = δαβ, [âα, âβ] = [â†α, â

†
β] = 0. (3.3)

15
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The following explicit computation shows that the operators in (3.2) indeed satisfy the algebra

(3.1):

[X̂i, X̂j ] =
[
θσ

(i)
αβ â
†
αâβ , θσ

(j)
µν â

†
µâν

]
= θ2σ

(i)
αβσ

(j)
µν

(
â†αâβ â

†
µâν − â†µâν â†αâβ

)
= θ2σ

(i)
αβσ

(j)
µν

(
â†α

(
â†µâβ + δµβ

)
âν − â†µ

(
â†αâν + δνα

)
âβ

)
= θ2

(
â†ασ

(i)
αβσ

(j)
βν âν − â

†
µσ

(j)
µασ

(i)
αβ âβ

)
= θ2 â†

[
σ(i) , σ(j)

]
â

= 2iθ2εijkâ
†σ(k)â

= 2iθεijkX̂k, (3.4)

where we used the notation in (3.2) to rewrite the operators in their respective matrix- and vector

forms. This is the well-known Schwinger realization of SU(2). The creation- and annihilation

operators act on the classical configuration space Hc, which we identify with the underlying Fock

space, spanned by

Hc = span

{
|n1, n2〉 =

(â†1)n1(â†2)n2

√
n1!n2!

|0, 0〉

}
. (3.5)

We also note that for the counting operator N̂ = â†αâα

N̂ |n1, n2〉 = (n1 + n2) |n1, n2〉 = n |n1, n2〉 , (3.6)

with n = n1 +n2, which is consistent with the action of the creation- and annihilation operators

on Hc:

â†α |n1, n2〉 =
√
nα + 1 |n1 + δα,1 , n2 + δα,2〉 ,

âα |n1, n2〉 =
√
nα |n1 − δα,1 , n2 − δα,2〉 , (3.7)

for α = 1, 2 and where â1 |0, n2〉 = â2 |n1, 0〉 = 0. Furthermore, the Casimir operator, which

naturally commutes with every X̂i, is given by

X̂2 = X̂iX̂i = θ2N̂(N̂ + 2), (3.8)
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where the calculation is shown in Section A.1. Using

r̂ = θ(N̂ + 1) (3.9)

as a measure of radial distance, the 3-dimensional fuzzy space described by the set of coordinate

operators (3.2) can, therefore, be thought of as having an “onion” structure consisting of a

collection of concentric fuzzy spheres whose radii are determined by the counting operator N̂ .

Note that for this interpretation it is essential that each SU(2) irrep occurs exactly once, as

should be clear from (3.8). Furthermore, the coordinate operators X̂i and r̂ obey the relations

[
X̂i , r̂

]
= 0, r̂2 − X̂2 = θ2. (3.10)

3.2 The quantum Hilbert space

As before, the natural identification of the quantum Hilbert space Hq is the algebra of Hilbert-

Schmidt operators generated by the coordinate operators (3.2). Since the coordinates commute

with the Casimir operator, so must the elements of the algebra. We find that Hq is described

by:

Hq =

ψ̂ =

∞∑
mi,ni=0

Cm1,m2
n1,n2

(â†1)m1(â†2)m2 ân1
1 ân2

2 : m1 +m2 = n1 + n2 and Trc(ψ̂
† r̂ ψ̂) <∞

 .

(3.11)

From (3.11) it is clear that Hq is a Hilbert space spanned by functions which possess a finite

weighted Hilbert-Schmidt norm

‖ψ̂‖2 = 4πθ3 Trc

(
ψ̂† (N̂ + 1) ψ̂

)
= 4πθ2 Trc(ψ̂

† r̂ ψ̂). (3.12)

The choice of the rotationally invariant weight w(r̂) = 4πθ2r̂ arises directly from the requirement

that a ball, with radius R, should possess a standard volume in 3-dimensional fuzzy space in

the large R limit. By using Fn = {|n1, n2〉 | n1 + n2 = n} as the notation for the underlying

Fock space, we find that the projector P̂n on the subspace F0
⊕
. . .
⊕
Fn, corresponds to the

characteristic functions of a ball with radius R = θ(N̂ + 1). Therefore, we find that the volume

of the ball is given by

VR = 4πθ3Trc

(
(N̂ + 1)P̂n

)
= 4πθ3

n∑
k=0

(k + 1)2 =
4π

3
R3

[
1 +O

(
θ

R

)]
, (3.13)
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confirming that the weight w(r̂) has the desired property.

From the results above, we define the inner product between two elements of Hq as

(
ψ̂
∣∣∣ φ̂) = 4πθ2 Trc(ψ̂

† r̂ φ̂). (3.14)

It is important to note that we distiguish between elements of Hc and Hq by reserving the

notation of |·〉 for elements of Hc and |·) for elements of Hq.

The angular momentum operators are given by

L̂iψ̂ =
~
2θ

[X̂i, ψ̂], (3.15)

and obey the usual commutation relations

[L̂i, L̂j ] = i~εijkL̂k. (3.16)

The simultaneous eigenstates of L̂3 and L̂2 are given by

ψ̂jm = θj
∑
(jm)

(â†1)m1(â†2)m2

m1!m2!
:R(N̂) :

(â1)n1(−â2)n2

n1!n2!
, (3.17)

for j = 0, 1, 2, . . . and m = −j, . . . ,+j. The summation indices assume non-negative integers

satisfying m1 + m2 = n1 + n2 = j and m1 −m2 − n1 + n2 = 2m. Here we see that the radial

dependence is entirely captured in :R(N̂) : and the angular dependence captured in the creation-

and annihilation filled factors. We can, therefore, refer to ψ̂jm as the wavefunction of a particle

with angular momentum j and L̂3 projection m.

In order to continue, it is necessary at this stage to outline properties of the radial operator and

eigenstates.

Firstly, as we note that we have a normal ordering of the radial function R(N̂) in the wavefunction

above, we inspect the behaviour of the normal ordering of a function of the counting operator

N̂ . Assuming a Taylor expansion, it is sufficient to study the normal ordering of powers of N̂ :

:N̂k : |n1, n2〉 =
N̂ !

(N̂ − k)!
|n1, n2〉 . (3.18)

This is easily proved via induction and is shown in Section A.2. Using (3.18) we also find the
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following:

(
:N̂k+1 : − N̂ :N̂k :

)
|n1, n2〉 =

(
n(n− 1)(n− 2) . . . (n− k + 1)(n− k)

− n2(n− 1)(n− 2) . . . (n− k + 1)

)
|n1, n2〉

= (n− k − n) (n(n− 1) . . . (n− k + 1)) |n1, n2〉

= −k :N̂k : |n1, n2〉

⇒ N̂ :N̂k : = :N̂k+1 : + k :N̂k : . (3.19)

When viewing the wavefunction, we find the radial dependence of the wavefunction is contained

in the normal ordered form of the function R(N̂) = Σ∞k=0ckN̂
k given by

R̄(N̂) ≡ :R(N̂) : =
∞∑
k=1

ck :N̂k : =
∞∑
k=2

ck
N̂ !

(N̂ − k)!
. (3.20)

From (3.19) and (3.20) it can easily be seen that

N̂ :R(N̂) : =
∞∑
k=0

ck N̂ :N̂k :

=
∞∑
k=0

ck

(
:N̂k+1 : + k :N̂k :

)
= :N̂ R(N̂) : + :N̂ R′(N̂) : , (3.21)

where we use the following notation

R(N̂) =
∞∑
k=0

ckN̂
k, R′(N̂) =

∞∑
k=0

k ckN̂
k−1, R′′(N̂) =

∞∑
k=0

k(k − 1) ckN̂
k−2. (3.22)

Next we wish to find the operators corresponding to differentiation of a wavefunction, and in

particular we are interested in the second order derivate with respect to the radial coordinate.

We start off by investigating the following double commutator

[
â†α, [âα, ψ̂jm]

]
= θj

â†α ,
â†α , ∑

(jm)

(â†1)m1(â†2)m2

m1!m2!
:R(N̂) :

(â1)n1(−â2)n2

n1!n2!

 , (3.23)
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as a double commutator is well-known to be an analog of the second order differential operator.

Following the calculation outlined in Section A.5 we find that (3.23) equates to

[â†α, [âα, ψ̂jm]] = −θj
∑
(jm)

(â†1)m1(â†2)m2

m1!m2!
: [N̂ R′′(N̂) + 2(j + 1)R′(N̂)] :

(â1)n1(−â2)n2

n1!n2!
. (3.24)

Given the results above, we have that a suitable radial Laplacian on the quantum Hilbert space

is given by [12]

∆θψ̂jm ≡ −
1

θr̂

[
â†α, [âα, ψ̂jm]

]
. (3.25)

Here we find that the factor of r̂−1 is needed in order for ∆θ to be Hermitian with respect to the

inner product (3.14) and θ−1 is necessary to preserve the dimensions.

Another useful result, as outlined in Section A.6, is that

r̂ ψ̂jm = θj+1
∑
(jm)

(â†1)m1(â†2)m2

m1!m2!
: [(N̂ + j + 1)R(N̂) + N̂ R′(N̂)] :

(â1)n1(−â2)n2

n1!n2!
. (3.26)

3.3 Free particle in fuzzy space

The Hamiltonian for a non-commutative free particle is given by

H0 = − ~2

2m
∆θ, (3.27)

and, correspondingly, the non-commutative time-independent Schrödinger equation for a free

particle reads:

H0ψ̂ = − ~2

2m
∆θψ̂ =

~2

2mθr̂
[â†α, [âα, ψ̂]] = Eψ̂. (3.28)

For the eigenstates provided in (3.17) this reduces to

[â†α, [âα, ψ̂jm]] = θk2r̂ ψ̂jm, (3.29)

where k =
√

2mE
~ . Substituting (3.23) and (3.26) into (3.29), one finds the governing expression

:
(
N̂ R′′(N̂) + [2(j + 1) + κ2N̂ ]R′(N̂) + κ2[N̂ + j + 1]R(N̂)

)
: = 0, (3.30)

where κ = θk. Since the coefficients ck, as defined in (3.20), for the radial function remains

unknown at this point, we are left to find the exact solutions to R̄(N̂) ≡ R̄(n) for which (3.30)
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can be satisfied. Where we have decided to simplify notation by replacing N̂ with n, without the

loss of generality, where referring to n simply refers to the value of operator N̂ on a given state.

As will soon become apparent, each term within (3.30) can be written as a function of R̄(n). By

rewriting all the terms in (3.30) into functions of R̄(n) we hope to find a general expression that

we can solve exactly using standard techniques.

We start off with the simplest non-trivial term. This is given by

:N̂ R(N̂) : =
∞∑
k=0

ck :N̂k+1 : =
∞∑
k=0

ck
n!

(n− (k + 1))!

=

∞∑
k=0

ck
n!

((n− 1)− k)!

=

∞∑
k=0

n ck
(n− 1)!

((n− 1)− k)!

= n R̄(n− 1),

(3.31)

and thereby we have identified a method to map non-trivial normal ordered products of N̂ and

R(N̂) to R̄(n). The next non-trivial term identified is

:R′(N̂) : =
∞∑
k=0

k ck :N̂k−1 : =
∞∑
k=0

k ck
n!

(n− (k − 1))!

=
∞∑
k=0

k ck
n!

(n− k + 1)!
=
∞∑
k=0

ck
n!

(n− k)!

k

(n− k + 1)

=

∞∑
k=0

ck
n!

(n− k)!

k(n+ 1)

(n+ 1)2 − k(n+ 1)

=

∞∑
k=0

ck
n!

(n− k)!

(
k(n+ 1)

(n+ 1)2 − k(n+ 1)
+

(n+ 1)2 − (n+ 1)2

(n+ 1)2 − k(n+ 1)

)

=

∞∑
k=0

ck
n!

(n− k)!

(
(n+ 1)

(n+ 1)− k
− 1

)

=

∞∑
k=0

ck

(
(n+ 1)!

((n+ 1)− k)!
− n!

(n− k)!

)
= R̄(n+ 1)− R̄(n) ≡ R̄′(n),

(3.32)

where we see that we have defined the discrete analogue of the derivative which we note as R̄′(n).
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By using the same method in (3.31) we can also easily show

:N̂ R′(N̂) : = n R̄′(n− 1) = n
(
R̄(n)− R̄(n− 1)

)
. (3.33)

Similarly, using the method in (3.32), we find

:R′′(N̂) : = R̄′′(n) = R̄′(n+ 1)− R̄′(n) = R̄(n+ 2)− 2R̄(n+ 1) + R̄(n), (3.34)

from which it follows that

:N̂R′′(N̂) : = n R̄′′(n− 1) = n
(
R̄′(n+ 1)− R̄′(n)

)
= n

(
R̄(n+ 1)− 2R̄(n) + R̄(n− 1)

)
. (3.35)

Given the results from (3.31) to (3.35) and by substitution into (3.30) we find the final radial

equation to be solved is

(n+ 2j + 2) R̄(n+ 1) + (κ2 − 2)(n+ j + 1) R̄(n) + n R̄(n− 1) = 0, n ≥ 0. (3.36)

We, therefore, find that the final form of the non-commutative radial Schrödinger equation

(3.30) reduces to a recursion equation in R̄(n) that can, in theory, be solved exactly. However,

in practice, finding solutions to recursion equations is a daunting task and we will need to find

alternative methods to find solutions that satisfy the recursion equation.

One of these alternative methods is to view the expression within the normal ordering in (3.30)

as a differential equation for R̄(N) and solve it accordingly. The solutions to this differential

equation can then be normal ordered as functions of N̂ and the results thereof should also then

satisfy the recursion equation. This alternative method is an easier route to finding the final

solutions to the non-commutative radial Schrödinger equation.

3.3.1 Solving the radial Schrödinger equation as a differential equation

When viewing the expression within the normal ordering of (3.30) as a differential equation in

N̂ , the differential equation reads

N̂R′′(N̂) + [2(j + 1) + κ2N̂ ]R′(N̂) + κ2[N̂ + j + 1]R(N̂) = 0. (3.37)
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Using standard techniques, it is found that the solution to this differential equation is a linear

combination of

RJ(N̂) = N̂−(j+ 1
2

)e−
κ2N̂
2 Jj+ 1

2

(κ
2
N̂
√

4− κ2
)

(3.38)

and

RY (N̂) = N̂−(j+ 1
2

)e−
κ2N̂
2 Yj+ 1

2

(κ
2
N̂
√

4− κ2
)
, (3.39)

where Jν(x) and Yν(x) are the Bessel functions of the first and second kind respectively. The

latter are often referred to as Neumann functions and the former simply as Bessel functions.

Normal ordering these two functions would require that we find the Taylor expansions for both

the Bessel- and Neumann functions. The Taylor expansions are given by eqs. (9.1.2) and (9.1.10)

in [14]:

Jν(x) = (
1

2
x)ν

∞∑
k=0

(−1
4x

2)k

k! Γ(ν + k + 1)
(3.40)

and

Yν(x) = Jν(x)cot(νπ)− J−ν(x)cosec(νπ)

= cot(νπ)(
1

2
x)ν

∞∑
k=0

(−1
4x

2)k

k! Γ(ν + k + 1)
− cosec(νπ)(

1

2
x)−ν

∞∑
k=0

(−1
4x

2)k

k! Γ(−ν + k + 1)
,

(3.41)

for all non-integer ν. Since, in our case, ν = j + 1
2 and therefore would always be a half-integer

number, we see that the cotangent term in the Taylor expansion for the Neumann function will

always be 0.

We now find the normal ordered expressions for the solutions given in (3.38) and (3.39). Normal

ordering the Bessel factor (3.38) by use of the Taylor expansion given by (3.40) results in

R̄J(n) =
2−(2j+1)

(
1− κ2

2

)n (
−κ
√

4− κ2
)j+ 1

2

Γ(j + 3
2)

2F1(−n
2
, −(n− 1)

2
; j+

3

2
; 1− 4

(κ2 − 2)2
), (3.42)

where 2F1 is a hypergeometric function. Normal ordering the Neumann part (3.39) with use of

(3.41) results in

R̄Y (n) = (−1)j+12−n(2− κ2)n+2j+1
(
κ
√

4− κ2
)−(j+ 1

2
) Γ(n+ 1)

Γ(n+ 2j + 2) Γ(−j + 1
2)

(3.43)

× 2F1(−(n+ 2j + 1)

2
, −(n+ 2j)

2
; −j +

1

2
; 1− 4

(κ2 − 2)2
). (3.44)
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The computations of the normal ordered solutions are outlined in A.7.

With a simple check we see that both these solutions are solutions of the recursion equation

in (3.36). However, we find that R̄Y (n) is singular for n < 0 and, therefore, cannot satisfy

the recursion equation given in (3.36) for n = 0. Therefore, as expected, the normal ordered

Neumann function can only be used for solutions that do not include the origin in its domain.

We therefore conclude that the free particle radial solutions to (3.30) should take the form of

Ψ(n) = C R̄J(n), n ≥ 0,

and

Ψ(n) = A R̄J(n) +B R̄Y (n), n ≥ 1,

(3.45)

where A, B and C are normalization constants.

3.3.2 Square-integrability of the free particle solutions in different energy sectors

A prerequisite for the free particle radial solutions to be acceptable solutions is that they must

be square integrable in the sense of (3.11). As will become apparent in what follows, we see that

the square-integrability of the radial solutions is highly dependent on the energy sector in which

the solutions are calculated.

Reflecting on the final forms of the radial solutions in (3.42) and (3.44), we easily identify three

global energy sectors in which the behaviour of the solutions differ. Keeping in mind that the

normal ordered Neumann function does not satisfy the radial Schrödinger equation at the origin,

these energy sectors, and the associated behaviour of the solutions, are as follow:

(i) 0 < κ < 2

The first energy sector is that of a positive energy, however, with the energy bounded from

above by E < 2~2
θ2m

. In this energy sector we find that both the normal ordered Bessel-

and Neumann functions are finite and real over the entire radial domain. Furthermore, we

see that both solutions tend to 0 fast enough in the limit n → ∞ such that the solutions

are square-integrable. In the limits where E → 0 and E → 2~2
θ2m

, we see that the radial

wavefunctions take on the trivial solution of Ψ(n) = 0.

(ii) κ > 2

In this energy sector, where we have particle energies exceeding 2~2
θ2m

, we find that the
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solutions gain a complex phase. Furthermore, we also find that the norm of both solutions

diverge as n → ∞. These are, therefore, not admissable solutions of the free particle

Schrödinger equation.

(iii) κ = i ε, 0 < ε

This sector corresponds to solutions of non-zero potentials, where the particle energy is

less than the potential depth. In this energy sector we see that, again, both the normal

ordered Bessel- and Neumann functions are complex valued and have their norms diverge

as n → ∞. However, there exists a unique combination of the two solutions to which

the resulting combination tends to 0 as n → ∞ and restores square-integrability over the

domain n ∈ [1,∞). This unique combination is given by

R̄H(n) = R̄J(n) + iR̄Y (n). (3.46)

As expected, R̄H(n) is the normal ordered equivalent to the Hankel function of the first

kind. The expression for R̄H(n) is given by

R̄H(n) =
2(−1)j+1

(
iε
√

4 + ε2
)j+ 1

2 (
4 + ε2

)−(2+2j+n)
Γ(1 + n)

√
π Γ(2 + j + n)

× 2F1

(
j + n+

3

2
, 2 + 2j + n ; 3 + 2j + 2n ;

4

4 + ε2

)
.

(3.47)

Due to the implicit dependence of the Hankel function on the Neumann function, we also

find that the normal ordered Hankel function of the first kind does not satisfy the radial

Schrödinger equation at the origin.

The different behaviours of the wavefunctions in each of the energy sectors are illustrated in

Figure 3.1.

By probing the behaviours of the solutions in different energy sectors, we have now discovered the

very interesting fact that there is a global cutoff in kinetic energy for a free particle. Since for κ >

2 there are no permissible square-integrable solutions and we find that the radial wavefunction

for a free particle reduces to the trivial form of Ψ(n) = 0 and, therefore, no free particle state

exists with a kinetic energy larger than 2~2
θ2m

.

Since the wavelength for a particle is expressed as λ = 2π/k = 2πθ/κ and it is required that

κ ≤ 2, we find that the wavelength for a non-commutative particle is bound by λ > πθ. Thus,
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Figure 3.1: Illustrations for the different wavefunctions within different energy
sectors. In subfigures (a) to (c) we have the normal ordered Bessel function marked
with blue squares and the normal ordered Neumann function is marked with red
circles. In subfigure (d) we only have the normal ordered Hankel function in purple
triangles. The parameters used in the subfigures are as follows: (a) κ = 0.5, j = 0;
(b) κ = 2.1, j = 0; (c) and (d) κ = i 0.5, j = 0. All wavefunctions were scaled to exhibit
the defining features.

a particle in our non-commutative system is unable to obtain a wavelength that probes length

scales smaller than θ.

3.4 The non-commutative three-dimensional spherical well (Fuzzy well)

In order to construct a system with a potential well, we first need to define projection operators

which seperates different sectors of the counting operator N̂ . For a single value of N , we could

project onto all states with a total boson number N with

P̂N =
N∑
n=0

|n, N − n〉 〈n, N − n| . (3.48)
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One now defines, for a potential well problem, two projection operators which projects all con-

figuration space states either inside or outside of the well of integer radius M . These projection

operators are given by

P =
M∑
r=0

P̂r, Q =
∞∑

r=M+1

P̂r, (3.49)

from which it is clear that P projects onto all states within the well with radius M , and Q onto

all states outside the well. Given these projection operators, the time-independent Schrödinger

equation describing a 3-dimensional non-commutative spherical well would read

Hψ̂jm = − ~2

2m
∆θψ̂jm + (V1P + V2Q)ψ̂jm = Eψ̂jm (3.50)

Considering the wavefunction ψ̂jm as given in (3.17), the actions of the projection operators

thereon are given by

P ψ̂jm = θj
∑
(jm)

(â†1)m1(â†2)m2

m1!m2!
Θ(M − n′ − j) :R(N̂) :

(â1)n1(−â2)n2

n1!n2!
(3.51)

and

Qψ̂jm = θj
∑
(jm)

(â†1)m1(â†2)m2

m1!m2!
Θ
(
−[M + 1− n′ − j]

)
:R(N̂) :

(â1)n1(−â2)n2

n1!n2!
, (3.52)

where Θ(·) is the Heaviside step function, and n′ inside the Heaviside step function is the total

boson count as seen by N̂ within the normal ordered radial function.

Substituting the results for the two projections from (3.51) and (3.52) into the Hamiltonian in

(3.50), we find two radial equations identical to the form of (3.36):

(n+ 2j + 2) R̄(n+ 1) + (κi
2 − 2)(n+ j + 1) R̄(n) + n R̄(n− 1) = 0, (3.53)

where

κi =


κ1 =

θ
√

2m(E−V1)

~ , if 0 ≤ n ≤M − j

κ2 =
θ
√

2m(E−V2)

~ , if n > M − j

. (3.54)

We see here that the quantity (M − j) acts as an effective well radius which, for the purpose

of simplifying notation, we will substitute with M = M − j. To further simplify notation, we
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relabel κ1 → κin and κ2 → κout as they represent the energy values of solutions inside and

outside the well, respectively. Lastly we will assume that the potential inside the well assumes

the value V1 = 0 and outside the well V2 = V , with V being a positive real number.

It is important to note at this stage that the angular momentum within the well is bound by

j ∈ [0,M ], at which stage the well will effectively disappear for any particle with an angular

momentum j ≥ M + 1 and the well problem is reduced to only a single radial equation to be

solved, effectively reducing it to a free particle.

We are now also able to identify solutions to the different regions of the spherical well:

• Inside the well, where n ≤M, the only requirement is that the radial equation be solvable

from the origin. Therefore, the only allowed solution will be the normal ordered Bessel

function, since the normal ordered Neumann- and Hankel functions are excluded as valid

solutions at the origin.

• Outside the well, where n ≥ M + 1, we find that any linear combination of the normal

ordered Bessel- and Neumann functions is allowed for V < E, while only the normal ordered

Hankel function is allowed for V > E.

As a reminder, the normal ordered Bessel-, Neumann- and Hankel functions are respectively

given by eqs. (3.42), (3.44) and (3.47).

The next step is to find an expression for the matching conditions at the well-edge. This is neces-

sary when calculating bound state energies, as well as scattering coefficients for the solutions. To

find these matching conditions we first consider two radial solutions for the recursion equation

(3.36). The solution inside the well, with 0 ≤ n ≤M, reads:

(n+ 2j + 2) Ψin(n+ 1) + (κ2
in − 2)(n+ j + 1) Ψin(n) + nΨin(n− 1) = 0. (3.55)

Outside the well, with n >M, we have:

(n+ 2j + 2) Ψout(n+ 1) + (κ2
out − 2)(n+ j + 1) Ψout(n) + nΨout(n− 1) = 0. (3.56)

Here Ψin(n) and Ψout(n) respectively refer to the radial wavefunctions inside and outside the

well.

Firstly we notice that when n =M, (3.55) determines the value of Ψin(M+1). However,M+1
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falls outside the well where the radial solution is determined by Ψout, from which we can conclude

that at n =M+ 1, in order for the Schrödinger equation to be satisfied, we must require that

Ψin(M+ 1) = αΨout(M+ 1), (3.57)

where α is a normalisation constant. This is our first matching condition. A similar argument

applied to (3.56) shows that

Ψin(M) = αΨout(M). (3.58)

Dividing (3.57) by (3.58) gives us our final matching condition:

Ψin(M+ 1)

Ψin(M)
=

Ψout(M+ 1)

Ψout(M)
. (3.59)

We note that both eqs. (3.57) and (3.58) require that both wavefunctions are equal at the well-

edge, while (3.59) requires that the slope for both wavefunctions should be equal at the edge.

These matching conditions agree with the standard matching conditions one would find in the

commutative case.

We use matching conditions in (3.57), (3.58) and (3.59) in order to find the energy solutions of

the system, as well as the scattering coefficients. The latter will be covered in the next chapter.

3.5 The infinite well

Based on the results in the previous section, we can now discuss the case of the infinite spherical

well, i.e. we attempt to find the appropriate solutions in the limit where V →∞.

We start off by investigating the solution outside of the well. In the case of the commutative

infinite well we have that all solutions should die out as soon as they enter the well-border and,

therefore, a solution of ψ(r) = 0 with r ≥ R is the only permitted solution for a well of radius

R. We expect to see the same behaviour in the non-commutative case.

Given that the solution outside the well has the form of the normal ordered Haskel function, we

investigate the ratio on the right-hand side of eq. (3.59). Recalling that κ = iε ∼ i
√
V − E, 0 <

ε, we find that the limit of V → ∞ implies ε → ∞ in (3.47). We therefore do an expansion of
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Ψout(M+1)
Ψout(M) around ε→∞ with the result being

lim
ε→∞

Ψout(M+ 1)

Ψout(M)
= lim

ε→∞

R̄H(M − j + 1)

R̄H(M − j)
= lim

ε→∞

M+ 1

(M+ j + 2) ε2
+O(

1

ε4
) + . . . . (3.60)

In the limit V, ε→∞, equation (3.60) clearly vanishes, from which we conclude that Ψout(M+1)

should also vanish. Even more, by applying the same technique, we can extend (3.60) to show

that the ratio of Ψout(n+1)
Ψout(n) will always vanish for any n ≥M and, therefore, the solution outside

the well will always vanish, agreeing with the expected result.

3.5.1 Finding energy solutions for the infinite well

In the limit when V, ε → ∞, we have that Ψin(M + 1) → 0 through the use of eqs. (3.60) and

(3.57). This implies that in order for us to find the energy solutions to the infinite well, we need

to find the zeros of normal ordered Bessel function given in (3.42) at n = M + 1. However,

finding the zeros of a hypergeometric function is not an easy task and we would prefer to have

the normal ordered Bessel function in a form better suited to the task at hand.

By using eq. (15.3.21) in [14], we can rewrite the hypergeometric function Ψin(n), which is

simply the normal order Bessel function (3.42), into the form of

Ψin(n) ∝ 1

Γ(j + 3
2)

2F1(−n , n+ 2j + 2 ; j +
3

2
;
κ2

4
), (3.61)

where we assumed that κin = κ and we have kept only the gamma function normalising pre-

factors. Furthermore, we can use eq.(15.4.6) in [14] to rewrite (3.61) as a Jacobi polynomial:

Ψin(n) ∝ Γ(n+ 1)

Γ(n+ j + 3
2)

P
(j+ 1

2
,j+ 1

2
)

n (1− κ2

2
). (3.62)

Finding the zeros for Ψin(M+1) therefore requires that we find the zeros of the Jacobi polynomial

in (3.62) with n = M + 1 = M − j + 1. The final quantization condition from which we may

calculate the energy solutions is then given by

P
(j+ 1

2
,j+ 1

2
)

M−j+1 (1− θ2m0E/~2) = 0, (3.63)

where we used the fact that κ = θk = θ
√

2m0E
~ .

We may now use the properties of the Jacobi polynomial in (3.63) to elaborate on facts of the
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energy spectrum for the infinite well. Firstly, it is known that the zeroes of the Jacobi polynomial

P
(α,β)
n (x) is restricted to domain x0 ∈ (−1, 1). This, again confirms that our energy solutions are

bound from below and above by E ∈ (0 , 2~2
θ2m0

) which we have already seen in previous sections.

Another property is that the Jacobi polynomial has exactly M − j + 1 unique zeroes, which

implies that for a given value of the angular momentum j, there exists only a finite number of

bound states. Since the angular momentum itself is bound by j ≤ M , we find that the infinite

spherical fuzzy well has a finite number of bound states in its entirety.

We can easily calculate the maximum number of single particle states for an infinite well of integer

radius M . Given that the maximum number of energy solutions for a given j is M − j + 1, we

find the total number of bound states to be

N (max) =

M∑
j=0

+j∑
m=−j

M − j + 1

=
1

6
(M + 1)(M + 2)(2M + 3)

=
M3

3
+O(M2).

(3.64)

We therefore see that the total number of bound states is proportional, up to leading order, to

M3. Since the Euclidean radius of the well is given by R = θ(M + 1), and therefore M ∼ R
θ ,

we see that the total number of bound states is proportional to the volume of the system and

inversely proportional to θ3. This suggests that each single particle bound state occupies a finite

volume V0 ∼ θ3 and that the total number of bound states is, therefore, simply the volume of

the well divided by V0. This has important implications for the thermodynamics of Fermi gases

as it suggests the existence of a maximum density.

As an illustration, we see in Figure 3.2 that not only is the total number of bound states affected

by our choice of θ and R, but the actual energy levels also get lowered as the effects of non-

commutativity become stronger. We also clearly see from the figure that as θ → 0, we find the

energy levels tend to the expected commutative energy spectrum of the infinite well given by

En =
n2π2~2

2m0R
n = 1, 2, 3, . . . . (3.65)

As a final note, we find that the Jacobi polynomial with equal arguments P
(α,α)
n (x) is symmetric

around x = 0. Therefore, the solutions to (3.63) is arranged symmetrically around E = ~2
θ2m0

.
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Figure 3.2: Normalized bound state energy values for as function of the non-
commutative parameter θ. Each set of similarly colored points correspond to the
same energy level as set out by the infinite well energy spectrum, where we only
show the j = 0 energy levels. The dashed black line indicates the maximum allowed
kinetic energy per particle for a given value of θ.

3.5.2 The commutative limit

In the commutative limit, i.e. in the limit that θ → 0, we want to see if the polynomial for

which we should find the zeros would reduce to the expected spherical Bessel function as in the

commutative infinite spherical well. For a fixed Euclidean well radius R = θ(M + 1), we find

that if θ → 0 then we should have that M →∞ in such a way that R stays fixed. We now can

investigate the zeros of (3.62) at n = M − j + 1 in the large M limit. Note that in the large

M limit we have that M − j + 1 ∼ M , and therefore n ∼ M , and also that θ = R
(M+1) ∼

R
M .

Another fact to note is that the pre-factor in (3.62) goes like n−j−
1
2 . Thus, we can rewrite (3.62)

in the large M limit as

lim
M→∞

Ψin(n) ∝ lim
M→∞

1

M j+ 1
2

P
(j+ 1

2
,j+ 1

2
)

M (1− k2R2

2M2
), (3.66)
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which we can use in conjunction with eq.(22.15.1) in [14] to obtain the commutative limit poly-

nomial:

lim
M→∞

Ψin(n) ∝
(

2

κR

)l+ 1
2

Jl+ 1
2
(κR) =

2l+1

√
π

1

(κR)l
jl(κR), (3.67)

which is identical, up to a constant, to the radial solution of the commutative case. Note that

we replaced our previous notation of the angular moment j with l in order to avoid confusion

with the spherical Bessel function jl(x).

3.5.3 Additional properties of the bound state spectrum of the infinite well

We now discuss additional properties of the bound state spectrum of the infinite well which will

be of particular use during the thermodynamic calculations in Chapter 5.

Upon using the symmetry relation P
(α,α)
n (−x) = (−1)nP

(α,α)
n (x) and the freedom to shift the

energies by a constant, we see that we are able to rewrite the quantization condition in (3.63) as

P
(j+ 1

2
,j+ 1

2
)

M−j+1 (θ2m0E/~2) = P
(j+ 1

2
,j+ 1

2
)

M−j+1 (
E

E0
) = 0, (3.68)

with E0 = ~2/(θ2m0). Note that, due to shifting the energies, the bound state energies are now

arranged symmetrically around E = 0. This form will be of particular mathematical use when

we want to calculate the density of states in the large M limit.

In order to study the thermodynamics of particles trapped in our infinite spherical well, we

require the density of states, which is related to the density of zeros of the Jacobi polynomial

(3.68). There has been some work done on finding the density of zeroes of orthogonal polynomials

[15] and specifically work done on Jacobi polynomials as well [22, 23]. We find in these works

that the density of zeroes for (3.68), for 0� j �M , is given by

d0(x,M, j) =
M
√

1− x2 − ( j
M )2

(M − j)π (1− x2)
, (3.69)

where x = E/E0. Since the total number of states for a given value of M and j is (M − j) in the

large M and j limit, we find then, by multiplying by (M − j), the density of states for a fixed

value of M , j and angular momentum projection m:

d(x, λ) =

√
1− x2 − λ2

π (1− x2)
, (3.70)
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where we have that λ = j/M and, by definition, d(x, λ) = 0 for |x| >
√

1− λ2.

We record one final result for later use. If the well contains spinless fermions then the maximum

value of the z-component of the total angular momentum is denoted ~L(max)
3 . This maximum is

reached by filling all the single particle states with positive angular momentum projection m. A

simple summations yields

L
(max)
3 =

M∑
j=0

+j∑
m=0

m(M − j + 1)

=
1

24
M(M + 1)(M + 2)(M + 3)

=
M4

24
+O(M3).

(3.71)
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CHAPTER 4

SCATTERING STATES OF THE FINITE FUZZY WELL

In the previous chapter we established a quantum mechanical formulation for single particles in 3-

dimensional non-commutative space, or fuzzy space. Explicit solutions for the time-independent

Schrödinger equation were obtained for free particles and particles in the presence of a potential

well. One particularly useful result in the potential well problem is that of the matching con-

ditions for wavefunctions. These matching conditions, given by eq. (3.59), not only provide us

with a means of obtaining the energy solutions for particles in a finite well, but also serves as

the basis for finding scattering coefficients when investigating particle scattering in the presence

of a finite fuzzy well.

However, before a complete formalism for particle scattering in fuzzy space can be established,

it is necessary to obtain a consistent interpretation of position measurement, representation and

probability currents in fuzzy space since the coordinates no longer commute. In [5] the notion

of a positive operator valued measure (POVM) was introduced that provided a logical and

consistent interpretation of position measurements in non-commutative space as strong position

measurements were replaced by weak measurements. This approach was used to provide a clear

interpretation of spatial probability densities and currents in fuzzy space, thereby enabling us to

investigate particle scattering in the finite fuzzy well system. These formalisms and results were

collected and published in [16] and will serve as the reference on which this chapter is built.

In this chapter we shall, therefore, outline how the position representation provided by POVMs

is used to construct spatial probability densities and currents. Thereafter we give the formulation

of particle scattering based on this approach with the accompanying results on particle scattering

from a finite fuzzy well.

4.1 Position representation in fuzzy space

As mentioned in the introduction to this chapter, exact position measurements are, by definition,

impossible in fuzzy space as the coordinates no longer commute. It is therefore necessary that

we find a new interpretation to position measurements in fuzzy space as scattering theory is

primarily dependent on probability densities and fluxes. In [5] the notion of positive operator

35
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valued measures (POVMs) was used to give meaning to position measurement in a weak sense

and we will briefly outline this approach in this section.

Recall that the configuration space Hc is the Fock space for the Schwinger realization of the

SU(2) coordinate algebra and is given by the equation (3.5). We may also relabel the basis

states of Hc as

|j,m〉 ≡ |n1, n2〉 , with j = (n1 + n2)/2 =
n

2
, m = (n1 − n2)/2. (4.1)

These relabeled states, |j,m〉, can be considered to represent a particle that is localized at radial

distance of r = θ(n+1) = θ(2j+1) from the origin, but delocalized in the two angular directions.

It is now our goal to find the best localization for a particle with a given value of j. We do this

by considering a unit vector1 û = (sin(φ1) sin(φ2), sin(φ1) sin(φ2), cos(φ1)) and try to find a

state for which the component of its position vector ~̂X = (X̂1, X̂2, X̂3) along û is maximal. By

achieving this, we are assured that we have found the best possible localization for the particle

state |j,m〉 at the radial distance of r = θ(2j + 1) around the point (φ1, φ2). These optimally

localized states are described by

|n, z〉 =
1

(1 + zz∗)
n
2

ezX̂+

∣∣∣j =
n

2
, m = −n

2

〉
, (4.2)

where X̂+ = X̂1 + iX̂2 and z ∈ C. The states in (4.2) are noted to be the SU(2) coherent states

[20]. Furthermore, these states satisfy the relation û · ~̂X |n, z〉 = θn |n, z〉, when z is related to

the angular coordinates through z = cot(φ1/2)e−iφ2 .

We are now able to obtain the identity operator on the configuration space Hc using these

optimally localized states. This identity operator is given by

Îc =

∞∑
n=0

∫
dz dz∗µn(z, z∗) |n, z〉 〈n, z| (4.3)

with

µn(z, z∗) =
1 + n

π(1 + zz∗)2
. (4.4)

It is also possible to apply a similar construction on the quantum Hilbert spaceHq by introducing

1Note that we kept the notation for θ as the non-commutative length parameter as to stay consistent between
chapters. In order to accommodate notation for spherical coordinates we used φ1 and φ2 as the polar angle and
azimuthal angle, respectively. This notation will be used throughout this chapter.
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the states

|n, z, w) =
|n, z〉 〈n,w|√
4πθ3(n+ 1)

, (4.5)

where the resulting identity operator on Hq is given by

Îq =

∞∑
n=0

∫
dz dz∗µn(z, z∗)

∫
dw dw∗µn(w,w∗) |n, z, w) (n, z, w| . (4.6)

By use of results in [21], we are able to rewrite eq. (4.6) into

Îq =
∞∑
n=0

∫
dz dz∗µn(z, z∗) |n, z, z) ?n (n, z, z| , (4.7)

where the star product ?n is defined by

?n =

∫
dw dw∗e

←
∂zwµn(z + w, z∗ + w∗) |〈n, z |n, z + w〉|2 ew∗

→
∂z∗ . (4.8)

From the above it is clear that the operators given by

π̂n,z = |n, z, z) ?n (n, z, z| (4.9)

provide us with a positive operator valued measure.

If we now consider a particle described by the pure state density matrix ρ =
∣∣∣ψ̂)(ψ̂∣∣∣, we find that

the probability density at a radial distance of r = θ(n+1) and angular coordinates z = z(φ1, φ2)

is given by

P (n, z) = Trq(π̂n,z ρ) =
(
ψ̂
∣∣∣n, z, z) ?n (n, z, z ∣∣∣ ψ̂) . (4.10)

We find, therefore, that the position representation of ψ̂ is given by

(
n, z, z

∣∣∣ ψ̂) =
√

4πθ3(n+ 1)
〈
n, z
∣∣∣ ψ̂ ∣∣∣n, z〉 . (4.11)

Lastly, from [21] we have the identity

〈
n, z
∣∣∣ ψ̂ φ̂ ∣∣∣n, z〉 =

〈
n, z
∣∣∣ ψ̂ ∣∣∣n, z〉 ?n 〈n, z∣∣∣ φ̂ ∣∣∣n, z〉 , (4.12)
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which enables us to rewrite the probability density in (4.10) into the useful form of

P (n, z) = 4πθ3(n+ 1)
〈
n, z
∣∣∣ ψ̂† ψ̂ ∣∣∣n, z〉 . (4.13)

4.2 Probability currents

To compute probability currents in fuzzy space, it is necessary to consider the continuity equa-

tion for the probability density P (n, z, t). In this case the time evolution is generated by the

Hamiltonian

Hθ = − ~2

2m
∆θ + V (r̂). (4.14)

It then follows from (4.4) and (4.13) that

d

dt
[µn(z, z∗)P (n, z, t)] =

4θ3

i~
(n+ 1)2

(1 + z z∗)2

〈
n, z
∣∣∣ ψ̂†Hθψ̂ − (Hθψ̂)†ψ̂

∣∣∣n, z〉

=
2i~θ
m

n+ 1

(1 + z z∗)2

〈
n, z
∣∣∣ [ψ̂†â†αψ̂ , âα]− [â†α , ψ̂†âαψ̂] ∣∣∣n, z〉 , (4.15)

where it is important to note that V (r̂) disappeared as it commutes with ψ̂, and the positive

operator valued measure is automatically included as per our derivation of (4.13).

The next step will be to show that (4.15) can be expressed as a divergence in spherical coordinates

where the radial axis is discretized. Considering the unnormalized coherent states defined by

|n, z〉u ≡ (1 + z z∗)n/2 |n, z〉, we find the following useful identities

â1 |n, z〉u =
√
n z |n− 1, z〉u ,

â2 |n, z〉u =
√
n |n− 1, z〉u ,

â†1 |n, z〉u =
√
n+ 1 ∂z |n+ 1, z〉u ,

â†2 |n, z〉u =
√
n+ 1 |n+ 1, z〉u . (4.16)
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These identities enable us to rewrite (4.15) in the form:

d

dt
[µn(z, z∗)P (n, z, t)] = −

[
sin(φ1)∆r[r(r + θ)jr(r, φ1, φ2)]

+ r
∂

∂φ1
[sin(φ1)jφ1(r, φ1, φ2)]

+ r
∂

∂φ2
jφ2(r, φ1, φ2)

]
. (4.17)

Here r = θ(n + 1) and ∆r is the discrete radial derivative acting as ∆r f(r) ≡ f(r)−f(r−θ)
θ . We

see that (4.17) is indeed given as a total divergence which includes the Jacobian J = r2 sin(φ1)

and we have, therefore, obtained an expression for the probability current where the spherical

components are calculated to be

jr(r, φ1, φ2) = − ~
m

Im(M1 +M2)

n+ 1
,

jφ1(r, φ1, φ2) =
~
m

Im(M1 − z z∗M2)√
z z∗ (n+ 1)

and

jφ2(r, φ1, φ2) =
~
m

Re(M1 − z z∗M2)√
z z∗ (n+ 1)

, (4.18)

where the angular coordinates are still contained in z = cot(φ1/2)e−iφ2 and the matrix elements

Mα are given by

Mα =
〈
n+ 1, z

∣∣∣ ψ̂†â†αψ̂âα ∣∣∣n+ 1, z
〉
. (4.19)

What is left is for us to calculate these matrix elements Mα for free particles and thereby obtain

a complete description of probability currents in fuzzy space.

Currently our formulation for free particles in fuzzy space in Chapter 3 lacks a description for

plane waves. We do, however, see that the Schrödinger equation for free particles (3.28) also

permits plane waves as solutions and we may simply find a plane wave description that acts as a

solution. The most natural way to define a plane wave then will be ψ̂~k = ei
~k· ~̂X which transforms

under rotations as e−iφ û·
~̂L/~ψ̂~k = ψ̂

R~k
with R ≡ Rφ(û) being the rotation matrix.

Since the Schrödinger equation is rotationally invariant we are free to choose the momentum

vector ~k for the plane waves to be orientated in the z direction. Therefore, the plane waves can
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be written as

ψ̂|~k|ẑ = ei|
~k|x̂3 = ei|

~k|(â†1â1−â
†
2â2). (4.20)

Inserting (4.20) into (3.28) we find that

H0 ψ̂|~k|ẑ =
2~2

mθ2
sin2

(
|~k|θ
2

)
ψ̂|~k|ẑ. (4.21)

Since the energy is expressed as E = ~2κ2
2mθ2

, we find that κ = 2 sin
(
|~k|θ
2

)
in the case of plane waves.

We also find that the upper limit to the kinetic energy Emax = 2~2
mθ2

, as found in the previous

chapter, can be deduced from the fact that the momentum in (4.20) should be restricted to

|~k| ∈ [0, πθ ) in order for the states to be linearly independent.

Now that we have descriptions for both plane- and spherical waves in fuzzy space, we are able to

determine their respective probability current densities through the use of (4.19). For the plane

waves, by use of (4.20), we find the matrix elements to be

M1 = (n+ 1) cos2

(
φ1

2

)
e−iθ|

~k| and

M2 = (n+ 1) sin2

(
φ1

2

)
e+iθ|~k|. (4.22)

By using the results of (4.22) and substituting into (4.18) we find the probability current in

Cartesian coordinates to be

jz =
~ sin(|~k|θ)

m
. (4.23)

Before calculating the matrix elements for spherical waves, we note that we are able to rewrite

the standard spherical eigenstates in (3.17) as

ψ̂jm = R̄(N̂ − j)Yjm with Yjm =
∑
(jm)

(â†1)m1(â†2)m2

m1!m2!

(â1)n1(−â2)n2

n1!n2!
. (4.24)

Here Yjm is the non-commutative equivalent to the standard spherical harmonics Yjm(φ1, φ2) and

the non-commutative parameter θ has been absorbed into the radial function R̄(N̂). Making the

effect of Yjm explicit in the position representation given by (4.11), we find through the help of
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the identities in (4.16) that

〈n, z| Yjm |n, z〉 =
n!

(n− j)!
1

(1 + z z∗)j

∑
(jm)

(−1)n2(z∗)m1zn1

n1!n2!m1!m2!

=
n!

(n− j)!
1

j!(j +m)!
eimφ2Pmj (cos(φ1)), (4.25)

which is indeed proportional to Yjm(φ1, φ2).

For the purpose of calculating the matrix elements, we take a superposition of all m = 0 partial

spherical waves from which we obtain the expression

ψ̂ =
∑
j=0

ajR̄(n− j)(j!)2Yl0, (4.26)

where we the requirement of axial symmetry excludes all m 6= 0 partial spherical waves.

By using the property of the star product given in (4.12) we find the matrix elements at large

radial distances to be

Mα =
∑
j,j′

a∗jaj′R̄
∗
j (n+ 1− j)R̄j′(n− j′)(j!)2(j′!)2

×
〈
n+ 1, z

∣∣∣Yj0 ∣∣∣n+ 1, z
〉
?n+1

〈
n+ 1, z

∣∣∣ â†αYj′0âα ∣∣∣n+ 1, z
〉
. (4.27)

In order to resolve the contribution made from the star product, we first investigate its asymptotic

behaviour. From [15] we find that the star product can be resolved as the 1/n expansion given

by

?n = 1 +
∞∑
k=1

2k

nk

k∑
p,q=1

←−
∂ pzΛ

(k)
p,q (z, z

∗)
−→
∂ qz∗ , (4.28)

where Λ
(k)
p,q (z, z∗) is a function of z and z∗, whereas

←−
∂ and

−→
∂ signifies taking the partial derivative

to the left and right, respectively.

From eq. (4.28) we find that as the power of 1/n in each term grows, the maximum possible order

of partial derivatives also increases. We can therefore, in the large-n limit, choose to neglect all

the negative powers of n on the condition that the derivatives do not contribute any additional

powers of n.

In the position representation for Yjm we find that the powers for z and z∗ are governed by the
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values of j and j′. In order for the asymptotic approximation of ?n ≈ 1 to hold, it is necessary

to be ensure that only a finite number of terms in the partial wave expansion of ψ̂ in (4.26) are

non-zero. This implies that there should be a maximum value for j beyond which aj = 0. We

have indeed already shown in Chapter 3 that, for the case of a finite potential well, we see a

maximum allowed value for j after which the effects of the potential is ignored. Since we are

developing a scattering theory for that particular case, we will now proceed with the assumption

that we may approximate the star product in (4.27) to 1.

We are now able to determine the probability current for spherical waves. Again, by utilizing

the identities provided in (4.16), we find that M1 = z z∗M2. From the general expressions for

the probability current provided in (4.18), we find therefore only the radial current in the large-n

limit to be non-zero and is given by

jr(n, φ1, φ2) =
~
m

Im

∑
j,j′

nj+j
′
aja
∗
j′Pj(φ1)Pj′(φ1)R̄j(n− j + 1) R̄∗j′(n− j′)

 . (4.29)

4.3 Scattering theory

We are now in a position to investigate particle scattering by a finite range radial potential

V (r̂) in fuzzy space. From the time-independent description we are, therefore, seeking energy

eigenstates of the form

ψ̂ = ei|
~k|X̂3 + ψ̂(+), (4.30)

with ei|
~k|X̂3 being the incident plane wave and ψ̂(+) the scattered wave. Outside of the range of

the radial potential we should find that ψ̂(+) reduces to a free particle solution with its probability

current directed away from the origin.

For us to apply this requirement and find appropriate solutions for ψ̂(+), we first need to consider

the asymptotic behaviour of our free particle solutions in Chapter 3. Reminding ourselves of the

non-commutative analogues to the two Bessel functions and Hankel function as given in eqs.

(3.42), (3.44) and (3.47), we seek to find their asymptotic expressions in the large-n limit.

By utilizing identities 15.3.21 and 15.4.6 in [14] to rewrite the free particle solutions from hyper-

geometric functions into Jacobi polynomials, we are able to apply theorem 8.21.8 in [19] in the

large-n limit to the polynomials to obtain

R̄J(n) ≈ sin[(n− j − 1)|~k|θ − jπ/2]

nj+1
and R̄Y (n) ≈ −cos[(n− j − 1)|~k|θ − jπ/2]

nj+1
. (4.31)
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From this we also find that the Hankel function results in an outgoing radial wave:

R̄H(n) = R̄J(n) + iR̄Y (n) ≈ ei(n+j+1)|~k|θ

(i n)j+1
. (4.32)

This suggests that ψ̂(+) has the form

ψ̂(+) =
∑
j

aj(j!)
2ψ̂H,j0 =

∑
j

ajR̄H(n̂− j)(j!)2Yj0 (4.33)

where axial symmetry has excluded terms with m 6= 0 from the final expression.

We can now derive the expression for the differential cross section from the probability currents

of two components of ψ̂. We may use the probability current for plane waves given by eq. (4.23).

In the case of spherical waves, we may simply use the expression of the analogue Hankel function

given in (4.32) and substitute it into (4.29). From these we are able to determine the differential

cross section as

dσ

dΩ
=
|jr|r2

|jz|
= θ2

∣∣∣∣∣∣
∑
j

ajPj(cos(φ1))e−ijπ/2

∣∣∣∣∣∣
2

. (4.34)

In order to determine the coefficients aj it is required that we perform partial wave expansions

for the general eigenstate ψ̂ and that of the incoming plane wave. For the incoming plane wave

we find the expansion to be the analogue to the commutative plane wave expansion of spherical

harmonics and Bessel functions given by

ei|
~k|X̂3 =

∑
j

djR̄j(n̂− j)(j!)2Yj0. (4.35)

We determine the coefficients dj in this case by considering the position representation of (4.35).

By using the identities in (4.16) we arrive at the result

〈
n, z
∣∣∣ ei|~k|X̂3

∣∣∣n, z〉 =
[
cos(|~k|θ) + i cos(φ1) sin(|~k|θ)

]n
. (4.36)

Since we also know from (4.25) that 〈n, z| Yjm |n, z〉 ∼ Pj(cos(φ1)), we may simply expand the

polynomials (z − x)n as a series of Legendre polynomials Pj(x). Using the orthogonality of

the Legendre polynomials and identity 7.228 in [24], we find the coefficients for the plane wave

expansion to be

dj = ij(2j + 1) csc(|~k|θ). (4.37)
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As a final step in determining the scattering coefficients, we consider the full wave function ψ̂

which should be an asymptotic solution of the free particle problem which we express by

ψ̂ =
∑
j

(Ajψ̂J,j0 +Bjψ̂Y,j0). (4.38)

By setting this equal to the sum of the expansions for the plane- and scattered waves, we find

the final expression for the scattering coefficients to be

aj =
djBj

iAj −Bj
= idje

iδj sin(δj), where tan(δj) = −Bj
Aj
. (4.39)

From this we find that the final expression for the differential cross section is then given by

dσ

dΩ
=

θ2

sin2(|~k|θ)

∣∣∣∣∣∣
∑
j

(2j + 1) sin(δj)e
iδjPj(cos(φ1))

∣∣∣∣∣∣
2

, (4.40)

whereas the total cross section is

σtot =
∑
j

σj =
θ2

sin2(|~k|θ)

∑
j

4π(2j + 1) sin2(δj). (4.41)

From the last two results we see that the expressions closely resemble the differential- and total

cross sections of the commutative case, except for the extra θ2

sin2(|~k|θ)
factor. In the case of

extremely low incident energies |~k|θ � 1 we have that sin(|~k|θ) ≈ |~k|θ and therefore (4.40) and

(4.41) will reduce to the normal commutative results. More explicitly, we may rewrite the energy

terms in (4.41) in terms of κ. Earlier we found that κ = 2 sin( |
~k|θ
2 ), which results in (4.41) being

rewritten as

σtot =
∑
j

σj =
θ2

κ2(1− κ2

4 )

∑
j

4π(2j + 1) sin2(δj), (4.42)

where κ = θk and E = ~2κ2
2mθ2

= ~2k2
2m . In this form it is clearest to see that in the limit of θ → 0

we obtain the exact expression for the differential- and total cross sections of the commutative

case, since the prefactor in (4.40) and (4.42) becomes

lim
θ→0

θ2

κ2(1− κ2

4 )
= lim

θ→0

1

k2(1− θ2k2

4 )
=

1

k2
. (4.43)
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4.4 Particle scattering from the finite fuzzy well

Since we are now in possession of a clear formalism of particle scattering in fuzzy space, we can

investigate particle scattering by the finite spherical fuzzy well as developed in Chapter 3.

(a) (b)

Figure 4.1: Taken from [16]. Illustrations of the various energy regions and the cor-
responding behaviour of the wavefunction. The gray regions do not support bound
or scattering states. Here (a) corresponds to a shallow well where the potential
depth is less than the maximum allowed free particle kinetic energy, whereas (b)
corresponds to a deep well where the potential depth exceeds this maximum free
particle kinetic energy. Additionally, we note that we define M ′ ≡M+1 and V = ~2U

2m .

Before we proceed, it is interesting to note that there are different scattering situations, depending

on the values for the incident particle energy and the potential well depth. Given the results for

fuzzy well energy solutions obtained in Chapter 3, we have the following scattering scenarios for

combinations of κin and κout:

• For 0 < κin < 2 and κout = iε, ε ∈ R+ we have “ordinary” bound states where the energy

solutions for square integrable wave functions are obtained from the matching conditions.

This scenario coincides with region I in both Figure 4.1a and 4.1b.

• For 0 < κout < κin < 2 we have “ordinary” scattering states where the linear combina-

tions of solutions are fixed through the matching conditions. This scenario coincides with

region II only in Figure 4.1a.

• For κin > 2 and 0 < κout < 2 we have an interesting effect, unique to the non-commutative

system, where the inside of the well appears to act as an apparent repulsive potential for

any outside scattering wave. Inside the well we see the absolute value of the wave functions

is finite at the origin, and grows exponentially outward. This scenario is displayed within

region III only in Figure 4.1a.

• Any other combination of κin and κout results in non square-integrable solutions when the
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matching conditions as outlined in equations (3.57), (3.58) and (3.59) are solved. These

scenarios are captured by the grey regions in both plots of Figure 4.1.

Given these scenarios, we first focus only on the “ordinary” scattering states and scattering states

with an apparent repulsive potential.

4.5 Ordinary scattering, phase shifts and scattering cross-section

By using the term “ordinary scattering” we refer to the situation where the energy inside and

outside the well are both within the bounds on the free-particle energies and the particle energy

is larger than the potential height of the well. However, it is assumed that the energy is smaller

than the maximum allowed energy. Scenarios with energies close to the maximum energy are

discussed in greater detail in the next section.

We start off the investigation into particle scattering by finding complete solutions for the wave

functions inside- and outside the well, ensuring that the two parts match accordingly at the well

boundary.

As discussed in Chapter 3, the only allowed solutions for the wave function inside the well are

that of the NC-Bessel function. Therefore we may write the radial wave function inside the well

as

Ψ(n, j) = Ψin(n, j, κin) = C R̄J(n, j, κin) ∀n ≤M − j, (4.44)

with C being a normalization constant that will be obtained at a later stage through the matching

conditions.

Outside the well we write the general solution for the radial wave function as

Ψ(n, j) = Ψout(n, j, κout) = AR̄J(n, j, κout) +B R̄Y (n, j, κout) ∀n ≥M − j + 1. (4.45)

Here the constants A and B should also be determined through the matching conditions. To do

this, it is easier to compute the ratio B
A and then later fix A or B to a constant value that is

most convenient for us. Naturally, we shall normalize the wave functions at the end so that the

solutions will integrate to 1.

We determine the ratio B
A through the matching condition provided by (3.59), and by using
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(4.44) and (4.45) we can write it as

R̄J(M − j + 1, j, κin)

R̄J(M − j, j, κin)
=
R̄J(M − j + 1, j, κout) + B

A R̄Y (M − j + 1, j, κout)

R̄J(M − j, j, κout) + B
A R̄Y (M − j, j, κout)

. (4.46)

Solving for B
A results in

B

A
=
R̄J,in(M − j + 1) R̄J,out(M − j)− R̄J,in(M − j) R̄J,out(M − j + 1)

R̄J,in(M − j) R̄Y,out(M − j + 1)− R̄J,in(M − j + 1) R̄Y,out(M − j)
, (4.47)

where we used the following simplified notation for display purposes:

R̄J,in(n) = R̄J(n, j, κin),

R̄J,out(n) = R̄J(n, j, κout),

R̄Y,in(n) = R̄Y (n, j, κin) and

R̄Y,out(n) = R̄J(n, j, κout). (4.48)

For convenience we will choose A to be 1 and, therefore, B will assume the value in (4.47). Now,

since we have values for A and B, we may use the first matching condition (3.57) to compute C:

C =
R̄J,out(M − j + 1) +B R̄Y,out(M − j + 1)

R̄J,in(M − j + 1)
. (4.49)

We now have complete expressions for the radial wave function inside and outside of the well

during ordinary scattering. It now naturally follows that one would like to calculate the phase

shifts that arise due to the presence of the potential.

Given that we are able to determine the phase shifts from tan(δj) = −B
A as provided by (4.39)

and the total cross section provided in (4.41), we would like to investigate what effect non-

commutativity has on the phase-shifts and cross-sections when compared to the commutative

case. For this it will be necessary to keep length scales fixed so that our comparisons between

non-commutative and commutative results may be consistent.
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The length scales that we will be keeping fixed across our comparisons will be

• The particle wavelength outside of the well.

• The particle wavelength inside the well.

• The radius of the well.

We will, therefore, only be changing the non-commutativity parameter θ and comparisons will

be made between results with different θ values and the commutative case. We will also keep

the energy outside of the well sufficiently low and fixed so that the particle wavelength outside

the well is much larger than the radius of the well, i.e. kR� 1.

(a) (b)

(c) (d)

Figure 4.2: Illustrations of the scattering phase shifts and resonances as func-
tions of potential height. For all plots we have j = 0, koutR =

√
1/1000 and

kinR =
√

1/1000 + V ′. The solid black line in each plot is the commutative result,
while the dashed red line is the non-commutative result with θ = 0.01 and the dot-
dashed blue line is the non-commutative result with θ = 0.1, keeping in mind that θ
has units of length. In sub-figures (a) and (c) we limited the range to only display
the region with defining features. In sub-figures (b) and (d) the y-axis displays the
number of resonances encountered as we increase the value of V ′ from 0 upward.

From Figure 4.2 we find that with an increase in the effect of non-commutativity, i.e. increasing

θ, resonance peaks are appearing at a faster rate. This suggests that bound states inside the

well appear at a faster rate, when the potential height is increased, at larger values of the non-
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Figure 4.3: Illustration of the asymptotic density of zeroes for the Jacobi polynomial

P
( 1
2
, 1
2

)
n (x), where j = 0 and n >> 1.

commutativite parameter. This view is supported when we take a closer look at the density

of states for commutative and non-commutative systems. As a reference, we will once again

consider the infinite well problem for both the commutative and non-commutative cases. The

j = 0 energy solutions for the commutative infinite spherical well are given by

En =
n2π2~2

2m0R
n = 1, 2, 3, . . . , (4.50)

while the j = 0 energy solutions for the infinite non-commutative fuzzy well are found by finding

the zeros of the Jacobi polynomial

P
( 1
2
, 1
2

)

M+1 (1−m0θ
2E/~2) = 0. (4.51)

The commutative density of states clearly always decreases quadratically as the energy increases,

however, in the non-commutative case we find that the density of states decreases at a similar

tempo at first, but reaches a minimum and then increases again until the maximum possible

kinetic energy is reached (as seen in Figure 4.3). This behaviour of the density of states in

non-commutative systems correlates with the bound state resonances appearing at a faster rate

as the strength of non-commutativity increases.

We also see another interesting effect from Figure 4.2: As the total number of resonance peaks

is a measure of the number of bound states for a given potential height, we find that larger

values of θ have fewer bound states inside the well as seen in sub-figures 4.2(c) and 4.2(d). This

confirms that we only have a limited number of bound states for a given value of j.
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For comparing the total scattering cross-section we opted to keep the potential height fixed and

varied the energy, of which a few examples can be seen in Figure 4.4. Once again we notice the

resonance peaks appear at lower energies in a system with a strong non-commutative parameter,

relative to systems with a weaker non-commutative parameter and the commutative case. Fur-

thermore, we see that when we increase the potential height to a value that is comparable to the

maximum kinetic energy for a system with strong non-commutativity, the cross-section strictly

decreases for that system as the energy is increased once the maximum kinetic energy inside

the well has been reached. The weakly non-commutative case still exhibits regular cross-section

behaviour compared to the commutative case, but with the resonance peaks moving to lower

energies as we increase the energy.

(a) (b)

(c)

Figure 4.4: Illustrations of the total scattering cross-sections as a function of out-
side kinetic energy. For sub-figure (a) we have V = 7.5 ~2

2m0R2 , for sub-figure (b)

we have V = 14.5 ~2
2m0R2 and lastly for sub-figure (c) we have V = 350 ~2

2m0R2 . The
solid black line in each plot is the commutative result, while the dashed red line
is the non-commutative result with θ = 0.01 and the dot-dashed blue line is the
non-commutative result with θ = 0.1, keeping in mind that θ has units of length.

Stellenbosch University  https://scholar.sun.ac.za



4. SCATTERING STATES OF THE FINITE FUZZY WELL 51

4.6 Scattering with an apparent repulsive potential

Now we explore regions where the kinetic energy outside the well may be very low, i.e. kR� 1

and θk � 2, but inside the well the kinetic energy is above the maximum allowed kinetic energy

for a free particle. For this problem it would be more convenient to view our problem as having

a potential well within the well-radius and 0 potential outside of the well:

V (n) =


V, if 0 ≤ n ≤M − j

0, if n > M − j

. (4.52)

Since the wave function inside the well simply is the non-commutative Bessel function given in

(3.42), we investigate the behaviour of the function at a kinetic energy larger than the maximum

θk = κ > 2 inside the well. From (3.42) it follows that a κ value larger than 2 results in

the function obtaining a complex phase and the normalisation factor of the function growing

exponentially with n. This behaviour is consistent with the type of behaviour one would expect

from negative energies, i.e. energies below a potential barrier. When we introduce negative

energies into the NC-Bessel function, i.e. κ = iε where ε ∈ R+, we see the same behaviour albeit

with a different complex phase. This suggests that we may think of a potential well that is

deeper than the maximum allowed kinetic energy as an apparent positive or repulsive potential.

When we look at Figure 4.5 we see that, for a potential well with a depth greater than the

maximum allowed kinetic energy, the phase shift values tend to those of a repulsive potential as

we increase the potential depth. Upon further inspection, we find in the limit of an infinitely

deep potential, V → −∞, that (4.47) takes the value

−B
A

=
R̄J,out(M − j)
R̄Y,out(M − j)

, (4.53)

which governs the asymptotic value for the phase shift through (4.39). This same ratio is also

reached when we take the limit of an infinitely positive potential V → +∞. This confirms again

that we may view a very deep potential as a repulsive potential. Furthermore, the results in

(4.53) also agree with the results we find from the commutative hard sphere scattering where

the ratio for hard sphere scattering is given by

−Bl
Al

=
jl(kR)

ηl(kR)
, (4.54)
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(a) (b)

(c)

Figure 4.5: The phase shifts for potentials deeper than the maximum kinetic energy
and positive repulsive potentials. For all three sub-figures we have the outside
scattering energy as kR =

√
1/1000. In sub-figure (a) we have a non-commutative

negative potential with the potential depth greater than that of the maximum kinetic
energy for θ = 0.1. In sub-figure (b) we have a positive or repulsive potential and
display both the commutative (black line) and non-commutative (dashed red line)
phase with θ = 0.1. In sub-figure (c) we display all three the phase shift trends on
the same plot with the absolute value of the potential on the x-axis.

where jl(x) and ηl(x) are the spherical Bessel functions of the first- and second kind, respectively.
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CHAPTER 5

THERMODYNAMICS OF A CONFINED FERMION GAS IN FUZZY

SPACE

In the Chapter 3 we were successful in obtaining the energy spectrum of a particle confined by

both a finite- and infinite well potential. These results, in particular the energy spectrum for the

infinite well, now enables us to investigate the statistical properties of a gas of non-interacting

particles confined in three dimensional non-commutative space, also referred to as fuzzy space.

This chapter will aim to investigate the statistical properties of a gas of fermionic particles con-

fined in non-commutative space and whether its properties deviate from the same gas within

traditional commutative space. Indeed, we will see throughout this chapter that the non-

commutative nature of our system does cause deviations from the standard behaviour expected

from gases in commutative spaces. We see these deviations arise in both low- and high density

gases. Furthermore, we also find the novel result of a duality in the statistical behaviour between

the low- and high density gases in fuzzy space.

The methodology and a selection of results within in this chapter inspired the content of one of

our own published articles [17]. Even though the similarities between this chapter and the article

are clear, some calculations were approached differently and, in some cases, different scenarios

were considered. We will discuss and briefly review these differences and results at the end of

this chapter.

5.1 The thermodynamic q-potential

We now turn to the thermodynamics of a non-interacting gas of spinless fermions which are

confined to an infinite spherical well with radius R = θ(M + 1) in non-commutative space. We

will treat this system in the grand canonical ensemble and fix the average value of ~L(tot)
3 , the

z-component of the total angular momentum. By fixing L
(tot)
3 we aim to study both rotating

and non-rotating gases. The grand canonical potential reads

q (M,β, µ, ω) =
M∑
j=0

+j∑
m=−j

∑
n

log
[
1 + e−β(En,j−µ−~ωm)

]
. (5.1)

53
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where En,j = E0xn,j with E0 = ~2
m0θ2

the non-commutative energy scale. Here {xn,j} is the set

of M − j + 1 zeros of the Jacobi polynomial P
(j+1/2,j+1/2)
M−j+1 (x), as is required by the quantisation

condition in (3.68). The ω parameter serves as a Lagrange multiplier for fixing L
(tot)
3 and we

may take ω > 0 without loss of generality. Switching to the dimensionless parameters for the

inverse temperature β̃ = E0 β, chemical potential µ̃ = µ/E0 and angular velocity ω̃ = ~ω/E0,

we find the expression for the q-potential reads

q(M, β̃, µ̃, ω̃) =
M∑
j=0

+j∑
m=−j

∑
n

log
[
1 + e−β̃(−xn,j−µ̃−mω̃)

]
. (5.2)

In the thermodynamic (large M) limit the sums over j and m may be replaced by integrals

over λ = j/M and α = m/M while the n summation becomes
∫
dx d(x, λ) with d(x, λ) given in

(3.70). This produces

q(M, β̃, µ̃, w) = M3

∫ 1

0
dλ

∫ +λ

−λ
dα

∫ x+(λ)

x−(λ)
dx d(x, λ) log

[
1 + e−β̃(x−f(α))

]
(5.3)

where f(α) = µ̃ + αw, w = Mω̃ and x±(λ) = ±
√

1− λ2. Here we see f(α) act as the effective

chemical potential of the system. Equation (5.3) serves as the starting point for calculating the

various thermodynamic quantities. The quantities are obtained from q using

N =
1

β̃

∂q

∂µ̃
, L

(tot)
3 =

M

β̃

∂q

∂w
,

S

k
= q − β̃ ∂q

∂β̃
and P̃ =

q

β̃Ṽ
. (5.4)

Here S is the entropy, N the number of particles, P̃ = 4πθ3

E0
P a dimensionless measure of the

pressure with Ṽ = M3

3 ≈
V

4πθ3
the dimensionless system volume. The latter is also (to leading

order in M) the total number of single particle states available to the system, as calculated in

(3.64), and thus represents the maximum number of spinless particles that can be accommodated

by the system. It is therefore convenient to define

Nmax ≡ Ṽ =
M3

3
≈ V

4πθ3
. (5.5)

Note that the physical meaning of Nmax is the total number of cells with volume V0 ≡ 4πθ3 that

fit into the volume V . It is therefore also useful and sensible to define a maximum density, which

is the density obtained when each cell is occupied by exactly one particle, i.e.

ρmax ≡
1

V0
=

1

4πθ3
. (5.6)
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In terms of ρmax the dimensionful density reads

ρ =
N

V
= ρmaxρ̃, (5.7)

where ρ̃ = N
Ṽ

is the dimensionless density.

We introduce one further notion that will turn out to be useful later. Suppose we fix the number

of particles in the system to be N . Then there is a minimum volume that can accommodate this

number of particles given by

N ≈ Ṽmin =
M3

min

3
=
Vmin

4πθ3
. (5.8)

Here Mmin is the smallest integer larger than or equal to (3N)1/3, so that the equality between

N and Ṽmin holds to O( 1
Mmin

). In further applications where N and Mmin are assumed to be

large, this correction will be ignored.

In some cases it is convenient to work in terms of the fugacity z = eβ̃µ̃ = eβµ. In terms of this

the q-potential of (5.3) can be expressed as

q(M, β̃, z, w) = M3

∫ 1

0
dλ

∫ +λ

−λ
dα

∫ x+(λ)

x−(λ)
dx d(x, λ) log

[
1 + z e−β̃(x−αw)

]
, (5.9)

where z � 1 corresponds to the low density limit and z � 1 corresponds to the high density

limit. The corresponding thermodynamic quantities are then given by

N = z
∂q

∂z
, L

(tot)
3 =

M

β̃

∂q

∂w
,

S

k
= q −N log z − β̃ ∂q

∂β̃
, and P̃ =

q

β̃Ṽ
. (5.10)

A final useful result is that of the total density of states. This is obtained by integrating out λ

in (3.70):

d(x) =

∫ √1−x2

0
dλ 2λ d(x, λ) =

2
√

1− x2

3π
. (5.11)

5.1.1 The high/low density duality

Using the symmetry of the density of states under x→ −x one can trivially rewrite (5.9) as

q(M, β̃, z, w) =
M3

3
log z + q(M, β̃, z−1, w). (5.12)
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This demonstrates a remarkable duality between the high and low density q-potentials, i.e., we

can express the high density q-potential (z � 1) in terms of the low density q-potential (z � 1).

This duality, in turn, is a direct consequence of the infra-red/ultraviolet duality of the density

of states.

5.1.2 The filling of single particle states

It will be useful to develop a qualitative understanding of how the L
(tot)
3 constraint affects the

filling of the single particle states. To this end, consider Figure 5.1 (a). The shaded region

indicates the support of the function d(x, λ), i.e. those values of x = E/E0 and λ = j/M for

which the density of states are non-zero. We see that the j = 0 sector has the largest range

of single particle energies, from −E0 to +E0, and that this range decreases as j is increased.

Beyond jmax = M there are no single particle states at any energy. It should be kept in mind that

each point in the shaded region corresponds to (2j + 1) states with different angular momentum

projections.

Now consider the occupation of a state with energy E = xE0, angular momentum j = λM and

angular momentum projection m = αM . Since we are taking a low temperature approach in our

calculations we can, for the sake of simplicity, take T = 0 which sees the Fermi-Dirac distribution

reduce to a step function

nFD(x, α) = Θ(f(α)− x), (5.13)

with f(α) = µ̃ + αw and α ∈ [−λ, λ]. Clearly all states with energy values below the effective

chemical potential x < f(α) will be occupied, while higher energy states are empty.

Since we aim to investigate two different systems, one with L
(tot)
3 = 0 and the other with

L
(tot)
3 > 0, we will consider their processes of filling the particle states separately.

For the case where L
(tot)
3 = 0, and therefore w = 0, the Fermi-Dirac distribution is independent

of α, and the occupation of a state is determined by its energy alone. It should be kept in mind

that the energy states will fill up in such a way that L
(tot)
3 will always be 0.

At positive L
(tot)
3 and w we see that if x < f(−λ) (or x > f(λ)) the state is occupied (or

unoccupied) regardless of the value of α. However, for states with energies the range x ∈

(f(−λ), f(λ)) the occupation condition remains α-dependent. This is illustrated in Figure 5.1

(a) which shows how the two lines x = f(±λ) divide the (λ, x) plane into three regions. The

shading indicates the fraction of the (2j + 1) states which are filled at each point. In region I all
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the single particle states are filled. Conversely, in region III all single particle states are empty.

Figure 5.1 (b) shows the contribution to L
(tot)
3 from the 2j+1 states at each point. As expected,

the only non-zero contribution to L
(tot)
3 is from region II where some, but not all, of the (2j + 1)

momentum states within each energy state are filled.

With the above in mind, we now consider the behaviour of µ̃ and w when the particle number

N is increased while L
(tot)
3 remains fixed. Increasing N requires increasing µ̃ which shifts the

two lines in Figure 5.1 upwards. Doing so without adjusting w would lead to a decrease in the

number of states in region II and eventually also a decrease in L
(tot)
3 . To compensate for this

we must increase w as this enlarges region II and increases the amount of particle states that

may contribue to L
(tot)
3 . Constraining L

(tot)
3 to a positive value therefore prohibits the complete

filling of all the single particle states.

This implies the existence of a maximum possible critical density ρc = N/N (max) < 1, itself a

function of L
(tot)
3 , which is reached in the limit where both µ̃ and w tend to infinity. This critical

density serves as the maximum possible particle density for a given value of L
(tot)
3 at which we

expect the pressure to diverge. Close to this critical density the support of d(x, λ) will be divided

into regions I and II by the nearly vertical x = f(−λ) line. This is precisely the situation depicted

in Figure 5.1 (c) and (d). As noted previously the contribution to L
(tot)
3 comes entirely from

region II. At sufficiently high densities the x = f(−λ) line must therefore intercept the λ axis

somewhere between 0 and 1, which implies that µ̃/w < 1.
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(a) (b)

(c) (d)

Figure 5.1: Illustration of the distributions of number of particles, (a) and (c), and

angular momentum projection contribution, (b) and (d) per angular momentum

sector in the energy vs single-particle angular momentum plane. In (a) and (c)

the color range indicates state occupaction density with red (blue) indicating that

all single particle states are occupied (unoccupied). In (b) and (d) the color range

indicates the average single particle contribution to L
(tot)
3 with red (blue) indicating

the maximum (minimum) possible contribution to L
(tot)
3 . For (a) and (b) we have

µ̃ = 0.500 and w = 1.30, while for (c) and (d) we have µ̃ = 6.60 and w = 17.5.
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5.1.3 Calculation of the q-potential

Having discussed the general q-potential, as well as the process behind filling single particle

states, we can now proceed to calculate the q-potential under certain conditions. As previously

stated, in this dissertation we will focus on the two specific cases where we have L
(tot)
3 = 0 and

L
(tot)
3 > 0, respectively. In the case of non-zero L

(tot)
3 , the q-potential could only be calculated

at very high particle densities due to the technique used. However, for the case of L
(tot)
3 = 0, we

obtained an expression that remains valid for all particle densities.

5.1.3.1 A high density, low temperature degenerate gas with L
(tot)
3 > 0

Here we consider a highly degenerate gas at low temperature with a positive, non-zero total

angular momentum L
(tot)
3 . The technique used in this dissertation to compute the q-potential is

quite involved and not immediately solvable for all the parameter values and combinations of µ̃

and w. This has limited us to only consider the case where we have a large value for µ̃ as well

as a large value for w with the conditions that µ̃ > 1 and w > µ. This corresponds to a low

temperature degenerate gas near critical particle density. Furthermore, since a large amount of

particle states contribute to the total angular momentum L
(tot)
3 , we will typically also see that the

total angular momentum is comparable to the maximum allowed angular momentum expressed

in (3.71). This implies that the angular momentum in this case will behave in a hyper-extensive

manner.

Under these conditions the q-potential in (5.3) can be calculated using a systematic low temper-

ature expansion. The details of this calculation appear in B.1. The result, up to order O(1/β̃),

is

q(M, β̃, µ̃, w) =
M3

12w3

 β̃
(

(
√

1 + w2 − µ̃)4 + 8w3µ̃
)

2
+
π2
(√

1 + w2 − µ̃
)2

β̃

 . (5.14)

5.1.3.2 Low temperature gas with L
(tot)
3 = 0

Here we set w = 0. The integral expression for the q-potential in (5.3) then simplifies to

q(M, β̃, µ̃) = M3

∫ 1

−1
dx d(x) log

[
1 + e−β̃(x−µ̃)

]
(5.15)
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where d(x) is given in (5.11). For µ̃ ∈ (−1, 1) a Sommerfeld expansion in 1/β̃ can be performed.

To order O(1/β̃) this yields

q(M, β̃, µ̃) =
M3

9π

[
β̃
(

3πµ̃+
√

1− µ̃2(2 + µ̃2)− 3µ̃ArcCos(µ̃)
)

+
π2
√

1− µ̃2

β̃

]
. (5.16)

When µ̃ > 1 the chemical potential no longer lies within the support of the total density of states,

and so the Sommerfeld expansion is no longer valid. Instead, the appropriate low temperature

expansion is

log[1 + e−β̃(x−µ̃)] ≈ −β̃(x− µ̃) + eβ̃(x−µ̃) +O(e2β̃(x−µ̃)). (5.17)

Inserting this into (5.15) produces

q(M, β̃, µ̃) =
M3

3

[
β̃ µ̃+

2

β̃
e−β̃µ̃ I(1)(β̃)

]
(5.18)

where I(n)(x) is the modified Bessel function of the first kind.

5.2 Calculating the central thermodynamic quantities

5.2.1 System with L
(tot)
3 > 0

Utilizing the results of the previous section, we turn our attention to understanding the behaviour

of the central thermodynamic quantities in the different parameter regimes. We first investigate

the system with a large number of particles N and a total angular momentum projection L
(tot)
3

that is fixed to a positive value, with particular interest in the ways that these two paremeters

affect the entropy S and dimensionless pressure P̃ . Obtaining expressions for S and P̃ requires

that we solve for µ̃ and w as functions of N and L
(tot)
3 . We can further simplify by introducing the

particle density ρ = N/N (max) and scaled total angular momentum projection l = L
(tot)
3 /L

(max)
3

so that we may have the solutions to µ̃ and w as functions of thereof, where N (max) and L
(max)
3

are respectively given by (5.5) and (3.71) up to leading order in M .

Using (5.14) and (5.4) to solve µ̃ and w as functions of the quantities described above, we find

the solutions to µ̃ and w up to order O(1/β̃) are given by

µ̃ =

√
1 +

4

C(ρ)
− 2(2− 2ρ)1/3√

C(ρ)
, w =

2√
C(ρ)

, (5.19)

where C(ρ) = 8− 6(2− 2ρ)1/3 − l/(1− ρ). Investigating these solutions near the critical density
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ρc yields

µ̃ ≈ Cc(ρc)
1− ρc√
2(ρc − ρ)

√
ρc − ρ, w ≈ 1

Cc(ρc)
√

2
√
ρc − ρ

, (5.20)

with Cc(ρc) =
√

(1− (2− 2ρc)1/3)/(1− ρc), where ρc can be calculated for a fixed l with

l = 2
(

4− 3(2− 2ρc)
1/3
)

(1− ρc). (5.21)

Here we see that, as the particle density nears critical density, both µ̃ and w tend to infinity with

a ratio of

lim
ρ→ρc

µ̃(ρ, ρc)

w(ρ, ρc)
= 1− (2− 2ρc)

1/3, (5.22)

which agrees with the fact that µ̃/w < 1.

By using the solutions to µ̃ and w, we find the expressions for the entropy and pressure to be

S

k
= A(ρc)

M3π2

3β̃

√
ρc − ρ, P̃ = B(ρc)

1√
ρc − ρ

, (5.23)

where A(ρc) and B(ρc) are complicated, but well defined functions of ρc when l 6= 0. It is clear

that as ρ nears ρc, the entropy tends to 0 and the pressure diverges.

It is also of interest to investigate the dependence of the entropy on the volume of the system

near critical density. We take the following approach: Assume that at fixed (N , L
(tot)
3 , β̃) the

initial system volume is at exactly Vc, where Vc is the smallest possible volume into which the N

particles may fit. Increasing the system volume up to V = Vc + ∆V , where ∆V is the smallest

possible increase in volume at V = Vc, would have the entropy scale proportional to some power

of Vc. Since N is fixed, one may use the expression ρ = ρcVc
V = ρcVc

Vc+∆V and substituting this into

the entropy in (5.23) obtains

S ∼
√
Vc ∆V . (5.24)

As V ∼M3, one would naively interpret from this that the entropy scales as M3/2 near critical

density, which scales slower than the surface area (M2). This, however, ignores the fact that one

cannot have ∆V arbitrarily small. Since M quantifies the spherical radius of the system and

only assumes positive integer values, it follows that the change in volume at critical density is

∆V ∼ M2
c ∆M , with ∆M = 0, 1, 2, . . .. Therefore, rewriting (5.24) as a function of the system

radius at critical density Mc yields

S ∼
√
M5
c ∆M = M2

c

√
Mc∆M. (5.25)
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This in turn suggests that the entropy, very close to critical density, scales proportionally faster

than the surface area of the system, yet slower than the volume. This result seems reasonable

as increasing the volume at critical density increases the amount of previously disallowed states

which may now be filled, in addition to the allowed states created. Since all states, in order to

preserve angular momentum, are not allowed to be filled, one will never see the entropy scale

as fast as the volume. However, the entropy will not scale as slowly as the surface area since

particles are allowed to not only occupy new states created, but also some previously-disallowed

states.

5.2.2 System with L = 0

For the zero-angular momentum case, we will differentiate between the q-potentials of (5.16) and

(5.18) as qI and qII respectively. We will again use the same approach followed in Section 5.2.1,

without the dependence on w. The critical density for the L
(tot)
3 = 0 is trivially constant and

equal to 1.

Solving now for µ̃ again up to order O(1/β̃) results in the following for each q-potential:

µ̃I =
1

8
(8− π2 + 2π2ρ− π2ρ2), µ̃II =

1

β̃
log

[
2 I(1)(β̃)

β̃(1− ρ)

]
. (5.26)

Using these results and substituting into eq. (5.4), one finds the expressions for entropy are given

as
SI
k

=
M3π2

36β̃

[
(1− ρ)

√
16− π2(1− ρ)2

]
, (5.27)

and
SII
k

=
M3(1− ρ)

3I(1)(β̃)

[
I(1)(β̃)

(
3 + log

[
2 I(1)(β̃)

β̃(1− ρ)

])
− β̃ I(0)(β̃)

]
, (5.28)

while the scaled pressure for both are given by

P̃I =
1

24

(
8− π2(1− ρ)2

)
, P̃II =

1

3β̃

(
1− ρ+ log

[
2 I(1)(β̃)

β̃(1− ρ)

])
.Again, entropygrows

(5.29)

Here one finds again that, for both cases, the entropy tends to 0 as the particle density reaches

the critical density of 1. However, in the case where µ̃ ∈ [−1, 1], one finds that the pressure no

longer diverges as the one nears the critical density in the expression for PI , but is indeed seen

in for PII . This can, however, be explained by the fact that µ̃ tends to infinity as one approaches
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critical density and therefore the expression for PI would no longer be applicable in the limit.

Investigating now the behaviour of the entropy expressions near critical density as a function of

system size will be approached the same way as in the previous subsection. The dependence of

the entropy SII on system size near critical density is then given as

SII ∼ (Mc
2∆M) log

[
2Mc I(1)(β̃)

β̃∆M

]
. (5.30)

Since log[Mc] grows much slower than Mc, one can conclude from this that the entropy scales

like the surface area of the system. This agrees with the fact that the amount of particle states

created by expanding from the critical volume, is proportional to the surface area of the system

at the critical volume.

5.2.3 Numeric results

We now investigate the overall behaviour of the systems covered in Sections 5.2.1 and 5.2.2 and

compare that to both numerical and commutative results.

In Figure 5.2 find that, in addition to the numerical and analytical results agreeing well, that the

entropy plots displays a symmetry around ρ = 1/2 with the entropy tending to 0 as the particle

density reaches critical values. At very low densities it is seen that (5.3) agrees with commutative

results. Furthermore, the dependence of the entropy on system size shows good agreement

between analytical and numerical results in Figure 5.3 and also indicates that the entropy of a

high density system tends to zero as the system volume is decreased. This effect of the entropy

tending to zero as the system volume is decreased, is accompanied by an ever increasing scaled

pressure in Figure 5.4. This supports the view that there exists an incompressible limit at which

the system volume can no longer be decreased.
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Figure 5.2: The scaled entropy as a function of particle density. The blue lines are

numerical results of (5.3), whilst the red lines are analytic results. (a) The outer

blue line has a fixed L
(tot)
3 value of 0, while the inner blue line has l =

L
(tot)
3

L
(max)
3

= 0.8.

The red lines are classified as follows. The Scom line corresponds to a low-density

commutative fermi gas, the SL6=0 line to a high-density non-commutative gas with

l = 0.8 and the SL=0 line to a high-density non-commutative gas with l = 0. (b)

A zoomed view of the low density region with l = 0 where the blue line again

is the numerical result for (5.3) and the red line is the result for the low-density

commutative fermi gas.
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Figure 5.3: The scaled entropy as a function of system size for l = 0.8 at high

particle densities, with the blue line as the numerical result and the red line being

the analytic result.
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Figure 5.4: The scaled pressure as a function of system size at high particle densities.

The blue line being the numerical results for (5.3) and the red line is the analytic

result.
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5.3 Approaches and results featured in the related published article

We will now briefly discuss the major changes and additions in the published article [17].

The first major difference between this dissertation and the published article is that the article

applied a different technique in calculating the q-potential for L
(tot)
3 > 0. This enabled the q-

potential to be valid at both low- and high particle densities, in contrast to only near critical

density as was presented in this dissertation. This was achieved by mapping the constrained

rotating ensemble unto an unconstrained ensemble with an effective density of states at low

particle densities, and then inferring the high density behaviour from the low/high density duality.

The result of this approach was that the thermodynamic quantities could be calculated for a low

temperature (β � 1), but slowly rotating (|w| � 1) gas for all particle densities. Again, this was

in contrast to this dissertation’s low temperature (β � 1), fast rotating (|w| > 1) gas at critical

density.

The case for L
(tot)
3 = 0, however, remained the same and the same approach was used to compute

the corresponding q-potential. Similar results were also achieved.

A section containing new work, with novel results, was also contained in the article: Given that

possible non-commutative effects can only realistically be observed in systems of very high particle

density, it was argued that very dense astro-physical objects, such as neutron stars or white

dwarfs, should be considered as candidates for observing non-commutative effects. Therefore, a

brief study was done on high particle density system confined by gravity in non-commutative

space.

Even though the study did not take relativistic effects into account, some novel results were ob-

served. Firstly, it was found that the hydrostatic equilibrium condition permits solutions for ob-

jects with any mass, in contrast to the commutative case where a mass limit (the Chandrasekhar

mass) to the solutions was present. This is attributed to the fact that in non-commutative system

one finds an minimum volume, or incompressible limit, which prevents the object from collapsing

under gravity.

Furthermore, it was found that the object can be thought of as a liquid drop with its particle

density rapidly vanishing at the edge. It is also seen that the dilute gas of particles at the edge

becomes thinner as the radius of the object increases. This is similar to incompressible quantum

Hall liquids which itself is closely related to 2-dimensional non-commutative systems. The system

studied in this article, therefore, can be thought of being a generalization to three dimensional
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quantum Hall liquids. Agreeing with this, is the fact that it was found that entropic excitations

only existed in the thin dilute gas near the edge, where the active degrees of freedom exist, and

the entropy in the incompressible bulk vanishes. The entropy at the surface of the object was

also found to be non-extensive.
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CHAPTER 6

CONCLUSION & OUTLOOK

In conclusion, we briefly summarize the new results obtained in this dissertation, as well as

the novel insights it has provided. We will also briefly discuss possible next steps, given this

dissertation’s work as background.

This dissertation set out to study the generalization of non-commutative coordinates to three-

dimensional space, in particular by use of fuzzy coordinate commutation relations, and how such a

generalization will affect both the quantum mechanical behaviour, as well as thermodynamic pro-

perties, of non-interacting fermionic particles and gases. It proved successful in displaying obvious

differences between results for particles in non-commutative systems and the usual commutative

systems. These results may aid the pursuit for finding non-commutative effects in real systems.

We take a look at the work of each chapter separately.

6.1 Non-commutative quantum mechanics in three dimensions

Extending the work on research done on non-commutative coordinates in two dimensions that

was covered in Chapter 2, we provided a consistent method of describing fermionic particles in

three-dimensional space using fuzzy coordinate commutation relations. We have also found exact

solutions to the non-commutative Schrödinger equation for both free particles and particles in the

presence of a spherical potential well respectively. We have found, in both cases, that there exists

a global maximum kinetic energy limit above which no single particle solutions are permitted.

We also obtained matching conditions for the wavefunctions that enabled one to calculate the

energy spectrum for both bound and scattering states. Scattering was investigated in detail in

the following chapter.

Furthermore, in the spherical well problem, we found that there exists a finite number of bound

states. This finite number of bound states is limited due to the fact that the angular momentum

j itself was bound by the integer radius of the well M = R
θ − 1. Even extending the spherical

well problem to the infinite well, the exact number of bound particle states remained finite.

Given the results above, it was possible to derive expressions for the maximum number of particles

68
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and angular momentum projection as well as an expression for the density of states.

Lastly, we also showed that given the appropriate limit where the non-commutative parameter θ

tends to 0, we receive all the usual results as expected from commutative three-dimensional free

particle and spherical well problems.

6.2 Scattering states of the finite fuzzy well

Having the matching conditions for scattering states in fuzzy space at our disposal, we continued

to investigate particle scattering in this system.

In order for the formulation of scattering in fuzzy space to be detailed, it was first necessary to

briefly investigate position representation of states as done by positive operator valued measures

(POVMs). This provided us with the ability to interpret spatial probability densities and cur-

rents in the finite fuzzy well problem which was integral to the formalism of scattering in fuzzy

space. With the formalism for scattering in fuzzy space outlined throughout the chapter, we

obtained expressions for the total cross-section, differential cross-section and phase shifts that

was necessary to investigate scattering states of the finite fuzzy well in detail.

Further investigation into scattering states of the finite fuzzy well revealed a novel feature that

is exclusive to the particles in the fuzzy well problem. This feature was the fact that exotic

scattering states exist where the incident energies are larger than the maximum allowed energy

within the well, but was sufficiently low outside of the well as to not reach this maximum energy.

This caused the exotic scattering states to experience the potential well rather as a repulsive

well and making the well infinitely deep provided us with the exact same results as hard sphere

scattering.

Again, all of the cross-sectional and phase shift plots displayed commutative behaviour when the

non-commutative parameter θ tended to 0, and deviated whenever θ was increased. In addition

to this, another interesting result obtained for studying scattering on the finite fuzzy well was

the fact that the number of resonance peaks in the phase shifts directly correlates with finite

number of bound states present for a given finite well.
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6.3 Thermodynamics of a confined fermion gas in fuzzy space

Given the complete results of the energy spectrum and density of states for particles confined

in fuzzy space, which we obtained for the infinite spherical fuzzy well problem in Chapter 3, we

proceded to investigate the thermodynamics of confined particles in fuzzy space.

Using the grand canonical ensemble as starting point, where we fix the z-component of the total

angular momentum L
(tot)
3 , we obtained the expressions for the central thermodynamic quantities

for both the cases where L
(tot)
3 = 0 and L

(tot)
3 > 0. In both cases it was found that there

exists a critical particle density at which an incompressible limit is reached. At this point the

pressure diverges and the entropy of the system tends to 0. This was also supported by the

notion that a minimum system volume exists for a given number of particles, beyond which the

system cannot be compressed anymore. This effect helped to illustrate that a duality between

the low-density and high-density scenarios exists. This effect also arose from the fact that the

density of states was symmetric under E → −E transformations. This duality enabled us to

write the high-density problems as a transformation of the low-density problem.

Another effect observed was the entropy scaling as a function of system size. When the system,

at critical density, was taken and its number of particles fixed, we increase the system size and

observed how the entropy scaled. For the scenario where L
(tot)
3 = 0, we found that the entropy

scales directly proportional to the volume of the system. However, in the case where L
(tot)
3 > 0,

we found that the entropy scales slower than the volume, but faster than the surface area of the

system.

Lastly, as some of the thermodynamic studies conducted in this dissertation were presented in

an article [17], new results presented in the article, that are not present in this dissertation,

was briefly discussed. One novel approach using our technique was investigating a high particle

density system confined by gravity in non-commutative space. This was seen as a possible analog

to very large, dense astrophysical objects. Similar results as our particles confined in a spherical

fuzzy well were achieved in that an incompressible limit was seen and that the system had a

minimum volume for a given mass.

6.4 Outlook

Given that novel results were achieved, a natural next step would be to extend the three-

dimensional non-commutative problem to relativistic quantum mechanics. Even though initial
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research on interacting particles using a non-commutative Dirac equation [25] has been done, the

field on confined relativistic particles in non-commutative space remains bare. Such relativistic

studies are vital in searching for non-commutative effects in real macroscopic systems such as

dense astrophysical objects.
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APPENDIX A

NON-COMMUTATIVE QUANTUM MECHANICS IN THREE

DIMENSIONS

Detailed Calculations

A.1 Casimir operator

Given the definitions in (3.2) and (3.3), the Casimir operator is given by:

X̂2 = X̂2
1 + X̂2

2 + X̂2
3 = θ2

[(
â†1â2 + â†2â1

)2
+
(
iâ†2â1 − iâ†1â2

)2
+
(
â†1â1 − â†2â2

)2
]

= θ2
[
2â†1â1â2â

†
2 + 2â1â

†
1â
†
2â2 − 2â†1â1â

†
2â2 + â†1â1â

†
1â1 + â†2â2â

†
2â2

]
= θ2

[
2â†1â1

(
â†2â2 + 1

)
+ 2â†2â2

(
â†1â1 + 1

)
− 2â†1â1â

†
2â2 + â†1â1â

†
1â1 + â†2â2â

†
2â2

]
= θ2

[
2â†1â1 + 2â†2â2 + 2â†1â1â

†
2â2 + â†1â1â

†
1â1 + â†2â2â

†
2â2

]
= θ2

[
2N̂ + N̂2

]
= θ2N̂

(
N̂ + 2

)
(A.1)

A.2 Normal ordered counting operator of the form :N̂k :

We prove (3.18) using induction in k as follows:

k = 1 :

:N̂ : |n1, n2〉 =
(
â†1â1 + â†2â2

)
|n1, n2〉 = (n1 + n2) |n1, n2〉 = N̂ |n1, n2〉 .

Suppose now it holds for k = x that

:N̂x : |n1, n2〉 =
N̂ !

(N̂ − x)!
|n1, n2〉 =

[
N̂(N̂ − 1) . . . (N̂ − x+ 1)

]
|n1, n2〉 ,

then for

72

Stellenbosch University  https://scholar.sun.ac.za



A. NC QUANTUM MECHANICS IN THREE DIMENSIONS - Detailed Calculations 73

k = x+ 1 :

:N̂x+1 : |n1, n2〉 = :
(
â†1â1 + â†2â2

)
N̂x : |n1, n2〉 =

(
â†1 :N̂x : â1 + â†2 :N̂x : â2

)
|n1, n2〉

=
√
n1 â

†
1 :N̂x : |n1 − 1, n2〉+

√
n2 â

†
2 :N̂x : |n1, n2 − 1〉

=
√
n1

[
n′(n′ − 1) . . . (n′ − x+ 1)

]
â†1 |n1 − 1, n2〉

+
√
n2

[
n′(n′ − 1) . . . (n′ − x+ 1)

]
â†2 |n1, n2 − 1〉

= (n1 + n2) [(n− 1)(n− 2) . . . (n− x)] |n1, n2 − 1〉

= [n(n− 1)(n− 2) . . . (n− x)] |n1, n2〉 =
N̂ !(

N̂ − (x+ 1)
)
!
|n1, n2〉 ,

with n′ = n1 + n2 − 1 = n− 1 and thus (3.18) is proven by induction.

A.3 Normal ordered counting operator of the form :e−αN̂N̂k :

We also compute a special normal ordered form of the counting operator given by

:e−αN̂ N̂k : =
∞∑
x=0

:
(−α N̂)x

x!
N̂k :

=

∞∑
x=0

(−α)x

x!
:N̂x+k :

=
∞∑
x=0

(−α)x

x!

n!

(n− (x+ k))!

= (1− α)n−k
n!

(n− k)!
.

(A.2)
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A.4 Commutators on the normal ordered radial function

Given the definitions in (3.3), (3.20) and (3.22) we find the actions of the following commutators:

[
â†α , :R(N̂) :

]
|n1, n2〉 =

∞∑
k=0

ck

[
â†α , :N̂k :

]
|n1, n2〉

=

∞∑
k=0

ck

(
â†α :N̂k : − :N̂k : â†α

)
|n1, n2〉

=

∞∑
k=0

ck
√
nα + 1

(
n!

(n− k)!
− (n+ 1)!

(n+ 1− k)!

)
|n1 + δα,1, n2 + δα,2〉

=

∞∑
k=0

ck
√
nα + 1

(
n(n− 1)(n− 2) . . . (n− k + 2)(n− k + 1)

− (n+ 1)n(n− 1)(n− 2) . . . (n− k + 2)

)
|n1 + δα,1, n2 + δα,2〉

=
∞∑
k=0

ck
√
nα + 1

n!

(n− (k − 1))!

(
(n− k + 1)− (n+ 1)

)
|n1 + δα,1, n2 + δα,2〉

= −
∞∑
k=0

ck k
√
nα + 1

n!

(n− (k − 1))!
|n1 + δα,1, n2 + δα,2〉

= −â†α :R′(N̂) : |n1, n2〉 (A.3)
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and

[
âα , :R(N̂) :

]
|n1, n2〉 =

∞∑
k=0

ck

[
âα , :N̂k :

]
|n1, n2〉

=
∞∑
k=0

ck

(
âα :N̂k : − :N̂k : âα

)
|n1, n2〉

=
∞∑
k=0

ck
√
nα

(
n!

(n− k)!
− (n− 1)!

(n− 1− k)!

)
|n1 − δα,1, n2 − δα,2〉

=
∞∑
k=0

ck
√
nα

(
n(n− 1)(n− 2) . . . (n− k + 1)

− (n− 1)(n− 2) . . . (n− k + 1)(n− k)

)
|n1 − δα,1, n2 − δα,2〉

=

∞∑
k=0

ck
√
nα

(n− 1)!

(n− k)!

(
n− (n− k)

)
|n1 − δα,1, n2 − δα,2〉

=

∞∑
k=0

ck k
√
nα

(n− 1)!

((n− 1)− (k − 1))!
|n1 − δα,1, n2 − δα,2〉

= :R′(N̂) : âα |n1, n2〉 , (A.4)

We may, therefore, consider
[
â†α , :R(N̂) :

]
= −â†α :R′(N̂) : and

[
âα , :R(N̂) :

]
= :R′(N̂) : âα.

A.5 Double commutator on the wavefunction

Simplifying (3.23) yields

[
â†α, [âα, ψ̂jm]

]
= θj

∑
(jm)

[
âα ,

(â†1)m1(â†2)m2

m1!m2!

] [
â†α , :R(N̂) :

] (â1)n1(−â2)n2

n1!n2!

+ θj
∑
(jm)

(â†1)m1(â†2)m2

m1!m2!

[
âα , :R(N̂) :

] [
â†α ,

(â1)n1(−â2)n2

n1!n2!

]

+ θj
∑
(jm)

[
âα ,

(â†1)m1(â†2)m2

m1!m2!

]
:R(N̂) :

[
â†α ,

(â1)n1(−â2)n2

n1!n2!

]

+ θj
∑
(jm)

(â†1)m1(â†2)m2

m1!m2!

[
â†α ,

[
âα , :R(N̂) :

]] (â1)n1(−â2)n2

n1!n2!
.

(A.5)
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By using the results in results in Section A.4, we can further simplify (A.5) to

[
â†α, [âα, ψ̂jm]

]
= −θj

∑
(jm)

[
âα ,

(â†1)m1(â†2)m2

m1!m2!

]
â†α :R′(N̂) :

(â1)n1(−â2)n2

n1!n2!

+ θj
∑
(jm)

(â†1)m1(â†2)m2

m1!m2!
:R′(N̂) : âα

[
â†α ,

(â1)n1(−â2)n2

n1!n2!

]

+ θj
∑
(jm)

[
âα ,

(â†1)m1(â†2)m2

m1!m2!

]
:R(N̂) :

[
â†α ,

(â1)n1(−â2)n2

n1!n2!

]

− θj
∑
(jm)

(â†1)m1(â†2)m2

m1!m2!

(
:N̂ R′′(N̂) : + 2 :R′(N̂) :

) (â1)n1(−â2)n2

n1!n2!
.

(A.6)

Within (A.6) we see several commutators. However, it is easy to see that those commutators

that have not previously been calculated are given by[
âα ,

(â†1)m1(â†2)m2

m1!m2!

]
=
(
m1δα,1â

†
2 +m2δα,2â

†
1

) (â†1)m1−1(â†2)m2−1

m1!m2!
(A.7)

and [
â†α ,

(â1)n1(−â2)n2

n1!n2!

]
= − (n1δα,1(−â2) + n2δα,2â1)

(â1)n1−1(−â2)n2−1

n1!n2!
. (A.8)

Using these results we see the first two lines of (A.6) give the same contribution as m1 + m2 =

n1 + n2 = j and the third line equates to 0. Therefore, we have the resulting expression of

[â†α, [âα, ψ̂jm]] = −θj
∑
(jm)

(â†1)m1(â†2)m2

m1!m2!
: [N̂ R′′(N̂) + 2(j + 1)R′(N̂)] :

(â1)n1(−â2)n2

n1!n2!
. (A.9)

A.6 Multiplying the radial distance operator and the wavefunction

Given the radial distance operator given in (3.9) and the wavefunction definition set out in (3.17),

we find that the multiplication of these two results in

r̂ ψ̂jm = θj+1
∑
(jm)

(N̂ + 1)
(â†1)m1(â†2)m2

m1!m2!
:R(N̂) :

(â1)n1(−â2)n2

n1!n2!

= θj+1
∑
(jm)

(â†1)m1(â†2)m2

m1!m2!
(N̂ + 1) :R(N̂) :

(â1)n1(−â2)n2

n1!n2!

+ θj+1
∑
(jm)

â†α

[
âα ,

(â†1)m1(â†2)m2

m1!m2!

]
:R(N̂) :

(â1)n1(−â2)n2

n1!n2!
,

(A.10)
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from which we may use (A.7) and (3.19) to further simplify:

r̂ ψ̂jm = θj+1
∑
(jm)

(â†1)m1(â†2)m2

m1!m2!
(N̂ +m1 +m2 + 1) :R(N̂) :

(â1)n1(−â2)n2

n1!n2!

= θj+1
∑
(jm)

(â†1)m1(â†2)m2

m1!m2!
:
[
(N̂ + j + 1)R(N̂) + N̂R′(N̂)

]
:

(â1)n1(−â2)n2

n1!n2!

(A.11)

A.7 Normal ordering the solutions to the radial differential equation

By use of the Taylor expansion for the Bessel function given in (3.40), and by use of the result

in (A.2), we are able to normal order the first solution of the radial differential equation given

in (3.38):

R̄J(n) = :N̂−(j+ 1
2

)e−
κ2N̂
2

(κ
4
N̂
√

4− κ2
)j+ 1

2
∞∑
k=0

(− 1
16κ

2N̂2(4− κ2))k

k! Γ(j + k + 3
2)

:

=
(κ

4

√
4− κ2

)j+ 1
2
∞∑
k=0

(− 1
16κ

2(4− κ2))k

k! Γ(j + k + 3
2)

:e−
κ2N̂
2 N̂2k :

=
(κ

4

√
4− κ2

)j+ 1
2
∞∑
k=0

(
− 1

16κ
2(4− κ2)

)k
k! Γ(j + k + 3

2)
(1− κ2

2
)n−2k n!

(n− 2k)!

=
2−(2j+1)

(
1− κ2

2

)n (
−κ
√

4− κ2
)j+ 1

2

Γ(j + 3
2)

2F1(−n
2
, −(n− 1)

2
; j +

3

2
; 1− 4

(κ2 − 2)2
),

(A.12)

Similarly, using the Taylor expansion for the Neumann function given in (3.41), and by use of the

result in (A.2), we are able to normal order the first solution of the radial differential equation

Stellenbosch University  https://scholar.sun.ac.za



A. NC QUANTUM MECHANICS IN THREE DIMENSIONS - Detailed Calculations 78

given in (3.39):

R̄Y (n) = :N̂−(j+ 1
2

)e−
κ2N̂
2 cosec(π(j +

1

2
))
(κ

4
N̂
√

4− κ2
)−(j+ 1

2
)
∞∑
k=0

(− 1
16κ

2N̂2(4− κ2))k

k! Γ(−j + k + 1
2)

:

= cosec(π(j +
1

2
))
(κ

4

√
4− κ2

)−(j+ 1
2

)
∞∑
k=0

(− 1
16κ

2(4− κ2))k

k! Γ(−j + k + 1
2)

:e−
κ2N̂
2 N̂2k−2j−1 :

= cosec(π(j +
1

2
))
(κ

4

√
4− κ2

)−(j+ 1
2

)

×
∞∑
k=0

(
1
16κ

2(κ2 − 4)
)k

k! Γ(−j + k + 1
2)

(1− κ2

2
)n−2k+2j+1 n!

(n− 2k + 2j + 1)!

= (−1)j+12−n(2− κ2)n+2j+1
(
κ
√

4− κ2
)−(j+ 1

2
) Γ(n+ 1)

Γ(n+ 2j + 2) Γ(−j + 1
2)

× 2F1(−(n+ 2j + 1)

2
, −(n+ 2j)

2
; −j +

1

2
; 1− 4

(κ2 − 2)2
).

(A.13)
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APPENDIX B

THERMODYNAMICS OF A FERMION GAS IN FUZZY SPACE

Detailed Calculations

B.1 Calculating the q-potential for L
(tot)
3 6=0

Before computations are done, it is first necessary to establish labeling of the following common

recurring integrals in this section:

I(n)(x, λ) =

∫ x

x−

dε d(ε, λ) εn

L(x, λ) =

∫ x

x−

dε I(0)(ε, λ) = xI(0)(x, λ)− I(1)(x, λ)

K(x, λ) =

∫ x

x−

dεL(ε, λ) =
x2

2
I(0)(x, λ)− xI(1)(x, λ) +

1

2
I(2)(x, λ), (B.1)

where x±(λ) = ±
√

1− λ2.

Useful results for I(n)(x, λ) are found in the following special cases:

• I(0)(x+, λ) = 1− λ.

• I(1)(x+, λ) = 0.

• I(2)(x+, λ) = 1
2(1− λ)2.

Now consider the integral over the energy states x in (5.3)

I(α, λ) =

∫ x+

x−

dx d(x, λ) log
[
1 + e−β̃(x−f(α))

]
, (B.2)

for which it is impossible to compute an analytical solution. However, it is possible to make

necessary assumptions to obtain approximate solutions for different domains of x. Recalling

that f(α) = µ̃ + αw, we find that in the low temperature limit, i.e. large β̃, we can apply the

following approximations:

79
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(i) f(α) < x−

Here one finds that −β̃(x− f(α)) will be negative over the domain of x and, therefore, the

logarithm is exponentially small in β̃. The integral over x approximates to

I1(α, λ) ≈ 0. (B.3)

(ii) x− < f(α) < x+

This special case requires the use of the Sommerfeld expansion [18]. The expansion results

in an approximation of I(α, λ) up to linear order in β̃−1, with the result being

I2(α, λ) ≈ β̃L(f(a), λ) +
π2

6β̃
d(f(α), λ). (B.4)

(iii) f(α) > x+

In this case −β̃(x − f(α)) is strictly positive over the domain of x, resulting in argument

of the logarithm being exponentially large in β̃. The logarithm can, therefore, be approxi-

mated to

log
[
1 + e−β̃(x−f(α))

]
≈ −β̃(x− f(α)),

with the integral approximating to

I3(α, λ) ≈ β̃(1− λ) f(α). (B.5)

Given these approximate solutions, it follows that one now solves for the angular momentum

projection integral given by

J (λ) =

∫ +λ

−λ
dα I(α, λ). (B.6)

Solving (B.6) requires that one solves an increasing number of different combinations of the

integrals in (B.1). The solutions for the angular momentum projection integrals are highly

dependent on the values of µ̃ and w. The results, for different ranges in µ̃ and w are given by
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(i) x− < f− < x+ < f+

J1(λ) =
β̃

w

(
f+

2

2
(1− λ) +

1

4
(1− λ)2 −K(f−, λ)

)
+

π2

6β̃w

(
1− λ− I(0)(f−, λ)

)
. (B.7)

(ii) x− < f− < f+ < x+

J2(λ) =
β̃

w
(K(f+, λ)−K(f−, λ)) +

π2

6β̃w

(
I(0)(f+, λ)− I(0)(f−, λ)

)
. (B.8)

(iii) f− < x− < x+ < f+

J3(λ) =
β̃(1− λ)

2w

(
f+

2 +
1− λ

2

)
+
π2(1− λ)

6β̃w
. (B.9)

(iv) f− < x− < f+ < x+

J4(λ) =
β̃

w
K(f+, λ) +

π2

6β̃w
I(0)(f+, λ). (B.10)

(v) x+ < f− < f+

J5(λ) = 2λ(1− λ)β̃ µ̃, (B.11)

with f± = µ̃± wλ.

All that remains in the solution of the q-potential is that one solves the final integral for total

angular momentum given by

q(M, β̃, µ̃, w) = M3

∫ 1

0
dλ J (λ, β̃, µ̃, w). (B.12)

It is easy to show that, depending on the values of µ̃ and w, one has 8 different combination of the

integrals in eqs. (B.7-B.11) to solve in order to have a complete solution for the q-potential. This

dissertation only focused on specific high-density combinations associated with different scenarios

for values of µ̃ and w, as described in Section 5.1. The case where total angular momentum is

non-zero, i.e. 1 < µ̃ < w, has the following combination of integrals:

q(M, β̃, µ̃, w) = M3

(∫ λ−

0
dλ J5 +

∫ λ+

λ−

dλ J1 +

∫ 1

λ+

dλ J3

)
, (B.13)
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with λ± =
µ̃w±
√

1−µ̃2+w2

1+w2 . The resulting expression for the q-potential is then given by

q(M, β̃, µ̃, w) =
M3

12w3

 β̃
(

(
√

1 + w2 − µ̃)4 + 8w3µ̃
)

2
+
π2
(√

1 + w2 − µ̃
)2

β̃

 . (B.14)
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